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Abstract
We give some characterizations of commutative objects in a subtractive category and cen-
tral morphisms in a regular subtractive category. In particular, we show that commutative
objects, i.e., internal unitary magmas, are the same as internal abelian groups in a subtractive
category and that analogously, centrality has an alternative description in terms of so-called
“subtractors” in a regular subtractive category.
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structure · Subtractor · Subtractive category
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1 Introduction

A morphism ϕ : Y × X −→ Z in a pointed category is a subtractor of f : X −→ Y along
g : Y −→ Z , if ϕ makes the diagram
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Z

X Y × X Y
〈 f , 1〉

0

〈1, 0〉

g
ϕ

commute. When g is the identity morphism of Y , we will just call ϕ a subtractor of f . Here
and throughout the rest of this paper, 1 and 0 denote the suitable identity and zero morphisms
respectively. Furthermore, we follow the standard convention that for a span

X A Y
r s

in a category C with finite products, 〈r , s〉 denotes the induced morphism A −→ X × Y .

The notion of a subtractor generalises the notion of an internal subtraction structure [5]
defined in a pointed category C to be a morphism s : X × X −→ X such that s〈1, 1〉 = 0
and s〈1, 0〉 = 1. Also following [5], an object X in a pointed category C is said to admit a
subtraction structure when there is an internal subtraction s on X . We may sometimes refer
to an internal subtraction structure as just a subtraction structure. Indeed, a subtractor of the
identity morphism of X along itself is just an internal subtraction on X .

A pointed finitely complete category C is a subtractive category [8] if every left punctual
reflexive relation is right punctual, i.e., for every relation 〈r1, r2〉 : R � X × X on an object
X , if 〈1, 1〉 : X −→ X × X and 〈1, 0〉 : X −→ X × X factor through 〈r1, r2〉, then 〈0, 1〉 :
X −→ X × X factors through 〈r1, r2〉 as well. Equivalently (see e.g., [9, Theorem 4.1]), a
subtractive category can be defined to be a pointed finitely complete category C satisfying
that for every relation 〈r1, r2〉 : R � X × Y and a pair of morphisms f : A −→ X and
g : A −→ Y , if 〈 f , g〉 : A −→ X × Y and 〈 f , 0〉 : A −→ X × Y factor through 〈r1, r2〉,
then 〈0, g〉 : A −→ X × Y factors through 〈r1, r2〉 as well. Recall that the notion of a
subtractive category generalizes the notion of a pointed subtractive variety [11]; that is, a
variety of universal algebras that has a unique constant 0 and a binary term s in its theory,
such that s(x, x) = 0 and s(x, 0) = x .

In a pointed category C, an approximate subtraction [4] on an object X is a morphism
s : X × X → Y such that s〈1, 1〉 = 0. The composite a = s〈1, 0〉 : X → Y is called
the approximation morphism of s. The notion of a subtractor generalizes an approximate
subtraction. Indeed, it can be easily observed that when there is an approximate subtraction s
on X and a is the approximationmorphism of s, it precisely means that the identity morphism
of X admits a subtractor s along a : X → Y .

In this paper we use the notion of a subtractor to describe, in a regular subtractive category,
central morphisms and commutative objects, which are based on the notion of commuting
morphisms [6]. We recall the definitions of these notions below, but we state them in a more
general context than where these notions are usually considered.

In a pointed category C with finite products, a pair of morphisms f : A −→ X and
g : B −→ X are said to commute (or Huq-commute) if there is a morphism ϕ making the
diagram
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A

XA × B

B

f

g

〈
1, 0

〉

〈
0, 1

〉

ϕ

commute.Amorphism f is central if it commuteswith the identitymorphismof its codomain,
while an object X is commutative if the identity morphism on X is central. Commuting
morphisms (and centrality) were first considered by S. A. Huq [6] in a context closely related
to that of a semi-abelian category [7]. Commuting morphisms were further investigated by
Bourn [2] and other authors in a lighter context, namely, that of a unital category [3]; that
is, a pointed finitely complete category C with the property that, for every pair of objects X
and Y , the pair of morphisms 〈1, 0〉 : X −→ X × Y and 〈0, 1〉 : Y −→ X × Y are jointly
extremal-epimorphic. The notion of commutingmorphisms can be thought of as an extension
of classical commutativity to general categories. Indeed, it can be easily observed that when
C is the category of groups, two group homomorphisms f : A −→ X and g : B −→ X
commute in the above sense, if and only if f (a)g(b) = g(b) f (a) for all a ∈ A and b ∈ B.
The same description applies in the category of monoids. Thus, commutative objects in the
category of groups are abelian groups, while in the category monoids they are commutative
monoids.

In the present paper, we say a pair of morphisms f : X → Z and g : Y → Z in a
pointed category C with finite products partially commute if there is a subobject 〈r1, r2〉 :
R � X × Y and a morphism ϕ : R → Z , such that the morphisms 〈1, 0〉 : X → X × Y
and 〈0, 1〉 : Y → X × Y factor through 〈r1, r2〉 as 〈r1, r2〉i1 = 〈1, 0〉 and 〈r1, r2〉i2 = 〈0, 1〉
respectively, and the diagram

Z

X X × Y Y

R

〈1, 0〉

f

〈0, 1〉
〈r1, r2〉

i1 i2

g

ϕ

commutes. We will say f and g partially commute with respect to 〈r1, r2〉 : R � X × Y
with cooperator ϕ (following the terminology of D. Bourn in the absolute case [2], who
calls ϕ a cooperator of f and g when 〈r1, r2〉 is an identity morphism). When a morphism
f : X −→ Z partially commutes with the identity morphism of Z , we say f is partially
central. In a similar way, we say X is partially commutative when the identity morphism
of X partially commutes with itself. Clearly, if C is a unital category then partial commute
coincides with Huq-commute.

In our main results we use subtractors to establish that partially central morphisms are
precisely central morphisms in a regular subtractive category, and partially commutative
objects are precisely commutative objects in a subtractive category.
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The paper is organized as follows: in Sect. 2 we describe what it means for a pair of mor-
phisms to partially commute in two contrasting examples. In Sect. 3 we slightly generalize
the notion of a partial subtraction structure which happens to be related to the notion of par-
tially commuting morphisms in a subtractive category. It has been shown in [5, Corollary 2.7]
that abelian objects in subtractive categories are precisely those objects which admit partial
subtraction structures. We prove (in Theorem 3.1) that commutative objects in subtractive
categories are exactly abelian objects. In Sect. 4 we characterize central morphisms in regular
subtractive categories in terms of subtractors (Theorem 4.1).

2 Two Examples of Partially CommutingMorphisms

In this sectionwe briefly describe partially commutingmorphisms in the following examples:

Example 2.1 Let f : X −→ Z and g : Y −→ Z be morphisms in a pointed category C

with finite products. If C admits join X�Y of the canonical morphisms 〈1, 0〉 : X → X × Y
and 〈0, 1〉 : Y → X × Y , then f and g partially commute if and only if they commute with
respect to the punctual relation X�Y . For example, consider the category I whose objects are
sets X equipped with a binary operation − and a unique constant 0, satisfying (i) x − 0 = x ,
(ii) x − x = 0, and (iii) 0 − x = 0. Morphisms in this category are maps which preserve
the binary operation − and the constant 0. The variety of (nonempty) implication algebras
can be interpreted in I as a subvariety. A nonempty implication algebra [1] gives rise to a
binary “subtraction” −, with x − y := y → x and a unique constant 0 := x → x = y → y,
satisfying (i)–(iii) above (see e.g., [10] for a detailed explanation). Now for two morphisms
f : X −→ Z and g : Y −→ Z in I, the join X�Y is given by the union

X�Y = {(x, 0)|x ∈ X} ∪ {(0, y)|y ∈ Y }.
The map ϕ : X�Y −→ Z defined by

ϕ(x, 0) = f (x) and ϕ(0, y) = g(y),

is a morphism in I if and only if

f (x) = f (x) − g(y) and g(y) = g(y) − f (x)

for all x ∈ X and y ∈ Y . This means that f and g partially commute if and only if
f (x) = f (x) − g(y) and g(y) = g(y) − f (x) for all x ∈ X and y ∈ Y .

Example 2.2 In the category Set∗ of pointed sets, the induced morphism X + Y −→ X × Y
is a monomorphism for any two pointed sets X and Y . Hence in Set∗, every two morphisms
having the same codomain partially commute.

3 Partial Subtractors and Commutative Objects in Subtractive
Categories

Let S be the variety of subtraction algebras, i.e., algebras whose signature consists of one
binary operation − and one nullary operation 0, satisfying x − x = 0 and x − 0 = 0. In the
next proposition we describe what it means for a morphism to admit a subtractor in S.
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Proposition 3.1 Ahomomorphism f : X −→ Y inS admits a subtractor along g : Y −→ Z,
if and only if, for every x, x ′ ∈ X and y, y′ ∈ Y , one has

g(y − f (x)) − g(y′ − f (x ′)) = g(y − y′) − g( f (x) − f (x ′)).

Proof If f : X −→ Y admits a subtractor ϕ : Y × X −→ Z along g : Y −→ Z , then it
means for every x ∈ X and y ∈ Y , ϕ(y, 0) = g(y) and ϕ( f (x), x) = 0. Now it follows that

ϕ(y, x) = ϕ(y, x) − ϕ( f (x), x)

= ϕ(y − f (x), 0)

= g(y − f (x)).

Moreover one can observe that

g(y − f (x)) − g(y′ − f (x ′)) = ϕ(y, x) − ϕ(y′, x ′)
= ϕ(y − y′, x − x ′)
= g(y − y′) − g( f (x) − f (x ′)).

Conversely, let us suppose for every x, x ′ ∈ X and y, y′ ∈ Y , one has

g(y − f (x)) − g(y′ − f (x ′)) = g(y − y′) − g( f (x) − f (x ′)).

Define ϕ : Y × X −→ Z by ϕ(y, x) = g(y − f (x)). Clearly, ϕ( f (x), x) = 0 and
ϕ(y, 0) = g(y). Furthermore, for every y, y′ ∈ Y and x, x ′ ∈ X ,

ϕ(y − y′, x − x ′) = g(y − y′) − g( f (x) − f (x ′))
= g(y − f (x)) − g(y′ − f (x ′))
= ϕ(y, x) − ϕ(y′, x ′),

and this means ϕ is a homomorphism. Therefore ϕ is a subtractor of f along g. 	

We give in the next definition a slight generalization of partial subtraction structures,

initially defined only on objects in [5].

Definition 3.1 Let f : X −→ Y and g : Y −→ Z be morphisms in a subtractive categoryC.

A partial subtractor of f along g is a morphism ϕ : R −→ Z ,where 〈r1, r2〉 : R � Y × X is
a monomorphism such that the morphisms 〈 f , 1〉 : X −→ Y × X and 〈1, 0〉 : Y −→ Y × X
factor through 〈r1, r2〉, and the diagram

Z

X Y × X Y

R

〈 f , 1〉

0

〈1, 0〉
〈r1, r2〉

u v

g

ϕ

commutes. For that we will say f admits a partial subtractor ϕ along g (with respect to a
subobject 〈r1, r2〉 : R � Y × X ) or equivalently, f admits a partial subtraction structure
along g. We will mostly require g to be the identity morphism of Y , and for that we will just
say f admits a partial subtraction structure, and write a triple ( f , (R, r1, r2), ϕ) to denote a
partial subtraction structure on f .
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Remark 3.1 Note that when an object X in a subtractive category C admits a (partial) sub-
traction structure it means that the identity morphism of X admits a (partial) subtractor along
itself.

In the main result of this section we will describe partially commutative objects in sub-
tractive categories in terms of partial subtraction structures.

Lemma 3.1 In a subtractive category C, if f : X −→ Y is partially central with respect to
a subobject 〈r1, r2〉 : R � X × Y and with cooperator ϕ : R −→ Y , then the morphism
〈ϕ, r1〉 : R −→ Y × X is a monomorphism.

Proof Let 〈k, k′〉 : K � R × R denote the kernel pair relation of 〈ϕ, r1〉 and i1, i2 be
morphisms such that 〈r1, r2〉i1 = 〈1, 0〉, 〈r1, r2〉i2 = 〈0, 1〉, ϕi1 = f , and ϕi2 = 1. We will
show that k = k′. Since 〈ϕ, r1〉k = 〈ϕ, r1〉k′, we see that r1k = r1k′. In the diagram

K R

X × (Y × Y ) X × Y X

Y × X

X

1 × π1

1 × π2

k

k′

〈r1, r2〉〈r1k, 〈r2k, r2k′〉〉

〈ϕ, r1〉

π1

π2

i1

i1

〈1, 〈0, 0〉〉

β

in which β is a morphism such that kβ = i1 = k′β, we see that 〈1, 〈0, 0〉〉 factors through
〈r1k, 〈r2k, r2k′〉〉 by β. Therefore, we obtain the following commutative diagram

K X × (Y × Y )

K

K ,

K

〈r1k, 〈r2k, r2k′〉〉

〈r1k, 〈r2k, r2k′〉〉

〈r1k, 〈0, 0〉〉

〈0, 〈r2 k, r2 k ′〉〉

βr1k
1

λ

from which by using the subtractivity of C, we conclude that 〈0, 〈r2k, r2k′〉〉 factors through
〈r1k, 〈r2k, r2k′〉〉. Using the diagram
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X × (Y × Y ) X × Y

K R

K

k

k′

1 × π1

1 × π2

〈r1, r2〉〈r1k, 〈r2k, r2k′〉〉

〈0, 〈r2k, r2k′〉〉

λ

we see that 〈r1, r2〉kλ = 〈0, r2k〉 = 〈r1, r2〉i2r2k, and similarly 〈r1, r2〉k′λ = 〈r1, r2〉i2r2k′,
which imply that kλ = i2r2k and k′λ = i2r2k′ respectively. But since ϕk = ϕk′, we obtain
r2k = ϕi2r2k = ϕkλ = ϕk′λ = ϕi2r2k′ = r2k′, and, together with r1k = r1k′, we have
k = k′. 	


Before we state the main result of this section, we recall the following fundamental fact:

Lemma 3.2 [5, Theorem 2.5] In a subtractive category C, if the identity morphism of X
admits a partial subtraction structure (1, (R, r1, r2), ϕ), then the morphism 〈r1, r2〉 is an
isomorphism, in other words, X admits a subtraction structure as soon as it admits a partial
subtraction structure.

As explained in [5], an immediate consequence of the above lemma is that an internal
subtraction s : X × X −→ X on an object X in a subtractive category C is necessarily a
homomorphism of subtractions, i.e., the diagram

X × X X

(X × X) × (X × X) X × X

s

s × s

(s × s)i

s

in which i = 〈〈π1π1, π1π2〉, 〈π2π1, π2π2〉〉 is the middle-interchange isomorphism, com-
mutes. This yields the following calculation:

s〈0, s〈0, 1〉〉 = s〈s〈1, 1〉, s〈0, 1〉〉 = s〈s〈1, 0〉, s〈1, 1〉〉 = 1.

Now the main result of this section.

Theorem 3.1 In a subtractive category C, the following statements are equivalent for an
object X:

(a) X is partially commutative.
(b) X admits an internal subtraction structure.
(c) X is commutative.

Proof (a) ⇒ (b) Let X be partially commutative with respect to a subobject 〈r1, r2〉 : R �
X × X , and with cooperator ϕ : R −→ X . Furthermore, let i1, i2 be morphisms such that
〈r1, r2〉i1 = 〈1, 0〉, 〈r1, r2〉i2 = 〈0, 1〉, ϕi1 = 1, and ϕi2 = 1. Applying Lemma 3.1, the
morphism 〈ϕ, r1〉 is a monomorphism. Since the diagram
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X X × X X

R

X

r2

〈1, 1〉 〈1, 0〉

0 1

i1 i2
〈ϕ, r1〉

commutes, we see that r2 is a partial subtractor of the identity morphism of X with respect
to 〈ϕ, r1〉. Now the result follows from Lemma 3.2.

(b)⇒ (c) Let s : X × X −→ X be a subtraction on X . Since s〈0, s〈0, 1〉〉 =
s〈s〈1, 1〉, s〈0, 1〉〉 = s〈s〈1, 0〉, s〈1, 1〉〉 = 1, it is not difficult to see that the diagram

X

X × X

X

X × X X

〈1, 0〉

〈0, 1〉

1 × s〈0, 1〉 s

1

1

commutes. Hence, X is commutative.
(c) ⇒ (a) Clearly if X is commutative then it is partially commutative. 	


Remark 3.2 Since objects that admit internal abelian group structures in a subtractive cat-
egory are exactly those that admits internal subtraction structures [5, Corollary 2.7], then
commutative objects are precisely abelian objects in a subtractive category.

4 Characterization of Central Morphisms in Regular Subtractive
Category

In this section we characterize central morphisms in terms of subtractors. We shall first prove
a series of preliminary results about subtractors.

In the next lemma we establish the uniqueness of (partial) subtractors.
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Lemma 4.1 In a regular subtractive category C, for each commutative diagram

Z

X Y × X Y

R

〈 f , 1〉

0

〈1, 0〉

〈r1, r2〉

u v

g

if there is a morphism ϕ : R −→ Z such that ϕu = 0 and ϕv = g (i.e., ϕ is a partial
subtractor of f along g with respect to a monomorphism 〈r1, r2〉), then ϕ is necessarily
unique.

Proof Supposeϕ′ : R −→ Z andϕ : R −→ Z are twomorphisms such thatϕ′u = 0, ϕ′v =
g and ϕu = 0, ϕv = g. Let 〈s1, s2〉 : S � R×R be the joint kernel pair relation of ϕ and ϕ′,
i.e., (S, s1, s2) is the kernel pair relation of 〈ϕ, ϕ′〉 : R −→ Z × Z . Let us consider a binary
relation 〈t1, t2〉 : T � R × X given by the regular image of 〈s1, s2〉 along the morphism
1 × r2. Using generalized elements,

((y1, x1), x2) ∈ T ⇔ ∃y2 ((y1, x1), (y2, x2)) ∈ S.

For each (y1, x1) ∈ R, since ((y1, x1), (y1, x1)) ∈ S and ((0, 0), ( f (x1), x1)) ∈ S, it follows
that ((y1, x1), x1), ((0, 0), x1) ∈ T , and so by subtractivity, one has ((y1, x1), 0) ∈ T . But

((y1, x1), 0) ∈ T �⇒ ((y1, x1), (y, 0)) ∈ S

�⇒ ϕ(y1, x1) = ϕ(y, 0) = g(y) = ϕ′(y, 0) = ϕ′(y1, x1).
	


Proposition 4.1 Let C be a regular subtractive category. If a morphism g : A −→ Y admits
a partial subtraction structure, then for any morphism e : X −→ A, the composite ge also
admits a partial subtraction structure. The converse is true when e is a regular epimorphism.

Proof If g : A −→ Y admits a partial subtraction structure (g, (R, r1, r2), ϕ), it can be easily
shown that the composite ge admits a partial subtraction structure (ge, (S, s1, s2), ϕ p), where
〈s1, s2〉 is the pullback of 〈r1, r2〉 along 1 × e in the diagram

Y × X Y × A.

RS
�

1 × e

p

〈s1, s2〉 〈r1, r2〉

To prove the second part of the proposition, let us suppose ge, where e is a regular
epimorphism, admits a partial subtraction structure (ge, (R, r1, r2), ϕ) in the diagram
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X × X
<e,e> X A

Y × (X × X
<e,e>

) Y × X Y × A

Y

R × R
<e′,e′> R S

Y

Y Y
1

〈1, 0
〉

〈1, 0
〉

〈1, 0
〉

u

e′

1 × e

e

1

0

1

e′vv

〈ge,
1〉

〈g, 1
〉

1 × τ1

1 × τ2

k1

k2

τ1

τ2

〈s1, s2〉〈r1, r2〉α

〈geτ 1
, 1〉

λβ u′

ϕ

where u and v are respective factorizations of 〈ge, 1〉 and 〈1, 0〉 through 〈r1, r2〉, 〈s1, s2〉 is
the regular image of 〈r1, r2〉 along the morphism 1 × e, and

(R × R
<e′,e′>

, k1, k2) and (X × X
<e,e>

, τ1, τ2)

are the kernel pair relations of e′ and e respectively. Since e is a strong epimorphism, it is not
difficult to see that 〈g, 1〉 factors through 〈s1, s2〉 by some morphism u′. Now the morphisms
α, β, and λ are obtained as canonical morphisms between kernel pairs. It can be seen that

ϕk1β = ϕuτ1 = 0 = ϕk2β and ϕk1λ = ϕv = 1 = ϕk2λ.

Now we have obtained the following commutative diagram

Y

X × X
<e,e>

Y × (X × X
<e,e>

) Y

R × R
<e′,e′>

〈geτ1, 1〉

0

〈1, 0〉

α

β
λ

1

ϕk1ϕk2

from which the uniqueness of partial subtractors implies ϕk1 = ϕk2. But since e′ is the
coequalizer of the pair k1, k2, there is a unique morphism φ : S −→ Y such that ϕ = φe′,
and it can be easily seen that φ is a partial subtractor of g. 	


In the next proposition we establish, amongst other things, further “cancellation” proper-
ties of partial subtractors.
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Proposition 4.2 In a subtractive category C, the following hold:

(a) If a morphism f : X −→ Y admits a partial subtraction structure along a composite
mg : Y −→ Z, where m : W → Z is a monomorphism and g : Y → W is any
morphism, then f also admits a partial subtraction structure along g.

(b) If a composite m f : X −→ Z , where m : Y −→ Z is a monomorphism and f : X → Y
is any morphism, admits a partial subtraction structure then f also admits a partial
subtraction structure.

(c) If amonomorphism f : X � Y admits a partial subtraction structure ( f , (R, r1, r2), ϕ),
then f admits a subtractor.

Proof (a) Suppose a morphism f admits a partial subtraction structure along a composite
mg as shown in the diagram

Z

X Y × X Y

R

〈 f , 1〉

0

〈1, 0〉

u

mg

v

〈r1, r2〉

ϕ

with m a monomorphism. Using the pullback diagram

T

Z

W

R

�

t m

r

ϕ

it can be shown that r is the partial subtractor of f along g with respect to a subobject
〈r1, r2〉t : T � Y × X .

(b) Ifm f admits a partial subtraction structure (m f , (R, r1, r2), ϕ), then f admits a partial
subtraction structure alongm; the compositeϕr , where r is the pullback ofm×1 along 〈r1, r2〉
in the diagram

T

Z × X

R

Y × X

�

〈t1, t2〉 〈r1, r2〉

r

m × 1

123



13 Page 12 of 15 V. T. Shaumbwa

is a partial subtractor of f alongm with respect to 〈t1, t2〉. And applying (a) above, it follows
that f admits a partial subtraction structure.

(c) Let ( f , (R, r1, r2), ϕ) be a partial subtraction structure on a monomorphism f .
Applying (b) above and Lemma 3.2, the identity morphism of X admits a subtraction
s : X × X −→ X . Now consider the relation 〈t1, t2〉 : T � Y × (X × X), obtained
from pulling back 〈r1, r2〉 : R � Y × X along 1 × s : Y × (X × X) −→ Y × X . Using
generalized elements, T is defined as follows: for y ∈ Y and x, x ′ ∈ X ,

(y, (x, x ′)) ∈ T ⇔ (y, s(x, x ′)) ∈ R.

For every pair (y, x) ∈ Y × X , since (y, (x, x)) ∈ T and (0, (0, x)) ∈ T (since for every
x ∈ X , ( f (x), x), ( f (x), 0) ∈ R imply (0, x) ∈ R), then by subtractivity, (y, (x, 0)) ∈ T ,
and this implies (y, s(x, 0)) = (y, x) ∈ R. Hence, 〈r1, r2〉 is an isomorphism. It can now be
easily shown that ϕ〈r1, r2〉−1, where 〈r1, r2〉−1 denotes the inverse of 〈r1, r2〉, is a subtractor
of f . 	


Note that by taking f : X −→ Y to be the identity morphism of X in Proposition 4.2(c),
one recovers Lemma 3.2. In the context of a regular subtractive category, the following
proposition generalizes Lemma 3.2.

Proposition 4.3 Let C be a regular subtractive category. A morphism f : X −→ Y admits
a subtractor as soon as it admits a partial subtraction structure.

Proof Let ( f , (R, r1, r2), ϕ) be a partial subtraction structure on f , and f = me be the (reg-
ular epi, mono)-factorization of f . Using Proposition 4.1, it can be concluded that the image
m : f (X) � Y admits a partial subtraction structure. By further applying Proposition 4.2(c),
it follows that m admits a subtractor φ. Hence, as seen in the diagram

X f (X)

Y × X Y × f (X)

Y Y

Y

1

0

1

φ

〈 f , 1〉 〈m, 1〉

〈1, 0〉〈1, 0〉

1 × e

e

the morphism φ(1 × e) is a subtractor of f . 	


Remark 4.1 As observed in the previous proposition, for a morphism f : X −→ Y in
a regular subtractive category C, with (regular epi, mono)-factorization f = me, when it
admits a subtractorϕ, the imagem : f (X) � Y also admits a subtractorφ, andϕ = φ(1×e).
In addition, f (X) admits a subtraction s : f (X) × f (X) −→ f (X), and it is not difficult to
see that the two composites f (X) × f (X) −→ Y on the rectangle
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f (X) Y

f (X) × f (X) Y × f (X)

m

s

m × 1

φ

are both subtractors of the identity morphism of f (X) along m. Hence by the uniqueness of
subtractors (Lemma 4.1), ms = φ(m × 1).

Now we are ready to state the main result of this section.

Theorem 4.1 In a regular subtractive category C, the following statements are equivalent
for a morphism f : X −→ Y :
(a) f is partially central.
(b) f admits a subtractor.
(c) f is central.

Proof (a) ⇒ (b) Let f : X −→ Y be partially central with respect to a subobject 〈r1, r2〉 :
R � X × Y , and with cooperator ϕ : R −→ Y . Furthermore, let i1, i2 be morphisms such
that 〈r1, r2〉i1 = 〈1, 0〉, 〈r1, r2〉i2 = 〈0, 1〉, ϕi1 = f , and ϕi2 = 1. According to Lemma 3.1,
the morphism 〈ϕ, r1〉 is a monomorphism. Therefore, as shown in the commutative diagram

Y

X Y × X Y

R

〈 f , 1〉

0

〈1, 0〉

〈ϕ, r1〉

i1 i2

1

r2

f admits a partial subtraction structure, and hence, by applying Proposition 4.3, f admits a
subtractor.

(b) ⇒ (c) Let f = re be the (regular epi, mono)-factorization of f . If f admits a
subtractor, then according to Proposition 4.1, r : f (X) � Y admits a subtractor φ : Y ×
f (X) −→ Y , and so the image f (X) also admits a subtraction s : f (X)× f (X) −→ f (X)

by applying Proposition 4.2(b). As seen in Remark 4.1, φ(r × 1) = rs and this means the
rectangle in the diagram

f (X) Y

Y × f (X)f (X) × f (X)X

r

φ

r × 1

s

〈0, s〈0, e〉〉

e
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commutes. Furthermore, using the fact that s is a homomorphism of subtraction, we have

s〈0, s〈0, e〉〉 =s〈s〈1, 1〉, s〈0, 1〉〉e
= s〈s〈1, 0〉, s〈1, 1〉〉e
= s〈1, 0〉e
= e,

which means the left triangle commutes. Using the commutativity of the previous diagram,
since f = re = φ(r × 1)〈0, s〈0, e〉〉 = φ〈0, s〈0, e〉〉, we see that the diagram

Y

Y × X

X

Y × f (X) Y

〈1, 0〉

〈0, 1〉

1 × s〈0, e〉 φ

f

1

commutes. Hence f is central.
(c) ⇒ (a) Clearly, if f is central then it is partially central. 	
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