Skip to main content
Log in

Large-Eddy Simulation for an Axisymmetric Piston-Cylinder Assembly With and Without Swirl

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Large-eddy simulation (LES) has been performed for an axisymmetric piston-cylinder assembly with and without swirl. For both cases, the LES mean and rms velocity profiles show better agreement with experimental data than profiles obtained using a Reynolds-averaged Navier–Stokes (RANS) approach with a standard k − ε turbulence model. The sum of the resolved and modeled contributions to turbulence kinetic energy (TKE) approaches grid independence for the meshes used in this study. The sensitivity of LES to key numerical and physical model parameters has been investigated. Results are especially sensitive to mesh and to the subfilter-scale (SFS) turbulence models. Satisfactory results can be obtained using simple viscosity-based SFS turbulence models, although there is room for improvement. No single model gives uniformly best agreement between model and measurements at all spatial locations and at all times. The strong sensitivity of computed mean and rms velocity profiles to variations in the SFS turbulence model suggests that better results might be obtained using more sophisticated models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. El Tahry, S.H., Haworth, D.C.: Directions in turbulence modeling for in-cylinder flows in reciprocating engines. AIAA J. Propuls. Power 8, 1040–1048 (1992)

    Article  Google Scholar 

  2. Haworth, D.C., Jansen, K.: Large-eddy simulation on unstructured deforming meshes: towards reciprocating IC engines. Comput. Fluids 29, 493–524 (2000)

    Article  Google Scholar 

  3. Haworth, D.C.: Large-eddy simulation of in-cylinder flows. In: Oil and Gas Science and Technology, vol. 54, pp. 175–185. Revue de l’Institut Français du Pétrole (1999)

  4. Haworth, D.C.: A Review of Turbulent Combustion Modeling for multidimensional In-Cylinder CFD. SAE Paper, no. 2005-01-0993 (2005)

  5. Reynolds, W.C.: Computation of turbulent flows. Annu. Rev. Fluid Mech. 8, 183–208 (1976)

    Article  Google Scholar 

  6. Drake, M.C., Haworth, D.C.: Advanced gasoline engine development using optical diagnostic and numerical modeling. In: Proceedings of the Combustion Institute, vol. 31, pp. 99–124 (2007)

  7. Celik, I.B., Yavuz, I., Smirnov, A.: Large eddy simulations of in-cylinder turbulence for internal combustion engines: a review. Int. J. Engine Res. 2(2), 119–148 (2001)

    Article  Google Scholar 

  8. Naitoh, K., Itoh, T., Takagi, Y., Kuwahara, K.: Large Eddy Simulation of Premixed-Flame in Engine Based on the Multi-level Formulation and Renormalization Group Theory. SAE Paper, no. 920590 (1992)

  9. Celik, I.B., Yavuz, I., Smirnov, A., Smith, J., Amin, E., Gel, A.: Prediction of in-cylinder turbulence for IC engines. Combust. Sci. Technol. 153(1), 339–368 (2000)

    Article  Google Scholar 

  10. Celik, I.B., Amin, E., Smith, J., Yavuz, I., Gel, A.: Towards large eddy simulation using the KIVA-code. In: 11th Intenational Multidimensional Engine Modeling User’s Group Meeting. Detroit, Michigan (1998)

  11. Amsden, A.A., Ramshaw, J.D., O’Rourke, P.J., Dukowicz, J.K.: KIVA: A Computer Program for Two- and Three-Dimensional Fluid Flows with Chemical Reactions and Fuel Sprays. Tech. Rep. LA-10245-MS, Los Alamos National Laboratory (1985)

  12. Smirnov, A., Yavuz, I., Celik, I.B.: Diesel combustion and LES of in-cylinder turbulence for IC engines. In: In-Cylinder Flows and Combustion Processes, ASME Fall Technical Conference. Ann Arbor, Michigan (1999)

  13. Smith, J., Smirnov, A., Yavuz, I., Celik, I.B.: Simulation of swirling flows related to an intake stroke of a diesel engine. In: ASME ICE-Division Fall Conference. Clymer, New York (1998)

  14. Richard, S., Colin, O., Vermorel, O., Benkenida, A., Angelberger, C., Veynante, D.: Towards large eddy simulation of combustion in spark ignition engines. In: Proceedings of the Combustion Institute, vol. 31, pp. 3059–3066 (2007)

  15. Vermorel, O., Richard, S., Colin, O., Angelberger, C., Benkenida, A.: Multi-Cycle LES Simulations of Flow and Combustion in PFI SI 4-Valve Production Engine. SAE Paper, no. 2007-01-0151 (2007)

  16. Goryntsev, D., Sadiki, A., Klein, M., Janicka, J.: Large eddy simulation based analysis of the effects of cycle-to-cycle variations on air-fuel mixing in realistic DISI ic-engines. In: Proceedings of the Combustion Institute, vol. 32, pp. 2759–2766 (2009)

  17. Banerjee, S., Liang, T., Rutland, C.J., Hu, B.: Validation of an LES Multi Mode Combustion Model for Diesel Combustion. SAE Paper, no. 2010-01-0361 (2010)

  18. Angelberger, C.: LES for Internal Combustion Engine Flows (Rueil-Malmaison, France), IFP, 1–2 December 2008. See http://www.ifp.com

  19. Morse, A., Whitelaw, J.H., Yianneskis, M.: Turbulent Flow Measurement by Laser–Doppler Anemometry in a Motored Reciprocating Engine. Tech. Rep. FS/78/24, Imperial College Department of Mechanical Enginnering (1978)

  20. Morse, A., Whitelaw, J.H., Yianneskis, M.: The Influence of Swirl on the Flow Characteristics of a Reciprocating Piston-Cylinder Assembly. Tech. Rep. FS/78/41, Imperial College Department of Mechanical Enginnering (1978)

  21. Morse, A., Whitelaw, J.H., Yianneskis, M.: The influence of swirl on the flow characteristics of a reciprocating piston-cylinder assembly. J. Fluids Eng. 102, 478–480 (1980)

    Article  Google Scholar 

  22. Morse, A., Whitelaw, J.H., Yianneskis, M.: Turbulent flow measurement by Laser–Doppler anemometry in a motored piston-cylinder engine. J. Fluids Eng. 101, 208–216 (1979)

    Article  Google Scholar 

  23. Verzicco, R., Mohd-Yusof, J., Orlandi, P., Haworth, D.C.: Large eddy simulation in complex geometric configuration using boundary body forces. AIAA J. 38, 427–433 (2000)

    Article  Google Scholar 

  24. El Tahry, S.H.: A comparison of three turbulence models in engine like geometries. In: Proceedings of International Symposium on Diagnostics and Modeling of Combustion in Reciprocating Engines: COMODIA 85 (Tokyo, Japan), pp. 203–213 (1985)

  25. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  26. Germano, M.: A proposal for redefinition of the turbulent stresses in the filtered Navier–Stokes equations. Phys. Fluids 29(7), 2323–2324 (1986)

    Article  MATH  Google Scholar 

  27. Germano, M.: Turbulence: the filtering approach. J. Fluid Mech. 238, 325–336 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  28. Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Weather Rev. 91(3), 99–164 (1963)

    Article  Google Scholar 

  29. Peyret, R.: Handbook of Computational Fluid Dynamics. Academic, London (2000)

    Google Scholar 

  30. Lilly, D.K.: The representation of small-scale turbulence in numerical simulation experiments. In: IBM Science and Computing Symposium on Environmental Science (Yorktown Heights, New York, USA) (1967)

  31. Di Mare, F.: Large eddy simulation of reacting and non-reacting turbulent flows in complex geometries. PhD thesis, University of London (2002)

  32. Piomelli, U., Chasnov, J.R.: Large-Eddy Simulations: Theory and Applications, vol. 7. Kluwer Academic, Dordrecht (1996)

    Google Scholar 

  33. Deardorff, J.W.: On the magnitude of the sub grid scale eddy coefficient. J. Comput. Phys. 7, 120–133 (1970)

    Article  Google Scholar 

  34. Yoshizawa, A.: Statistical theory for compressible turbulent shear flows, with the application to subgrid scale modeling. Phys. Fluids 29, 2152–2164 (1986)

    Article  MATH  Google Scholar 

  35. Speziale, C.G.: Analytical methods for the development of Reynolds-stress closures in turbulence. Annu. Rev. Fluid Mech. 23, 107–157 (1991)

    Article  MathSciNet  Google Scholar 

  36. Horiuti, K.: A proper velocity scale for modelling subgrid-scale eddy viscosities in large eddy simulation. Phys. Fluids A 5, 146–157 (1992)

    Article  Google Scholar 

  37. Yoshizawa, A.: A statistically derived subgrid model for the large eddy simulations of turbulence. Phys. Fluids 25, 1532–1538 (1982)

    Article  MATH  Google Scholar 

  38. Spalding, D.B.: A single formula for the law of the wall. J. Appl. Mech. 28, 455–458 (1961)

    MATH  Google Scholar 

  39. CD-adapco: Methodology for STAR-CD VERSION 4.06 (2008)

  40. Issa, R.I.: Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 62, 40–65 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  41. CD-adapco: User Guide for STAR-CD VERSION 4.06 (2008)

  42. Launder, B.E., Spalding, D.B.: The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 3, 269–289 (1974)

    Article  MATH  Google Scholar 

  43. Rodi, W.: Influence of buoyancy and rotation on equations for the turbulent length scale. In: Proceedings of the Second Symposium On Turbulent Shear Flows (Imperial College, London), pp. 10.37–10.42 (1979)

  44. El Tahry, S.H.: k − ε equation for compressible reciprocating engine flows. AIAA J. Energy 7(4), 345–353 (1983)

    Google Scholar 

  45. Kim, S.-E., Choudhury, D.: A near-wall treatment using wall functions sensitized to pressure gradient. In: ASME, FED, vol. 217 (1995)

  46. Miles, P.C., Rempel Ewert, B.H., Reitz, R.D.: Experimental assessment of a non-linear turbulent stress relation in a complex reciprocating engine flow. In: 14th Int Symp on Applications of Laser Techniques to Fluid Mechanics (Lisbon, Portugal) (2008)

  47. Son, C.H., Shethaji, T.A., Rutland, C.J., Barths, H., Lippert, A., El Tahry, S.H.: Application of non-linear turbulence models in an engine-type flow configuration. Int. J. Engine Res. 8(5), 449–464 (2007)

    Article  Google Scholar 

  48. Pope, S.B.: Ten questions concerning the large-eddy simulation of turbulent flows. New J. Physics 6(35), 1–24 (2004)

    Google Scholar 

  49. Klein, M.: An attempt to assess the quality of large eddy simulation in the context of implicit filtering. Flow Turbul. Combust. 75, 131–147 (2005)

    Article  MATH  Google Scholar 

  50. Celik, I.B., Cehreli, Z.N., Yavuz, I.: Index of resolution quality for large eddy simulation. J. Fluids Eng. 127(5), 949–958 (2005)

    Article  Google Scholar 

  51. Chumakov, S., Rutland, C.J.: Dynamic structure models for scalar flux and dissipation in large eddy simulation. AIAA J. 42(6), 1132–1139 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, K., Haworth, D.C. Large-Eddy Simulation for an Axisymmetric Piston-Cylinder Assembly With and Without Swirl. Flow Turbulence Combust 85, 279–307 (2010). https://doi.org/10.1007/s10494-010-9292-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-010-9292-1

Keywords

Navigation