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Abstract
This is the second part of a series of three strongly related papers in which three equivalent
structures are studied:

– Internal categories in categories of monoids; defined in terms of pullbacks relative to a
chosen class of spans.

– Crossed modules of monoids relative to this class of spans.
– Simplicial monoids of so-called Moore length 1 relative to this class of spans.

The most important examples of monoids that are covered are small categories (treated as
monoids in categories of spans) and bimonoids in symmetric monoidal categories (regarded
asmonoids in categories of comonoids). In this secondpartwe define relative crossedmodules
of monoids and prove their equivalence with the relative categories of Part I.

Keywords Crossed module · Internal category · Bimonoid

Introduction

Since their appearance in [25], crossed modules of groups have been intensively studied and
applied in various contexts; see e.g. the reviews [19,21,22] and the references in them. They
admit several different descriptions: a simplicial groupwhoseMoore complex is concentrated
in degrees 1 and 2 turns out to be the internal nerve of an internal category in the category of
groups (which is necessarily an internal groupoid, a.k.a. strict 2-group or Cat1-group) and the
Moore complex yields a crossed module. These constructions establish, in fact, equivalences
between these three notions.

The first (to our knowledge) proofs of the equivalence between crossed modules and strict
2-groups can be found in [6]—where it is referred also to the unpublished proof [7]—and in
[17]. Based on the fact that groups constitute a semi-abelian category in the sense of [15],
another short and deeply conceptual proof is due to Janelidze [14]. It also leads to a broad
generalization describing the equivalent notions of crossed modules and internal categories
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602 G. Böhm

of all of Lie algebras, �-groups in the sense of [13], Heyting semi-lattices, the dual of
the category of pointed sets and much more. Thus by working in an arbitrary semi-abelian
category, not only a more transparent proof is obtained, but also a much wider generality,
also unifying earlier results in [16,23].

More recently, however, some results on, and certain applications of crossed modules of
groups were extended to crossed modules of ordinary monoids [20], groupoids [5] and of
Hopf algebras [1,8,9,18,25]. From this list only cocommutative Hopf algebras over a field
are known to constitute a semi-abelian category [11,12]. Hence Janelidze’s proof can not be
applied directly to the rest of these generalizations. Our aim is therefore to develop a wider
theory of crossed modules of monoids in more general monoidal categories which are not
expected to have all pullbacks (not even along split epimorphisms). We have the above two
main examples in mind:

– Categories of spans whose monoids are small categories, including groupoids in partic-
ular.

– Categories of comonoids in symmetric monoidal categories whose monoids are
bimonoids including Hopf monoids in particular.

In the first part [3] of this series of papers we discussed classes of spans satisfying appro-
priate conditions; and relative pullbacks with respect to them. Assuming that such pullbacks
exist—as they do in our key examples—we introduced a monoidal category with monoidal
product provided by these pullbacks. We defined a relative (to the chosen class of spans)
category as a monoid in this monoidal category. It is given by the usual data

B i A
s

t
A�

B
A

d
(∗)

where �
B
is now a relative pullback.

In the current article we make the next step and prove the equivalence of the following
categories for a fixed class of suitable spans in a monoidal category:

– The category of relative categories in the category of monoids,
– The category of relative crossed modules of monoids.

Our methodology is inspired by Janelidze’s paper [14]. In Sect. 1 we investigate first
some category of the category of split epimorphisms of monoids. We obtain an equivalent

description of a split epimorphism of monoids B
i

A
s

in terms of a distributive lawwhich

allows for handy characterizations of possible morphisms t and d in (∗). This is used in Sects.
2 and 3, respectively, to present equivalent descriptions of some reflexive graphs of monoids
in terms of relative pre-crossed modules of monoids; and of relative category objects (∗)
in categories of monoids in terms of relative crossed modules of monoids. Applying our
results to categories of spans and to categories of comonoids, respectively, we re-obtain the
definitions of crossed modules of groupoids in [5] and of crossed modules of Hopf monoids
in [25], respectively.

Our next aim is to extend to our setting the equivalence of the category of strict 2-groups
(that is, internal groupoids in the category of groups) and the category of crossed modules of
groups to the further category of simplicial groups whose Moore complex has length 1. This
will be achieved in Part III of this series [2].
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Crossed Modules of Monoids II: Relative Crossed Modules 603

1 Split Epimorphisms of Monoids Versus Distributive Laws

We freely use definitions, notation and results from [3]. Throughout, the composition of some

morphisms A
g

B and B
f

C in an arbitrary category will be denoted by A
f ·g

C .
Identity morphisms will be denoted by 1 (without any reference to the (co)domain object if it
causes no confusion). In any monoidal category C the monoidal product will be denoted by
juxtaposition and themonoidal unitwill be I . For themonoidal product ofn copies of the same
object A also the power notation An will be used. For any monoid A in C, the multiplication

and the unit morphisms will be denoted by A2 m
A and I

u
A , respectively. If C is

also braided, then for the braiding the symbol c will be used.
Recall that a class S of spans in an arbitrary category is said to be admissible if it satisfies

the following two properties in [3, Definition 2.1].

(POST) If X A
f g

Y ∈ S then X ′ X
f ′

A
f g

Y
g′

Y ′ ∈ S too, for any mor-

phisms X
f ′

X ′ and Y
g′

Y ′ .

(PRE) If X A
f g

Y ∈ S then X A
f

B
h h

A
g

Y ∈ S, for any morphism

B
h

A .

The relative pullbackof a cospan A
f

B C
g

with respect to such a classSwas introduced

in [3, Definition 3.1] as a span A A�
B
C

pA pC
C in S satisfying the following properties.

– Commutativity of the diagram

A�
B
C

pC

pA

C

g

A
f

B.

– Universality. For any A X
f ′ g′

C ∈ S such that f · f ′ = g · g′, there is a unique

morphism X
h

A�
B
C which satisfies pA · h = f ′ and pC · h = g′.

– Reflection. If both

A A�
B
C

pA
D

k l
E and C A�

B
C

pC
D

k l
E

belong to S then also A�
B
C D

k l
E belongs to S; and symmetrically, if

E D
l k

A�
B
C

pA
A and E D

l k
A�

B
C

pC
C

belong to S then also E D
l k

A�
B
C belongs to S.
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604 G. Böhm

As in [3, Definition 2.10], we say that a cospan A
f

B C
g

has legs in a class S of

spans if A A
f

B and B C
g

C belong to S. [3, Assumption 4.1] asserts that
there exists the S-relative pullback of those cospans whose legs are in an admissible class
S. Under this assumption it was proven in [3, Corollary 4.6] that for any object B for which

B B B ∈ S, those spans B A
t s

B over B whose legs B A
t

A and

A A
s

B are in S, constitute a monoidal category with the monoidal product given by
the S-relative pullback over B. An S-relative category (with object of objects B) is defined
in [3, Definition 4.9] as a monoid therein. Explicitly, this means morphisms

B i A
s

t
A�

B
A

d

subject to the following axioms.

– The legs of B A
t s

B are in S (so that its S-relative pullback denoted by

A A�
B
A

p1 p2
A exists).

– i is a common section of s and t (that is, B i A
s

t
is a reflexive graph).

– t ·d = t · p1 and s ·d = s · p2.
– d · (i �1) = 1 = d · (1� i).
– d · (d �1) = d · (1�d).

A class S of spans in a monoidal category is said to be monoidal if it satisfies the following
two conditions in [3, Definition 2.5].

(UNITAL) For any morphisms f and g whose domain is the monoidal unit I ,

X I
f g

Y ∈ S.
(MULTIPLICATIVE) If both X A

f g
Y ∈ S and X ′ A′f ′ g′

Y ′ ∈ S then also

XX ′ AA′f f ′ gg′
YY ′ ∈ S.

It is discussed in [3, Example 2.8] that a monoidal admissible class S of spans in a braided
monoidal category C induces amonoidal admissible class of spans in the category of monoids
in C; and it is shown in [3, Example 4.4] that if S satisfies [3, Assumption 4.1] then so does
the induced class in the category of monoids. This allows for the discussion of S-relative
categories in the category of monoids.

In this paper we will be interested mainly in these relative categories of monoids. They
contain, in particular, a split epimorphism of monoids (consisting of the morphisms i and s
of (∗) in the Introduction). So we start with the analysis of the following category of split
epimorphisms of monoids.

Theorem 1.1 Consider a monoidal admissible class S of spans in a monoidal category C for
which [3, Assumption 4.1] holds. The following categories are equivalent.

SplitEpiMonS(C) whose

objects are split epimorphisms B
i

A
s

of monoids in C subject to the following con-

ditions.
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Crossed Modules of Monoids II: Relative Crossed Modules 605

(a) A A
s

B ∈ S; so that by the unitality of S and [3, Assumption 4.1], there
exists the S-relative pullback

A�
B
I

pI

pA

I

u

A s B.

(b) q := (A�
B
I )B

pAi
A2 m

A is invertible.

morphisms are pairs of monoid morphisms ( B
b

B ′ , A
a

A′ ) such that s′·a = b·s
and i ′ ·b = a · i .

DistLawS(C) whose

objects consist of monoids B and Y , a monoid morphism Y
e

I and a distributive

law BY
x

Y B subject to the following conditions.

(a′) Y Y
e

I ∈ S and B B B ∈ S. Then by the monoidality of S also

Y B Y B
e1

B ∈ S so by [3, Assumption 4.1] there exists the S-relative pull-
back Y B�

B
I in the diagram below.

(b′) e1 · x = 1e.
(c′) The morphism f occurring in the diagram below is invertible. (It is well-defined

since by (a’) and condition (POST) in [3, Definition 2.1], Y B Y
1u e

I ∈ S.)

Y
e

1u

f

Y B�
B
I

pI

pY B

I

u

Y B
e1

B.

morphisms are pairs of monoid morphisms ( B
b

B ′ , Y
y

Y ′ ) such that e′ · y = e
and x ′ ·by = yb · x.

Proof We prove the theorem by constructing mutually inverse equivalence functors. The first
one SplitEpiMonS(C) → DistLawS(C) sends

B
i

b

A
s

a

B′
i ′

A′s′
�→

(A�
B
I ,

a�1

B,

b

A�
B
I

pI
I , B(A�

B
I )

i pA
A2

m
A

q−1

(A�
B
I )B)

(A′�
B′ I , B′, A′�

B′ I
pI

I , B′(A′�
B′ I )

i ′ pA′
A′2 m′

A′ q ′−1

(A′�
B′ I )B

′).

Let us see that the object map is meaningful. By construction B is a monoid and B
b

B ′

is a monoid morphism. By [3, Proposition 3.7 (1)] A�
B
I is a monoid and A�

B
I

pI
I is a
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606 G. Böhm

monoid morphism. By [3, Lemma 1.5] B(A�
B
I )

i pA
A2 m

A
q−1

(A�
B
I )B is a distributive

law. Concerning property (a’), I I I ∈ S by the unitality of S; hence by [3, Lemma

3.4 (2)] A�
B
I A�

B
I

pI
I ∈ S. By [3, Lemma 2.4 (1)] 1 also B B B belongs

to S. Condition (b’) holds since commutativity of the first diagram of

(A�
B
I )B

pAi

pI 1

q

A2
m

ss

A

s

B
u1

B2 m
B

B(A�
B
I )

i pA

1pI

A2 m

ss

A
q−1

s

(A�
B
I )B

pI 1

B
1u

B2 m
B B

(1.1)

implies the commutativity of the second diagram. For condition (c’) observe that by the
unitality of themonoidmorphism i the equality q·1u = pA holds, equivalently, q−1·pA = 1u.
With this identity in mind we see that the morphism f of condition (c’) is equal to q−1 �1
in the first diagram of

A�
B
I pI

pA

q−1 � 1

(A�
B
I )B�

B
I

pI

p(A�B I )B

I

u

A
q−1

(A�
B
I )B

pI 1
B

(A�
B
I )B�

B
I

pI

p(A�B I )B

q � 1

A�
B
I

pI

pA

I

u

(A�
B
I )B q A s B.

Then by [3, Proposition 3.5 (2)] it is invertible with the inverse q �1 in the second diagram.
Both morphisms q−1 �1 and q �1 are well-defined by the commutativity of the first diagram
of (1.1); see [3, Proposition 3.5 (1)]. This proves that the object map of our candidate functor
is meaningful.

Concerning the morphism map, a �1 is a well-defined morphism in C by the assumption
that b ·s = s′ ·a (see [3, Proposition 3.5 (1)]) and it is a monoid morphism by [3, Proposition
3.7 (2)]. Condition pI · (a �1) = pI holds by construction and the other equality holds since
the commutativity of the first diagram of

1 Apologies about a regrettable typo in the first line of [3, Lemma 2.4], interchanging the symbols A and B.
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Crossed Modules of Monoids II: Relative Crossed Modules 607

(A�
B
I )B

pAi

(a�1)b

q

A2
m

aa

A

a

(A′�
B′ I )B

′ pA′ i ′

q ′

A′2 m′
A′

B(A�
B
I )

i pA

b(a�1)

A2 m

aa

A

a

q−1

(A�
B
I )B

(a�1)b

B ′(A′�
B′ I ) i ′ pA′

A′2
m′ A′

q ′−1
(A′�

B′ I )B
′

(1.2)

implies the commutativity of the second diagram.
In the opposite direction DistLawS(C) → SplitEpiMonS(C) we define a functor sending

(Y ,

y

B,

b

Y
e

I , BY
x

Y B)

(Y ′, B ′, Y ′ e′
I , B ′Y ′ x ′

Y ′B ′)
�→

B
u1

b

Y B
e1

yb

B ′
u′1

Y ′B ′.
e′1

Here Y B is considered with the monoid structure induced by the distributive law x , see

[3, Lemma 1.4]. Then B
u1

Y B is a monoid morphism by [3, Lemma 1.4] again. By [3,

Lemma 1.6] condition (b’) implies that Y B
e1

B is a monoid morphism too. (For a more
direct proof consider the commutative diagrams

Y BY B
1x1

e1e1
(b′)

Y 2B2 mm

ee11

Y B

e1

B2
m B

I
uu

Y B

e1

I u B

whose unlabelled regions commute since e : Y → I is a monoid morphism.) The rows are
split epimorphisms (of monoids) by the unitality of the monoid morphism e. By (a’) and the

multiplicativity of S, Y B Y B
e1

B ∈ S so that condition (a) holds. For condition
(b) note that the commutativity of

Y B

f 1

1u1

Y B

Y B2

11u1

Y B2

1u11

1m

(Y B�
B
I )B

pY Bu1
(Y B)2

1x1
Y 2B2

mm Y B

implies that the bottom row is the inverse of the isomorphism f 1 in the left column hence it
is invertible. This proves that the object map is well defined.
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608 G. Böhm

Concerning the morphism map, it follows by the assumption yb · x = x ′ ·by that yb is a
monoid morphism, see

Y BY B
1x1

ybyb

Y 2B2 mm

yybb

Y B

yb

Y ′B ′Y ′B ′
1x ′1

Y ′2B ′2
m′m′ Y ′B ′

I
uu

Y B

yb

I
u′u′ Y ′B ′.

The monoid morphisms (b, yb) are compatible with the monomorphisms B
u1

Y B

and B ′ u′1
Y ′B ′ by the unitality of y, and they are compatible with the epimorphisms

Y B
e1

B and Y ′B ′ e′1
B ′ by the assumption that e′ · y = e.

So we have well-defined functors in both directions, it remains to see that their composites
are naturally isomorphic to the identity functors. The composite

SplitEpiMonS(C) → DistLawS(C) → SplitEpiMonS(C)

acts as

B
i

b

A
s

a

B ′
i ′

A
s′

�→
B

u1
b

(A�
B
I )B

pI 1

(a�1)b

B ′
u′1

(A′�
B′ I )B

′.
pI 1

We claim that a natural isomorphism from this to the identity functor has the components

(B B , (A�
B
I )B

q
A) . Since pA is a monoid morphism by [3, Proposition 3.7 (1)], so

is q by [3, Lemma 1.5]. The stated pair (1, q) is a morphism in SplitEpiMonS(C) by the com-
mutativity of the first diagram of (1.1) and by the fact that the unitality of pA implies q·1u = i .

Naturality with respect to any morphism ( B
b

B ′ , A
a

A′ ) in SplitEpiMonS(C) fol-
lows by the commutativity of the first diagram of (1.2).

Composing our functors in the opposite order

DistLawS(C) → SplitEpiMonS(C) → DistLawS(C)

we obtain the functor sending

(Y ,

y

B,

b

Y
e

I , BY
x

Y B)

(Y ′, B ′, Y ′ e′
I , B ′Y ′ x ′

Y ′B ′)

to

(Y B�
B
I ,

yb�1

B,

b

Y B�
B
I

pI
I , B(Y B�

B
I )
u1pY B

(Y B)2
1x1

Y 2B2 mm
Y B

f 1
(Y B�

B
I )B)

(Y ′B ′�
B′ I , B ′, Y ′B ′�

B′ I

pI

I ,B ′(Y ′B ′�
B′ I )

u′1pY ′B′

(Y ′B ′)2
1x ′1

Y ′2B ′2
m′m′

Y ′B ′
f ′1

(Y ′B ′�
B′ I )B

′).
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Crossed Modules of Monoids II: Relative Crossed Modules 609

We claim that a natural isomorphism from this to the identity functor has the invertible

components ( B B , Y
f
Y B�

B
I ). By construction f is a monoid morphism, see [3,

Proposition 3.7 (2)]. The compatibility of the monoid morphisms (1, f ) with Y
e

I and

Y B�
B
I

pI
I holds by the definition of f and the compatibility with the distributive laws

BY → Y B and B(Y B�
B
I ) → (Y B�

B
I )B holds by the commutativity of

BY

1 f

BY
x

11u

Y B

11u

f 1

B(Y B�
B
I )

1pY B
BY B

x1
Y B2

1m
Y B

f 1
(Y B�

B
I )B.

Finally, the naturality with respect to an arbitrary morphism ( B
b

B ′ , Y
y

Y ′ ) in
DistLawS(C) follows by the commutativity of the diagrams

Y B�
B
I

yb�1

pY B

Y ′B ′�
B′ I

pY ′B′

Y

f

1u

y

Y B
yb

Y ′B ′

Y ′

1u′

f ′ Y ′B ′�
B′ I

pY ′B′

Y B�
B
I

yb�1

pI

Y ′B ′�
B′ I

pI

Y

f

e

y

I

Y ′

e′

f ′ Y ′B ′�
B′ I

pI

using that the morphisms Y B Y B�
B
I

pY B pI
I are jointly monic in C. ��

Example 1.2 For any fixed set X , the category C of spans over X is monoidal via the pullback
over X . A monoid in C is a small category with the object set X and a monoid morphism is a
functor acting on the objects as the identity map. Moreover, C has all pullbacks (computed in
the underlying category of sets). So taking as S the class of all spans in C, from Theorem 1.1
we obtain the equivalence of the following categories (from now on we shall denote by s the
source map and by t the target map of any category).

SplitEpiMon(C) whose

objects are pairs of identity-on-objects functors B
ι

A
σ

between categories of the

common object set X such that the composite σ ι is the identity functor, and the map

q : (A�
B
X)�

X
B = {(a, x, b)|σ(a) = 1x , x = t(b)} → A (a, x, b) �→ a · ι(b) (1.3)

is invertible. (The map of (1.3) is invertible e.g. if B is a groupoid; then its inverse takes
a morphism a to (a · ι(σ (a)−1), t(a), σ (a)). )

morphisms are pairs of identity-on-objects functors ( A
α

A′ , B
β

B ′ ) for which
αι = ι′β and βσ = σ ′α.
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610 G. Böhm

DistLaw(C) whose
objects consist of categories B and Y with the common object set X such that Y has no
morphisms between non-equal objects (that is, its sourcemap s and target map t coincide;
using the terminology of [4] this means that Y is a totally disconnected category); and an

action B�
X
Y = {(b, y)|s(b) = t(y)} 	

Y in the sense of [5, Definition 1.1]; meaning

the following axioms for all morphisms b, b′ in B and y, y′ in Y for which s(b′) = t(b)
and s(b) = t(y) = s(y) = t(y′) = s(y′).

(i) t(b 	 y) = t(b)
(ii) b 	 (y · y′) = (b 	 y) · (b 	 y′) and b 	 1s(b) = 1t(b)
(iii) (b′ ·b) 	 y = b′ 	 (b 	 y) and 1t(y) 	 y = y.

morphisms are pairs of identity-on-objects functors ( Y
ν

Y ′ , B
β

B ′ ) for which
ν(b 	 y) = β(b) 	 ν(y) for all morphisms b in B and y in Y for which s(b) = t(y).

Only the above description of an object in DistLaw(C) requires some explanation.
The monoidal unit of C is the trivial span X X X . Its trivial monoid structure

yields the discrete category D(X). An identity-on-objects functor Y
e

D(X) as in Theo-
rem 1.1 exists if and only if Y is totally disconnected. Then there is precisely one such functor
sending any morphism to the identity morphism on its equal source and target objects. For

this functor e, precisely thosemaps B�
X
Y

x
Y�

X
B satisfy (e�1)·x = 1�ewhich are of the

form (b, y) �→ (b 	 y, b) in terms of some map 	 obeying condition (i). It is straightforward
to see that x is then a distributive law if and only if conditions (ii) and (iii) hold.

The morphism f of Theorem 1.1 (c’) is invertible because the diagram

Y�
X
C

e�1

1�g

C

g

Y�
X
B

e�1
B

(1.4)

is clearly a pullback of X -spans for any span morphism g.

Example 1.3 Let M be a symmetric monoidal category in which equalizers exist and are
preserved by taking the monoidal product with any object.

Take C to be the category of comonoids in M with the monoidal admissible class S in

[3, Example 2.3] of spans in C. This means that X A
f g

Y belongs to S if and only if

A
δ

A2 f g
XY is a comonoid morphism, which holds if and only if c · f g · δ = g f · δ.

Thanks to the symmetry of M, its monoidal structure is inherited by C. A monoid A in C is
known as a bimonoid inM. Recall that the monoidal structure ofM is lifted to the category of
(left or right) modules over the monoid A in M. A monoid (respectively, a comonoid) in the
category of A-modules is known as an A-modulemonoid (respectively, A-module comonoid).

Recall from [3, Example 3.3] that for a cospan A
f

B C
g

of comonoids whose legs
are in S, the S-relative pullback is given by the so-called cotensor product, defined as the
equalizer
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Crossed Modules of Monoids II: Relative Crossed Modules 611

A�
B
C

j
AC

1 f 1·δ1
1g1·1δ

ABC (1.5)

in M (where δ denotes both comultiplications of the comonoids A and C .)
Below we describe the equivalent categories of Theorem 1.1 in this context.

SplitEpiMonS(C) whose

objects are split epimorphisms B
i

A
s

of bimonoids in M subject to the following

conditions.

(a) The comultiplication δ of A satisfies c ·1s ·δ = s1 ·δ.
(b) In terms of the morphism j of (1.5), q := (A�

B
I )B

ji
A2 m

A is invertible.

morphisms are pairs of bimonoid morphisms which are compatible with the epimor-
phisms s as well as their sections i .

DistLawS(C) whose
objects consist of a cocommutative bimonoid B and a bimonoid Y in M, together with
a left B-action on Y which makes Y both a left B-module monoid and a left B-module
comonoid.

morphisms are pairs of bimonoid morphisms ( B
b

B ′ , Y
y

Y ′ ) which are com-

patible with the actions BY
l

Y and B ′Y ′ l ′
Y ′ in the sense that l ′ ·by = y · l.

This concise description of DistLawS(C) requires a proof. Note that the monoidal unit I
is now a terminal object in C; the unique morphism Y → I is the counit ε. It obviously sat-

isfies Y Y
ε

I ∈ S. The other condition B B B ∈ S in (a’) of Theorem 1.1
reduces to the requirement that the comonoid B is cocommutative.

Next we establish a bijective correspondence between distributive laws BY → Y B sat-
isfying property (b’) of Theorem 1.1 and left actions BY → Y as in the description above.

Starting with a distributive law BY
x

Y B , put l := 1ε · x . It is a unital action by the left
unitality of x and it is associative by the left multiplicativity of x :

Y

u1

Y

1u

BY
x

l

Y B
1ε

Y

B2Y
1x

1l

m1

BY B
11ε

x1

BY

x

lY B2 11ε

1m

Y B

1ε

BY
x

l

Y B
1ε

Y
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By the right unitality of x the unit I
u

Y is a morphism of B-modules and by the right

multiplicativity of x the multiplication Y 2 m
Y is a morphism of B-modules:

B
1u

BY

x

lB
u1

ε

Y B

1ε

I
u

Y

BY 2

δ11

BY 2 1m

x1

BY

x

l

B2Y 2 11δ1
B2Y 3

111ε1
1c11B2Y 2

1c1

(BY )2

x11

ll

(BY )2Y
111ε1

xx1(b′)
Y BY

δδ1

Y B2Y

11x

(Y B)2Y
11ε11

Y 2B2Y
1c11 1εε11

Y BY

1x

(Y B)2

1ε1ε

Y 2B
m1

11ε

Y B

1ε

Y 2 Y 2
m

Y

(note that here we also used the comultiplicativity of x). The condition that the counit

Y
ε

I is a morphism of B-modules coincides with the counitality of l and also with the

counitality of x . The comultiplication Y
δ

Y 2 is a morphism of B-modules, equivalently,
l is comultiplicative by the comultiplicativity of x :

BY
1δ

x

l

BY 2 δ1
B2Y 2 1c1

(BY )2

xx

llY B
δ1

1ε

Y 2B
11δ

11ε

Y 2B2 1c1

11εε

(Y B)2

1ε1ε

Y
δ

Y 2 Y 2 Y 2.

Conversely, given an action l as above, put x := BY
δ1

B2Y
1c

BY B
l1

Y B. It
clearly satisfies (b′) by the counitality of l hence it is counital. It is comultiplicative by the
comultiplicativity of l:

123



Crossed Modules of Monoids II: Relative Crossed Modules 613

BY
δ1

δδ

x

B2Y
1c

δδδ

BY B
l1

δδδ

Y B

δδB2Y 2
δδ11

1c1

B4Y 2
1c111

11cB2,Y 1

B4Y 2
11cB2,Y2

B2Y 2B2

1c111

(BY )2B2 ll11

11cBY ,B1

Y 2B2

1c1

(BY )2
δ1δ1

xx

(B2Y )2
1c1c

(BY B)2
l1l1

(Y B)2

where the top-left region commutes by the coassociativity and cocommutativity of the
comonoid B. This morphism x is a distributive law. Indeed, the left unitality and the left
multiplicativity follow by the unitality and the associativity of the action l, respectively:

Y
u1

u1

1u

BY c

u11

Y B

u11

BY
δ1

x

B2Y
1c

BY B
l1

Y B

B2Y
1δ1

m1

1x

B3Y
11c

δ111

B2Y B
1l1

BY B

δ11

x1

B4Y
111c

1c11

B3Y B
11l1

1cB,BY 1

B2Y B

1c1

B4Y
11cB2,Y

m111

B2Y B2 1l11

m11

BY B2

l11

B3Y
1cB2,Y

1m1

BY B2 l11

11m

Y B2

1m

BY
δ1

x

B2Y
1c

BY B
l1

Y B

and the right unitality and the right multiplicativity of x follow using that the unit and the
multiplication of Y are B-module morphisms:
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B
1u

δ

BY

δ1

x
B2 11u

B2Y

1c

B2 1u1

ε1

BY B

l1

B
u1

Y B

BY 2 1m

δ11

δ11

x1

BY

δ1

x

B2Y 2
1cB,Y2

δ111

BY 2B

δ111 1m1
B2Y

1c

B2Y 2 1δ11

1c1

B3Y 2
11cB,Y2

1cB2,Y 1

B2Y 2B

1c11

BY B

l1(BY )2
11δ1

l11

BY B2Y
111c

l111

(BY )2B

l111

Y BY
1δ1

1x

Y B2Y
11c

(Y B)2
1l1

Y 2B
m1

Y B

The above correspondences between l and x are bijective by the commutativity of

B2Y
1c

BY B

x1BY

δ1

δδ

x

B2Y 2 1c1

111ε

(BY )2

111ε

xx

Y B
δδ

Y 2B2 1c1

1εε1

(Y B)2

1εε1

Y B2

1ε1

Y B Y B

BY

δ1

B2Y

1c

1ε1
BY

BY B
11ε

l1

BY

l

Y B
1ε

Y

for a comultiplicative morphism x satisfying (b’) and any morphism l.

Finally, we show that the morphism Y
f

Y B�
B
I in part (c’) of Theorem 1.1

is invertible without any further assumption; its inverse is constructed as f −1 :=
Y B�

B
I

pY B
Y B

1ε
Y . In order to see that it is the inverse, indeed, recall that by [3,

Example 3.3] the morphism pY B is the equalizer of Y B
1δ

Y B2 and Y B
11u

Y B2 .
Hence the following diagrams commute.

Y

f

Y

1u

Y B�
B
I

pY B

f −1

Y B
1ε

Y

Y B�
B
I pY B

f −1

pY B

Y B
1ε

11u

Y

1u

f
Y B�

B
I

pY B

Y B
1δ

Y B2 1ε1
Y B Y B

This completes the characterization of the objects of DistLawS(C). Concerning the mor-

phisms ( B
b

B ′ , Y
y

Y ′ ), the first condition in Theorem 1.1 is the counitality of the
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bimonoid morphism y hence it identically holds. The second condition in Theorem 1.1 is
equivalent to y · l = l ′ ·by by the commutativity of

BY
δ1

by

x

B2Y
1c

bby

BY B
l1

byb

Y B

yb

B ′Y ′ δ′1

x ′

B ′2Y ′ 1c
B ′Y ′B ′ l ′1

Y ′B ′

BY x

by

l

Y B
1ε

yb

Y

y

B ′Y ′ x ′

l ′

Y ′B ′ 1ε′
Y ′.

Example 1.4 We can apply Example 1.3 to the particular case of a finitely complete category
M regarded with the cartesian monoidal structure. Then the category C of comonoids inM is
isomorphic to M.

Since in this case the monoidal unit I of M is a terminal object, with the trivial monoid
structure it becomes the zero object in the category of monoids inM. Then for any morphism

A
s

B of monoids in M, we may identify pA : A�
B
I → A with the kernel of s.

The equivalent categories of Theorem 1.1 reduce to the following ones.

SplitEpiMonS(M) whose

objects are split epimorphisms B
i

A
s

of monoids in M such that in terms of the

morphism j of (1.5), q := (A�
B
I )B

ji
A2 m

A is invertible.

morphisms are pairs of monoid morphisms which are compatible with the epimorphisms
s as well as their sections i .

DistLawS(M) whose
objects consist of monoids B and Y inM, together with a left B-action on Y which makes
the multiplication and the unit of the monoid Y left B-linear.

morphisms are pairs of monoid morphisms ( B
b

B ′ , Y
y

Y ′ ) which are compati-

ble with the actions BY
l

Y and B ′Y ′ l ′
Y ′ in the sense that l ′ ·by = y · l.

In particular, if M is the cartesian monoidal category of sets, then the morphism q in the

above description of the objects of SplitEpiMonS(M) is invertible if and only if B
i

A
s

satisfies the Schreier property of [20]. That is, for each element a of A, there is a unique
element za in the kernel of s such that a = za · is(a). (Indeed, this condition clearly implies
the surjectivity of q . For its injectivity assume z · i(b) = z′ · i(b′) for some z, z′ in the kernel
of s and b, b′ in B. Applying the monoid morphism s we obtain b = b′. From

z · is(z · i(b)) = z · i(b) = z′ · i(b) = z′ · is(z · i(b))
and the uniqueness part of the Schreier property we infer z = z′. Conversely, if q is invertible
then its inverse a �→ (za, s(a)) defines the required element za of the kernel.) On the other
hand, in this case an object of DistLawS(M) reduces to a monoid morphism from B to the
monoid of monoid endomorphisms of Y .

Recall that a bimonoid B—withmonoid structure (m, u) and comonoid structure (δ, ε)—is

a Hopf monoid provided that there exists a morphism B
z

B —the so-called antipode—
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which renders commutative the diagram

B
δ

δ
ε

B2 z1
B2

mI u

B2
1z

B2
m B.

If the antipode exists then it is unique. It is a monoid morphism from B to the monoid with
the opposite multiplication m ·c and comonoid morphism from B to the comonoid with the
opposite comultiplication c ·δ.
Proposition 1.5 (1) The equivalent categories of Example 1.3 have equivalent full subcate-

gories as follows.

• The category whose

objects are split epimorphisms B
i

A
s

of bimonoids inM subject to the following

conditions.
(a) The comultiplication δ of A satisfies c ·1s ·δ = s1 ·δ.
(b) B is a Hopf monoid.
morphisms are pairs of bimonoid morphisms which are compatible with the epimor-
phisms s as well as their sections i .

• The category whose
objects consist of a cocommutative Hopf monoid B and a bimonoid Y inM, together
with a left B-action on Y which makes Y both a left B-module monoid and a left
B-module comonoid.

morphisms are pairs of bimonoidmorphisms ( B
b

B ′ , Y
y

Y ′ )which are com-

patible with the actions BY
l

Y and B ′Y ′ l ′
Y ′ in the sense that l ′ ·by = y ·l.

(2) The equivalent categories of part (1) have equivalent full subcategories as follows.

• The category whose

objects are split epimorphisms B
i

A
s

of cocommutative Hopf monoids.

morphisms are pairs of bimonoid morphisms which are compatible with the epimor-
phisms s as well as their sections i .

• The category whose
objects consist of cocommutative Hopf monoids B and Y in M, together with a left
B-action on Y which makes Y both a left B-module monoid and a left B-module
comonoid.

morphisms are pairs of bimonoidmorphisms ( B
b

B ′ , Y
y

Y ′ )which are com-

patible with the actions BY
l

Y and B ′Y ′ l ′
Y ′ in the sense that l ′ ·by = y ·l.

Proof (1) The second listed category is obviously a full subcategory of DistLawS(C) of
Example 1.3; thus via the equivalence of Theorem 1.1 it is equivalent to some full subcategory
of SplitEpiMonS(C) of Example 1.3. Our task is to show that it is the first listed category
above. For that we only need to show that it is a subcategory of SplitEpiMonS(C); that is,

that for any object B
i

A
s

of it, the morphism q in part (b) of Example 1.3 is invertible.
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Following ideas in [24], we use the antipode z of B and the image of the equalizer (1.5) under
the functor −B to construct the inverse:

(A�
B
I )B

j1

A
δ

q−1

A2 1s
AB

1δ
AB2 1z1

AB2 1i1
A2B

m1
AB

1s1·δ1 1u1

AB2

This definition works because the horizontal morphism equalizes the parallel morphisms of
the fork on the right; see Fig. 1. The so constructed morphism q−1 is the inverse of q by
the commutativity of the diagrams of Fig. 2 (in the second case we also need to use that the
columns are equal monomorphisms).

(2) If both Y and B are cocommutative comonoids then clearly so is Y B; and if both Y

and B have antipodes z then Y B
zz

Y B is the antipode of the Hopf monoid Y B.
Conversely, if A is cocommutative then evidently so is its sub-comonoid A�

B
I . If further-

more A has an antipode z then it restricts to A�
B
I by the commutativity of the following

diagram.

A�
B
I

j

j

A
z

δ

A

δ

A2 zz

1s

A2

1sA
1u

z

AB
zz

A
1u

AB

The top right region commutes by the Hopf monoid identity δ ·z = zz ·c ·δ and the assumed
cocommutativity of A. The bottom right region commutes since any bimonoid morphism s
commutes with the antipodes. ��

Example 1.6 Proposition 1.5 can be applied in particular to a finitely complete category M,
regarded as a cartesian monoidal category. From Proposition 1.5 we obtain equivalences
between the following pairs of categories.

(1) • The category whose

objects are split epimorphisms B
i

A
s

of monoids in M such that B is a group

object.
morphisms are pairs of monoid morphisms which are compatible with the epimor-
phisms s as well as their sections i .

• The category whose
objects consist of a group object B and amonoid Y inM, together with a left B-action
on Y which makes Y a left B-module monoid.
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morphisms are pairs of monoid morphisms ( B
b

B ′ , Y
y

Y ′ ) which are com-

patible with the actions BY
l

Y and B ′Y ′ l ′
Y ′ in the sense that l ′ ·by = y ·l.

(2) • The category whose

objects are split epimorphisms B
i

A
s

of group objects.

morphisms are pairs of monoid morphisms which are compatible with the epimor-
phisms s as well as their sections i .

• The category whose
objects consist of group objects B and Y in M, together with a left B-action on Y
which makes Y a left B-module group.

morphisms are pairs of monoid morphisms ( B
b

B ′ , Y
y

Y ′ ) which are com-

patible with the actions BY
l

Y and B ′Y ′ l ′
Y ′ in the sense that l ′ ·by = y ·l.

Remark 1.7 There are particular symmetric monoidal categories M whose cocommutative
Hopf monoids constitute semi-abelian categories Hopf(M); e.g. the category of sets (which
is cartesian monoidal hence the Hopf monoids are the groups, all of them cocommutative)
or the category of vector spaces over an arbitrary field [12] (for the particular case of an
algebraically closed field see [11]). In such cases the equivalence of Proposition 1.5 (2) is in
fact the equivalence SplitEpi(Hopf(M)) ∼= Act(Hopf(M)) discussed in [14, Section 1], see
[14, Example 3.10].

2 Reflexive Graphs of Monoids Versus Pre-crossedModules

Consider a monoidal admissible class S of spans in a monoidal category C for which

[3, Assumption 4.1] holds. Take an object B
i

A
s

in the category SplitEpiMonS(C)

of Theorem 1.1. Then by property (b) in Theorem 1.1, the induced morphism q :=
(A�

B
I )B

pAi
A2 m

A is invertible. Therefore by [3, Corollary 1.7] there is a bijec-

tive correspondence between the retractions t of the monoid morphism i and the monoid

morphisms A�
B
I

k
B rendering commutative the diagram

B(A�
B
I )

i pA

1k

A2 m
A

q−1

(A�
B
I )B

k1

B2
m B B2.m

The correspondence is given by

t �→ k := A�
B
I

pA
A

t
B k �→ t := A

q−1

(A�
B
I )B

k1
B2 m

B . (2.1)

Combining this observation with the equivalence of Theorem 1.1, next we present an equiva-
lent description of a suitable category of reflexive graphs of monoids. This leads to the notion
of pre-crossed module over a monoid.
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Theorem 2.1 Consider a monoidal admissible class S of spans in a monoidal category C for
which [3, Assumption 4.1] holds. The following categories are equivalent.

ReflGraphMonS(C) whose

objects are reflexive graphs B i A
s

t
of monoids in C subject to the following condi-

tions.

(a) A A
s

B ∈ S (hence the S-relative pullback A�
B
I in Theorem 1.1 exists).

(b) q := (A�
B
I )B

pAi
A2 m

A is invertible.

morphisms are pairs of monoid morphisms ( B
b

B ′ , A
a

A′ ) such that s′·a = b·s,
t ′ ·a = b · t and i ′ ·b = a · i .

PreXS(C) whose

objects consist of monoids B and Y , monoid morphisms Y
e

I and Y
k

B and a

distributive law BY
x

Y B subject to the following conditions.

(a’) Y Y
e

I ∈ S and B B B ∈ S.
(b’) e1 · x = 1e and m ·k1 · x = m ·1k.
(c’) The morphism f of Theorem 1.1 (c’) is invertible.

morphisms are pairs of monoid morphisms ( B
b

B ′ , Y
y

Y ′ ) such that e′ · y = e,
k′ · y = b ·k and x ′ ·by = yb · x.

Proof We show that the equivalence functors of Theorem 1.1 lift to the equivalence of the
claim. In the direction ReflGraphMonS(C) → PreXS(C) we send

B i

b

A
s

t
a

B ′ i ′ A′s′

t ′

to

(A�
B
I ,

a�1

B,

b

A�
B
I

pI
I , A�

B
I

pA
A

t
B, B(A�

B
I )

i pA
A2

m
A

q−1

(A�
B
I )B)

(A′�
B′ I , B′, A′�

B′ I
pI

I , A′�
B′ I

pA′
A′ t ′

B′, B′(A′�
B′ I )

i ′ pA′
A′2 m′

A′ q
′−1

(A′�
B′ I )B

′).

By [3, Proposition 3.7 (1)], pA is a monoid morphism hence so is t ·pA. The second condition
in (b’) holds by the considerations preceding the theorem. Hence in light of the proof of
Theorem 1.1 the objectmap is well-defined. Concerning themorphisms, the second condition
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holds by the commutativity of

A�
B
I

pA

a�1

A
t

a

B

b

A′�
B′ I pA′ A′

t ′
B ′.

Thus using again the proof of Theorem 1.1 we conclude that this functor is well-defined.
In the opposite direction the functor PreXS(C) → ReflGraphMonS(C) is defined by

(Y ,

y

B,

b

Y
e

I , Y
k

B, BY
x

Y B)

(Y ′, B ′, Y ′ e′
I , Y ′ k′

B ′, B ′Y ′ x ′
Y ′B ′)

�→
B u1

b

Y B
e1

m·k1
yb

B ′ u′1 Y ′B ′.
e′1

m′·k′1

By [3, Lemma 1.6], it follows from the second equality of (b’) that m · k1 is a monoid

morphism. It is a retraction of B
u1

AB by the unitality of k. The monoid mor-
phisms (b, yb) are compatible with m · k1 by the compatibility of (b, y) with k and the
multiplicativity of b. So using again the proof of Theorem 1.1 we conclude that this functor
is well-defined too.

By the commutativity of

(A�
B
I )B

pA1

pAi

q

AB
t1

B2 m
B

A2
t t

m

A
t

B

Y

f

Y
k

1u

B

1u

Y B�
B
I pY B

Y B
k1

B2
m B

the components (1, q) and (1, f ) of the natural isomorphisms in the proof of Theorem 1.1
are morphisms in the appropriate category. This proves that the stated functors are mutually
inverse equivalences. ��

Example 2.2 As in Example 1.2, take the (evidently admissible and monoidal) class of all
spans in the monoidal category C of spans over a fixed set X . Then the equivalent categories
of Theorem 2.1 take the following forms.

ReflGraphMon(C) whose

objects are reflexive graphs B ι A
σ

τ
of categories with the common object set X and

identity-on-objects functors between them, such that the map (1.3) in Example 1.2 is
invertible (recall that this holds e.g. if B is a groupoid).
morphisms are pairs of compatible identity-on-objects functors.

PreX(C) whose
objects consist of categories B and Y of the common object set X such that Y is totally
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disconnected (in the sense of [4]); an action (cf. Example 1.2) B�
X
Y

	
Y and an

identity-on-objects functor Y
κ

B such that

κ(b 	 y) ·b = b ·κ(y) (2.2)

for all morphisms b in B and y in Y for which s(b) = t(y). (If B is a groupoid then (2.2)
has the equivalent form κ(b 	 y) = b ·κ(y) ·b−1; so when both B and Y are groupoids
we recover the notion of pre-crossed module of groupoids in [5, Definition 1.2].)

morphisms are pairs of identity-on-objects functors ( B
β

B ′ , Y
ν

Y ′ ) such that
κ ′ν = βκ and ν(b 	 y) = β(b) 	 ν(y) for all morphisms b in B and y in Y for which
s(b) = t(y).

Example 2.3 In the setting of Example 1.3, the equivalent categories of Theorem 2.1 take the
following explicit forms.

ReflGraphMonS(C) whose

objects are reflexive graphs B i A
s

t
of bimonoids in M subject to the following

conditions.

(a) The comultiplication δ of A satisfies c ·1s ·δ = s1 ·δ.
(b) In terms of the morphism j of (1.5), q := (A�

B
I )B

ji
A2 m

A is invertible.

morphisms are pairs of bimonoid morphisms ( B
b

B ′ , A
a

A′ ) such that s′ ·a =
b · s, t ′ · a = b · t and i ′ ·b = a · i .

PreXS(C) whose
objects consist of a cocommutative bimonoid B and a bimonoid Y in M, together with
a left B-action l on Y which makes Y both a left B-module monoid and a left B-

module comonoid, and a bimonoidmorphism Y
k

B for which the following diagram
commutes.

BY
δ1

1k

B2Y
1c

BY B
l1

Y B

k1

B2
m B B2

m

(2.3)

morphisms are pairs of bimonoid morphisms ( B
b

B ′ , Y
y

Y ′ ) which are com-

patible with the actions BY
l

Y and B ′Y ′ l ′
Y ′ in the sense that l ′ ·by = y ·l and

which satisfy k′ · y = b ·k.
Proposition 2.4 The equivalent categories of Example 2.3 have equivalent full subcategories
as follows.

• The category whose

objects are reflexive graphs B i A
s

t
of bimonoids inM such that the comultiplication

δ of A satisfies c · 1s · δ = s1 · δ and B is a Hopf monoid.
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morphisms are pairs of bimonoid morphisms ( B
b

B ′ , A
a

A′ ) such that s′ · a =
b · s, t ′ ·a = b · t and i ′ ·b = a · i .

• The category whose
objects consist of a cocommutative Hopf monoid B and a bimonoid Y in M, together

with a left action BY
l

Y which makes Y both a left B-module monoid and a left

B-module comonoid, and a bimonoid morphism Y
k

B for which the diagram

BY

l

δk
B3 1c

B3 mz
B2

m

Y
k

B,

(2.4)

occurring in [25, Definition 12 (iv)], commutes.

morphisms are pairs of bimonoid morphisms ( B
b

B ′ , Y
y

Y ′ ) for which l ′ ·by =
y · l and k′ · y = b ·k.

Proof For a reflexive graph B i A
s

t
of bimonoids such that B is a Hopf monoid,

(A�
B
I )B

q
A in part (b) of Example 2.3 is invertible by Example 1.5.

Whenever B has an antipode z, the commutative diagram (2.3) has an equivalent form
(2.4). Their equivalence follows by the commutativity of the diagrams of Fig. 3. ��

Lemma 2.5 Consider a monoidal admissible class S of spans in a monoidal category

C for which [3, Assumption 4.1] holds. For any object B i A
s

t
of the category

ReflGraphMonS(C) of Theorem 2.1, the following assertions are equivalent.

(i) B A
t

A ∈ S.
(ii) B A�

B
I

k:=t ·pA
A�

B
I ∈ S.

Proof Assertion (i) implies (ii) by [3, Lemma 3.4]. Conversely, since B i A
s

t
is an

object of ReflGraphMonS(C), we have A A
s

B ∈ S. Then it follows by [3, Lemma

2.4] 2 that B B B ∈ S, whence (ii) implies B2 (A�
B
I )B

k1
(A�

B
I )B ∈ S by

the multiplicativity of S. Then by (PRE) also B2 (A�
B
I )B

k1
A

q−1 q−1

(A�
B
I )B ∈ S. So

using the identity t = m ·k1·q−1 from (2.1), (i) follows by (POST) (composing by m on the
left and by q on the right). ��

2 Apologies about a regrettable typo in the first line of [3, Lemma 2.4], interchanging the symbols A and B.
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3 Relative Categories of Monoids Versus CrossedModules

Consider again a monoidal admissible class S of spans in a monoidal category C for which

[3, Assumption 4.1] holds. Take an object B i A
s

t
of the category ReflGraphMonS(C)

of Theorem 2.1 such that also B A
t

A ∈ S; that is, the legs of the cospan

A
s

B A
t

are in S (hence there exists its S-relative pullback A A�
B
A

p1 p2
A ).

Whenever the morphism

q2 := (A�
B
I )A

pA1
A2 (1� i)(i �1)

(A�
B
A)2

m
A�

B
A (3.1)

is invertible, we infer from [3, Corollary 1.7] that there exists at most one monoid morphism
d rendering commutative

A�
B
I

pA

pA

A
1� i

A�
B
A

d

A
i �1

A

(3.2)

which is our candidate to serve as the composition morphism of a relative category. Note that
if there is a monoid morphism d rendering commutative the diagram of (3.2), then it satisfies

d · q2 = d · m · (1�i)(i�1) · pA1 = m · dd · (1�i)(i�1) · pA1 = m · pA1. (3.3)

So if q2 is invertible, then the only candidate is d = m · pA1 · q−1
2 . By this motivation, in

this section first we investigate the condition that q2 of (3.1) is invertible. Assuming so, next

we show that whenever the morphism d of (3.2) exists, it makes the object B i A
s

t
of

ReflGraphMonS(C) to an S-relative category. Finally, based on Theorem 2.1, we give an
equivalent description of the category of S-relative categories in the category of monoids in
C, in terms of crossed modules introduced hereby.

3.1 Invertibility of Some Canonical Morphisms

Lemma 3.1 Consider a monoidal admissible class S of spans in a monoidal category C for
which [3, Assumption 4.1] holds. For any monoid B in C for which B B B is in S,
for any span of monoids B A

t s
B with legs in S, and for any natural number n, the

following assertions hold. (Recall the convention A �
B
0 := B from [3, Corollary 4.6].)

(1) There exists the S-relative pullback

(A�
B
I )B�

B
A �

B
n

p
A

�
B
n

p(A�B I )B

A �
B
n

t ·p1

(A�
B
I )B

pI 1
B.

123



Crossed Modules of Monoids II: Relative Crossed Modules 627

(2) There is a unique morphism hn rendering commutative the diagram

(A�
B
I )A �

B
n

pI 1

hn

1p1 (A�
B
I )B�

B
A �

B
n p

A�Bn

p(A�B I )B

A �
B
n

t ·p1

(A�
B
I )A

1t
(A�

B
I )B

pI 1
B.

(3) For a common section i of s and t, consider the morphism

qn+1 := (A�
B
I )A �

B
n pA1

AA �
B
n (1� i �···�i)(i �1�···�1)

(A �
B
n+1

)2
m

A �
B
n+1

(3.4)
(it is well-defined by [3, Proposition 3.5] and q1 is equal to q in Theorem 1.1 (b)). If qn+1

is invertible for some n, then qk is invertible for all 0 < k ≤ n.
(4) For a common section i of s and t the following are equivalent.

(i) hn in part (2) and q1 in part (3) are invertible.
(ii) qn+1 in part (3) is invertible.

Proof (1) By assumption B A
t

A ∈ S and by the unitality of S, I I I ∈ S.
Then by [3, Lemma 3.4],

B A
t

A �
B
np1

A �
B
n ∈ S and A�

B
I A�

B
I

pI
I ∈ S. (3.5)

By assumption also B B B ∈ S hence by the second assertion in (3.5) and the
multiplicativity of S

(A�
B
I )B (A�

B
I )B

pI 1
B ∈ S. (3.6)

The first assertion of (3.5) and (3.6) say that the legs of (A�
B
I )B

pI 1
B A �

B
nt ·p1

are in S
hence their S-relative pullback exists by assumption.

(2) By (3.5) and the multiplicativity of S,

(A�
B
I )B (A�

B
I )A

1t
(A�

B
I )A �

B
n1p1 pI 1

A �
B
n ∈ S.

Hence by the evident commutativity of the exterior of the diagram in part (2), universality of
the S-relative pullback in its codomain implies the existence of the unique morphism hn .

(3) For some positive integer n assume that qn+1 is invertible. Then so is qn with the
inverse

A �
B
n 1� i

A �
B
n+1 q−1

n+1
(A�

B
I )A �

B
n 1p1...n−1

(A�
B
I )A �

B
n−1

. (3.7)
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628 G. Böhm

Indeed, (3.7) renders commutative both diagrams

(A�
B
I )A �

B
n−1

1(1� i)
qn

(A�
B
I )A �

B
n−1

(A�
B
I )A �

B
n

qn+1

A �
B
n

1� i
A �

B
n+1

q−1
n+1

(A�
B
I )A �

B
n

1p1...n−1

A �
B
n+1 q−1

n+1
(A�

B
I )A �

B
n

qn+1

1p1...n−1

(A�
B
I )A �

B
n−1

qnA �
B
n+1

p1...n

A �
B
n

1� i

A �
B
n

The leftmost region of the first diagram commutes by the explicit expression (3.4) of qn and
qn+1, multiplicativity of 1� i and the functoriality of �, see [3, Proposition 3.5 (2)]. The
rightmost region of the second diagram commutes again by the explicit expression (3.4) of
qn and qn+1 and the multiplicativity of p1...n .

(4) Our strategy is to prove that qn+1 can be rewritten as

(A�
B
I )A �

B
n hn

(A�
B
I )B�

B
A �

B
n q �1

A �
B
n+1

. (3.8)

Then (i) obviously implies (ii) and in view of part (3) also the opposite implication holds.
The occurring morphism q �1 is defined as the unique morphism rendering commutative

the diagram

(A�
B
I )B�

B
A �

B
n

p(A�B I )B

p
A�Bn

q �1

A �
B
n+1

p2...n

p1

A �
B
n

t ·p1

(A�
B
I )B q A s B

It is well-defined by the commutativity of the first diagram of (1.1); see [3, Proposition
3.5 (2)]. The morphism of (3.8) is equal to qn+1 by the commutativity of both diagrams

(A�
B
I )B�

B
A �

B
n q �1

p(A�B I )B

A �
B
n+1

p1

(A�
B
I )A �

B
n 1p1

pA1

hn

(A�
B
I )A

1t
(A�

B
I )B

pA1

q

AB
1i

A2 m A

A2

1t

AA �
B
n

1p1

(1� i �···� i)(i �1�···� 1)
(A �

B
n+1

)2

p1 p1

m A �
B
n+1

p1

(3.9)
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(A�
B
I )B�

B
A

�
B
n q �1

p
A�Bn

A
�
B
n+1

p2...n

(A�
B
I )A

�
B
n pI 1

pA1

hn

A
�
B
n

u1
BA

�
B
n

(i �···� i)1 (A
�
B
n
)2

m
A

�
B
n

AA
�
B
n

s1

(1� i �···� i)(i �1�···� 1)
(A

�
B
n+1

)2

p2...n p2...n

m
A

�
B
n+1

p2...n

(3.10)

whose right vertical arrows are jointly monomorphic. ��

Example 3.2 In the category C of spans over a given set X from Example 1.2, the morphisms
hn of Lemma 3.1 (2) are isomorphisms, see the pullback (1.4). Hence for any reflexive

graph B ι A
σ

τ
of categories with common object set X and identity-on-objects functors

between them, all morphisms {qn}n>0 in Lemma 3.1 (3) are invertible if and only if q1 is so;
see Lemma 3.1 (4). The latter condition holds e.g. if B is a groupoid, see Example 1.2.

Example 3.3 In the context of Example 1.3 we know from [3, Example 4.3] that [3, Assump-
tion 4.1] holds for the monoidal admissible class S in [3, Example 2.3] and [3, Example 2.7]
of spans in C.

In this situation, for any cocommutative comonoid B in M and any comonoid morphism

C
f

B such that the comultiplication δ of C satisfies f 1 ·δ = f 1 ·c ·δ, there is a unique
isomorphism h rendering commutative the diagram

AC
ε1

1 f

h

AB�
B
C

pC

pAB

C

f

AB
ε1

B

with the inverse AB�
B
C

j
ABC

1ε1
AC (where j = pAB pC · δ is the equalizer of 1δ1

and 11 f 1 ·11δ as in (1.5); and ε stands for both counits of A and B). Indeed, the following
diagrams commute.

AB�
B
C

δ

pAB

j

(AB�
B
C)2 pAB pC

pAB pAB

ABC
1ε1

11 f

AC
h

1 f

AB�
B
C

pAB

AB
δδ

A2B2 1c1
(AB)2

11ε1
AB2 1ε1

AB AB
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630 G. Böhm

AB�
B
C

δ

j

(AB�
B
C)2 pAB pC

ε1

ABC
1ε1

AC
h

ε1

AB�
B
C

pC

AB�
B
C pC

C C

AC
δδ

h

A2C2
1c1

(AC)2

hh

(AC)2

1 f ε1

1εε1
AC

AB�
B
C

δ

j

(AB�
B
C)2

pAB pC
ABC

1ε1
AC

By [3, Example 2.8] there is an induced monoidal admissible class (also denoted by S)
in the category of monoids in C (that is, the category of bimonoids in M) also satisfying
[3, Assumption 4.1] by [3, Example 4.4]. So whenever the above morphism f is a monoid
morphism as well, there is a bimonoid isomorphism h in the diagram, see [3, Proposition
3.7]. Consequently, in the category of bimonoids in M, the morphisms hn of Lemma 3.1 (2)
are isomorphisms. Therefore qn in Lemma 3.1 (3) is an isomorphism for all positive integer
n if and only if it is invertible for n = 1; and this holds whenever B is a Hopf monoid, see
Proposition 1.5.

Lemma 3.4 Let S be a monoidal admissible class of spans in a monoidal category C for

which [3, Assumption 4.1] holds and let (B, Y , Y
e

I , Y
k

B , BY
x

Y B ) be an

object of the category PreXS(C) in Theorem 2.1 such that B Y
k

Y ∈ S. For any
natural number n denote by Bn+1 m(n)

B the n-times iterated multiplication (unique by the
associativity of m; by definition the identity morphism for n = 0) and consider the span

B Bn+1m(n)

Yn B
k...k1 e...e1

B . (3.11)

For any natural number n the following assertions hold.

(1) The cospan Y B
e1

B Bn+1m(n)

Yn B
k...k1

has its legs in S (hence there exists
its S-relative pullback Y B�

B
Y n B).

(2) There exists a unique morphism bn+1 of spans (for the spans (3.11)) rendering commu-
tative

Y n+1B e1...11

1k...k1

bn+1

Y B�
B
Y n B

pYn B

pY B

Y n B
k...k1

Bn+1

m(n)

Y Bn+1

1m(n)
Y B

e1
B.
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(3) If bn+1 in part (2) is an isomorphism then also bk is an isomorphism for all 0 < k ≤ n.
(4) For the morphism

qn+1 := (Y B�
B
I )(Y B)

�
B
n pY B1

Y B(Y B)
�
B
n (1�u1�···�u1)(u1�1)

((Y B)
�
B
n+1

)2
m

(Y B)
�
B
n+1

the following diagram commutes

Y n+1B

f ... f 1

bn+1
Y B�

B
Y n B

1� bn · · · 1� b1
(Y B)

�
B
n+1�

B
B

p
(Y B)

�
B
n+1

(Y B�
B
I )n+1B

1...1q1
(Y B�

B
I )nY B

1...1q2
· · · qn+1

(Y B)
�
B
n+1

where f is the isomorphism in Theorem 1.1 (c’).
(5) bn+1 in part (2) is an isomorphism if and only if qn+1 in part (4) is an isomorphism.

Proof (1) By definition the first two spans in

Y Y
e

I B B B B Y
k

Y Y B Y B
e1

B (3.12)

belong to S hence so does the last one by the multiplicativity of S. Again, by definition the
second and the third spans of (3.12) belong to S hence by the multiplicativity of S so does
the first one in

Bn+1 Yn B
k...k1

Yn B B Bn+1m(n)

Yn B
k...k1

Yn B. (3.13)

Then the second span of (3.13) is in S by (POST).
(2) Since the first span of (3.12) and the second span of (3.13) are in S, the multiplicativity

of S implies that so is

Y B Y Bn+11m(n)

Yn+1B
1k...k1 e1...11

Yn B.

So by the evident commutativity of the exterior of the diagram of part (2) the statedmorphism
bn+1 exists. It is a morphism of spans (for the spans (3.11)) by the commutativity of the
following diagrams.

Yn+1B
e...e1

bn+1
e1...1

B

Y B�
B
Y n B pYn B

Y n B
e...e1

B

Yn+1B
1k...k1

bn+1

Y Bn+1 k1...1

1m(n)

Bn+2 m(n+1)

1m(n)

B

Y B�
B
Y n B pY B

Y B
k1

B2
m B

(3) Since for a positive integer n, Yn−1B
1...1u1

Yn B is a morphism between the spans
of (3.11), the morphism in the top row of the following diagram is well-defined by [3,
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Proposition 3.5].

Y B�
B
Y n−1B

pY B

1�1...1u1

Y B�
B
Y n B

pY B

Y n B

bn

1...1u1

Yn B
1k...k1

Y Bn 1m(n−1)

Y B

Y Bn+1

1...1m1
1m(n)

Yn+1B
bn+1

1k...k1

1...1m1

Y B�
B
Y n B

pY B

Y B�
B
Y n−1B

pYn−1B

1�1...1u1

Y B�
B
Y n B

pYn B

Y n B
e1...11

bn

1...1u1

Yn−1B
1...1u1

Yn B

Y n+1B
bn+1

e1...1

Y B�
B
Y n B

pYn B

By their commutativity we infer bn+1 · 1 . . . 1u1 = (1�1 . . . 1u1) · bn Similarly, since for

n > 0 also Yn B
1...1m1

Yn−1B is a morphism between the spans of (3.11), the morphism
in the top row of the following diagram is well-defined by [3, Proposition 3.5].

Y B�
B
Y n B

1�1...1m1

pY B

Y B�
B
Y n−1B

pY B

Y n+1B
1k...k1

bn+1

1...1m1

Y Bn+1 1m(n)

11...1m1

Y B

Y Bn
1m(n−1)

Yn B

1k...k1

bn
Y B�

B
Y n−1B

pY B

Y B�
B
Y n B

pYn B

1�1...1m1

Y B�
B
Y n−1B

pYn−1B

Y n+1B
e1...1

bn+1

1...1m1

Yn B
1...1m1

Yn−1B

Y Bn

e1...1

bn
Y B�

B
Y n−1B

pYn−1B

By their commutativity, bn ·1 . . . 1m1 = (1�1 . . . 1m1)·bn+1. It follows from these identities
and the unitality of the monoid Y that whenever bn+1 is invertible then so is bn with the
inverse

Y B�
B
Y n−1B

1�1...1u1
Y B�

B
Y n B

b−1
n+1

Yn+1B
1...1m1

Yn B.

(4) We proceed by induction in n. For n = 0 the diagram in the claim reduces to the
diagram

Y B
b1

f 1

Y B�
B
B

pY B

(Y B�
B
I )B q1

Y B

whose upper half part commutes by construction (see part (2)) and the lower half part com-
mutes since f 1 and q1 are mutual inverses (see the proof of Theorem 1.1).
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For any positive value of n, denote the top-right path in the diagram of the claim by˜bn+1

and the bottom row by q̃n+1. Then the diagram takes the form

Yn+1B
˜bn+1

f 1...11

(Y B)
�
B
n+1

(Y B�
B
I )Yn B

1 f ... f 1
1˜bn

(Y B�
B
I )n+1B

1q̃n

q̃n+1

(Y B�
B
I )(Y B)

�
B
n qn+1

(Y B)
�
B
n+1

.

The region at the bottom left corner commutes if the claim holds for n − 1; and the commu-
tativity of the large region is proven in Fig. 4.

(5) By Theorem 1.1 q1 is an isomorphism without any further assumption; it is the inverse

of the isomorphism Y B
f 1

(Y B�
B
I )B . Also b1 is an isomorphism; the inverse of the

isomorphism Y B�
B
B

pY B
Y B in [3, Proposition 3.6 (1)].

Assume that bl is iso for some l > 1. Take the diagram of part (4) for n = 1; it says
b2 = q2 · f 11. Since f is an isomorphism by definition and b2 is an isomorphism by part
(3), also q2 is an isomorphism. If l = 2 then this completes the proof. If l > 2 then take
next the diagram of part (4) for n = 2; it says (1�b2) · b3 = q3 · 1q2 · f f 11. All of the
occurring morphisms but q3 are known to be isomorphisms proving that so is q3. Repeating
this reasoning for all n ≤ l we conclude that qn is an isomorphism for all 0 < n ≤ l.

The opposite implication is proven by the same steps. Assume that ql is iso for some l > 1.
Take the diagram of part (4) for n = 1; it says b2 = q2 · f 11. Since f is an isomorphism by
definition and q2 is an isomorphism by Lemma 3.1 (3), also b2 is an isomorphism. If l = 2
then this completes the proof. If l > 2 then take next the diagram of part (4) for n = 2; it
says (1�b2) ·b3 = q3 ·1q2 · f f 11. All of the occurring morphisms but b3 are known to be
isomorphisms proving that so is b3. Repeating this reasoning for all n ≤ l we conclude that
bn is an isomorphism for all 0 < n ≤ l. ��

Example 3.5 Take S to be the (monoidal and admissible) class of all spans in the monoidal
category C of spans over a given set. For any object of the category ReflGraphMon(C) of
Example 2.2 and for any positive integer n, the morphism bn in Lemma 3.4 (2) is invertible,
see the pullback (1.4).

Example 3.6 In the setting of Example 1.3 we know from Example 3.3 that the mor-
phism qn of Lemma 3.1 (3) is invertible for any positive integer n and for any object of
ReflGraphMonS(C). By the isomorphism of Theorem 2.1 this means that the morphism qn
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of Lemma 3.4 (4) is invertible for any object of PreXS(C). Then also the morphism bn of
Lemma 3.4 (2) is invertible by Lemma 3.4 (5). Since the diagram

Yn B

δY δYn−1B

δY 1...11

Yn B

Y 2(Yn−1B)2
11εYn−1B1...11

1cY ,Yn−1B1...11

Yn+1B

1εY 1...11

Yn B
δYn B

bn

(Yn B)2
1k...k11...11

bnbn

1εYn−1B1...11

Y BnY n B
1m(n−1)1...1

Y BYn B

1εB1...11

11εY 1...11

Y B�
B
Y n−1B

δ

j

(Y B�
B
Y n−1B)2

pY B pYn−1B
Y BY n−1B

1εB1...11

commutes, we conclude that the morphism in its bottom-right path—involving the equalizer
j as in (1.5)—is the inverse of bn .

Let S be a monoidal admissible class of spans in a monoidal category C for which [3,

Assumption 4.1] holds. For any object (B, Y , Y
e

I , Y
k

B , BY
x

Y B ) of the
category PreXS(C) in Theorem 2.1, it follows by the conditions in (a’) and themultiplicativity

ofS that the span Y B Y B
e1

B belongs toS. Thenby [3, Proposition3.6] theS-relative
pullback in the first diagram of

Y B�
B
B

pB

pY B

B

Y B
e1

B

B�
B
Y B

pY B

pB

Y B

m·k1

B B

(3.14)

exists and the left vertical of the first diagram is an isomorphism. If in addition

B Y
k

Y ∈ S, then by (a’) and the multiplicativity of S also B2 Y B
k1

Y B ∈
S. Hence by (POST) B B2m

Y B
k1

Y B ∈ S. We infer again by [3, Proposition 3.6]
that the S-relative pullback in the second diagram of (3.14) exists and the top row of of the
second diagram is an isomorphism.

Lemma 3.7 LetS be amonoidal admissible class of spans in amonoidal categoryC for which

[3, Assumption 4.1] holds and let (B, Y , Y
e

I , Y
k

B , BY
x

Y B ) be an object

of the category PreXS(C) in Theorem 2.1 such that B Y
k

Y ∈ S. The morphism b2
in Lemma 3.4 (2) satisfies the identities

(1) b2 ·u11 = u1�1 and
(2) b2 ·1u1 = 1�u1,
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whose right hand sides are defined as the unique fillers of the respective diagrams

B�
B
Y B

∼=
pY B

pB

Y B
u1�1

m·k1

Y B�
B
Y B

p2

p1

Y B

m·k1

B
u1

Y B
e1

B

Y B�
B
B

∼=
pB

pY B

Y B
1�u1

e1
B
u1

Y B�
B
Y B

p2

p1

Y B

m·k1

Y B
e1

B.

Proof Assertion (1) follows by the commutativity of the diagrams

Y 2B
b2

1k1

Y B�
B
Y B

p1Y B2 1m

Y B
k1

u11

u1�1

B2

u11

m
B

u1
Y B

Y B�
B
Y B

p1

Y 2B
b2

e11

Y B�
B
Y B

p2

Y B

u11

u1�1

Y B

Y B�
B
Y B

p2

and part (2) follows by the commutativity of the diagrams

Y 2B
b2

1k1

Y B�
B
Y B

p1

Y B
1u1

1u1

1�u1

Y B2 1m
Y B

Y B�
B
Y B

p1

Y 2B
b2

e11

Y B�
B
Y B

p2

Y B
e1

1u1

1�u1

B
u1

Y B

Y B�
B
Y B.

p2

��

3.2 The CompositionMorphism of a Relative Category of Monoids

Proposition 3.8 Consider a monoidal admissible class S of spans in a monoidal cate-

gory C such that [3, Assumption 4.1] holds. Take an object B i A
s

t
of the category

ReflGraphMonS(C) of Theorem 2.1 such that the following properties hold.

• B A
t

A belongs to S
• the morphism q3 of Lemma 3.1 (3) is invertible.

The following assertions hold.
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(1) There is at most one monoid morphism d rendering commutative

A
1� i

A�
B
A

d

A.
i �1

A

(2) The monoid morphism d of part (1) exists if and only if the following diagram commutes
(recall that q2 is invertible by Lemma 3.1 (3)).

A(A�
B
I )

1pA

1pA

A2 (i �1)(1� i)
(A�

B
A)2

m
A�

B
A

q−1
2

(A�
B
I )A

pA1

A2
m A A2

m

Moreover, in this case d is equal to A�
B
A

q−1
2

(A�
B
I )A

pA1
A2 m

A.

(3) Whenever the monoid morphism d of part (1) exists, B i A
s

t
A�

B
A

d
is an S-

relative category in the category of monoids in C.

Proof The proof is built on [3, Corollary 1.7].
(1) Since the morphism q2 in Lemma 3.1 (3) is invertible, we know from [3, Corollary

1.7] that there is at most one monoid morphism rendering commutative

A�
B
I

pA

pA

A
1� i

A�
B
A A.

i �1

A

(3.15)

Since a monoid morphism d as in part (1) obviously renders commutative (3.15), this proves
its uniqueness.

(2) By [3, Corollary 1.7] commutativity of the diagram of part (2) is equivalent to the
existence of a (unique)monoidmorphismmaking (3.15) commute. Since amonoidmorphism
d in part (1) provides such a morphism, its existence implies commutativity of the diagram
of part (2).

In order to prove the converse implication, we show that any monoid morphism d making
(3.15) commute renders commutative also the diagramof part (1). Recall from [3, Lemma1.2]
that the invertibility of q in Theorem 2.1 (b) implies that pA and i are jointly epic morphisms
ofmonoids. Hence if d makes (3.15) commute then it does so the left hand side of the diagram
of part (1) by d · (1� i) · i = d · (i �1) · i = i .

The stated expression of d immediately follows from [3, Corollary 1.7] (see also (3.3)).
(3) In order to see that the monoid morphism d in part (1) is a morphism of spans, we

use that by the invertibility of q2 there are unique morphisms rendering commutative the
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respective diagrams

A�
B
I

pA

s·pA

A
1� i

A�
B
A A

i �1

sB

and A�
B
I

pA

t ·pA

A
1� i

A�
B
A A,

i �1

tB

see [3, Corollary 1.7]. Now s · d obviously makes the first diagram commute and so does

A�
B
A

p2
A

s
B by the commutativity of

A�
B
I

pA
A

1� i

s

A�
B
A

p2

B
i

A
s

B

and A
i �1

A�
B
A

p2

A
s

B

Thus they are equal. Similarly, both t · d and A�
B
A

p1
A

t
B render commutative the

second diagram proving that they are equal.
The to-be composition morphism d in part (1) admits the unit i by construction. Its

associativity follows again by [3, Corollary 1.7] since by the invertibility of q3 there is at
most one morphism rendering commutative

A�
B
I

pA

pA

A
1� i � i

A�
B
A�

B
A A�

B
A.

i �1�1

dA

Since both d · (d �1) and d · (1�d) do so by the commutativity of

A�
B
I

pA
A

1� i � i

1� i

A �
B
3

d�1

A�
B
A

d

A

A�
B
I

pA
A

1� i � i

1� i

A �
B
3

1�d

A�
B
A

d

A

A�
B
A

i �1�1
A �

B
3

d�1

A�
B
A

d

A

A�
B
A

i �1�1

d

A �
B
3

1�d

A
i �1

A�
B
A

d

A

this proves their equality (modulo the omitted associativity isomorphism in [3, Proposition
3.6]). ��
Proposition 3.9 Consider a monoidal admissible class S of spans in a monoidal category
C such that [3, Assumption 4.1] holds. Between S-relative categories in the category of
monoids in C for which the morphisms q2 in Lemma 3.1 (3) are invertible, any morphism of
reflexive graphs of monoids is in fact an S-relative functor.

Proof Take S-relative categories B i A
s

t
A�

B
A

d
and B ′ i ′ A′s′

t ′
A′�

B′A
′d ′

as in the claim. We need to check the compatibility of any morphism of reflexive graphs
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( B
b

B ′ , A
a

A′ ) with the composition morphisms d and d ′. The first diagram of

(A�
B
I )A

pA1

(a�1)a

q2

A2
(1� i)(i �1)

aa

(A�
B
A)2 m

(a�a)(a�a)

A�
B
A

a�a

(A′�
B′ I )A

′ pA′1

q ′
2

A′2 (1� i ′)(i ′�1)
(A′�

B′A
′)2 m′

A′�
B′A

′

A�
B
A

q−1
2

a�a

d

(A�
B
I )A

pA1

(a�1)a

A2 m

aa

A

a

A′�
B′A

′ q
′−1
2

d ′

(A′�
B′ I )A

′ pA′1
A′2 m′

A′

commutes since a �a is multiplicative by [3, Proposition 3.7 (2)] and by the functoriality of
�; see [3, Proposition 3.5 (2)]. It is used to prove the commutativity of the second diagram.

��

3.3 The Equivalence Between Relative Categories and CrossedModules of Monoids

Theorem 3.10 Consider a monoidal admissible class S of spans in a monoidal category C
such that [3, Assumption 4.1] holds. Use the same notation S for the induced admissible
class of spans in the category of monoids in C from [3, Example 2.8] (also satisfying [3,
Assumption 4.1] by [3, Example 4.4]). The following categories are equivalent.

CatMonS(C) whose

objects are S-relative categories B i A
s

t
A�

B
A

d
in the category of monoids in

C such that the morphisms qn of (3.4) are invertible for any positive integer n.
morphisms are S-relative functors in the category of monoids in C.

XmodS(C) whose

objects consist of monoids B and Y , monoid morphisms Y
e

I and Y
k

B and a

distributive law BY
x

Y B subject to the following conditions.

(a′) B Y
k

Y ∈ S, Y Y
e

I ∈ S and B B B ∈ S.
(b’) e1 · x = 1e and m ·k1 · x = m ·1k.
(c’) The morphism f of Theorem 1.1 (c’) is invertible and the morphisms bn of

Lemma 3.4 (2) are invertible for all positive integers n.
(d’) Regarding Y B as a monoid via the structure induced by the distributive law x, the

following diagram commutes.

Y BY
u111uu

1x

(Y 2B)2
b2b2

(Y B�
B
Y B)2

m
Y B�

B
Y B

b−1
2

Y 2B
m1

Y B Y 2B
m1

morphisms are pairs of monoid morphisms ( B
b

B ′ , Y
y

Y ′ ) such that e′ · y = e,
k′ · y = b ·k and x ′ ·by = yb · x.
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Proof It follows by Propositions 3.8 and 3.9 that CatMonS(C) is a full subcategory of
ReflGraphMonS(C) and obviously XmodS(C) is a full subcategory of PreXS(C). Below
we show that the mutually inverse functors of Theorem 2.1 restrict to functors between these
subcategories thus establishing the stated equivalence.

Regarding an object B i A
s

t
A�

B
A

d
of CatMonS(C) as an object B i A

s

t

of ReflGraphMonS(C), the functor in the proof of Theorem 2.1 takes it to the object

(B, A�
B
I , A�

B
I

pI
I , A�

B
I

pA
A

t
B , B(A�

B
I )

i pA
A2 m

A
q−1

(A�
B
I )B ) of the

category PreXS(C); we claim that it is in fact an object of XmodS(C).

It satisfies the condition B A
t

A�
B
I

pA
A ∈ S by Lemma 2.5.

From Lemma 3.4 (5) we know that the morphism bn of Lemma 3.4 (2) is invertible if and
only if the left column of the commutative diagram

((A�
B
I )B�

B
I )((A�

B
I )B)

�
B
n−1

p(A�B I )B1

(q�1)q�n−1

(A�
B
I )A �

B
n−1

pA1

qn

(A�
B
I )B((A�

B
I )B)

�
B
n−1 qq�n−1

(1�u1�···�u1)(u1�1)

AA �
B
n−1

(1� i �···� i)(i �1)

(((A�
B
I )B)

�
B
n
)2

m

q�nq�n

(A �
B
n
)2

m

((A�
B
I )B)

�
B
n

q�n
A �

B
n

is invertible. Recognize the isomorphism qn of Lemma 3.1 (3) in the right column. Since
also the rows are isomorphisms by assumption, so is the left column and hence bn . This

also shows that the morphism of Lemma 3.1 (3) for the reflexive graph B i A
s

t
, and the

morphism of Lemma 3.4 (4) for the corresponding object (B, A�
B
I , pI , t · pA, q−1 ·m · i pA)

of PreXS(C), differ by the isomorphisms of the top and bottom rows (justifying our use of
the same symbol qn for them).

The proof of the commutativity of the diagram in part (d’) requires some preparation. The
commutativity of

(A�
B
I )B�

B
(A�

B
I )B

q�q

p1

A�
B
A

p1

(A�
B
I )2B

b2

1q

1pA1
(A�

B
I )AB

11i

(A�
B
I )AB

1t1
(A�

B
I )B2 1m

(A�
B
I )B

q
A

(A�
B
I )A2

11t

1m

(A�
B
I )A

1t

q2
A�

B
A

p1
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(A�
B
I )B�

B
(A�

B
I )B

q�q

p2

A�
B
A

p2

(A�
B
I )2B

b2

1q

pI 11
(A�

B
I )B

q
A

(A�
B
I )A

pI 1

q2
A�
B
A

p2

proves (q �q) · b2 = q2 · 1q . (Here the bottom-right region of the first diagram commutes
since the lower half of the diagram of (3.9) commutes and the bottom-right region of the
second diagram commutes since the lower half of the diagram of (3.10) commutes.) By the

associativity of the monoid A and the multiplicativity of A�
B
I

pA
A also the following

diagram commutes.

(A�
B
I )2B

1pAi

m1

1q

(A�
B
I )A2

1m

pA11

(A�
B
I )A

pA1

A3 1m

m1

A2

m

(A�
B
I )B

pAi

q

A2 m
A

With the help of these identities and Lemma 3.7, and using that the region marked by (∗)

commutes by Proposition 3.8 (2), the diagram of Fig. 5 is seen to commute. This proves that
the stated object belongs to XmodS(C) indeed.

In the opposite direction, consider an object (B, Y , Y
e

I , Y
k

B , BY
x

Y B )

of XmodS(C) as an object of PreXS(C). The functor in the proof of Theorem 2.1 takes it to

the object B u1 Y B
e1

m·k1
of ReflGraphMonS(C); we claim that it can be seen as an object

of CatMonS(C).

By Lemma 3.4 (1) the span B B2m
Y B

k1
Y B belongs to S.

The morphism qn of Lemma 3.4 (4) is invertible for all positive integers n by
Lemma 3.4 (5).
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By Proposition 3.8 (2) and (3), the reflexive graph of monoids B u1 Y B
e1

m·k1
extends

to an S-relative category in the category of monoids in C by the commutativity of

Y B(Y B�
B
I )

11pY B

11pY B

11 f −1

(Y B)2
(u1�1)(1�u1)

u111u1

(Y B�
B
Y B)2

m
Y B�

B
Y B

b−1
2

q−1
2

(Y B�
B
I )Y B

pY B11

f −111Y BY

1x

111u

111u

(Y 2B)2

b2b2

(d’)

Y 2B

m1

Y 2B

m1

Y 2B

1u11
11u1

(Y B)2
1x1

Y 2B2
mm

11m

Y B Y 2B2
mm

11m

(Y B)2.
1x1

The region at the top-right corner is the commutative diagram of Lemma 3.4 (4) for n = 1.
The region bounded from below by the curved arrows commutes by Lemma 3.7. The region
marked by (d’) coincides with the diagram of part (d’) hence it commutes. ��
Example 3.11 As in Example 1.2, take the (evidently admissible and monoidal) class of
all spans in the category C of spans over a given set X . Then the equivalent categories of
Theorem 3.10 take the following forms.

CatMon(C) whose
objects are the double categories with the object set X and only identity horizontal
morphisms and such that the morphism (1.3) is invertible. (This last condition holds e.g.
if the vertical edge category is a groupoid.)
morphisms are the double functors which are identities on the objects (and hence on the
horizontal morphisms).

Xmod(C) whose
objects consist of categories B and Y with the common object set X such that Y is totally

disconnected (in the sense of [4]); an action (see Example 1.2) B�
X
Y

	
Y and an

identity-on-objects functor Y
κ

B such that

κ(b 	 y) ·b = b ·κ(y) and (κ(y) 	 y′) · y = y · y′

for all morphisms b in B and y, y′ in Y for which s(b) = t(y) = t(y′).
morphisms are the same as the morphisms in PreXMon(C), see Example 2.2.

Note that these equivalent categories have equivalent full subcategories whose objects are
such that the category B is a groupoid; and other equivalent full subcategories whose objects
are such that both of the occurring categories are groupoids. In the latter case these are the
category of categories in the category of groupoids; and the category of crossed modules of
groupoids in [5, Definition 1.2], respectively.

Example 3.12 In the setting of Example 1.3, the equivalent categories of Theorem 3.10 take
the following explicit forms.
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CatMonS(C) whose

objects are S-relative categories B i A
s

t
A�

B
A

d
in the category of monoids

in C—that is, in the category of bimonoids in M—such that the morphism q of Theo-
rem 1.1 (b) is invertible.
morphisms areS-relative functors in the category ofmonoids inC—that is, in the category
of bimonoids in M.

XmodS(C) whose
objects consist of a bimonoid Y and a cocommutative bimonoid B together with a left

action BY
l

Y which makes Y both a B-module monoid and a B-module comonoid

and a bimonoid morphism Y
k

B for which the following diagrams commute.

Y
δ

δ

Y 2 c
Y 2

k1

Y 2
k1

BY

BY
δ1

1k

B2Y
1c

BY B
l1

Y B

k1

B2
m B B2

m

Y 2 δ1
Y 3 1c

Y 3 k11
BY 2

l1

Y 2
m Y Y 2

m

The third condition appears in [25, Definition 12 (v)] under the name Peiffer condition
(motivated by the terminology for groups).

morphisms are pairs of bimonoid morphisms ( B
b

B ′ , Y
y

Y ′ ) such that k′ · y =
b · k and l ′ ·by = y · l.

These equivalent categories are equivalent furthermore to the full subcategory of

ReflGraphMonS(C) of Example 2.3 for whose objects B i A
s

t
the following diagrams

commute.

A
δ

δ

A2 c
A2

t1

A2
t1

BA

(3.16)

A(A�
B
I )

δ1

1pA

A2(A�
B
I )

tc
B(A�

B
I )A

ipA1
A3 m1

A2 q−11
(A�

B
I )BA

pAεB1

A2
m A A2

m

(3.17)
The above description of CatMonS(C) requires no further explanation. In the description

of XmodS(C) we need to show that the third diagram (the Peiffer condition) is equivalent to
the diagram of Theorem 3.10 (d’) in the current setting. The path on the right hand side of the
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diagram of Theorem 3.10 (d’) appears as the left bottom path of the commutative diagram

Y BY

u111uu

δY B1
(Y B)2Y

u11u111uu

k1111
B2Y BY

m111

u11111uu

(Y 2B)2

b2b2

δY2B111
(Y 2B)3

1k1εY 11111
Y B2Y BY 2B

1m11111

(Y B�
B
Y B)2

m

j j

jb−1
2

(Y B)4

11cY B,Y B11

11111εB11
(Y B)2Y 2B

11cY B,Y 11

(BY )2

1cY B,Y

u1111uu

Y BY 2BY B

1l1111

BY 2B

l11

u1111uu

(Y B)4

1x11x1

1lεB1111
Y 3BY B

111x1

Y 2B
u111uu

u11u1u

(Y 2B2)2

mmmm

11εBεB1111
Y 4B2

mmm

Y B�
B
Y B

j

b−1
2

(Y B)2
1εB11

Y 2B
m1

Y B

(in which x stands for the distributive law BY
δ1

B2Y
1c

BY B
l1

Y B of Example 1.3).
Hence it can be replaced by the top right path yielding the equivalent form

Y BY
δY B1

1δB1

(Y B)2Y
k1111

B2Y BY
m111

(BY )2

1cY B,Y
Y B2Y

11c BY 2B

l11(Y B)2

1l1

Y 2B
m1

Y B Y 2B
m1

(3.18)

of the diagram of Theorem 3.10 (d’). The first diagram of Fig. 6 shows that if the diagram of
(3.18) commutes then the Peiffer condition in the above presentation of XmodS(C) holds.
The opposite implication is proven by the second diagram of Fig. 6.

In order to justify the further equivalent characterization of these categories as a full
subcategory of ReflGraphMonS(C), we need to see the equivalence of the diagram of Propo-
sition 3.8 (2) in the current setting and the diagram of (3.17). This follows by noting that the
top row of the diagram of Proposition 3.8 (2) in the current setting appears in the left-bottom
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path of the commutative diagram

A(A�
B
I )

δ1

1pA

δδ

A2(A�
B
I )

11pA

1c
A(A�

B
I )A

1pA1
t11

A2(A�
B
I )2

11pA pA

11pA pI
A3 1c

t11

A3

t11
B(A�

B
I )A

1pA1

A2 δδ

(i �1)(1� i)

A4

t11s

B A2

i11
111u

BA2

i11

BA2B

i11i

A3 1c

111u

A3

m1

111u

(A�
B
A)2

j j

m

A4 1c1
A4

mm

A2

q−11

A�
B
A

q−1�1

j

q−1
2

(A�
B
I )B�

B
A

j

h−1
1(3.8)

(A�
B
I )BA

1εB1

(A�
B
I )A

hence it can be replaced by the top-right path. (The expression of h−1
1 in the bottom-right

corner was computed in Example 3.3.)

In the particular case when M is the cartesian monoidal category of sets, the current
example yields an equivalence between the category of those internal categories

B i A
s

t
A�

B
A

d

in the category of ordinary monoids for which the split epimorphism (i, s) satisfies the
Schreier property of [20] (see Example 1.3), and the category of crossed semimodules in
[20]. Hence it extends the main result of [20].

Proposition 3.13 The equivalent categories of Example 3.12 have equivalent full subcate-
gories as follows.

• The full subcategory of CatMonS(C) for whose objects B i A
s

t
A�

B
A

d
the

bimonoid B in M is a Hopf monoid.

• The full subcategory of XmodS(C) for whose objects (B, Y , BY
l

Y , Y
k

B ) the
bimonoid B in M is a Hopf monoid.

• The full subcategory of ReflGraphMonS(C) for whose objects B i A
s

t
the following

conditions hold.

– B is a Hopf monoid (with antipode z)
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– t1 ·δ = t1 ·c ·δ
– for the morphisms

−→s := A
δ

A2 1s
AB

1z
AB

1i
A2 m

A ,

←−
t := A

δ
A2 t1

BA
z1

BA
i1

A2 m
A

the following diagram commutes.

A2
−→s ←−

t

−→s ←−
t

A2 c
A2

m

A2
m A

(3.19)

Proof The only ingredient that requires a proof is the equivalence of diagrams (3.17) and
(3.19) in the case when B has an antipode z. The proof will repeatedly use the identity on−→s encoded in the following commutative diagram.

A2 m

δ1
1−→s

A
δ

−→s

A2

δ1

A3 11δ

1c

11−→s

A4 1c1
A4 mm

11ss
11c

A2

1s

A2B2 mm

11c

AB

1zA3 1δ1

1−→s 1

A4 11ss
A2B2

11zz

A2B2 mm

11i i

AB
1i

A4 mm

1m1

A2

m

A3
1c

A3
11s

A2B
11z

A2B
11i

A3
m1

A2
m A

(3.20)

Recall from [24] that if B has an antipode z then A�
B
I

pA
A is a split monomorphism

in M; a retraction is provided by gA := A
q−1

(A�
B
I )B

1ε
A�

B
I . Indeed,

gA · pA = 1ε.q−1 ·q ·1u = 1ε ·1u = 1.

On the other hand, since in Proposition 1.5 the inverse q−1 was constructed as the unique
solution of pA1 ·q−1 = −→s s ·δ, also the equality

pA ·gA = pA ·1ε.q−1 = 1ε.pA1 ·q−1 = 1ε ·−→s s ·δ = −→s
holds, proving that −→s is idempotent.
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Pre-composing both paths around (3.17) with the split epimorphism 1gA, we obtain the
equivalent diagram

A2
δ1

1gA

1−→s

A3
1c

11gA

A3
t11

BA2
i11

1gA1

A3
m1

1−→s 1

A2

−→s 1

A(A�
B
I )

δ1

1pA

A2(A�
B
I )

1c
A(A�

B
I )A

t11
B(A�

B
I )A

ipA1
A3

m1

A2
−→s 1

A2 m A A2.m

(3.21)
Its rightmost region commutes by (3.20) and the fact that −→s is idempotent.

The morphism around the right hand side of (3.21) occurs as the left-bottom path of the
commutative diagram

A2 δ1

δ1

A3 1c

1δ1

A3 t11

11δ

BA2

i11

A3 δ11

1c

A4

11c

A3 δ11

t11

A4 1c1

t t11

A4

t1t1

BA2

i11

B2A2

i i11

(BA)2

i1i1

A3 δ11

m1

A4 1c1

(3.20)

A4

11s1

A2BA
11z1

A411t1
A311δ

11←−t
A2BA

11i1
A4 11m

1−→s 11

A3

1−→s 1

A2

−→s 1

A4 11m

m11

A3

1m
A3

m1

A2
m A A2.m
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Hence it can be replaced by the top-right path yielding the equivalent form

A2 δ1

1−→s

A3 t11
BA2 i11

A3 1c
A3 1−→s ←−

t
A3

1m

A2
m A A2

m

(3.22)

of (3.21).

Finally, observe that for anymorphisms A2 φ,ψ
A the followingdiagrams are equivalent:

A2
δ1

ψ

A3
t11

BA2
i11

A3

1φ

A A2
m

A2
δ1

φ

A3
t11

BA2
z11

BA2
i11

A3

1ψ

A A2.
m

(3.23)
Indeed, the first diagram below shows that if the first diagram of (3.23) commutes then so
does the second one; and the opposite implication follows by the second diagram below.

A2
δ1

δ1

A3
t11

1δ1

BA2
z11

BA2
i11

A3

1δ1

1ψ
A3

δ11

t11

A4
t111

BA3
z111

1t11

BA3
i111

A4

1t11

BA2
δ11

ε11

B2A2
z111

B2A2
i111

m11

ABA2

1i11BA2

i11

A2
u11

u11

φ

A3

1φ

A4
m11

11φ

A2

m

A3
m1

1m

A2

m

A

u1

A

A2
δ1

δ1

A3
t11

1δ1

BA2
i11

A3

1δ1

1φ
A3

δ11

t11

A4
t111

BA3
i111

1t11

A4

1t11

BA2
δ11

ε11

B2A2
i111

1z11

ABA2

1z11

B2A2
i111

m11

ABA2

1i11BA2

i11

A2
u11

u11

ψ

A3

1ψ

A4
m11

11ψ

A2

m

A3
m1

1m

A2

m

A

u1

A
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Applying the equivalence of the diagrams of (3.23) to φ := A2 c
A2

−→s ←−
t

A2 m
A and

ψ := A2 1−→s
A2 m

A , we obtain from (3.22) the equivalent form

A2
δ1

c

←−
t 1

A3
t11

BA2
z11

BA2
i11

A3
m1

11−→s
A2

1−→s
A3 m1

1m

A2

m

A2

−→s ←−
t

A2

m

A2
m A

which is equivalent to (3.19) by the naturality of the symmetry c.
Note that by the equalities

pI · gA = ε · u · pI · gA = ε · s · pA · gA = ε · s = ε,

the above morphism gA in the splitting of the idempotent morphism −→s can also be obtained
as the unique filler of the first diagram in

A
ε

−→s

gA

A�
B
I

pI

pA

I

u

A s B

A
←−
t

ε

I�
B
A

pA

pI

A

t

I u B.

The symmetrically constructed filler of the second diagram above yields a splitting of the
idempotent morphism ←−

t in the ambient category M. So commutativity of the diagram of
(3.19) is equivalent also to the commutativity of

(A�
B
I )(I�

B
A)

pA pA

pA pA

A2 c
A2

m

A2
m A.

(3.24)

��
In the particular case of Proposition 3.13 when M is cartesian monoidal (e.g. it is the

category of sets), A�
B
I

pA
A is the kernel of the monoid morphism s and I�

B
A

pA
A

is the kernel of the monoid morphism t , see Example 1.4. Hence in this case the equivalent
diagrams of (3.19) and (3.24) say precisely that the kernels of s and t commute in the monoid
A.

The equivalent categories of Proposition 3.13 have equivalent full subcategories in whose
objects both occurring bimonoids are Hopf monoids, and other equivalent full subcategories
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in whose objects they are both cocommutative Hopf monoids. In this way, Proposition 3.13
includes [25, Proposition 11] and [25, Theorem 14] about the equivalence between the cate-
gory of so-calledCat1-Hopf algebras and the category of crossedmodules overHopf algebras;
hence in particular the equivalence between the category of Cat1-groups and the category of
crossed modules over groups in [6, Theorem 1]—where it is also referred to unpublished
works by Verdier and Duskin—, [17, Lemma 2.2] and [14, Section 3.9] (whose language is
most similar to ours).
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