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Abstract
This paper concerns the notions of closed and open maps in the setting of partial frames,
which, in contrast to full frames, do not necessarily have all joins. Examples of these include
bounded distributive lattices, σ - and κ-frames and full frames. We define closed and open
maps using geometrically intuitively appealing conditions involving preservation of closed,
respectively open, congruences under certain maps. We then characterize them in terms of
algebraic identities involving adjoints.We note that partial framemaps need have neither right
nor left adjoints whereas frame maps of course always have right adjoints. The embedding
of a partial frame in either its free frame or its congruence frame has proved illuminating
and useful. We consider the conditions under which these embeddings are closed, open or
skeletal.We then look at preservation and reflection of closed or openmaps under the functors
providing the free frame or the congruence frame. Points arise naturally in the construction
of the spectrum functor for partial frames to partial spaces. They may be viewed as maps
from the given partial frame to the 2-chain or as certain kinds of filters; using the former
descriptionwe consider closed and open points. Any point of a partial frame extends naturally
to a point on its free frame and a point on its congruence frame; we consider the closedness
or openness of these.
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1 Introduction

Topological spaces and frames or locales have been contexts in which closed and open maps
have proved to be important tools. For topological spaces, for example, the second projection
from X × Y to Y is closed for any space Y iff X is compact. Another example states that if
there exists an open map f : X → Y of a locally compact space X onto a Hausdorff space Y ,
then Y is locally compact. The uses to which closed and open mappings, respectively, have
been put are somewhat different, but in this paper we begin by emphasizing their formally
similar properties.

Our context will be that of partial frames. Partial frames are meet-semilattices where, in
contrast with frames, not all subsets need have joins. A selection function, S, specifies, for all
meet-semilattices, certain subsets under consideration, which we call the “designated” ones;
an S-frame then must have joins of (at least) all such subsets and binary meet must distribute
over these. A small collection of axioms suffices to specify our selection functions; these
axioms are sufficiently general to include as examples of partial frames, bounded distributive
lattices, σ -frames, κ-frames and frames.

In this paper we provide definitions of closed and open maps between partial frames.
We use a geometrically intuitively appealing condition involving preservation of closed,
respectively open, congruences under certain maps. We then characterize them in terms of
algebraic identities involving adjoints. We follow the ideas of Chen (see [6]) whose work we
gratefully acknowledge. We note however that partial frame maps need have neither right
nor left adjoints whereas frame maps of course always have right adjoints.

A weakening of the notion of an open map leads to the idea of a skeletal map; these played
an important rôle in out study of the Madden quotient in [12] and arise here also.

The embedding of a partial frame in either its free frame or its congruence frame has
proved illuminating and useful. (See [9, 12].) We consider the conditions under which these
embeddings are closed, open or skeletal.We then look at preservation and reflection of closed
or open maps under the functors providing the free frame or the congruence frame.

Points arise naturally in the construction of the spectrum functor for partial frames to
partial spaces. (See [13].) They may be viewed as maps from the given partial frame to the
2-chain or as certain kinds of filters; using the former description we consider closed and
open points. Any point of a partial frame extends naturally to a point on its free frame and a
point on its congruence frame; we consider the closedness or openness of these.

2 Background

See [16, 23] as references for frame theory; see [2, 3] for σ -frames; see [20, 21] for κ-frames;
see [1, 19] for general category theory.
The basics of our approach to partial frames can be found in [7–9]. An example of a paper
of ours with a more topological flavour is [11]. Our papers with a more algebraic flavour,
especially relevant to the current topic, are [10, 12, 14, 15]. For earlier work by other authors
in this field see [22, 24–26]. For those interested in a comparison of the various approaches,
see [8].
A meet-semilattice is a partially ordered set in which all finite subsets have a meet. In par-
ticular, we regard the empty set as finite, so a meet-semilattice comes equipped with a top
element, which we denote by 1. We do not insist that a meet-semilattice should have a
bottom element, which, if it exists, we denote by 0. A function between meet-semilattices
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f : L → M is a meet-semilattice map if it preserves finite meets, including the top element.
A sub meet-semilattice is a subset for which the inclusion map is a meet-semilattice map.

The essential idea for a partial frame is that it should be “frame-like” but that not all joins
need exist; only certain joins have guaranteed existence and binary meets should distribute
over these joins. The guaranteed joins are specified in a global way on the category of meet-
semilattices by specifying what is called a selection function; the details are given below.

Definition 2.1 A selection function is a rule, which we usually denote by S, which assigns to
each meet-semilattice A a collection SA of subsets of A, such that the following conditions
hold (for all meet-semilattices A and B):

(S1) For all x ∈ A, {x} ∈ SA.
(S2) If G, H ∈ SA then {x ∧ y : x ∈ G, y ∈ H} ∈ SA.
(S2)′ If G, H ∈ SA then {x ∨ y : x ∈ G, y ∈ H} ∈ SA.
(S3) If G ∈ SA and, for all x ∈ G, x = ∨

Hx for some Hx ∈ SA, then
⋃

x∈G
Hx ∈ SA.

(S4) For any meet-semilattice map f : A → B,

S( f [A]) = { f [G] : G ∈ SA} ⊆ SB.

(SSub) For any sub meet-semilattice B of meet-semilattice A, if G ⊆ B and G ∈ SA,
then G ∈ SB.
(SFin) If F is a finite subset of A, then F ∈ SA.
(SCov) If G ⊆ H and H ∈ SA with

∨
H = 1 then G ∈ SA. (Such H are called

S-covers.)
(SRef) Let X , Y ⊆ A. If X ≤ Y with X ∈ SA there is a C ∈ SA such that X ≤ C ⊆ Y .
(By X ≤ Y we mean, as usual, that for each x ∈ X there exists y ∈ Y such that x ≤ y.)

Of course (SFin) implies (S1) but there are situations where we do not impose (SFin) but
insist on (S1). Note that we always have ∅ ∈ SA.
Once a selection function, S, has been fixed, we speak informally of the members of SA as
the designated subsets of A.

Definition 2.2 An S-frame L is a meet-semilattice in which every designated subset has a
join and for any such designated subset B of L and any a ∈ L

a ∧
∨

B =
∨

b∈B
a ∧ b.

Of course such an S-frame has both a top and a bottom element which we denote by 1 and
0 respectively.
A meet-semilattice map f : L → M , where L and M are S-frames, is an S-frame map if
f (

∨
B) = ∨

b∈B f (b) for any designated subset B of L . In particular such an f preserves
the top and bottom element. If, in addition, f (x) = 0 implies that x = 0, we say that f is
dense.
A sub S-frame T of an S-frame L is a subset of L such that the inclusion map i : T → L is
an S-frame map.
The category SFrm has S-frames as objects and S-frame maps as arrows.
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Weuse the terms “partial frame” and “S-frame” interchangeably, especially if no confusion
about the selection function is likely. We also use the term full frame in situations where we
wish to emphasize that all joins exist.

Note 2.3 Here are some examples of different selection functions and their corresponding
S-frames.

1. In the case that all joins are specified, we are of course considering the notion of a frame.
2. In the case that (at most) countable joins are specified, we have the notion of a σ -frame.
3. In the case that joins of subsets with cardinality less than some (regular) cardinal κ are

specified, we have the notion of a κ-frame.
4. In the case that only finite joins are specified, we have the notion of a bounded distributive

lattice.

The remainder of this section gives a lot of information about HSL , the free frame over the
S-frame L , as well as CSL , the frame of S-congruences of L , and the relationship between
the two. These results come from [9] on HSL , [10, 12, 14] on CSL .

In the definition below, L is an S-frame.

Definition 2.4 (a) A subset J of L is an S-ideal of L if J is a non-empty downset closed
under designated joins (the latter meaning that if X ⊆ J , for X a designated subset of
L , then

∨
X ∈ J ).

(b) The collection of all S-ideals of L will be denoted HSL , and called the S-ideal frame
of L . It is in fact the free frame over L .

(c) We call θ ⊆ L × L an S-congruence on L if it satisfies the following:

(C1) θ is an equivalence relation on L .
(C2) (a, b), (c, d) ∈ θ implies that (a ∧ c, b ∧ d) ∈ θ .
(C3) If {(aα, bα) : α ∈ A} ⊆ θ and {aα : α ∈ A} and {bα : α ∈ A} are designated subsets

of L , then (
∨

α∈A aα,
∨

α∈A bα) ∈ θ .

(d) The collection of all S-congruences on L is denoted by CSL; we refer to it as the
congruence frame of L . It is in fact a full frame with meet given by intersection.

(e) (i) Let A ⊆ L × L . We use the notation 〈A〉 to denote the smallest S-congruence
containing A. This exists by completeness of CSL .

(ii) For a ∈ L we define ∇a = {(x, y) : x ∨ a = y ∨ a} and �a = {(x, y) : x ∧ a =
y ∧ a}; these are S-congruences on L .

(iii) It is easily seen that ∇a = 〈(0, a)〉 and that �a = 〈(a, 1)〉.
(iv) For a ≤ b, it follows that �a ∩ ∇b = 〈(a, b)〉.
(v) The congruence ∇1 = L × L is the top element, also denoted ∇. Also ∇0 =

{(x, x) : x ∈ L} (called the diagonal, denoted �) is the bottom element of CSL .
(f) The following hold in CSL .

(i) For any θ ∈ CSL , θ = ∨{∇b ∧ �a : (a, b) ∈ θ, a ≤ b}
(ii) ∇a ∨ θ = {(x, y) : (x ∨ a, y ∨ a) ∈ θ}
(iii) �a ∨ θ = {(x, y) : (x ∧ a, y ∧ a) ∈ θ}
(iv) For any I ∈ HSL ,

∨
x∈I ∇x = ⋃

x∈I
∇x .

(g) The function ∇ : L → CSL given by ∇(a) = ∇a is an S-frame embedding. It has
the universal property that if f : L → M is an S-frame map into a frame M with
complemented image, then there exists a framemap f̄ : CSL → M such that f = f̄ ◦∇.
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(h) We also note that for frame maps f and g with domain CSL , if f ◦ ∇ = g ◦ ∇ then
f = g.

(i) A useful congruence for our purposes is theMadden congruence, π , described below.

(i) For x ∈ L , set Px = {t ∈ L : t ∧ x = 0}.
(ii) For x ∈ L , Px is an S-ideal, and in HSL , Px = (↓ x)∗, the pseudocomplement of

↓ x .
(iii) We define π = {(x, y) : Px = Py}; π is an S-congruence of L .
(iv) The quotient map induced by the Madden congruence, p : L → L/π is dense,

onto and the universal such. We refer to this as theMadden quotient. (See [12].)

Definition 2.5 For any S-frame L , define eL : HSL → CSL to be the unique frame map
such that eL(↓a) = ∇a for all a ∈ L; that is, making the following diagram commute:

L HSL

CSL

∇

↓

eL

That this map eL exists follows from the freeness ofHSL as a frame over L . See [9]. Where
no confusion can arise, we omit the subscript L .

Remark 2.6 The range of the map eL : HSL → CSL mentioned above consists of all the
S-congruences of L that can be written as arbitrary joins of ∇a’s, for a ∈ L . For a proof, see
[14]. In the same place we show the following:

Note 2.7 For any S-frame L ,HSL is isomorphic to a subframe of CSL; that is, the free frame
over L is isomorphic to a subframe of the frame of S-congruences of L .

3 Right and Left Adjoints

Much of what is mentioned in this section is well known but it is as well to remind the
reader that, since S-frames are in general not complete, some of what is used in frame theory
concerning adjoints needs to be reconsidered.

Definition 3.1 Let h : L → M be an S-frame map.
A function r : M → L is a right adjoint of h if

h(x) ≤ m ⇐⇒ x ≤ r(m) for all x ∈ L,m ∈ M .

A function � : M → L is a left adjoint of h if

�(m) ≤ x ⇐⇒ m ≤ h(x) for all x ∈ L,m ∈ M .

We make no claim that all S-frame maps have right or left adjoints; this is false (see
Example 3.4). However, clearly if an S-frame map has a right or left adjoint, such is unique.
The following are well-known.

Lemma 3.2 Let h : L → M be an S-frame map.
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(a) Suppose that h has a right adjoint r . Then:
(i) hr ≤ idM and rh ≥ idL , (ii) h is one-one ⇐⇒ rh = idL and (iii) h is onto ⇐⇒
hr = idM .

(b) Suppose that h has a left adjoint �. Then:
(i) idM ≤ h� and idL ≥ �h. (ii) h is one-one ⇐⇒ lh = idL and (iii) h is onto ⇐⇒
h� = idM .

Since arbitrary meets or joins in S-frames need not exist, the following prove useful.

Lemma 3.3 Let h : L → M be an S-frame map.
(a) If h has a right adjoint r then, for all m ∈ M

r(m) =
∨

{x ∈ L : h(x) ≤ m}.
(b) If h has a left adjoint � then, for all m ∈ M

�(m) =
∧

{x ∈ L : m ≤ h(x)}.
Proof (a) By definition, h(x) ≤ m ⇐⇒ x ≤ r(m). Now r(m) is an upper bound of

{x ∈ L : h(x) ≤ m}.
Let k be any upper bound of {x ∈ L : h(x) ≤ m}. Since h(r(m)) ≤ m, it follows that
r(m) ≤ k, so r(m) is indeed the least upper bound required.

(b) Similar.
��

Example 3.4 This is an example of an (onto) S-frame map which has neither a right nor a
left adjoint.

Let L be the σ -frame consisting of all countable and co-countable subsets of R, and 2
denote the 2-element chain. Define h : L → 2 by h(C) = 0 if C is countable and h(D) = 1
if D is co-countable. Then h is a σ -frame map. However it has no right adjoint since there is
no largest A ∈ L with h(A) = 0. Similarly it has no left adjoint. (See Lemma 3.3) ��
Proposition 3.5 Let h : L → M be an S-frame map.
(a) Suppose that h has a right adjoint, r . Then h preserves all existing joins and r preserves

all existing meets.
(b) Suppose that h has a left adjoint, �. Then h preserves all existing meets and � preserves

all existing joins.

Proof This is a categorical fact about adjoints but can of course be checked directly. ��
We mention some cases in which existence of adjoints ensures completeness. This result

will prove useful when embedding an S-frame in its free frame or congruence frame.

Corollary 3.6 Suppose that h : L → N is a one-one S-frame map, where L is an S-frame
and N is a (full) frame. If h has a right or left adjoint, then L is a complete lattice.

Proof Assume h has a right adjoint r and {x j : j ∈ J } an arbitrary subset of L . Since N is
a frame,

∧

j∈J
h(x j ) exists. Then r(

∧

j∈J
h(x j )) = ∧

j∈J
rh(x j ) = ∧

j∈J
x j , using Proposition 3.5

and Lemma 3.2. The proof for left adjoints works similarly. ��
A possible converse to Corollary 3.6 fails as the following example shows.
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Example 3.7 Let L consist of all countable subsets of R, with R itself added as top element.
Let N be the power set ofR and h : L → N the identical embedding. Then L is a σ -frame and
a complete lattice while N is a frame, and h is a one-one σ -frame map. However h does not
preserve all existing joins. This is demonstrated by considering the set {{i} : i is irrational}:

h(
∨

{{i} : i is irrational}) = h(R) = R but
∨

{h({i}) : i is irrational}
=

⋃
{{i} : i is irrational} �= R

So, by Proposition 3.5(a), h does not have a right adjoint. ��
Considering the σ -frame consisting of all co-countable subsets of R with the empty set

added as bottom element, provides a similar example, this time of a function with no left
adjoint.

4 Closed and OpenMaps

There are various equivalent characterizations of closed and open maps for frames, see
for example [23] or [6]. For partial frames we choose a definition using closed and open
congruences and then provide an equivalent approach using right and left adjoints.

Definition 4.1 Let h : L → M be an S-frame map. We call h closed if, for all m ∈ M , there
exists x ∈ L with (h × h)−1(∇m) = ∇x .
We call h open if, for all m ∈ M , there exists x ∈ L with (h × h)−1(�m) = �x .

The above corresponds with one’s intuition for topological spaces and closed and open
continuous functions: for example, such a function f : X → Y is open if and only if
(h × h)−1(�U ) = � f [U ] for h = f −1 and U open in X .

We note that (see [12]) CS is a functor from S-frames to frames such that, for any S-frame
map h : L → M we have a frame map CSh : CSL → CSM making the following diagram
commute:

M

L CSL

CSM

h

∇L

∇M

CSh

Now (h × h)−1 is the right adjoint of CSh, because, for θ ∈ CSL , CSh(θ) is the S-
congruence of M generated by (h × h)[θ ], so for all θ ∈ CSL, φ ∈ CSM ,

CSh(θ) ⊆ φ ⇐⇒ θ ⊆ (h × h)−1(φ).

In particular, notice that CSh(h × h)−1(φ) ⊆ φ for all φ ∈ CSM .
We now provide characterizations of closed and openmaps in which right and left adjoints

arise naturally.

Theorem 4.2 Let h : L → M be an S-frame map.
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14 Page 8 of 21 J. Frith, A. Schauerte

(a) The map h is closed iff h has a right adjoint, r , and for all x ∈ L,m ∈ M,

r(h(x) ∨ m) = x ∨ r(m).

(b) The map h is open iff h has a left adjoint, �, and for all x ∈ L,m ∈ M,

�(h(x) ∧ m) = x ∧ �(m).

Proof (a) (⇒) Suppose h is closed. Then, for all m ∈ M , there exists xm ∈ L such that
(h × h)−1(∇m) = ∇xm . Define r(m) = xm . This is clearly well defined, since ∇a = ∇b

implies that a = b.We now check that r is indeed a right adjoint of h. For x ∈ L,m ∈ M :

h(x) ≤ m ⇐⇒ ∇h(x) ≤ ∇m

⇐⇒ CSh(∇x ) ≤ ∇m

⇐⇒ ∇x ⊆ (h × h)−1(∇m)

⇐⇒ ∇x ⊆ ∇xm

⇐⇒ x ≤ xm = r(m)

Next we check that, for all x ∈ L,m ∈ M we get r(h(x) ∨ m) = x ∨ r(m).
Let x ∈ L,m ∈ M . Since hr ≤ idM , we have hr(h(x)∨m) ≤ h(x)∨m, so hr(h(x)∨m)∨
m ≤ h(x) ∨ m. On the other hand, note that h(x) ≤ h(x) ∨ m ⇒ x ≤ r(h(x) ∨ m) ⇒
h(x) ≤ hr(h(x) ∨ m), and so h(x) ∨ m ≤ hr(h(x) ∨ m) ∨ m. This establishes that
(r(h(x)∨m), x) ∈ (h × h)−1(∇m) = ∇r(m) by assumption, so we obtain r(h(x)∨m)∨
r(m) = x ∨ r(m), so r(h(x) ∨ m) = x ∨ r(m).
(⇐) Under the given assumptions, we show that for allm ∈ M, (h×h)−1(∇m) = ∇r(m).
For x, y ∈ L

(x, y) ∈ (h × h)−1(∇m) ⇒ h(x) ∨ m = h(y) ∨ m

⇒ r(h(x) ∨ m) = r(h(y) ∨ m)

⇒ x ∨ r(m) = y ∨ r(m)

⇒ (x, y) ∈ ∇r(m)

and

(x, y) ∈ ∇r(m) ⇒ x ∨ r(m) = y ∨ r(m)

⇒ h(x) ∨ hr(m) = h(y) ∨ hr(m)

⇒ h(x) ∨ m = h(y) ∨ m since hr(m) ≤ m

⇒ (x, y) ∈ (h × h)−1(∇m)

(b) Similar.
��

Note 4.3 Note that if r is the right adjoint of an S-frame map h : L → M , then for all
x ∈ L,m ∈ M , we necessarily have r(h(x) ∨m) ≥ x ∨ r(m), so only the reverse inequality
is significant. Similarly if � is the left adjoint ofh then againwenecessarily have �(h(x)∧m) ≤
x ∧ �(m).

Note 4.4 Let L be an S-frame and a ∈ L . The following is well-known in the case of frames;
for future reference we describe quotients using closed congruences explicitly.

(a) Consider the diagram
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L

L/∇a ↑a

h g

j

Here h(x) = [x]∇a , g(x) = x ∨ a, j([x]) = x ∨ a. We note that j is an isomorphism
making this diagram commute. The right adjoints of h and g are given explicitly by

rh([x]) = x ∨ a for x ∈ L and rg(t) = t for t ∈↑a.

(b) A similar situation applies for open quotients with L/�a �↓ a. Here are the details.
Consider the diagram

L

L/�a ↓a

h g

j

Here h(x) = [x]�a , g(x) = x ∧ a, j([x]) = x ∧ a. Again j is an isomorphism making
this diagram commute. The left adjoints of h and g are given explicitly by

�h([x]) = x ∧ a for x ∈ L and �g(t) = t for t ∈↓a.

The following natural and useful results show that closed maps and closed congruences
are related appropriately as are the open ones.

Theorem 4.5 Let L be an S-frame and θ an S-congruence on L.

(a) The quotient map q : L → L/θ is closed if and only if θ is a closed S-congruence; that
is, θ = ∇a for some a ∈ L.

(b) The quotient map q : L → L/θ is open if and only if θ is an open S-congruence; that
is, θ = �a for some a ∈ L.

Proof (a) (⇒) If q is closed, then (q × q)−1(∇0) = ∇r(0), where r is the right adjoint of q .
But (q × q)−1(∇0) is just ker(q) and ker q = θ , so we obtain θ = ∇r(0).
(⇐) If θ = ∇a then L/θ is isomorphic to ↑a; we use h(x) = x ∨ a. By Note 4.4 the right
adjoint of h is the identical embedding of ↑a into L and, for m ≥ a, (h × h)−1(∇m) = ∇m .

The proof of (b) is similar to that of (a). For (⇒) one obtains θ = ��(1). ��
The next two results provide some basic facts concerning closed and open maps.

Lemma 4.6 Let h : L → M be an S-frame map.
(a) If h is dense and closed, then h is one-one.

If h is dense, closed and onto, then h is an isomorphism.
(b) If h is codense and open, then h is one-one.

If h is codense, open and onto, then h is an isomorphism.

Proof (a) Suppose that h(x) = h(y) for some x, y ∈ L . Then (x, y) ∈ (h × h)−1(∇0) =
∇r(0), since h is closed. (Here r is the right adjoint of h.) So x ∨ r(0) = y ∨ r(0). But if
h is dense, r(0) = 0, so x = y.
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(b) Similar.
��

The following result for frames appears in [6].

Lemma 4.7 Suppose that f : L → M and g : M → N are S-frame maps.
(a) (i) If f and g are both closed, then g ◦ f is closed.

(ii) If g ◦ f is closed and g is one-one, then f is closed.
(iii) If g ◦ f is closed and f is onto, then g is closed.

(b) As above but replace “closed” by “open”.

Proof (a) i) Clear from the definition of closed maps.
ii) By assumption, for all n ∈ N , (g f × g f )−1(∇n) = ∇r(n) where r is the right adjoint

of g f . Now for m ∈ M and x, y ∈ L ,

(x, y) ∈ ( f × f )−1(∇m) ⇐⇒ f (x) ∨ m = f (y) ∨ m

⇐⇒ g( f (x) ∨ m) = g( f (y) ∨ m) since g is one-one

⇐⇒ (x, y) ∈ (g f × g f )−1∇g(m)

⇐⇒ (x, y) ∈ ∇rg(m)

Thus f is closed. We note that (as can of course be checked directly) the right adjoint
of f is rg.

iii) By assumption, for all n ∈ N , (g f × g f )−1(∇n) = ∇r(n), where r is the right
adjoint of g f . Using f onto we need only consider pairs of the form ( f (x), f (y))
for x, y ∈ L:

( f (x), f (y)) ∈ (g × g)−1(∇n) ⇐⇒ g f (x) ∨ n = g f (y) ∨ n

⇐⇒ x ∨ r(n) = y ∨ r(n)

⇒ ( f (x), f (y)) ∈ ∇ f r(n)

Also

( f (x), f (y)) ∈ ∇ f r(n) ⇒ f (x) ∨ f r(n) = f (y) ∨ f r(n)

⇒ g f (x) ∨ g f r(n) = g f (y) ∨ g f r(n)

⇒ g f (x) ∨ n = g f (y) ∨ n since g f r(n) ≤ n

⇒ ( f (x), f (y)) ∈ (g × g)−1(∇n)

Thus g is closed. We note that the right adjoint of g is f r .

(b) Similar proof.
��

Note 4.8 Theorem 3.2.1 of [6] states that any frame map with a Boolean domain is closed.
The corresponding statement for S-frames is false, as Example 3.4 shows.

In Theorem 3.5 of [15] we noted that ifHSL is Boolean then L is a Boolean frame but not
conversely. The counterexample used there also shows that an S-frame map with Boolean
frame as domain need not be closed. However, an application of Lemma 4.7 shows that, if
HSL is Boolean, any S-frame map with domain L is closed.
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The following result, due to [6] in the frame case, characterizes closed and open maps
with domain 3.

Lemma 4.9 Let 3 denote the 3-element frame with middle element μ, and let M denote any
S-frame.
(a) AnS-framemap h : 3 → M is closed if and only if, for all t ∈ M, h(μ)∨t = 1 ⇒ t = 1.
(b) An S-frame map h : 3 → M is open if and only if, for all t ∈ M, h(μ)∧ t = 0 ⇒ t = 0.

Proof (a) (⇒) Suppose that h(μ) ∨ t = 1 for some t ∈ M . By Theorem 4.2, r(h(μ) ∨ t) =
μ ∨ r(t), where r is the right adjoint of h. So μ ∨ r(t) = 1 which forces r(t) = 1,
because 3 is a chain. So t = 1.
(⇐) For t ∈ M , assume that (h × h)−1(∇t ) �= ∇0 or ∇1. We actually show that (h ×
h)−1(∇t ) = ∇μ.
From our assumption, since (h × h)−1(∇t ) �= ∇1, (0, 1) /∈ (h × h)−1(∇t ). Also t �= 1.
Since (h × h)−1(∇t ) �= ∇0, either (μ, 1) or (0, μ) is in (h × h)−1(∇t ).
Now, since h(μ) ∨ t = h(1) ∨ t implies t = 1 we must have (μ, 1) /∈ (h × h)−1(∇t ).
This forces (0, μ) ∈ (h × h)−1(∇t ); now it is clear that ∇μ ⊆ (h × h)−1(∇t ). For the
reverse inclusion, use the fact that (μ, 1) /∈ (h × h)−1(∇t ) again.

(b) Similar.
��

The final example of this section gives a simple example showing that maps that are both
closed and open need not be isomorphisms.

Example 4.10 Let {Li : i ∈ I } be a collection of S-frames, and L = ∏
Li their product. The

projection maps p j : L → L j are closed and open:
For j ∈ I , the right adjoint, r j , of p j is given by r j (x) = (aα)α∈I where a j = x and ak = 1
for k �= j . Then

r j (p j (aα) ∨ b) = r j (a j ∨ b) = (aα) ∨ r j (b).

Thus p j is closed.
A similar idea shows that each p j is open, using as left adjoint � j (x) = (aα)α∈I where
a j = x and ak = 0 for k �= j . ��

5 A Skeletal Interlude

Weakly open maps in the context of Boolean frames were considered by Banaschewski
and Pultr in [4, 5]. Such maps are precisely the skeletal maps used in [17, 18]; the latter
terminology is perhaps more widely known and we use it here. In [12] we considered the
category of partial frames with skeletal maps and showed that the d-reduced partial frames
form a reflective subcategory of this. In this paper we are interested in the fact that skeletal
maps are a generalization of open ones.

Definition 5.1 An S-frame map h : L → M is called skeletal if (h × h)[πL ] ⊆ πM or
equivalently πL ⊆ (h × h)−1(πM ). For the definition of the Madden congruences πL , πM

see Definition 2.4.

Lemma 5.2 An S-frame map h : L → M is dense and skeletal if and only if πL = (h ×
h)−1(πM ).

123



14 Page 12 of 21 J. Frith, A. Schauerte

Proof The proof is straightforward and omitted. ��
Lemma 5.3 Every open S-frame map is skeletal, but not conversely.

Proof Suppose that h : L → M is open. By Theorem 4.2, h has a left adjoint � and
l(h(x) ∧ m) = x ∧ �(m) for all x ∈ L,m ∈ M .
To show that h is skeletal, we assume (x, y) ∈ πL and show (h(x), h(y)) ∈ πM . So suppose
that Px = Py . Takem ∈ M withm∧h(x) = 0.We show thatm∧h(y) = 0. Applying � gives
x ∧ l(m) = 0, so �(m) ∈ Px = Py , so y ∧ �(m) = 0. Applying h gives 0 = h(y) ∧ h�(m) ≥
h(y) ∧ m, so m ∧ h(y) = 0.
Example 5.4 below shows that a skeletal map need not be open. ��
Example 5.4 Let L be the σ -frame consisting of all countable subsets of Rwith R itself added
as top element.
Let h : L → 2 be given by h(A) = 0 for all countable A, and h(R) = 1. Then h is a σ -frame
map, with left adjoint � given by �(0) = ∅ and �(1) = R. However, for any countable A,
�(h(A)) = �(0) = ∅ whereas A ∧ �(1) = A ∩ R = A, so h is not open. On the other hand,
by [12], L is d-reduced, so every S-frame map with domain L is skeletal. ��
Lemma 5.5 Let 3 denote the 3-element frame with middle element μ, and M any S-frame.
An S-frame map h : 3 → M is skeletal if and only if it is open.

Proof For L = 3, we note that πL = � ∪ {(μ, 1), (1, μ)}. So h : L → M is skeletal iff
(h(μ), h(1)) ∈ πM ; that is, Ph(μ) = P1 = {0}. However this is equivalent to the condition
that, for all t ∈ M , h(μ) ∧ t = 0 ⇒ t = 0. By Lemma 4.9, this is equivalent to h being
open. ��
Lemma 5.6 Let f : L → M and g : M → N be S-frame maps.
(a) If f , g are skeletal, so is g f .
(b) If g f is skeletal and g is one-one then f is skeletal.
(c) If g f is skeletal and g is dense then f is skeletal.

Proof (a) See [12].
(b) See (c) below.
(c) Suppose (x, y) ∈ πL . We show that ( f (x), f (y)) ∈ πM , that is Pf (x) = Pf (y).

Take s ∈ Pf (x). Then s ∧ f (x) = 0, so g(s) ∧ g( f (x)) = 0. So g(s) ∈ Pg f (x). Since
g f is skeletal, g(s) ∈ Pg f (y). So g(s) ∧ g f (y) = 0; by density of g, s ∧ f (y) = 0, so
s ∈ Pf (y).

��

6 The Embedding of a Partial Frame into Its Free Frame and Its
Congruence Frame

We investigate two important embeddings of a partial frame: first into its free frame and then
into its congruence frame. In each case we characterize when the embeddings are closed,
open and skeletal.

Proposition 6.1 Let L be an S-frame and ↓: L → HSL the embedding into its free frame.

(a) The map ↓has a right adjoint iff ↓ is an isomorphism.
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(b) The map ↓ is closed iff ↓ is an isomorphism.
(c) The map ↓has a left adjoint iff L is a complete lattice.
(d) The map ↓ is open iff L is a frame.
(e) The map ↓ is skeletal for any L.
Proof (a) Suppose that ↓has a right adjoint, r .

By Lemma 3.3, for all I ∈ HSL , r(I ) = ∨{x ∈ L :↓ x ⊆ I } = ∨{x ∈ L : x ∈ I } =∨
I . By Proposition 3.5, ↓preserves all existing joins, so for all I ∈ HSL,

∨

x∈I
↓ x =↓

(
∨

I ). This shows that all S-ideals of L are principal, and so ↓ is an isomorphism.
(b) Follows directly from (a).
(c) (⇒) Corollary 3.6(b) applies, since ↓ is a one-one S-frame map into the frame HSL .

(⇐) For I ∈ HSL , define �(I ) = ∨
I . Then � is a left adjoint of ↓, because ∨

I ≤
x ⇐⇒ I ⊆↓ x , for all I ∈ HSL, x ∈ L .

(d) By Theorem 4.2, ↓is open precisely when it has a left adjoint � satisfying �(↓ x ∧ J ) =
x ∧ �(J ) for all x ∈ L, J ∈ HSL . By (c) above, this amounts to

∨{ j ∈ J : j ≤ x} =
x ∧ ∨

J . The proof of the required frame distribution law is then straightforward using
the idea of replacing the join of an arbitrary subset by the join of the S-ideal generated
by it.

(e) Suppose that (x, y) ∈ πL , so that Px = Py . By Lemma 4.19 of [12], Px = (↓ x)∗, the
pseudocomplement taken in HSL . So (↓ x)∗∗ = (↓ y)∗∗, giving (↓ x,↓ y) ∈ πHS L .

��
To put the above result into some context, we note that in [15] we established several

conditions equivalent to the embedding ↓: L → HSL being an isomorphism. These are

(a) Every S-ideal of L is principal.
(b) L is a frame and every element of L is S-Lindelöf.
(c) The frame of S-congruences of L is isomorphic to the frame of congruences on HSL .

For details, see [15], Theorem 5.2.
We turn now to the analogous embeddingof a partial frame into its frameofS-congruences.

See Definition 2.5 for some details.

Proposition 6.2 Let L be an S-frame and ∇ : L → CSL the embedding into its congruence
frame.

(a) The map ∇ is closed iff ∇ is an isomorphism.
(b) The map ∇ is open iff L is a Boolean frame.
(c) The map ∇ is skeletal iff L is a d-reduced S-frame.

Proof (a) Suppose that ∇ has right adjoint R and consider the commuting diagram

CSL

L HSL

∇

↓

e

By Lemma 4.7, since e is one-one,∇ closed implies ↓closed. By Proposition 6.1, ↓: L →
HSL is an isomorphism. For a ∈ L , a ∧ R(�a) = R(∇a ∧ �a) = 0. This uses the fact that
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R preserves meets and ∇ is one-one. Since ∇ is also closed, a∨ R(�a) = R(∇a ∨�a) = 1.
As always, R(1) = 1 and R(0) = 0 since ∇ is dense. So R(�a) is the complement of a
in L . This shows that L is Boolean, so by Proposition 3.3 of [15] e : HSL → CSL is an
isomorphism. So ∇ : L → CSL is an isomorphism.

(b) (⇒) Suppose that ∇ is open and has left adjoint 
. Using again the commuting diagram
in (a) and e being one-one, Lemma 4.7 gives ↓: L → HSL open. So L is in fact a frame,
by Proposition 6.1.
For a ∈ L,
(∇a∧�a) = a∧
(�a) = 0, since∇ is open. Also
(∇a∨�a) = 
(∇a)∨

(�a) = 1 using the fact that 
(∇1) = 1 since ∇ is one-one. Further, 
(∇a) = a,
because ∇ is one-one; so 
(�a) is the complement of a in L . So L is Boolean.
(⇐) By Proposition 6.1, since L is a frame, ↓: L → HSL is open. By Proposition 3.3
of [15], L Boolean implies e : HSL → CSL is an isomorphism. So ∇ : L → CSL is
open.

(c) ∇ : L → CSL is skeletal iff

for all x, y ∈ L, Px = Py ⇒ ∇∗
x = ∇∗

y iff

for all x, y ∈ L, Px = Py ⇒ �x = �y iff

for all x, y ∈ L, Px = Py ⇒ x = y iff

L is d-reduced

��

7 The Free Functor on Closed and OpenMaps

We note that the map ↓ is a natural transformation from the identity functor on S-frames to
the functor HS . (See [9].) So for any S-frame map h : L → M there exists a unique frame
map HSh : HSL → HSM making the following diagram commute.

M

L HSL

HSM

h

↓

↓
HSh

We examine the relative strengths of h being closed versusHSh being closed. In fact the
former condition is stronger; to ensure that h is closed, the right adjoint of HSh must send
principal S-ideals to principal ones as we show below.

Proposition 7.1 Let h : L → M be an S-frame map. Then h is closed iff HSh is a closed
frame map and, for all m ∈ M, R(↓m) =↓a for some a ∈ L, where R is the right adjoint of
HSh. When this condition holds, a = r(m), where r is the right adjoint of h. The following
diagram applies.
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M

L HSL

HSM

h

↓

↓
HSh Rr

Proof (⇒) Suppose that h is closed. Since HSh is a frame map, it automatically has a right
adjoint R; we now give an explicit description of R. For J ∈ HSM , define R(J ) to be the
S-ideal of L generated by {r( j) : j ∈ J } where r is the right adjoint that must exist for h.
We check that for all K ∈ HSL, J ∈ HSM we have HSh(K ) ⊆ J ⇐⇒ K ⊆ R(J ):
(⇒) Here k ∈ K ⇒ h(k) ∈ J ⇒ k ≤ rh(k) ∈ R(J ).
(⇐) For k ∈ K , k ≤ ∨{r( jα) : α ∈ A}; the latter is a join of a designated subcollection
of {r( j) : j ∈ J }. Then h(k) ≤ ∨{hr( jα) : α ∈ A} ≤ ∨{ jα : α ∈ A} ∈ J since J is an
S-ideal.

To now show that HSh is closed, we need, for all K ∈ HSL, J ∈ HSM, R(HSh(K ) ∨
J ) ⊆ K ∨ R(J ). It suffices to show that {r(x) : x ∈ HSh(K ) ∨ J } ⊆ K ∨ R(J ) since this
is a generating set for R(HSh(K ) ∨ J ). So take x ∈ HSh(K ) ∨ J . Then x ≤ h(k) ∨ j for
some k ∈ K , j ∈ J . Then r(x) ≤ r(h(k) ∨ j) = k ∨ r( j) ∈ K ∨ R(J ); this uses the fact
that h is closed.

Finally R(↓m) is the S-ideal generated by {r(x) : x ≤ m}, so R(↓m) =↓r(m).
(⇐) By assumption, if m ∈ M , then there is a (necessarily unique) a ∈ L such that

R(↓ m) =↓ a. We define r(m) = a. We check then that r is the right adjoint of h; for
x ∈ L,m ∈ M :

h(x) ≤ m ⇐⇒ ↓h(x) ⊆↓m

⇐⇒ HSh(↓ x) ⊆↓m

⇐⇒ ↓ x ⊆ R(↓m) =↓r(m)

⇐⇒ x ≤ r(m).

Next we check that h is closed. SinceHSh is closed, R(HSh(K )∨ J ) = K ∨ R(J ) for all
K ∈ HSL, J ∈ HSM . Applying this with K =↓ x and J =↓m gives R(↓h(x)∨ ↓m) =↓
x ∨ R(↓m) =↓ (x ∨ r(m)). Since r(h(x) ∨ m) is the largest element of R(↓ (h(x) ∨ m)),
we obtain r(h(x) ∨ m) = x ∨ r(m). ��

We now consider the analogous question of an S-frame map h being open versus HSh
being open.

Note 7.2 (a) For x, y ∈ L where L is an S-frame we define H(x,y) = {z ∈ L : z ∧ x ≤ y}.
It should be noted that H(x,y) is in fact an S-ideal of L and H(x,y) =↓ x →↓ y in HSL .
(See [12] for details.)

(b) It is a well-known fact that a full frame map f

• has a left adjoint iff f preserves arbitrary meets,
• is open iff f preserves arbitrary meets and Heyting arrows.

Of course a partial frame need not have all Heyting arrows. However openness of S-frame
maps is related to the preservation of Heyting arrows in the free frame as considered in the
next proposition.
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Proposition 7.3 Let h : L → M be an S-frame map.
(a) The map h is open if and only if HSh is an open frame map and, for all m ∈ M,
(↓

m) =↓a for some a ∈ L, where 
 is the left adjoint ofHSh. When this condition holds,
a = �(m), where � is the left adjoint of h.

M

L HSL

HSM

h

↓

↓
HSh 
�

(b) The map h is open if and only if all the following conditions hold:

(i) HSh(↓ x →↓ y) =↓h(x) →↓h(y) for all x, y ∈ L.
(ii) HSh has a left adjoint 
.
(iii) For all m ∈ M, 
(↓m) =↓a for some a ∈ L.

Proof (a) This is analogous to the proof of Proposition 7.1. Given a left adjoint � of h, define

(J ) to be the S-ideal of L generated by {�( j) : j ∈ J }. Given a left adjoint 
 ofHSh
satisfying the given conditions, define �(m) = a where 
(↓m) =↓ a. The details are
omitted.

(b) (⇒) Apply (a). If h is open, HSh is an open frame map and so preserves all Heyting
arrows. In particular HSh(↓ x →↓ y) = HSh(↓ x) → HSh(↓ y) =↓h(x) →↓h(y).
(⇐) As in (a), for m ∈ M define the function � by �(m) = a where 
(↓m) =↓a. That
� is the left adjoint of h is easily checked as in Proposition 7.1.
Further,

↓ x ∧ 
(↓m) ⊆ 
(↓(h(x) ∧ m))

⇐⇒ 
(↓m) ⊆↓ x → 
(↓(h(x) ∧ m))

⇐⇒ ↓m ⊆ HSh(↓ x → 
(↓(h(x) ∧ m)))

⇐⇒ ↓m ⊆↓h(x) → HSh
(↓(h(x) ∧ m))

⇐⇒ ↓(h(x) ∧ m) ⊆ HSh
(↓(h(x) ∧ m))

which always holds. Now since �(m) ∈ 
(↓ m), this shows that x ∧ �(m) ∈ 
 ↓
(h(x) ∧ m), and so x ∧ �(m) ≤ �(h(x) ∧ m) as required.

��
Note 7.4 Let h : L → M be an S-frame map. If HSh is skeletal then h is skeletal: By
Proposition 6.1 (5), ↓: L → HSL is always skeletal. Since a composite of skeletal maps is
skeletal, ↓ h : L → HSM is skeletal. By Lemma 5.6, h is skeletal. We do not know if the
converse holds.

8 Points of Partial Frames

The classical adjunction between frames and topological spaces is given by an open set
functor and a spectrum functor. The latter can be described using completely prime filters or,
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equivalently, frame maps to the 2-chain. These are usually referred to as the “points” of the
frame; we call them frame points below.

The analogous situation for S-frames was presented in [13], where the definition below
appeared.

Definition 8.1 An S-point of an S-frame L is an S-frame map h : L → 2 where 2 is the
two-element S-frame.

We turn our attention to closed and open S-points. Since points are obviously onto maps,
Theorem 4.5 applies.

Note 8.2 • If h : L → 2 is a closed S-point, there exists a ∈ L and an isomorphism i
making this diagram commute:

L

2 ↑a

h ∨ a

i

So ↑a = {a, 1}, making a a co-atom of L .

• If a is a co-atom of L , then the S-frame map f : L → ↑a given by f (x) = x ∨ a, yields
an S-point of L which is clearly closed.

We note that, given an S-point h : L → 2, this extends quite naturally to a frame point

h̄ : HSL → 2 such that h̄ ↓= h. This in turn extends naturally to a frame point ¯̄h : CSL → 2

with ¯̄he = h̄. The existence of h̄ and ¯̄h follows from the universal properties of HSL and
CSL . This is made clearer in the following diagram in which all triangles commute:

2

L CSLHSL

h ¯̄hh̄

↓ e

∇

Theorem 8.3 Let h : L → 2 be an S-point of an S-frame L. Using the notation above, we
have:

(a) If h is closed, then h̄ is closed, but not conversely.

(b) If h̄ is closed then ¯̄h is closed, but not conversely.

Proof (a) We note that, in the following diagram, h̄ and HSh amount to the same map. So
h closed implies h̄ closed by Proposition 7.1.

2

L HSL

HS2

h

↓

�
HSh
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A direct proof is also possible: If h : L →↑a = {a, 1}, one can show that ↓a is a co-atom
of HSL and g : HSL →↑(↓ a) is a closed frame point equal to h̄.

For the lack of the converse, see Example 8.5.

(b) Suppose h̄ is closed and is explicitly given by h̄ : HSL →↑ J = {J ,↓ 1} where
h̄(I ) = I ∨ J for J the co-atom of HSL mentioned in Note 8.2.
We check that e(J ) is a co-atom of CSL:
Writing J = ∨

j∈J
↓ j , we have e(J ) = ∨

e ↓ j = ∨

j∈J
∇ j which we denote by ∇J . By

Lemma 3.1 of [14] this join is actually a union, i.e. e(J ) = ⋃

j∈J
∇ j .

• ∇J �= ∇ because J �=↓1.
• If ∇J ⊆ θ and ∇J �= θ , for some θ ∈ CSL , then there exists (s, t) ∈ θ with

(s, t) /∈ ∇J ; without loss of generality, s ≤ t .
If s /∈ J , then J ∨↓s =↓1, so there exists j0 ∈ J with j0 ∨ s = 1. Then j0 ∨ t = 1,
contradicting (s, t) /∈ ∇ j0 . So s ∈ J . Now (0, s) ∈ ∇s ⊆ ∇J .
However, t /∈ J , since s ∨ j �= t ∨ j for all j ∈ J . So J∨ ↓ t =↓1, so there exists
j1 ∈ J with j1 ∨ t = 1; then (t, 1) ∈ ∇ j1 .
Putting these ingredients together gives (0, s), (s, t), (t, 1) all in θ , so θ = ∇.

This makes the frame map f : CSL → ↑∇J given by f (θ) = θ ∨∇J a frame point; i.e.
↑ ∇J = {∇J ,∇} � 2 and f is clearly closed.

We now show that ¯̄h and f have the same kernel. First notice that

¯̄h(∇J ) = ¯̄h(
∨

j∈J

∇ j ) =
∨

j∈J

¯̄h(∇ j ) =
∨

j∈J

¯̄he ↓( j) =
∨

j∈J

h̄(↓ j) = h̄(J ),

which is J , the bottom of ↑ J .
Now, for α, β ∈ CSL:

(α, β) ∈ ker f ⇐⇒ α ∨ ∇J = β ∨ ∇J

⇐⇒ α ∨ ∇J = β ∨ ∇J = ∇J or α ∨ ∇J = β ∨ ∇J = ∇
⇐⇒ ¯̄h(α ∨ ∇J ) = ¯̄h(β ∨ ∇J )

⇐⇒ ¯̄h(α) ∨ ¯̄h(∇J ) = ¯̄h(β) ∨ ¯̄h(∇J )

⇐⇒ ¯̄h(α) = ¯̄h(β)

⇐⇒ (α, β) ∈ ker ¯̄h

For the lack of a converse, see Example 8.6 or 8.7.

��
The same diagram as before is used in the next result:

2

L CSLHSL

h ¯̄hh̄

↓ e

∇

123



Closed and Open Maps for Partial Frames Page 19 of 21 14

Theorem 8.4 Let h : L → 2 be an S-point of an S-frame L. Using the same notation as in
the previous result, we have

(a) If h is open, then h̄ is open and conversely.

(b) If h̄ is open, then ¯̄h is open but not conversely.

Proof (a) (⇒) This is similar to the proof of Theorem 8.3 (a). The open S-point h can be
explicitly given by the map h : L →↓a = {0, a} where h(x) = x ∧ a, for an atom a of
L . The fact that ↓a is then an atom of HSL can be used to show that h̄ is open.
(⇐) Suppose that h̄ is open and is explicitly given by h̄ : HSL →↓ J for some atom J
of HSL . Since J is an atom, it is principal; in fact J =↓a for some atom a of L .
Then h = h̄ ↓ is given by h(x) = h̄(↓ x) =↓ x∩ ↓ a =↓ (x ∧ a), for all x ∈ L . By
Theorem 4.5(b) and Note 4.4(b), h is open.

(b) The logical strategy here is similar to that of Theorem 8.3(b); however, the proof that if
J is an atom ofHSL , then e(J ) is an atom of CSL is different, so we provide that here:
If J is an atom of HSL , then J =↓c, for some atom c of L . Then e(J ) = ∇c. Suppose
� �= θ ⊆ ∇c for some θ ∈ CSL . There exists (s, t) ∈ θ with s �= t ; without loss of
generality, s < t . Now s ∨ c = t ∨ c. Further (s ∧ c, t ∧ c) ∈ θ . Since c is an atom of
L , s ∧ c = 0 or s ∧ c = c and t ∧ c = 0 or t ∧ c = c. If s ∧ c = t ∧ c, then s = t a
contradiction. So s ∧ c = 0 and t ∧ c = c which gives (0, c) ∈ θ and so ∇c ⊆ θ .
We omit the isomorphism of the maps, since this is similar to Theorem 8.3(b). For the
lack of a converse, see Example 8.6.

��

We conclude this paper with some illuminating examples.

Example 8.5 Let L consist of all countable subsets of R, with R itself added as top element.
Consider S that selects all countable subsets. Let J consist of all countable subsets of R.
Then J is an S-ideal of L , and is in fact a co-atom of HSL . The map h̄ : HSL →↑ J is
therefore a closed frame point. However, h = h̄ ↓ is not closed, because

h(A) =
{↓1 if A = R
J if A is countable

so there is clearly no largest element A such that h(A) = J . ��

Example 8.6 This example uses (full) frames and S selects all subsets. Let L = {0, a, 1}
with 0 < a < 1. Define h : L → 2 with h(a) = 0. Then h is a frame point of L and is not

open. Here CSL = {�,∇a,�a,∇}, the four-element Boolean algebra. Further ¯̄h is given by
¯̄h(∇) = ¯̄h(�a) = 1 and ¯̄h(�) = ¯̄h(∇a) = 0. So ¯̄h is open.

By defining g : L → 2 by g(a) = 1 instead, one obtains a frame point that is not closed
for which ḡ is not closed but ¯̄g is closed. ��

Example 8.7 Again, let L be the σ -frame as in the previous example.
In this example we provide an S-point h which is not closed for which the corresponding

frame point h̄ is also not closed but the corresponding frame point ¯̄h is closed.
Define h by

h(A) =
{
1 if 4 ∈ A
0 if 4 /∈ A
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Then h : L → 2 is an S-point. However, since there is no largest countable subset of R
missing 4, h has no right adjoint, so is not closed. The corresponding frame point h̄ is given
by h̄(I ) = h̄(

∨

A∈I
↓ A) = ∨

A∈I
h(A) for all I ∈ HSL , so

h̄(I ) =
{
1 if 4 ∈ A for some A ∈ I
0 if 4 /∈ A for all A ∈ I

This h̄ of course has a right adjoint given by r̄(1) =↓R and r̄(0) = J where J is the S-ideal
of L consisting of all countable subsets of R missing 4. However, h̄ is not closed, because J
is not a co-atom of HSL: J∨ ↓ {4} consists all countable subsets of R, and so lies strictly
between J and the top.

Finally we consider ¯̄h given by

¯̄h(θ) = ¯̄h(
∨

{∇A ∩ �B : B ⊆ A, (A, B) ∈ θ})
=

∨
{ ¯̄h(∇A) ∧ ¯̄h(�B) : B ⊆ A, (A, B) ∈ θ}

=
∨

{h(A) ∧ h(B)c : B ⊆ A, (A, B) ∈ θ}

where h(B)c denotes the complement of h(B). This ¯̄h of course has a right adjoint, given by
¯̄r(1) = ∇ and ¯̄r(0) = ∨{∇A ∩ �B : B ⊆ A, 4 /∈ A or 4 ∈ B} = α, say. We show that ¯̄h is
closed by showing that α is a co-atom of CSL:

Suppose that (C, D) /∈ α,C ⊆ D. We show that the S-congruence β generated by
α ∪ {(C, D)} is the top of CSL . If 4 ∈ C , then (C, D) ∈ ∇D ∩ �C ⊆ α, a contradiction. So
4 /∈ C . A similar argument shows 4 ∈ D.

Now we have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(∅,C) ∈ α because 4 /∈ C, so
(∅,C) ∈ β

(C, D) ∈ β

(D,R) ∈ α because 4 ∈ D, so
(D,R) ∈ β

Putting this together we get β = ∇, the top of CSL as required. ��
Acknowledgements We thank the referee for a careful reading and useful comments.

Author Contributions All authors contributed equally to the study conception, design and preparation of
material. The first draft of the manuscript was prepared by JF and AS. Both authors read, approved and
proof-read the final manuscript.

Funding Open access funding provided by University of Cape Town. No funding was obtained for this study.

Data Availability Not applicable.

Declarations

Conflict of interest The authors declare that they have no financial or non-financial conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is

123



Closed and Open Maps for Partial Frames Page 21 of 21 14

not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Adámek, J., Herrlich, H., Strecker, G.: Abstract and Concrete Categories. Wiley, New York (1990)
2. Banaschewski, B.: σ -Frames. Unpublished manuscript (1980)
3. Banaschewski, B., Gilmour, C.R.A.: Realcompactness and the cozero part of a frame. Appl. Categ. Struct.

9, 395–417 (2001)
4. Banaschewski, B., Pultr, A.: Variants of openness. Appl. Categ. Struct. 2, 331–350 (1994)
5. Banaschewski, B., Pultr, A.: Booleanization. Cahiers Topologie Géom. Différentielle Catégoriques 37(1),

41–60 (1996)
6. Chen, X.: Closed frame homomorphisms Ph.D. Thesis, McMaster University (1991)
7. Frith, J., Schauerte, A.: Uniformities and covering properties for partial frames (I). Categ. General Alg.

Struct. Appl. 2(1), 1–21 (2014)
8. Frith, J., Schauerte, A.: Uniformities and covering properties for partial frames (II). Categ. General Alg.

Struct. Appl. 2(1), 23–35 (2014)
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