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Abstract
Knowledge in the source domain can be used in transfer learning to help train and classification tasks within the target domain
with fewer available data sets. Therefore, given the situation where the target domain contains only a small number of available
unlabeled data sets and multi-source domains contain a large number of labeled data sets, a new Multi-source Fast Transfer
Learning algorithm based on support vector machine(MultiFTLSVM) is proposed in this paper. Given the idea of multi-source
transfer learning, more source domain knowledge is taken to train the target domain learning task to improve classification effect.
At the same time, the representative data set of the source domain is taken to speed up the algorithm training process to improve
the efficiency of the algorithm. Experimental results on several real data sets show the effectiveness ofMultiFTLSVM, and it also
has certain advantages compared with the benchmark algorithm.
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1 Introduction

As one of the fastest-growing technical fields today, machine
learning is also the core of artificial intelligence and data sci-
ence. It solves the problem of how to automatically improve
computers through experience [1]. Machine learning has been
widely applied in intrusion detection [2, 3], computer vision
[4], data mining [5], text classification [6], spam detection [7]
and pattern recognition [8], and other fields. However, the
further development of machine learning in these fields is
restricted by the shortcomings of traditional machine learning
methods. Usually, two basic assumptions in traditional ma-
chine learning should be met for the current traditional ma-
chine learning classification tasks: there are enough data

samples in the training data set to train a high-precision clas-
sifier; training and test data comes from the same feature space
and has the same distribution. For practical application, train-
ing and test data usually come from different domains, with
differing marginal probabilities, or conditional probabilities,
so the data distribution is also different. When the distribution
is changed, most machine learning algorithms need to re-
collect training data. In many real-world applications, the cost
of re-collecting training data and reconstructing the model is
very expensive, or even impossible [9].

In this case, transferring learning between learning task
domains is desirable. The research motivation of transfer
learning is that previously learned knowledge can be used
by people to better solve new problems [9, 10], and its purpose
is to build a model for the target domain by using labeled
information in another related domain (source domain).
Therefore transfer learning is defined in Wikipedia as
“Transfer learning is a new machine learning method that
takes existing knowledge to solve problems in different but
similar fields. It no longer follows the two basic assumptions
in traditional machine learning. Instead, the existing knowl-
edge is transferred to solve the problem of only a small
amount of labeled sample data in the target field [11]. The
difference between traditional machine learning and transfer
learning is shown in Fig. 1. It can be seen from Fig. 1a that
each learning task in traditional machine learning starts from
zero, while in (b) the knowledge from previous learning tasks
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can be transferred to the current target learning task by using
transfer learning. The representative algorithms related to trans-
fer learning research are as follows: Gao et al. [12] proposed an
integrated framework of a locally weighted combination of
multiple models (LWE). LWE can integrate the advantages of
various algorithms and label learning in multiple training do-
mains into one model and dynamically assign weights accord-
ing to the predictive ability of each model per each instance.
Pan et al. [13] proposed a new learning method for domain
adaptation transfer components analysis(TCA). TCA tries to
learn several transfer components across domains in the
Reproducing Kernal Hilbert Spaces (RKHS) by the maximum
mean discrepancy (MMD) error rate. In the subspace spanned
by these components, data attributes are preserved, and data
distribution in different domains is close to each other. An
adaptive regularization transfer learning algorithm (ARTL) is
based on the structural risk minimization principle and a regu-
larization theory that was proposed by Long et al. [14]. Li et al.
[15] implemented the transfer learning algorithm RankRE-TL
based on the transfer learning mechanism of knowledge used
and the error set selection method with rank reduction. A new
SVM-based model transfer method was proposed in [16], in
which a large boundary classifier is trained on the labeled target
sample and adjusted by an offset of the source classifier. This
method is called Heterogeneous Max-margin Classifier
Adaptation Method (HMCA). Xie et al. [17] proposed a new
method of supervised domain adaptation by dual support vector
machines, called adaptive dual support vector machines for an
aggregation domain.

However, in the above transfer learning algorithm, only the
knowledge in a source domain is transferred to the target do-
main. In transfer learning, the performance of the target classi-
fier largely depends on the correlation between the source do-
main and the target domain. If the correlation between the target
domain and the source domain is strong, it will help to improve
the learning effect in the target domain, otherwise, it will reduce
the learning effect of the target domain, leading to the phenom-
enon of negative transfer [12]. One strategy to reduce this

negative transfer is to import knowledge from multi-sources
to increase the chance of discovering a source domain closely
related to the target domain [18]. The typical research work for
a multi-source domain transfer learning algorithm is as follows:
A novel task-based instance transfer enhancement technology
TransferBoost was proposed in [19], which selectively transfers
knowledge from the source domain to the target task. It has
been enhanced at both the instance level and the task level.
The source tasks that show good portability to target tasks can
be assigned higher weights and the weight of each instance in
each source task can be adjusted through AdaBoost. Yao et al.
[20] introduced multi-source domains to solve the problem of
negative transfers and proposed two new algorithms, Multi-
source-TrAdaBoost and TaskTrAdaBoost. Duan et al. [21] pro-
posed a multi-source domain adaptation method (DAM) by
using a set of pre-trained classifiers (called auxiliary/source
classifiers) that use labeling patterns frommulti-source domains
to learn from robust decision function for pattern labeling pre-
diction in the target domain (called target classifier). A incom-
plete multi-source transfer learning algorithm IMTL is pro-
posed through two directions of knowledge transfer (ie, cross-
domain transfer and cross-source transfer from each source to
target) [22]. In [23], this paper present a Bayesian framework
for transfer learning using neural networks that considers single
and multiple sources of data. Other researches on multi-source
transfer learning in literature [24–26]. Today, transfer learning
has been applied in the fields of speech recognition, computer
vision, information retrieval, natural language processing, adap-
tive update map coverage, fault diagnosis, automatic detection
of COVID-19 infection and other fields [27–33].

In this paper, the structural risk minimization theory, sup-
port vector machine, and source transfer learning theory are
taken. Aiming for an application scenario where there is only a
small amount of labeled data in the target domain and a large
amount of labeled data in multi-source domains, a new multi-
source fast transfer algorithm-MultiFTLSVM is proposed.
The idea of the MultiFTLSVM algorithm is to integrate the
knowledge within the target domain and the labeled data in
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Fig. 1 Difference between
transfer learning and traditional
machine learning
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multi-source domains into a structural risk minimization
framework of support vector machines. The knowledge that
needs to be transferred in the source domain is selected by
constructing a similar distance term and the MMD between
the target domain and each source domain, and the AESVM
algorithm is used to reduce the sample size of the source
domain to improve algorithm training efficiency, and then
construct an optimizable objective function. The theoretical
proof of the objective function shows that the solution process
is a quadratic programming problem with an optimal solution.

Compared with previous work, the contributions of this
paper include:

1) Existing data sets are taken to reduce the cost of collecting
data sets.

2) All training samples no longer require AESVM to train
the learning model, which can greatly reduce the size of
the training samples so that the training cost of the learn-
ing model is reduced.

3) To prevent negative transfer and improve classification
performance, multi-source transfer learning simulta-
neously extracts knowledge from multi-source domains
to assist the learning task in the target domain. In this
process, the knowledge of the similarity between each
source domain and sample and the target domain is trans-
ferred to the target domain to the greatest extent.

The rest of the paper is arranged as follows: The related
work of multi-source transfer learning, approximate pole sup-
port vector machine (AESVM), and maximum mean discrep-
ancy (MMD) are reviewed in Section 2. The construction and
training process of multi-source fast transfer learning is intro-
duced in detail in Section 3. The effectiveness of the algorithm
on the 20-Newsgroups text data set, sentiment analysis data
set and the spam data set is verified in Section 4. The main
work of the paper is summarized in Section 5.

2 Overview of related work

In this part, we give a brief introduction to multi-source trans-
fer learning and group probability. In the introduction of
group probability, we focus on IC technology and the group
probability classification algorithm IC-SVM that is technolo-
gy is based on.

2.1 Multi-source transfer learning

Transfer learning has been widely studied for many years
since it was proposed in NIPS-95 in 1995. Compared with
traditional machine learning algorithms, transfer learning has
significant advantages. Useful knowledge can be taken from
the source domain to significantly improve the learning

performance of the target domain and greatly reduce costly
data labeling work. There is no need for training data and test
data to satisfy the same distribution. At present, most transfer
learning tasks only transfer the knowledge in a source domain
to the target domain [9]. However, in real-world applications,
we can easily collect auxiliary data from multi-source do-
mains. Therefore, the study of transfer learning in multi-
source domains has gradually aroused the interest of re-
searchers [18]. As shown in Fig. 2, the relationship between
multi-source domains and target domains is taken for the
multi-source transfer to improve the predictive performance
of the target domain on samples and assist the target domain to
establish a prediction model.

In Fig. 2, DS1ð ; TS1Þ, DS2ð ; TS2Þ,…, DSnð ; TSnÞ represents
n source domains and their corresponding learning tasks.(DT,
TT) represents the target domain and its corresponding learn-
ing tasks.ft represents the target domain classifier obtained by
training the data sets in the target domain DT and the source
domain DSi i ¼ 1;…; nð Þ.

Generally, multi-source transfer learning algorithms can be
divided into two categories: methods based on boosting [19,
20] andmethods based on regularization [21–24]. Additionally,
[25] divided themulti-source transfer learning into multi-source
sample transfer learning, parameter-based multi-source transfer
learning, and feature-based multi-source transfer methods. The
regularized multi-source transfer method needs to design a reg-
ularization term, while the boosting multi-source transfer meth-
od needs to adjust the weight of different domains or instances
to achieve its purpose of transferring knowledge. The focus of
these methods is sample mobility, instead of studying which
source domain has better mobility.When there are multi-source
domains, how to determine which source domain has better
mobility is an important issue [26].

2.2 Approximate pole support vector

Given that the basic idea of support vector machines is to find
a hyperplane that represents the largest interval between two
types, from a geometric point of view, the calculation of the
maximum boundary hyperplane is equivalent to calculating
the nearest sample between the two convex hulls [34, 35].
For SVM, a prerequisite for achieving better training results
is a large number of training samples. A large number of
training samples not only requires a lot of manpower to label
but also a lot of time is then consumed in the training phase, so
the training efficiency of SVM is not very satisfactory.

A training data set X = {x1, x2,…, xn}is given, and the cor-
responding class label set is Y = {y1, y2,…, yn},yi ∈ {1, −1}.
AESVM optimization problem is described in Eq. (1):

min
w;b

FAESVM w; bð Þ ¼ 1

2
wTwþ C

M
∑
M

i¼1
βil w; b;φ xið Þð Þ ð1Þ
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In Eq. (1), Mis the number of samples of representative
training data set X∗ selected in the data set X, parameters w,
b, i and C are support vector normal vector, displacement
item, sample No. and regularization coefficient, the vector
β = [β1, β2,…βM]is the weight vector corresponding to the
representative data set sample, such as Eq. (9),M is the num-
ber of the representative data set, l is the hinge loss function,
l(w, b, ϕ(xi) = max {0, 1 − yi(w

Tϕ(xi) + b)}, xi ∈ X∗, and ϕ(⋅) is
the nonlinear mapping function. The kernel function can be
written as Ki, j = k(xi, xj) = ϕ(xi)

Tϕ(xj).
To obtain the representative data set X∗, the data set Xneeds

to be grouped according to a determined separation strategy
X = {X1, X2,…,Xn/V}. n is the number of samples in the data
set X,V is the maximum number of samples in each group and
Xq(q = 1, 2,…, n/V) represents the group q. The sample data in
each group has a high similarity, while the sample data between
different groups had a low similarity. The concept of similarity
is that the distance between sample data in a subset is less than
the distance between sample data in different subsets. In each
subset Xq, the representative data set X ∗* and the correspond-
ing weight vector βq are calculated. Finally, the representative
data sets X ∗* are obtained from all subsetsXq and are then
merged into the representative data setsX∗.

The specific process of obtaining representative data sets
from the data set X is as follows.

Firstly, the initial representative dataset X ∗* is calculated

by using the SVDD algorithm [36] and the sample xi

xi∈X q and xi∉X *
q

� �
should determine whether or not it be-

longs to the representative data set X ∗*, which is formally
described as Eq. (2) .

max
xi∈X q;xi∉X*

q

f φ xið Þ;X *
q

� �
¼ min

μit

φ xið Þ−∑jX *
qj

j¼1μi;tφ x j
� ���� ���2≤ε

s:t:0≤μi; j≤1; ∑
jX *

qj

j¼1
μi; j ¼ 1; x j∈X *

q

8>>>>><>>>>>:
ð2Þ

In Eq. (2), jX *
qj is the number of samples in the sample set

X *
q, ε is a small normal vector artificially given, μi, j is the

coordination coefficient, and j is the serial number of samples
in the sample set X *

q. For ximeeting Eq. (2) inXq, the extended

representative sample set X *
q is X *

q ¼ X *
q∪ xif g. For all sam-

ples xi xi∈X qandxi∉X*
q

� �
, Eq. (3) is calculated by Eq. (2):

φ xið Þ ¼ ∑
xi∈X q

γi; jφ xið Þ þ τ i ð3Þ

In Eq. (3), γi; j ¼ μi; j; x j∈X
*
qandxi∈X q

n
0, τi is the ap-

proximate error vector ‖τi‖
2 ≤ ε in Eq. (3). The weight vector

corresponding to the representative data set γi, j in Eq. (4):

β j ¼ ∑
n

i¼1
γi; j ð4Þ

2.3 Maximum mean discrepancy

In transfer learning, the difference in sample distribution leads
to the problem of negative transfer. Therefore, it is necessary
to select a convenient distribution distance measurement.
MMD is an effective measure to estimate the distance between
two different distribution in the Hilbert Spaces. The value is
calculated by the distance distribution found in the given func-
tions. The function can best separate the two kinds of distri-
bution and is limited to a unit ball in RKHS.

The set DS containing ns training samples and the set DT

containing nt test samples are given. The formal definition of
nonlinear mapping function and MMD in Hilbert Spaces is as
follows:

MMDH DS ;DTð Þ ¼ 1

ns
∑
i¼1

ns

ϕ xsi
� �

−
1

nt
∑
j¼1

nt

ϕ xtj
� ������

�����
H

ð5Þ

In Eq. (5), we find that the empirical estimate of the differ-
ence between the two distributions is considered as the dis-
tance between the two data distributions in the Hilbert Spaces,
and an MMD value close to zero indicates that the two distri-
butions are matched. Recently, the MMDmeasurement meth-
od is often used to calculate distribution values between do-
mains in transfer learning.

(DT,TT)

(DS1,TS1) (DS2,TS2) (DSn,Tsn)

Transfer Learning

System
ft

Fig. 2 Multi-source transfer
learning
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3 Multi-source fast transfer support vector
machine algorithm (MultiFTLSVM)

This section describes the group probability multi-source
transfer algorithm in detail. The algorithm framework is
shown in Fig. 3. As shown in Fig. 3, the input information
for the MultiTLGP framework consists of two parts, labeled
samples contained in the M source domains and quantity la-
beled samples contained in the target domain. For the sake of
convenience, the dichotomy is considered.

N source domains are defined as

DS ¼ DSi ¼ xSij ; y
Si
j

� �nSi
j¼1

; i ¼ 1;…;N
� �

, where xSij is the jth sam-

ple in the Si
th source domain, and ySij is the corresponding label

of xSij . nSi is the number of the Si
th source domain. Joint dis-

tribution probability ofDSi is PSi . Similarly, the target domain

is defined as DT ¼ xTi
� �

i¼1;::;nT
, and the corresponding joint

distribution probability is PT. PSi x
Sið Þ and PT(xT) are the mar-

ginal probability from the source domain DSi and the target
domain DT, and PSi x

Sið Þ≠PT xTð Þ. The MultiFTLSVM algo-
rithm fully addresses the difference between the source do-
main samples and the target domain by reducing the marginal
probability difference.

Figure 3 shows the framework of the MultiFTLSVM algo-
rithm. Firstly, the weights of each source domain sample’s mar-
ginal probability are calculated. Then, the proposed objective
function is combines with support vector machine, structural risk

minimization theory, and similarity distance minimization.
Finally, the objective function is calculated, proved, and solved.
The detailed process ofMultiFTLSVMconstruction is as follows.

3.1 Re-weighting data samples based on marginal
probability differences

For the convenience of calculation, the similarity of weights

γSij between samples and target domains in each source do-

main DSi with Eq. (5) showing the MMD measuring method
in 2.3. Eq. (5) is modified as follows:

min
αSi

1

nsi
∑
j¼1

nSi
γSij ϕ xsij

� �
−

1

nT
∑
j¼1

nT

ϕ xTj
� ������

�����
H

ð6Þ

ϕ is the mapping function in Hilbert Spaces H. nsi is the
number of samples in the source domainDSi . nT is the number
of samples in the target domain DT, and γSi is the weight
vector of the dimension nSi . The minimization of Eq. (6) is a
standard quadratic programming problem, which can be
solved by many existing solutions.

3.2 Objective function construction of MultiFTLSVM

Based on 3.1 and support vector machines, the objective func-
tion of MultiFTLSVM is constructed and combined with
structural risk minimization theory and similarity distance
minimization, as follows:

min
f t ; f s∈Hk

1

2N
∑
N

i¼1
f Si
�� ��2

K þ 1

N
∑
N

i¼1

CSi

Mi
∑
j¼1

Mi

βSi
j lSi f Si ; y j
� �

þ 1

2
f tk k2K

þ Ct ∑
i¼1

nT

lt f t; yið Þ þ λ
2N

∑
N

i¼1
d f t; f Si
� �

ð7Þ

fS is the vector of decision function in N source domains,
and the decision function in the target domain ft is the same.

f Si
�� ��2

K and f tk k2K are the structural risk items controlling

classifier complexity in the source domain and target domain
respectively. ‖f‖2 is two norm functions. CSi and Ct are the
regularization coefficients. l() is the loss function. The func-
tion d() is used to quantify the difference between the two
domains. λ is the compromise item.Mi represents the number

of representative data sets in the Si
th source domain. βSi ¼

βSi
1 ;β

Si
2 ;…;βMi

	
Si � represents corresponding weights of rep-

resentative data sets in samples from each source domain.
Equation (7) contains three items. The first item

1
2N ∑

N

i¼1
f Si
�� ��2

K þ 1
M ∑

M

i¼1

CSi
Mi

∑
j¼1

Mi

lSi f Si ; y j
� � !

r e p r e s e n t s

knowledge learned from each source domain. The second

1
2 f tk k2K þ Ct ∑

i¼1

nT

lt f tð



; yiÞÞ represents knowledge learned

Target domain

Data and Knowledge

MultiFTLSVM

M Source domains

Fig. 3 Framework of MultiFTLSVM
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from the target domain. The third λ
2N ∑

N

i¼1
d f tð



; f SiÞÞ repre-

sents the regularization term, which ensures good generalization
performance byminimizing the differences between each source

domain and target domain. λ
2N ∑

N

i¼1
d f tð ; f SiÞ is expressed as λ

2N

∑
N

i¼1
wt−βsiwsik k 2 with simple quadratic distance measurement.

To solve the issue of negative transfer, we use theweight γSi and

βSi from 3.1 and replace the weight vector βSi of the represen-
tative data set with it, as shown in Eq. (8).

ρSi ¼ c1β
Si þ c2γSiκ DSið Þ ð8Þ

In Eq. (8), c1 and c2 represent the coefficients, c1 + c2 = 1, κ
DSið Þ is the mapping function of samples from the source do-
mainDSi and their corresponding representative data set samples.

In conclusion, Eq. (7) is rewritten as Eq. (9).

min
wt ;bt ;ws;bs

1

2
wtk k2 þ Ct ∑

i¼1

nT

lt wT
t φ xð Þ þ bt; yi

� �þ 1

2N
∑
N

i¼1
wSik k2

þ 1

N
∑
N

i¼1

CSi

Mi
∑
j¼1

Mi

ρSi lSi wT
Siφ xð Þ þ bSi ; y j

� �
þ λ

2N
∑
N

i¼1
wt−wSik k2

ð9Þ

In Eq. (9), a hinge loss function is introduced in each source
domain and target domain. Therefore, Eq. (9) can be trans-
formed into the optimization problem shown in Eq. (10):

min
wt ;bt ;ws;bs

1

2
wtk k2 þ Ct ∑

∑N

j M jþnT

i¼1þ∑N

j M j

ξi þþ 1

2N
∑
N

i¼1
wsik k2 þ 1

N
∑
N

i¼1

CSi

Mi
∑
j¼1

Mi

ρSij ξ
Si
j þ

þ λ

2N
∑
N

i¼1
wt−wSik k2

s:t: ysij wT
siφ xsij
� �

þ bsi
� �

≥1−ξsij ; j ¼ 1;…; nsi ; si ¼ 1;…;N

eyi wT
t φ xti
� �þ bt

� �
≥1−ξi; i ¼ 1;…; nT

ð10Þ

In Eq. (10), ξsij (ξsij ≥0 ) and ξi (ξi ≥ 0) are relaxation vari-

ables. The first constraint ensures that the learning tasks from
each source domain are classified as correctly as possible. The
second constraint ensures that the learning tasks in the target
area are classified as correctly as possible.

3.3 Objective function theorem proofing

Theorem 1: The dual problem of Eq. (10) is a quadratic pro-
gramming (QP) problem, as shown in Eq. (11).

ð11Þ
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Proof: The Lagrangian function of Eq. (10) is as follows:

L wt;ws; bt; bs; ξ; ξs;α;αs; r; rsð Þ ¼

1

2
wtk k2 þ 1

2N
∑
N

i¼1
wSik k2 þ Ct ∑

∑
N

j¼1
M jþnT

i¼∑
N

j¼1
M jþ1

ξi þ
1

N
∑
N

i¼1

CSi

Mi
∑
j¼1

Mi

ρSij ξ
Si
j

þ λ
2N

∑
N

i¼1
wt−wSik k2− 1

N
∑
N

i¼1
∑
j¼1

Mi

rSij ξ
Si
j − ∑

∑
N

j¼1
M jþnT

i¼∑
N

j¼1
M jþ1

riξi

− ∑
N

i¼1
∑
j¼1

Mi

αSi
j ySij wT

si
φ xSij
� �

þ bsi
� �

−1þ ξSij
� �

− ∑

∑
N

j¼1
M jþnT

i¼∑
N

j¼1
M jþ1

αi eyi wT
t φ xti
� �þ bt

� �
−1þ ξi

� �

ð12Þ

Where, αSi ¼ αSi
1 ;α

Si
2 ;…;αMi

�
SiÞ ;α ¼ α1ð ;α2;…;αnT

Þ and rSi ¼ rSi1 ; r
Si
2 ;…; rMi

�
SiÞ ; r ¼ r1ð ; r2;…; rnT Þ are the

Lagrange multipliers, according to Karush-Kuhn-Tucker
(KKT) conditions [17]:

∂L
∂ξSij

¼ 0⇒ ∑
N

i¼1
∑
j¼1

Mi

rSij þ αSi
j

� �
¼ 1

N
∑
N

i¼1

CSi

Mi
∑
j¼1

Mi

ρSij ð13Þ

∂L
∂ξi

¼ 0⇒ ∑
∑
N

j¼1
M jþnT

i¼ ∑
N

j¼1
M jþ1

αi þ rið Þ ¼ ∑
∑
N

j¼1
M jþnT

i¼ ∑
N

j¼1
M jþ1

Ct ð14Þ

∂L
∂wsi

¼ 0⇒
1

N
∑
N

i¼1
wsi−

λ
N

∑
N

i¼1
wt−wsið Þ− ∑

N

i¼1
∑
j¼1

Mi

αSi
j y

Si
j φ xSij
� �

¼ 0 ð15Þ

∂L
∂wt

¼ 0⇒wt þ λ

N
∑
N

i¼1
wt−wsið Þ− ∑

∑
N

j¼1
M jþnT

i¼ ∑
N

j¼1
M jþ1

αieyiφ x j
� � ¼ 0 ð16Þ

∂L
∂bsi

¼ 0 ⇒ ∑
M

i¼1
∑
j¼1

nsi
αSi

j y
Si
j ¼ 0 ð17Þ

∂L
∂bt

¼ 0 ⇒ ∑
∑
N

j¼1
M jþnT

i¼ ∑
N

j¼1
M jþ1

αieyi ¼ 0 ð18Þ

Equation (13) ˜ (18) can be substituted back into Eq. (10)
and simplified to obtain Eq. (11) of the dual problem.
Theorem 1 is thusly proved.

Theorem 2: The quadratic programming form of the optimi-
zation problem of Eq. (11) is a standard convex quadratic
programming problem.

Proof: The matrix eK can be broken down into the formeK ¼ eK1 þ fK2 þ fK3 þ fK4. Where, the forms of eK1, fK2, fK3

and fK4 are as follows:

eK1 ¼ λ

1þ 2λN

Ks1 ;s1 ;…;Ks1 ;sN ;−Ks1;t

…
KsM ;s1 ;…;KsN ;sN ;−KsN ;t

−KT
s1;t;…;−KT

sN ;t;Kt;t

2664
3775

∑
i∈N

Mi þ nT


 �
� ∑

i∈N
Mi þ nT


 �

eK2 ¼ N
1þ 2λN

Ks1 ;s1 ;…;Ks1 ;sN ; 0
…

KsN ;s1 ;…;KsN ;sN ; 0
0;…; 0; 0

2664
3775

∑
i∈N

Mi þ nT


 �
� ∑

i∈N
Mi þ nT


 �

eK3 ¼ λ

N

1;…; 1; 0;
…

1;…; 1; 0
0;…; 0; 0
0;…; 0; 0

266664
377775

∑
i∈N

Mi þ nT


 �
� ∑

i∈N
Mi þ nT


 �

eK4 ¼ N
1þ 2λN

0;…; 0; 0
…

0;…;Kt;t

24 35
∑
i∈N

Mi þ nT


 �
� ∑

i∈N
Mi þ nT


 �

For the matrix eK1, letQ1 ¼
ffiffiffiffiffiffiffiffiffiffiffi

λ
1þ2λN

q
yS11 φ xS11

� �
;…; yM1

�
S1

φ xM1ð S1Þ;…; ySN1 φ xSN1
� �

;…; yMN
SNφ xMNð SN Þ;− ∑

i∈nT
φ xið Þ;

…;− ∑
i∈nT

φ xið ÞÞ be the symmetric and positive semidefinite

matrix. It is obvious that eK1 ¼ QT
1Q1, so eK1 is the symmetric

semidefinite matrix and fK2, fK3 and fK4 are symmetric

semidefinite matrices. Therefore, eK is the symmetric
semidefinite matrix. Eq. (14) is a standard convex quadratic
programming problem. Theorem 2 is thusly proved.

Theorem 3: The solution to the quadratic programming prob-
lem of Eq. (11) is the optimal solution.

Proof:Since Eq. (9) is a convex quadratic program-
ming problem and the KKT condition is also a suffi-
cient condition, the obtained solution is the optimal so-
lution. The solution of convex quadratic programming
refers to [37].

The optimal value Γ* ¼ αs1 ;αs2 ;…;αsN ;αð ÞT of Γ is cal-
culated by Eq. (11), and the optimal solutions of wt and bt
parameters are as follows:

w*
t ¼

λN
1þ 2λN

∑
N

i¼1
∑
j¼1

Mieαsi
j ρ

Si
j y

Si
j φ xSij
� �

þ N þ λ

1þ 2λN
∑

∑
N

j¼1
M jþnT

i¼1þ ∑
N

j¼1
M j

eαi ∑
j∈nT

φ x j
� �

ð19Þ

b*t ¼ yi−
λN

1þ 2λN
∑
N

i0¼1
∑
j¼1

Mi0

ρSi0j α
Si0
j y j ∑

q∈Si0
k x j; xq
� �

−
λþ N
1þ 2λN

∑
N

i0¼1
∑

∑
l∈M

Ml þ nT

j¼1þ ∑
l∈M

Ml

eα j ∑
j0∈nT

∑
q∈nT

k x j0 ; xq
� �

ð20Þ
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Finally, the decision function for the MultiFTLSVM algo-
rithm is as follows:

f xð Þ ¼ wtφ xð Þ þ bt ð21Þ

The optimal solutions in Eqs. (19) and (20) contain infor-
mation inM source domains and target domain. For example,

in w*
t ,

λN
1þ2λN ∑

N

i¼1
∑
j¼1

Mieαsi
j ρ

Si
j y

Si
j φ xSij
� �

is the knowledge learned

from the source domain, and Nþλ
1þ2λN ∑

∑
N

j¼1
M jþnT

i¼1þ ∑
N

j¼1
M j

eαi ∑
j∈nT

φ x j
� �

is

the knowledge learned from the target domain.

3.4 MultiFTLSVM algorithm process

From Sections 3.1 through 3.3, the specific process and train-
ing steps of the MultiTLGP algorithm are shown in Table 1.

4 Results of experiments

In this section, to test the generalization performance of the
MultiFTLSVM algorithm, we compare MultiFTLSVM with
reference algorithms STL-SVM [38], RankRE-TL [15],
HMCA [16], STIL [39], MultiDTNN [40], FastDAM [21],
IMTL [22], SSL-MSTL [26] and SVM [41] on 20-
Newsgroups, emotion analysis and spam datasets.

4.1 Experimental settings

To ensure the impartiality of the experiment, all experiments
adopted the five-time cross-validation strategy and the exper-
imental result is the final comparison result after 2 repeats of
the strategy. For 5 transfer learning algorithms, all labeled
source domain data and 5% unlabeled target data were ran-
domly selected as training data sets. For the non-transfer learn-
ing algorithm SVM, we only used labeled data from the target
domain for training. In the experiment, we took classification
accuracy and the mean value of the corresponding standard
deviation after running the calculation 10 times as the criteria
of the evaluation algorithm. Classification accuracy is
expressed as follows [14, 17, 37]:

Accuracy ¼ jx : x∈Dt∧ f xð Þ ¼ y xð Þj
jx : x∈Dtj � 100%

Dt is the target domain data set, f(x) is the sample class x
label predicted by the classifier, and y(x) is the real class label
of the sample x.

In the experiment, all kernel functions use the Gaussian
functionk(xi, xj) = exp(−‖xi − xj‖/2σ

2). The values of
parametersCt, CSi and λare obtained from the grid {10‐4,
10−3, 10−2, 10−1, 10, 101, 102, 103, 104} by gird search
methods often used in machine learning. In addition to the
above parameters, the other parameters of the reference algo-
rithms are the same as those in corresponding literature. The
hardware environment of all experiments was Intel Core

Table 1 Steps of MultiTLGP algorithm
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(TM)i3, 3.6GHz, 8GB, Windows 10 OS, and running
MATLAB R2014b.

4.2 Data sets used for experiments

20-Newsgroups [14], emotion analysis [14], and spam [15]
are commonly used applications for transfer learning, so all
experiments in this paper were carried out based on these 3
data sets.

1) 20-newsgroups

The 20-Newsgroups data set contains about 20,000 docu-
ments divided into four categories comp(c), rec(r), sci(s), and
talk(t), each of which can be subdivided into four subcategories.
The details of the data sets are shown in Table 2. In this exper-
iment, the dichotomous task group is constructed by randomly
selecting two of the four categories, one of which is positive and
the other negative. Each task group is specifically comp vs rec,
comp vs sci, comp vs talk, rec vs sci, rec vs talk, and sci vs talk.
Common construction methods for cross-domain task groups
were, there were 4 subclasses A1, A2, A3, and A4, while B has
four subclasses B1, B2, B3, and B4 in each task group A vs B.
Two subcategories (A1 and A3) from A and two subcategories
(B1 and B2) from B are randomly selected to form the target
domain data set, and the remaining data sets in A and B con-
stitute the source domain data set. Each task group A vs B can

generate C2
4 � C2

4 ¼ 36 classification tasks. The target domain
data set and source domain data set obtained by the above

construction methods ensure a correlation between the target
domain and the source domain because they come from the
same category. This also ensures target domain and source
domain heterogeneity because they come from different sub-
categories. See Table 2 for details.

2) Emotion analysis data set

The emotion analysis data set consists of reviews from four
different types of Amazon products, books, DVD, electronics,
and kitchen supplies, which represents 4 domains – Books
(B), DVDs (D), Electronics (E) and Kitchen (K). The content
of each review contains: name, title, name of reviewer, date,
place, and review. We take products rated by the evaluators
with a rating of more than 3 stars (0–5 stars) as positive ex-
amples and those rated less than 3 stars as negative examples,
with vague evaluation being discarded. In these 4 domains,
there were 2000 annotated examples and about 4000 un-
annotated examples, with roughly the same number of posi-
tive and negative examples. The details of the data set are
shown in Table 3.

3) Spam data set

The spam data set is distributed by the ECML/PKDD 2006
Knowledge Discovery Challenge and consists of four separate
user mailboxes: personal mailbox U1, personal mailbox U2,
personal mailbox U3, and public mailbox U4. There are 1250
spam and 1250 normal mailboxes in each personal mailbox
and 2000 spam and 2000 normal mailboxes in each public

Table 2 20-Newsgroups Data set

Data set Category Subcategory Samples Features

20-Newsgroups comp comp.graphics 970 25,804
comp.os.ms-windows.

misc
963

comp.sys.ibm.pc.hardware 979

comp.sys.mac.hardware 958

rec rec.autos 987

rec.motorcycles 993

rec.sport.baseball 991

rec.sport.hokey 997

sci sci.crypt 989

sci.electronics 984

sci.med 987

sci.space 985

talk talk.politics.guns 909

talk.politics.mideast 940

talk.politics.misc 774

talk.religion.misc 627

8459Multi-source fast transfer learning algorithm based on support vector machine
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mailbox. The personal and public mailboxes are expressed by
an item frequency vector. The probability distribution of
emails within each group is similar, but the difference between
groups is large. Therefore, the six classification tasks that were
constructed across groups in this paper are: U1→U4, U2→
U4, U3→U4, U4→U1, U4→U2 and U4→U3. In the
above representation modes of classification tasks, for exam-
ple, inU1→U4, U1 is the source domain, and U4 is the target
domain. The details of the data set are shown in Table 4.

4.3 Results of experiments and analysis

In this section, we compare the mean classification accuracy
and training time with a standard difference ofMultiFTLSVM
algorithm and reference algorithm on 3 real data sets and
analyzed the results.

For the 20-Newsgroups data set, we selected one from data
set r, s and t as the target domain. Five of the single source
domain transfer learning algorithms SVM, STL-SVM,
RankRE-TL, STIL and HCMA can only use one data set as
a source domain, while five multi-source transfer learning
algorithms FastDAM, IMIL, MultiDTNN、SSL-MSTL, and
MultiFTLSVM can simultaneously use 3 data sets as its
source domain. In the emotion analysis data set, 3 data sets
were constructed with Books, DVDs, Electronics, and
Kitchen as the target domain. Single source domain transfer
learning algorithms can only select one data set from these 3
data sets as the source domain, while a multi-source transfer
learning algorithm can simultaneously select 3 source do-
mains. Similarly, for the spam data set, multi-source transfer
learning algorithms used 3 personal mailboxes as 3 data sets
and public mail data sets as the target domain. Single source

domain transfer learning algorithms can only take one of the 3
personal data sets as the source domain and used the public
mailbox as the target domain.

In Table 5, the experimental results on the data set 20-
Newsgroups can draw the following conclusions: The classi-
fication accuracy of the MultiFTLSVM algorithm on the 9
cross-domain classification tasks has been improved com-
pared with the benchmark algorithm, and the average accura-
cy has exceeded 95%. Compared with the non-migration al-
gorithm, the average accuracy of SVM has increased by more
than 10%, which also shows that the migration learning algo-
rithm has considerable advantages over the traditional ma-
chine learning algorithm; compared with the single-source
domain migration learning algorithm STL-SVM, STIL,
RankRE-TL and HCMA, the average accuracy rate is im-
proved; in the multi-source transfer learning algorithms
Mul t iDTNN, Fas tDAM, IMTL, SSL-MSTL and
MultiFTLSVM, the algorithm proposed in the article also
has certain advantages. Because SVM does not have the abil-
ity of cross-domain transfer learning, the average classifica-
tion accuracy is the lowest; single-source transfer learning
algorithm is better than SVM; multi-source transfer learning
algorithm is better than single-source transfer learning algo-
rithm, and the algorithm proposed in the article is the best. The
difficulty of transfer learning for the 12 cross-domain learning
tasks is closely related to the similarity of the text content. It
can be seen that the higher the similarity of the text content of
the classification task, the higher the classification accuracy of
the transfer learning algorithm.

For the experimental results on the sentiment analysis and
spam data sets in Table 6, MultiFTLSVM has the highest
average accuracy of all algorithms, and it has certain advan-
tages compared to the non-transfer learning algorithm or the
transfer learning algorithm in the benchmark algorithm:
Compared with non-transfer learning SVM, the average accu-
racy rate is increased by about 12%; compared with TL-SVM,
STIL, RankRE-TL, HCMA, MultiDTNN, FastDAM, IMTL
and SSL-MSTL, the average accuracy rate is improved. In the
classification accuracy of each cross-domain classification
task, MultiFTLSVM is the highest compared with all bench-
mark algorithms.

According to the experimental analysis, we can draw the
following conclusions:

Table 3 Emotion analysis data set

Domain Comments Training Test Positive sample ratio Features

Books (B) 6465 2000 4465 50% 30,000

DVDs (D) 5586 2000 3586 50% 30,000

Electronics (E) 7681 2000 5681 50% 30,000

Kitchen (K) 7945 2000 5945 50% 30,000

Table 4 Spam data set

Domain Emails Positive sample Negative sample Features

U1 4000 2000 2000 206,908

U2 2500 1250 1250 206,908

U3 2500 1250 1250 206,908

U4 2500 1250 1250 206,908
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(1) Based on the accuracy of average classification, it can be
observed from Tables 5 and 6 that transfer learning algo-
rithms can help classification tasks from the target do-
main by using knowledge from the source domain.

Therefore, it has better classification effects than merely
using data set training classifiers from the target domain
by non-transfer learning algorithm SVM. In addition,
compared with single source transfer learning algorithms

Table 5 The average classification accuracy (%) and standard deviation of the algorithm on 20Newsgroups

Algorithms r->s c->s t->s c->r s->r t->r s->t c->t r->t

SVM 73.81
(0.59)

75.38
(0.65)

75.47
(0.77)

87.51
(0.89)

71.39
(1.05)

84.32
(0.92)

76.82
(0.87)

95.43
(0.97)

83.26
(1.23)

STL-SVM 91.52 (1.06) 87.88 (1.12) 91.23
(1.23)

97.32 (1.18) 81.28
(1.03)

91.35
(1.18)

92.57 (1.21) 98.25 (1.01) 97.06 (1.17)

STIL 86.65 (1.26) 81.76 (1.68) 83.23
(1.57)

89.57 (1.64) 84.14
(1.57)

88.65
(1.55)

82.71 (1.62) 93.56 (1.53) 89.28 (1.75)

RankRE-TL 90.28
(0.98)

90.01
(1.05)

91.57
(0.52)

96.38
(0.28)

89.15
(1.13)

93.35
(0.64)

92.71
(0.53)

97.13
(0.29)

92.25
(0.69)

HCMA 81.27
(0.58)

88.28
(0.65)

87.29
(0.71)

94.65
(0.75)

87.32
(0.86)

92.24
(0.54)

88.97
(0.62)

96.87
(0.47)

90.34
(0.53)

{r,c,t}->s {r,s,t}->r {s,c,r}->t

MultiDTNN 96.21
(0.35)

94.76
(0.41)

95.88
(0.39)

97.45
(0.67)

92.76
(0.72)

98.34
(0.88)

95.46
(0.87)

97.65
(0.72)

98.86
(0.83)

FastDAM 95.34
(0.57)

92.98
(0.51)

94.32
(0.58)

94.36
(0.53)

91.25
(0.49)

97.02
(0.67)

94.76
(0.58)

96.75
(0.64)

96.89
(0.69)

IMTL 96.56
(0.43)

95.84
(0.48)

96.15
(0.51)

98.87
(0.45)

93.74
(0.52)

99.25
(0.47)

95.83
(0.65)

98.87
(0.57)

98.47
(0.55)

SSL-MSTL 94.33
(0.38)

93.21
(0.39)

95.42
(0.46)

98.75
(0.56)

92.65
(0.65)

98.82
(0.72)

94.28
(0.78)

97.98
(0.69)

97.54
(0.63)

MultiFTLSVM 97.65
(0.37)

96.13
(0.42)

97.26
(0.43)

99.23
(0.45)

95.23
(0.51)

99.57
(0.49)

96.75
(0.47)

99.58
(0.54)

99.85
(0.61)

Table 6 The average classification accuracy (%) and standard deviation of the algorithm on spam email and emotion analysis

Algorithms B->K D->K E->K U1->U4 U2->U4 U3->U4

SVM 59.26
(2.78)

60.83
(2.74)

63.24
(2.73)

79.54
(2.52)

78.25
(2.51)

80.75
(2.68)

STL-SVM 64.21
(2.12)

63.34
(2.25)

68.12
(2.23)

86.23
(2.19)

84.63
(2.65)

86.34
(2.21)

STIL 65.11
(2.23)

65.13
(2.12)

67.28
(2.36)

87.21
(1.27)

85.87
(1.21)

87.21
(1.29)

RankRE-TL 63.78
(2.65)

65.12
(2.64)

69.57
(2.63)

87.54
(2.21)

86.12
(2.98)

88.63
(2.78)

HCMA 62.52
(2.67)

64.15
(2.66)

66.55
(2.64)

86.45
(2.37)

85.28
(2.12)

86.54
(1.98)

{B,D,E}->K {U1,U2,U3}->U4

MultiDTNN 71.87
(2.13)

74.67
(2.24)

77.56
(2.11)

94.87
(2.48)

91.23
(2.23)

94.98
(2.32)

FastDAM 67.45
(2.31)

69.17
(2.26)

74.32
(2.19)

92.35
(2.28)

91.27
(2.35)

94.56
(2.42)

IMTL 70.45
(2.13)

73.98
(2.11)

76.15
(1.98)

94.87
(2.14)

93.23
(2.18)

96.11
(2.13)

SSL-MSTL 68.33
(2.28)

71.26
(2.17)

75.43
(2.21)

93.47
(2.26)

92.65
(2.28)

95.32
(2.25)

MultiFTLSVM 72.65
(1.89)

75.13
(1.95)

78.23
(1.86)

95.43
(2.11)

94.32
(2.15)

97.86
(2.10)
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STL-SVM, STIL, RankRE-TL and HCMA, multi-
source transfer learning algorithms MultiDTNN,
FastDAM, IMTL and SSL-MSTL showed obvious ad-
vantages in terms of classification effects. Finally, since
combination weight information obtained from MMD is
applied to effectively handle negative transfer from the
proposed MultiFTLSVM algorithm in this paper, the
classification effects of such an algorithm is superior to
the majority of multi-source transfer learning algorithms
regarding all learning tasks.

(2) As for algorithm operation time, the training time of
SVM is relatively fast since SVM value just uses training
data of the target domain. Since supplementary samples
of the source domain are used in transfer learning, the
training time of transfer learning algorithms increases
when compared with that of the non-transfer learning
algorithms. Since multi-source transfer learning uses
more than two source domains to assist with the training
of the target domain, its training time increases when
compared with that of single source transfer learning.
Among all of the multi-source transfer learning algo-
rithms, MultiFTLSVM utilizes representative source do-
main data to shorten the training data set scale, which is
conducive to reducing training time. Therefore, its train-
ing time is promoted in comparison to that of multi-
source transfer learning algorithms from the benchmark
algorithms Tables 7 and 8.

4.4 Parameter sensitivity analysis

In this section, we performed a sensitivity analysis of three
parameters in the MultiFTLSVM objective function, namely
the regular parameter of the target domain Ct, the mean value
of regular parameters in the source target CS, and the compro-
mise item λ, to describe their impacts to the algorithm’s per-
formance. As for each parameter, we fix another two param-
eters as the optimum values determined by cross-validation
and observed the parameter’s impacts on classification results
when using different values. The results of the experiment are
seen in Figs. 4, 5 and 6.

Conclusions drawn from Figs. 4, 5 and 6 are as follows:

(1) We first fix λ = 10,Ct = 10and then search the value ofCs

on the grid of Cs ∈ {10−4, 10−3, 10−2, 10−1, 10, 101, 102,
103, 104}, and record the experimental results on the real
data set as shown in Fig. 5. Figure 5 shows Cs that with
different values, the proposed classification effect is also
different; We can see that when Cs = 100, the classifica-
tion effect of the algorithm is the best on 14 cross-
domain tasks. In the same way, we fix λ = 10, Cs = 100
and we use the same method to get the experimental
results when Ct taking different values as shown in Fig.
4. From Fig. 4, we conclude that when Ct = 10, the algo-
rithm performed the best classification on most cross-
domain classification tasks. After the above analysis,

Table 7 Average score training time (s) and standard deviation of the algorithm on 20Newsgroups

Algorithms r->s c->s t->s c->r s->r t->r s->t c->t r->t

SVM 1.35
(0.14)

1.31
(0.15)

1.41
(0.16)

1.28
(0.16)

1.32
(0.15)

1.25
(0.12)

1.43
(0.15)

1.47
(0.13)

1.26
(0.11)

STL-SVM 7.23
(0.73)

8.23
(0.89)

6.34
(0.98)

5.34
(0.69)

7.43
(0.72)

6.12
(0.63)

8.32
(0.77)

9.13
(0.76)

11.23
(0.86)

STIL 9.12
(0.63)

8.23
(0.61)

7.26
(0.59)

8.21
(0.58)

8.11
(0.57)

7.43
(0.72)

9.21
(0.82)

10.23
(0.83)

12.34
(0.93)

RankRE-TL 12.65
(0.98)

11.13
(1.12)

13.86
(1.13)

10.15
(1.01)

11.76
(1.17)

9.43
(1.14)

14.36
(1.21)

15.67
(1.23)

13.86
(1.19)

HCMA 8.11
(0.43)

7.32
(0.45)

9.63
(0.48)

7.98
(0.41)

9.86
(0.54)

8.23
(0.47)

11.35
(0.63)

12.56
(0.68)

12.04
(0.64)

{r,c,t}->s {r,c,t}->r {r,c,t}->t

MultiDTNN 72.23
(3.23)

65.23
(3.12)

69.32
(3.23)

55.67
(2.12)

62.34
(2.24)

52.34
(2.98)

76.21
(4.76)

73.87
(4.18)

67.76
(4.65)

FastDAM 119.56
(2.76)

112.53
(2.55)

116.38
(2.63)

110.45
(1.98)

111.38
(1.95)

109.87
(1.92)

122.26
(2.78)

124.33
(2.81)

123.15
(2.79)

IMTL 18.23
(1.25)

13.65
(1.18)

15.63
(1.24)

12.54
(1.19)

13.24
(1.21)

11.35
(1.16)

19.12
(1.76)

20.58
(1.79)

19.77
(1.77)

SSL-MSTL 1.34
(0.85)

1.21
(0.84)

1.29
(0.87)

1.16
(0.96)

1.28
(1.03)

0.95
(0.82)

1.36
(1.16)

1.42
(1.18)

1.41
(1.17)

MultiFTLSVM 1.15
(0.68)

0.98
(0.62)

1.11
(0.65)

0.88
(0.52)

0.96
(0.55)

0.93
(0.54)

1.24
(0.72)

1.28
(0.74)

1.26
(1.72)
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when CS and Ct take different values, the average classi-
fication accuracy of the MultiFTLSVM method on 14
cross-domain tasks has a significant difference. We can
find that MultiFTLSVM has a certain value range for the
regularization parametersCS andCt Sensitive, the param-
eter values when the classification effect reaches the best
can be obtained on different cross-domain tasks.

(2) For parameter λ, fix Cs = 100 and Ct = 10 to obtain the
experimental results in the same way as in (1) as shown
in Fig. 6. When the value of λ is 10, MultiFTLSVM

achieves the best classification effect on 14 cross-
domain tasks. We can get the following conclusion by
analyzing the results in Fig. 6. If the value of λ is too
small, the difference between the source domain and the
target domain will be ignored and negative migration
will occur, so the classification effect will not change;
on the contrary, when the value of λ is too large, It can
make the distribution difference between the source do-
main and the target domain more obvious, which results
in less knowledge in the source domain that can be

Table 8 The average training time (s) and standard deviation of the algorithm on the sentiment analysis data set and spam data set

Algorithms B->K D->K E->K U1->U4 U2->U4 U3->U4

SVM 2.45
(0.15)

2.56
(0.14)

2.62
(0.16)

1.83
(0.15)

1.82
(0.14)

1.81
(1.12)

STL-SVM 4.56
(0.87)

6.78
(0.92)

5.98
(0.92)

6.11
(0.87)

4.98
(0.97)

5.01
(0.89)

STIL 10.23
(0.68)

12.34
(0.82)

13.76
(0.83)

7.97
(0.84)

6.83
(0.87)

6.33
(0.98)

RankRE-TL 13.78
(1.15)

14.12
(1.13)

16.57
(1.12)

9.98
(0.97)

9.69
(0.96)

9.15
(0.95)

HCMA 8.27
(0.73)

8.38
(0.72)

8.55
(0.71)

7.45
(0.76)

7.32
(0.77)

7.29
(0.75)

{B,D,E}->K {U1,U2,U3}->U4

MultiDTNN 87.23
(4.36)

76.34
(4.27)

71.23
(5.12)

65.83
(4.31)

68.67
(4.21)

53.87
(4.34)

FastDAM 129.78
(2.65)

132.86
(2.75)

136.34
(2.87)

121.43
(2.43)

119.54
(2.42)

117.24
(2.34)

IMTL 20.45
(1.35)

23.98
(1.51)

26.15
(1.43)

21.25
(1.23)

19.86
(1.19)

18.43
(1.18)

SSL-MSTL 1.98
(0.49)

2.32
(0.51)

2.65
(0.52)

2.28
(0.64)

2.21
(0.63)

2.19
(0.61)

MultiFTLSVM 1.65
(0.59)

1.58
(0.56)

1.29
(0.55)

1.12
(0.42)

0.95
(0.41)

0.92
(0.46)

Fig. 4 Sensitivity of Parameter Ct in MultiFTLSVM Algorithm in 20-
Newsgroups, Emotion Analysis, and Spam Data Sets

Fig. 5 Sensitivity of Parameter Cs in MultiFTLSVM Algorithm in 20-
Newsgroups, Emotion Analysis, and Spam Data Sets
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transferred to the target domain, and the classification
effect is also not good.

In short, the MultiFTLSVM algorithm is very sensitive to
the regularization coefficients λ, Ct and Cs within a certain
range, which means that it is very important to determine the
optimal values of these parameters through effective
strategies.

5 Conclusions

In this paper, we propose a multi-source fast transfer learning
algorithm based on support vector machines, MultiFTLSVM,
to provide multi-source domains for application in transfer
learning. Firstly, the similarity weight of each source domain
sample and the target domain is calculated with the purpose of
resolving the minimum marginal probability differences,
based negative transfer problem algorithm. Then the approx-
imate pole support vector machine is used to obtain represen-
tative data sets from each source domain that are relatively
important to the model training and corresponding weights,
enhancing the training efficiency of the algorithm. Finally,
knowledge from the target domain and combinatorially
weighted multi-source domains are combined to be integrated
into the structural risk minimization framework of the support
vector machine. Then an objective function is constructed and
a theoretical demonstration is performed. Results from exper-
iments using the 20-Newsgroups data set, emotion analysis
data set, and spam data set indicated that MultiFTLSVM is
superior to the benchmark algorithms in regard to classifica-
tion accuracy rate and training efficiency. Although the results
indicated that the MultiFTLSVM algorithm has better results
than the benchmark algorithms, it still needs to be further
studied in the future with regard to the following aspects:

extension of MultiFTLSVM in multi-class problems; increas-
ing the number of source domains is an interesting challenge.
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