Skip to main content
Log in

Salient object detection based on distribution-edge guidance and iterative Bayesian optimization

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Salient object detection has witnessed rapid progress, despite most existing methods still struggling in complex scenes, unfortunately. In this paper, we propose an efficient framework for salient object detection based on distribution-edge guidance and iterative Bayesian optimization. By considering color, spatial, and edge information, a discriminative metric is first constructed to measure the similarity between different regions. Next, boundary prior embedded with background scatter distribution is utilized to yield the boundary contrast map, and then a contour completeness map is derived through a wholly closed shape of the object. Finally, the above both maps are jointly integrated into an iterative Bayesian optimization framework to obtain the final saliency map. Results from an extensive number of experimentations demonstrate that the promising performance of the proposed algorithm against the state-of-the-art saliency detection methods in terms of different evaluation metrics on several benchmark datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bai X, Wang W (2014) Saliency-svm: an automatic approach for image segmentation. Neurocomputing 136:243–255

    Article  Google Scholar 

  2. Ren Z, Gao S, Chia L-T, Tsang IW-H (2014) Region-based saliency detection and its application in object recognition. IEEE Trans Circuits Syst Video Technol 24(5):769–779

    Article  Google Scholar 

  3. Hadizadeh H, Bajic IV (2014) Saliency-aware video compression. IEEE Trans Image Process 23(1):19–33

    Article  MathSciNet  Google Scholar 

  4. Gao X, Shi X, Zhang G, Jin L, Liao M, Li KC, Li C (2018) Progressive Image Retrieval With Quality Guarantee Under MapReduce Framework. IEEE Access 6:44685–44697

    Article  Google Scholar 

  5. Li Y, Lu H, Li KC, Kim H, Serikawa S (2018) Non-uniform de-scattering and de-blurring of underwater images. Mob Netw Appl 23(2):352–362

    Article  Google Scholar 

  6. Achanta R., Hemami S., Estrada F., Susstrunk S. (2009) Frequency-tuned salient region detection. In: IEEE conference on computer vision and pattern recognition, pp. 1597–1604

  7. Margolin R., Tal A., Zelnik-Manor L. (2013) What makes a patch distinct. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1139–1146

  8. Wei Y., Wen F., Zhu W., Sun J. (2012) Geodesic saliency using background priors. In: Proceedings of the IEEE conference on european conference on computer vision, pp. 29–42

  9. Li H, Lu H, Lin Z, Shen X, Price B (2015) Inner and inter label propagation: salient object detection in the wild. IEEE Trans Image Process 24(10):3176–3186

    Article  MathSciNet  Google Scholar 

  10. Li C., Yuan Y., Cai W., Xia Y., Dagan Feng D. (2015) Robust saliency detection via regularized random walks ranking. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2710–2717

  11. Sun J, Lu H, Liu X (2015) Saliency region detection based on markov absorption probabilities. IEEE Trans Image Process 24(5):1639–1649

    Article  MathSciNet  Google Scholar 

  12. Cheng M-M, Warrell J, Lin W-Y, Zheng S, Vineet V, Crook N (2013) Efficient salient region detection with soft image abstraction. In: Proceedings of the IEEE international conference on computer vision, pp. 1529–1536

  13. Cheng M-M, Mitra NJ, Huang X, Torr PH, Hu S-M (2015) Global contrast based salient region detection. IEEE Trans Patt Anal Mach Intell 37(3):569–582

    Article  Google Scholar 

  14. Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Patt Anal Mach Intell 20(11):1254–1259

    Article  Google Scholar 

  15. Yang C, Zhang L, Lu H, Ruan X, Yang M (2013) Saliency detection via graph-based manifold ranking. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3166–3173

  16. Jiang H, Wang J, Yuan Z, Wu Y, Zheng N, Li S (2013) Salient object detection: A discriminative regional feature integration approach. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2083–2090

  17. Gong C, Tao D, Liu W, Maybank SJ, Fang M, Fu K, Yang J (2015) Saliency propagation from simple to difficult. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2531–2539

  18. Lu H, Li X, Zhang L, Ruan X, Yang M. -H. (2016) Dense and sparse reconstruction error based saliency descriptor. IEEE Trans Image Process 25(4):1592–1603

    Article  MathSciNet  Google Scholar 

  19. Zhang H, Xia C, Gao X (2017) Robust saliency detection via corner information and an energy function. IET Comput Vis 11(6):379–388

    Article  Google Scholar 

  20. Wang J, Lu H, Li X, Tong N, Liu W (2015) Saliency detection via background and foreground seed selection. Neurocomputing 152:359–368

    Article  Google Scholar 

  21. Zhou L, Yang Z, Zhou Z, Hu D (2017) Salient region detection using diffusion process on a two-layer sparse graph. IEEE Trans Image Process 26(12):5882–5894

    Article  MathSciNet  Google Scholar 

  22. Lee G, Tai Y-W, Kim J (2016) Deep saliency with encoded low level distance map and high level features. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 660–668

  23. Hou Q, Cheng M-M, Hu X, Borji A, Tu Z, Torr PH (2019) Deeply supervised salient object detection with short connections. IEEE Trans Patt Anal Mach Intell 41(4):815–828

    Article  Google Scholar 

  24. Liu Y, Fan D-P, Nie G-Y, Zhang X, Petrosyan V, Cheng M-M Dna: Deeply-supervised nonlinear aggregation for salient object detection, arXiv:1903.12476

  25. Yu J-G, Gao C, Tian J (2016) Collaborative multicue fusion using the cross-diffusion process for salient object detection. J Opt Society Am A Opt Image Sci Vis 33(3):404–415

    Article  Google Scholar 

  26. Xia C, Zhao Q, Zhang S, Gao X (2019) A hybrid of background scatter and foreground contour completeness for salient object detection. In: International conference on applications and techniques in cyber security and intelligence, pp. 1266–1275

  27. Dollár P, Zitnick CL (2013) Structured forests for fast edge detection. In: Proceedings of the IEEE international conference on computer vision, pp. 1841–1848

  28. Qin Y, Lu H, Xu Y , Wang H (2015) Saliency detection via cellular automata. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 110–119

  29. Liu Q, Hong X, Zou B, Chen J, Chen Z, Zhao G (2017) Hierarchical contour closure-based holistic salient object detection. IEEE Trans Image Process 26(9):4537–4552

    Article  MathSciNet  Google Scholar 

  30. Jiang H, Wang J, Yuan Z, Liu T, Zheng N , Li S (2011) Automatic salient object segmentation based on context and shape prior. In: Proceedings of the British Machine Vision Conference, pp. 9

  31. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9 (1):62–66

    Article  Google Scholar 

  32. Huo S, Zhou Y, Xiang W, Kung S (2018) Semisupervised learning based on a novel iterative optimization model for saliency detection. IEEE Trans Neural Netw Learn Syst (99) pp. 1–17

  33. Frintrop S, Werner T, Martin Garcia G (2015) Traditional saliency reloaded: A good old model in new shape. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 82–90

  34. Huang F, Qi J, Lu H, Zhang L, Ruan X (2017) Salient object detection via multiple instance learning. IEEE Trans Image Process 26(4):1911–1922

    Article  MathSciNet  Google Scholar 

  35. He K, Sun J, Tang X (2013) Guided image filtering. IEEE Trans Patt Anal Mach Intell (6) pp. 1397–1409

  36. Tong N, Lu H, Ruan X, Yang M-H (2015) Salient object detection via bootstrap learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1884–1892

  37. Liu GH, Yang JY (2018) Exploiting color volume and color difference for salient region detection. IEEE Trans Image Process 28(1):6–16

    Article  MathSciNet  Google Scholar 

  38. Yang KF, Li H, Li CY, Li YJ (2016) A unified framework for salient structure detection by contour-guided visual search. IEEE Trans Image Process 25(8):3475–3488

    Article  MathSciNet  Google Scholar 

  39. Zhang J, Sclaro S, Lin Z, Shen X, Price B, Mech R (2015) Minimum barrier salient object detection at 80 fps. In: Proceedings of the IEEE international conference on computer vision, pp. 1404–1412

  40. Yuan Y, Li C, Kim J, Cai W (2017) D. F Reversion correction and regularized random walk ranking for saliency detection. IEEE Trans Image Process 27(3):1311–1322

    Article  MathSciNet  Google Scholar 

  41. Perazzi F, Krähenbühl P, Pritch Y (2012) A. Hornung, Saliency filters: Contrast based filtering for salient region detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 733–740

  42. Zhou L, Yang Z, Yuan Q, Zhou Z, Hu D (2015) Salient region detection via integrating diffusion-based compactness and local contrast. IEEE Trans Image Process 24(11):3308–3320

    Article  MathSciNet  Google Scholar 

  43. Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the IEEE international conference on computer vision, pp. 416–423

  44. Yan Q, Xu L, Shi J, Jia J (2013) Hierarchical saliency detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1155–1162

  45. Li G, Yu Y (2016) Visual saliency detection based on multiscale deep cnn features. IEEE Trans Image Process 25(11):5012– 5024

    Article  MathSciNet  Google Scholar 

  46. Wang L, Lu H, Wang Y, Feng M, Wang D, Yin B, Ruan X (2017) Learning to detect salient objects with image-level supervision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 136–145

  47. Li X, Li Y, Shen C, Dick AR, van den Henge A (2013) Contextual hypergraph modeling for salient object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3328–3335

Download references

Acknowledgements

This work was supported by University-level Key projects of Anhui University of science and technology (Grant No. QN2019102, QN2017208), China Postdoctoral Science Foundation (Grant No. 2019M660149), National Natural Science Foundation of China (Grant No. 61806006), Natural Science Research Project of Colleges and Universities in Anhui Province (Grant No. KJ2018A0083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuju Gao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, C., Gao, X., Li, KC. et al. Salient object detection based on distribution-edge guidance and iterative Bayesian optimization. Appl Intell 50, 2977–2990 (2020). https://doi.org/10.1007/s10489-020-01691-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-020-01691-7

Keywords

Navigation