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Abstract. In some domains like industry, medicine, communications, speech recognition, planning, tutoring
systems, and forecasting; the timing of observations (symptoms, measures, test, events, as well as faults) play a
major role in diagnosis and prediction. This paper introduces a new formalism to deal with uncertainty and time
using Bayesian networks called Temporal Bayesian Network of Events (TBNE). In a TBNE each node represents
an event or state change of a variable, and an arc corresponds to a causal-temporal relationship. A temporal node
represents the time that a variable changes state, including an option of no-change. The temporal intervals can differ
in number and size for each temporal node, so this allows multiple granularity. Our approach is contrasted with a
Dynamic Bayesian network for a simple medical example. An empirical evaluation is presented for a subsystem
of a thermal power plant, in which this approach is used for fault diagnosis and event prediction with good results.
The TBNE model can be used for the diagnosis of a cascade of anomalies arising with certain delays; this situation
is typical in the diagnosis of medical and industrial processes.
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1. Introduction

Artificial intelligence techniques are entering real
world domains, such as medicine, industrial diagnosis,
communications, planning, financial forecasting and
scheduling. These applications have revealed a great
need for powerful methods for knowledge represen-
tation. In particular, the evolutionary nature of these
domains requires a representation that takes into ac-
count temporal information. The exact timing infor-
mation for things like lab-test results, occurrence of
symptoms, observations, measures, as well as faults,
can be crucial in these kind of applications.

For example, in medicine, representing and reason-
ing about time is crucial for many tasks like prevention,
diagnosis, therapeutic management, prognosis and dis-

covery [1–4]. In industrial diagnosis, the timing obser-
vations play a major role in diagnosis and prediction of
events and disturbances [5].

To model temporal relations is a complex task. Tem-
poral models are more complex than atemporal ones
[6, 7]. Even when they involve a few variables, in
a temporal model each variable and its relationships
with other variables must be examined over multiple
points of time. These tasks often entail an inordinate
amount of computation, due to the size and the com-
plexity of the resulting model. In the context of intel-
ligent systems, a temporal model must be capable of
reasoning about the present, past and future state of the
domain.

Aside from temporal considerations, real world in-
formation is usually imprecise, incomplete and noisy.
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The temporal model must be able to deal with
uncertainty. Among the formalism proposed for deal-
ing with uncertainty, one of the most used techniques
for the development of intelligent systems are Bayesian
networks (BN) [8]. Although Bayesian networks were
not designed to model temporal aspects explicitly, re-
cently Bayesian networks have been applied to tem-
poral reasoning under uncertainty [2, 9, 10]. The ex-
tension of Bayesian networks semantics to deal with
temporal relationships can be complicated. The main
problem is to represent each node with its dependence
relationships over multiple points of time.

A way to apply Bayesian networks to dynamic do-
mains consists in both discretizing time and creating
an instance of each random variable for each point in
time [10]. Initially a static model is built. Then a copy
of this model is generated for each instant belonging
to a certain temporal range of interest. Finally, links
between nodes in adjacent static networks are estab-
lished, assuming the process is Markovian. Although
dynamic Bayesian networks are an alternative repre-
sentation for these domains, they are too complex for
realistic applications.

Based on the fact that in many cases there are few
state changes in the temporal range of interest, in this
paper we present an alternative representation called
Temporal Bayesian Network of Events (TBNE), a net-
work of probabilistic events (state changes) in discrete
time. In a TBNE each node represents an event or state
change of a variable, and an arc corresponds to a causal-
temporal relationship. A temporal node represents the
time that a variable changes state, including an op-
tion of no-change. Including more temporal nodes can
represent more than one change for the same variable.
The temporal intervals can differ in number and size for
each temporal node, so this allows multiple granularity.
Temporal information is relative, that is, there is not ab-
solute temporal reference. We developed a mechanism
for transforming the relative times to absolute, based
on the timing of the observations. With this represen-
tation we can model complex real-world systems with
a simple network, and use standard probability prop-
agation techniques for diagnosis and prediction. The
proposed approach is applied to the diagnosis and pre-
diction of events and disturbances (events evolution) in
power plants.

The rest of this paper is organized as follows.
Section 2 introduces our approach, which is contrasted
with a BN and DBN for a simple medical example.
Section 3 presents a formal definition of the proposed

model. Section 4 presents the inference mechanism for
a TBNE. In Section 5 an empirical evaluation is pre-
sented for a subsystem of a fossil power plant. Section
6 presents a brief discussion of several extensions of
BN’s for time modeling. Finally, Section 7 presents the
conclusions and future research.

2. A Medical Example

To illustrate the proposed temporal probabilistic model,
we present the hypothetical example of the conse-
quences of an automobile accident based on [11]. The
example expresses the necessity for representing tem-
poral relations for medical diagnosis.

Assume that at time t = 0 an automobile accident
occurs. The driver is a healthy 45 years old man and
contact with steering wheel is noted. This kind of ac-
cident can be classified as severe, moderate or mild.
The immediate consequences in this sort of accident
are injuries to the head, abdominal cavity and internal
organs, chest and extremities. For demonstration pur-
pose we only consider head and chest injuries. Injury
of the head can bruise the brain, which will cause it to
begin swelling. Chest injuries can include a fractured
sternum, one or both punctured lungs, and bleeding in
the chest cavity. These instantaneous state changes can
initiate a set of internal changes that will generate sub-
sequent changes. For example, brain trauma will cause
the brain to begin swelling. This increase of the brain
volume tends to increase intracranial pressure, which in
turn eventually causes dilated pupils, destabilized vital
signs (pulse and blood pressure) and loss of conscious-
ness. Bleeding into the chest cavity decreases blood
volume over time, which also tends to destabilize vital
signs. Internal bleeding will also eventually increase
pressure on the heart, decreasing its efficiency, fur-
ther destabilizing vital signs. The collision itself can be
modeled as an external event, which can immediately
cause certain changes in the patient’s state: trauma to
the brain, broken sternum, punctured lung, and bleed-
ing in the chest cavity. These changes cause internal
changes, which are not immediate: dilated pupils, vital
signs unstable, and loss of consciousness, and depend
on the severity of the accident.

Suppose that we gathered the following statistics
about the accidents that occurred in a specific zone
of a city:

• 36.80% of the collisions (C) are severe, 39.20% are
moderate and 24% are mild.



Temporal Bayesian Network of Events for Diagnosis and Prediction in Dynamic Domains 79

• If the accident is mild, then the probability that head
injury occurs is 0.1 and the probability of an injury
resulting in slight internal bleeding (IB) is 0.6 and
gross internal bleeding is 0.05.

• If the accident is moderate, then the probability that
head injury occurs is 0.4 and the probability of an
injury resulting in slight internal bleeding is 0.15
and gross internal bleeding is 0.65.

• If the accident is severe, then the probability that
head injury occurs is 0.9 and the probability of an
injury resulting in slight internal bleeding is 0.4 and
gross internal bleeding is 0.5.

This information indicates that there is a strong
causal relationship between the severity of the acci-
dent and the immediate effect in the patient’s state.
Additionally, there is some important temporal infor-
mation about the relations between the instantaneous
consequences (head injury and internal bleeding) and
the symptoms (pupils dilated and vitals signs unstable).

• If a head injury (HI) occurs, the brain will start to
swell, and if left unchecked, the swelling will cause
the pupils to dilate (PD) within 0 to 10 minutes.

• If internal bleeding (IB) begins, the blood volume
will start to fall, which will tend to destabilize vital
signs (VS). The time required to destabilize signs
will depend on the severity of bleeding:

• If the bleeding is gross, it will take from 10 to 30
minutes.

• If the bleeding is slight, it will take between 30 to 60
minutes.

• A head injury (HI) also tends to destabilize vital
signs, taking between 0 to 10 minutes to make them
unstable.

Figure 1 shows the temporal occurrence of the symp-
toms in relation with the time of the immediate effects.

Figure 1. Temporal relations between immediate effects and symp-
toms.

Suppose that at time t = 10 minutes the patient is
observed by paramedics. They observe a probable bro-
ken sternum, the patient is complaining of shortness of
breath and dizziness, vital signs are unstable, but pupils
are not dilated. From this symptoms the probable chest
injury and unstable vital signs suggest internal bleed-
ing, which will soon cause serious problems if left unat-
tended. Intravenous fluids should probably be admin-
istered immediately to increase the blood volume, and
if the transportation to the hospital is expected to take
more than 20 minutes it might be best to insert a chest
tube to drain blood from the chest cavity and reduce
pressure on the heart. Finally, the collision and short-
ness of breath suggest a collapsed lung and decreased
oxygen transfer, which should be treated immediately
by administering oxygen.

2.1. Probabilistic Models for Medical Example

Static Bayesian Network. In this example there is an
external event: the collision (C); that generates two im-
mediate effects in the patient’s state: head injury (HI)
and internal bleeding (IB). These internal events pro-
duce certain posterior endogenous changes in the pa-
tient. These changes are not immediate and are manifest
through two observations: pupils dilated (PD) and vital
signs unstable (VS). The severity of the collision has
a direct causal relation with the variables head injury
and internal bleeding. Figure 2 shows a static Bayesian
network for the collision event.

A Bayesian network can not represent the temporal
information of the dynamic domain. That is, the tem-
poral relationships between the occurrence of the im-
mediate effects (HI and IB) and the symptoms (PD and
VS). We can conclude the following: (i) the symptoms
“vital signs unstable” and “pupils normal” do not con-
sider the time in which they were observed, (ii) static

Figure 2. Static Bayesian network for the accident example.



80 Arroyo-Figueroa and Sucar

Figure 3. Dynamic Bayesian network for the “accident” example.

Bayesian network does not take into account the timing
observations of the symptoms and the arrival time of
the paramedics to the collision scene, and (iii) it seems
that the information is not sufficient for an adequate
diagnosis, the timing observations play a major role in
diagnosis.

Dynamic Bayesian Network. The most common rep-
resentation of dynamic relations are dynamic Bayesian
networks [12, 10]. Figure 3 shows a simple DBN for the
“accident” example, with a time slice each 10 minutes,
the maximum common divisor of the time intervals.
This is a simple DBN for the example, which consid-
ers the following assumptions: (i) a state depends only
on the previous one (Markovian assumption), (ii) there
are links only between the same variable at different
slices. Even with these simplifications, it is a complex
model in terms of storage requirements and computa-
tion time for probability propagation. If we consider
a more complex model, relaxing the previous assump-
tions, it could become prohibitive for realistic applica-
tions. Also, the acquisition of the model (structure and
parameters) could become a problem.

DBN’s present the following problems for realistic
applications [1, 2]: (1) A DBN is a model of high com-
plexity, which increases according with the number of
variables or time slices; (2) DBN’s handle a predefined
temporal range of interest, they do not allow to vary the
temporal range as a model parameter; and (3) DBN’s
do not have an integrated temporal/causal semantics,
the knowledge about time can not be exploited easily
to prevent serious inconsistencies.

Temporal Bayesian Network of Events. We propose
an alternative representation of temporal aspects in

Bayesian networks. In many cases, there are few states
changes (events) in the temporal interval of interest in
the domain. The timing of these events is usually im-
portant for diagnosis and prediction task. For instance,
in the medical example, the time when “vital signs un-
stable” and “pupils dilated” occur is crucial for the
accident diagnosis.

To model these changes, we require a representation
of events. We propose a temporal representation based
on events and its time interval of occurrence, called
Temporal Bayesian Networks of Events (TBNE) [9]. A
TBNE is a Bayesian network in which each node rep-
resents an event or state change of a variable, and an arc
corresponds to a causal-temporal relation. A temporal
node represents a possible state change of a variable
and the time when it happens. Each value of a tempo-
ral node is defined by an ordered pair: the value of the
variable to which it changes and the time interval of
its occurrence. Time intervals represent relative times
between the parent events and the corresponding state
change. A temporal node has an initial or default state,
so a value is associated to this state with a maximum
time interval (temporal range) and it indicates the con-
dition of no change. For example, for the temporal node
vitals signs the relationships between its time intervals
are represented in Fig. 4.

In the accident example, there are 3 instantaneous
events: collision, head injury and internal bleeding;
and two events that can be represented by nodes with
temporal intervals: pupils dilated and vital signs unsta-
ble. PD has normal as initial state, and can change to
dilated in 2 temporal intervals ([0, 3], [3, 5]); while VS
has normal as initial state, and can change to unstable
in 3 different time intervals ([0–10], [10–30], [30–60]).
Both variables have the default state associated to the
overall time interval, ([0–5] and [0–60]) which corre-
spond to the no change condition. The time intervals

Figure 4. Temporal relationships between the time intervals of node
vitals signs. The relation between the time intervals is shown based
on Allen’s temporal algebra (si-start, di-during, fi-finishes, m-meets).
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Figure 5. TBNE for the accident example.

were defined based on the temporal information of the
accident example. Figure 5 shows a TBNE model for
the “accident” example.

The TBNE model can be used, for example, to pre-
dict the consequences of an accident or to diagnose its
severity. The resulting network is less complex than the
corresponding DBN. The main difference with a DBN
is that the representation is based on state changes at
different times represent by temporal nodes instead of
state values at different times, represent by state vari-
ables. A TBNE can be seen as natural extension of a
Bayesian network and its properties are parallel. The
temporal intervals can differ in number and size for
each temporal node, so this allows multiple granu-
larity. Temporal information is relative, that is, there
is not an absolute temporal reference. We also devel-
oped a mechanism for transforming the relative times
to absolute, based on the timing of the observations. A
formal definition of a TBNE is presented in the next
section.

3. Formal Definition of a TBNE

A TBNE is a Bayesian network of events in discrete
time in which each node represents an event or state
change of a variable, and an arc corresponds to a causal-
temporal relation. This representation is based on the
definition of a temporal node. A temporal node is de-
fined by a set of states. Each state is defined by an
ordered pair: the value of the variable (to which it cor-
responds) and a time interval associated to the change
of value of the variable. A temporal node is defined as
follows:

Definition 1. A temporal node (TN) is defined by a
set of states, each defined by an ordered pair (σ, τ ),
where σ is a value of a random variable and τ is
the time interval associate to the change of variable
value.

There is a default state of no change that corresponds
to the initial value (generally the “normal” value), as-
sociated to the temporal range of the node. The values
of each TN can be seen as the “cross product” between
the set of values (�) and the set of time intervals (T),
except for the default state, which is associated only to
the temporal range of interest (TR).

TNs are connected by edges. Each edge represents a
causal-temporal relationship between TNs. The condi-
tional probability distribution for each node is defined
as the probability of each ordered pair (σi,τi) given the
ordered pairs of its parents (σ j , τ j ).

As a TN is defined by a set of time intervals, we can
relate these time intervals based on Allen’s temporal
algebra [13]. In a TN the definition of the default state
is associated to temporal range of interest, TR. A tem-
poral relationship between the time intervals of a TN
is defined as:

Definition 2. The possible temporal relationships be-
tween TR with the time intervals, Ti, of a node are:
start (si), during (di) and finish (fi). The temporal re-
lationship between each pair of time intervals is meet
(m): Ti {m} Tj.

The definition of TN based on Allen interval’s for
the accident example was presented in Fig 4. Finally,
a Temporal Bayesian Network of Events (TBNE) is
defined as:

Definition 3. A TBNE is defined as TBNE = (V, E),
where V is the set of temporal nodes and E is the set
of edges.

In each temporal node, the temporal intervals are
relative to the parent nodes, that is, no absolute temporal
reference exists. This makes the representation more
general; but, for its application, we need to associate
these relative times to the actual or absolute times of
the observed events. We developed a mechanism for
transforming the relative times to absolute, based on
the timing of the observations. In the next section, we
present the definition of the inference mechanism.
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4. Inference Mechanism

As we mentioned before, the temporal intervals in
each node are relative to its parents. When an initial
event is detected, its time of occurrence “fixes” tem-
porally the network. The timing of the observation is
used as temporal reference for the other events. This
means that the actual timing of the events represented
in the network is dynamic. For definition of the infer-
ence mechanism, we need to define some additional
parameters:

τ c (time of occurrence): is the actual time when an
event is detected. As the network does not have any
temporal reference, the time of occurrence of the
initial event fixes temporally the network.

α (time delay): is the absolute value of the difference
between the time of occurrence of a pair of events,
α = |tci − tci i , where tci is the time of occurrence
of the first event and tci i is the time of occurrence of
the second event.

These parameters are used by the inference mechanism
for determining the actual time intervals of occurrence
of each event. The mechanism consists of 3 basic steps,
which are as follows.

Step 1. Event detection and time interval definition
When an initial event is detected, its time of occur-
rence, “τ cinitial,” is utilized as temporal reference for
all the network. There are two possible cases, de-
pending on the position of the initial node in the
network: (a) the initial event corresponds to a root
node, and (b) the initial event corresponds to an in-
termediate or leaf node.

1-(a). In the first case, the actual value of the node
can be determined (root nodes are always instan-
taneous events).

1-(b). For the second case, it is not possible to deter-
mine the value of the variable, because the event
could be associated to any time interval for the
state. It is necessary to wait for a second obser-
vation to determine the interval. When the next
event is detected, its time of occurrence, τ cposterior,
is utilized for definition of the time interval as-
sociated with the real time occurrence function,
α = |τ cinitial − τ cposterior|. The value of α is used
to set the time interval of the child node consider-
ing the parent node as the initial event. This step
is applied recursively to subsequent events.

Step 2. Propagation of the evidences
Once the value of a node is obtained (time interval
and associated state), the next step is to propagate the
effect of this value through the network to update the
probability of other temporal nodes. It can be use any
standard algorithm for probability propagation.

Step 3. Determination of the past and future events
With the posterior probabilities, we can estimate the
potentially past and future events based on the prob-
ability distribution of the each temporal node.

If there is not enough information, for instance there
is only one observed event which corresponds to an
intermediate node, the mechanism handles different
scenarios. The node is instantiated to all the intervals
corresponding to the observed state, and the posterior
probabilities of the other nodes are obtained for each
scenario. These scenarios could be used as a set of pos-
sible alternatives, which will be reduced when another
event occurs.

5. Empirical Results

The proposed representation and inference mechanism
is applied for fault diagnosis and prediction in a sub-
system of a thermal power plant. We consider the drum
level control system with four potential disturbances:
a power load increase (LI); a feedwater pump fail-
ure (FWPF); a feedwater valve failure (FWVF); and
the spray water valve failure (SWVF). The drum is a
subsystem of a fossil power plant that provides steam
to the superheater and water to the water wall of a
steam generator. The drum system is composed of three
systems: feedwater, water steam generator and super-
heater steam system. One of the main problems in the
drum is to maintain the water level in safe operation
state. Figure 6 shows a simplified diagram of the power
plant’s systems.

In the process, a signal exceeding its specified limit
of normal functioning is called an event, and a sequence
of events that have the same underlying cause are con-
sidered as a disturbance. To determine which of the
disturbances is present, is a complicated task, because
there are similar sequence of events for the four main
disturbances. We need additional information in or-
der to determine which is the real cause. In particular,
the temporal information about the occurrence of each
event is important for an accurate diagnosis. For ex-
ample, a feedwater flow increase (FWF) can be caused
by two different events: the feedwater pump current
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Figure 6. A simplified diagram of thermal power plant.

augmentation (FWP) and feedwater valve opening in-
crease (FWV). We can use the time difference be-
tween the occurrence of each event, FWV-FWF and
FWP-FWF, for selecting the “cause” of the increase of
the FW flow.

According to the process data, the time interval be-
tween a pump current augmentation and an increase of
the flow (FWP-FWF) is from 25 to 114 seconds. The
time interval between the valve opening increase and
an increase of the flow (FWV-FWF) is from 114 to 248
seconds. Hence, if the flow increase occurs in the first
time interval, the probable cause is an augmentation
of the pump; but if the flow increase occurs in the sec-
ond time interval, the probable cause is a valve opening
increase. Figure 7 shows a TBNE that represents the
events of the steam drum system of a steam generator
and the definition and prior probabilities of the tem-
poral nodes. The network structure was defined based
the knowledge of an expert operator. The definition of
the time intervals for each temporal node was obtained
based on knowledge about the process dynamics com-
bined with data from a simulator.

Once the structure and time intervals were defined,
the required parameters were estimated from data. The
process data-base was generated by a full scale simula-
tor of a 350 MW thermal power plant. We selected 80%

of this database (800 data) for parameter learning and
20% (200 data) for evaluation. The network was eval-
uated using two scores: % accuracy and % of relative
Brier score (total square error). The % of accuracy was
evaluated by number of correct predictions of unknown
variables.

The Brier score is defined as: BS = �n
i=1(1 − Pi )2.

Where Pi is the marginal posterior probability of the
correct value of each node given the evidence. The
maximum Brier score is: BSMAX = �n(1)2. The %
of relative Brier score is defined as:

RBS (in %) = {1 − (BS/BSMAX)} × 100

The test methodology includes three basic steps: (i)
assign a value to a subset of nodes, (ii) propagate the
evidence and (iii) compare the posterior probabilities of
the nodes with the actual values. The assigned nodes
were selected for 3 sets of tests: (1) Prediction: root
nodes are observed (LI, FWPF, FWVF and SWVF);
(2) Diagnosis: leaf nodes are observed (STT, STF and
SWF); and (3) Prediction and diagnosis: intermediate
nodes are observed (STV, FWP, FWV and SWV).

Table 1 shows the results of the evaluation for the
three sets of tests in terms of the mean and the stan-
dard deviation for both scores. These results show
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Figure 7. TBNE for the steam drum system.

the prediction and diagnosis capacity of the tempo-
ral model in a real process. Both scores are between 80
and 95% for all the set of tests, with better results when
intermediate nodes are observed, and slightly better re-
sults for prediction compared to diagnosis. We consider
that these differences have to do with the “distance”
between assigned and unknown nodes, and with the
way that the temporal intervals were defined. We are

Table 1. Empirical evaluations results.

Parameter µ σ

Prediction

% of RBS 87.37 9.19

% of Accuracy 84.48 14.98

Diagnosis

% of RBS 84.25 8.09

% of Accuracy 80.00 11.85

Diagnosis and Prediction

% of RBS 95.85 4.71

% of Accuracy 94.92 8.59

encouraged by the fact that the model can produce a
reasonable accuracy in times that are compatible with
real time decision making.

6. Related Work

BN’s usually represent a static causal model for certain
domain. That is, the nodes represent the values of the
variables at a time point and temporal relations are not
considered. However, recently BN have been applied
to model temporal relationships.

The first group are the formalisms based on time
point as the primitive temporal notion. The network is
arranged into “time slices” representing the system’s
complete state at a single point in time. Time slices
are duplicated over a predetermined time grid repre-
senting the temporal range of interest and, directed
temporal links are drawn between nodes of the dif-
ferent “static” slices. The DBN is built dynamically,
reflecting the dynamic changes in the environment.
Some recent applications of DBN are model of time
net by Kanazawa [14], model for sensor validation by
Nicholson and Brady [15], a method for reasoning with
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DBN by Kjaerulff [12], a model for audio-visual speech
recognition by Murphy [10].

The second group are the formalisms based on time
intervals as the primitive temporal notion. The first case
is the model based on the temporal abduction prob-
lem (TAP) by Santos [2]. In TAP, each event has an
associated interval during which the event occurs. Re-
lationships between events are expressed as directed
edges from cause to effect within a weighted directed
acyclic graph structure. The TAP has strong interval-
based temporal semantics but lacks strong probabilis-
tic semantics. Later, Santos and Young proposed the
probabilistic temporal network (PTN) [16]. In a PTN,
the nodes of the network are temporal aggregates and
the edges are the causal/temporal relationships between
aggregates. Each aggregate represents a process chang-
ing over time. The temporal aggregates are temporal
random variables, defined by an ordered pair (random
variable plus Allen’s intervals). This approach is based
on time-intervals and considers the temporal relation-
ships that occur between the events. Another model
is the network of probabilistic events in discrete time
(NPEDT) by Galan and Diez [4]. Under this approach,
time is discretized in intervals and each value of a vari-
able represents the instant at which a certain event may
occur. The NPEDT is modeled by temporal noisy gates,
which facilitate the acquisition and representation of
temporal knowledge.

The third group is the formalisms based on exten-
sions of BN. For instance, the “Network of exogenous
events and endogenous changes” by Hanks et al. [11].
This representation is a probabilistic model for reason-
ing about the system as it changes over time, both due to
exogenous events and endogenous changes. An exoge-
nous event generally refers to an instantaneous change
in the process state. Endogenous changes are modeled
using a local inference model, a simple arbitrary linear
model. All the previous approaches are based on point
models of time, and as such require that events occur in-
stantaneously. It is difficult to consider that events take
place at time points, often it is more natural to consider
events taking place over time intervals. Another model
is the “Modificable Temporal Bayesian Networks with
Single-granularity (MTBN-SG) by Aliferis and Cooper
[1]. A MTBN-SG is an extended time-sliced Bayesian
network defined over a range of time points. The tem-
poral graph is a directed graph (possibly cyclic) com-
posed of nodes and arcs corresponding to 3 types of
variables; ordinary, mechanism and time-lag quanti-
fier variable. As indicated in the name, the MTBN-SG

model only supports a single granularity for the size of
the time step in any given network. The resulting graph
can have cycles to allow expressions of recurrence and
feedback.

In summary, previous probabilistic temporal models
are, in general, quite complex for realistic applications,
so they do not satisfy the knowledge acquisition and
computational tractability criteria. These models sup-
port a single granularity and it is difficult to extend them
for multiple granularity. In contrast, the TBNE model is
based on representing changes of state in each node. If
the number of possible state changes for each variable
in the temporal range is small, as it is in many practical
problems, the resulting model is much simpler. This
facilitates temporal knowledge acquisition and allows
efficient inference using standard probability propaga-
tion techniques. Also, the model supports in a natural
way multiple granularity, with different number of tem-
poral intervals for each node, and different duration for
each interval within a node.

7. Conclusions

This paper presented the definition and application
of an approach for dealing with uncertainty and time
called Temporal Bayesian Network of Events (TBNE).
A TBNE generates a formal and systematic structure
used to model the temporal evolution of dynamic pro-
cess. TBNE model is an extension of Bayesian net-
works for dealing with temporal information. Each
event or state change of a variable is associated with
a time interval. The definition of the number of time
intervals and their duration for each node is free (mul-
tiple granularity) and can be see as a trade off between
the complexity and the accuracy needed for depicting
the knowledge of the temporal domain.

The formalism satisfies the requirements of tempo-
ral knowledge acquisition, low computational cost and
temporal expressiveness. The main difference with pre-
vious probabilistic temporal models is that the repre-
sentation is based on state changes at different times
instead of state values at different times. This makes
the model much simpler in many applications in which
there are few changes for each variable in the temporal
range of interest.

The temporal information in a TBNE is relative, that
is, no absolute temporal reference exists. We developed
a mechanism for transforming the relative times to ab-
solute. The temporal reasoning mechanism is based on
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the propagation of probabilities and gives the time of
occurrence of events or state changes with some prob-
ability value. The mechanism has three main steps: (1)
event detection and time interval definition; (2) evi-
dence propagation through the net; and (3) determina-
tion of past and future events. If there is not enough
information, the mechanism handles scenarios. These
scenarios could be use as a set of possible alternatives,
which will be reduced when another event occurs.

In order to demonstrate the ideas present in this ar-
ticle, the formalism was contrasted with a DBN for
a simple medical example. An empirical evaluation is
presented for the diagnosis and prediction of events in
the drum level system of a thermal power plant with
good results.

Although many BN variants have been introduced
for temporal modeling, we believe that the TBNE can
be used for the diagnosis of a cascade of anomalies
arising with certain delays; this situation is typical in
the diagnosis of medical and industrial processes. In
contrast, DBN, using time slices, seem more adequate
for monitoring the evolution of a system that fluctuates
around its normal state, specially if there is a cyclic
pattern.

Our future work will focus on validating our ap-
proach in other domains, such as planning and student
modeling. Also, we will incorporate qualitative tempo-
ral constraints that could facilitate knowledge acquisi-
tion and validating of the temporal consistency of the
model.
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