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Abstract
This is the second part of a series of three strongly related papers in which three equivalent
structures are studied:

— Internal categories in categories of monoids; defined in terms of pullbacks relative to a
chosen class of spans.

— Crossed modules of monoids relative to this class of spans.

— Simplicial monoids of so-called Moore length 1 relative to this class of spans.

The most important examples of monoids that are covered are small categories (treated as
monoids in categories of spans) and bimonoids in symmetric monoidal categories (regarded
as monoids in categories of comonoids). In this second part we define relative crossed modules
of monoids and prove their equivalence with the relative categories of Part I.

Keywords Crossed module - Internal category - Bimonoid

Introduction

Since their appearance in [25], crossed modules of groups have been intensively studied and
applied in various contexts; see e.g. the reviews [19,21,22] and the references in them. They
admit several different descriptions: a simplicial group whose Moore complex is concentrated
in degrees 1 and 2 turns out to be the internal nerve of an internal category in the category of
groups (which is necessarily an internal groupoid, a.k.a. strict 2-group or Cat! -group) and the
Moore complex yields a crossed module. These constructions establish, in fact, equivalences
between these three notions.

The first (to our knowledge) proofs of the equivalence between crossed modules and strict
2-groups can be found in [6]—where it is referred also to the unpublished proof [7]—and in
[17]. Based on the fact that groups constitute a semi-abelian category in the sense of [15],
another short and deeply conceptual proof is due to Janelidze [14]. It also leads to a broad
generalization describing the equivalent notions of crossed modules and internal categories
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of all of Lie algebras, Q2-groups in the sense of [13], Heyting semi-lattices, the dual of
the category of pointed sets and much more. Thus by working in an arbitrary semi-abelian
category, not only a more transparent proof is obtained, but also a much wider generality,
also unifying earlier results in [16,23].

More recently, however, some results on, and certain applications of crossed modules of
groups were extended to crossed modules of ordinary monoids [20], groupoids [5] and of
Hopf algebras [1,8,9,18,25]. From this list only cocommutative Hopf algebras over a field
are known to constitute a semi-abelian category [11,12]. Hence Janelidze’s proof can not be
applied directly to the rest of these generalizations. Our aim is therefore to develop a wider
theory of crossed modules of monoids in more general monoidal categories which are not
expected to have all pullbacks (not even along split epimorphisms). We have the above two
main examples in mind:

— Categories of spans whose monoids are small categories, including groupoids in partic-
ular.

— Categories of comonoids in symmetric monoidal categories whose monoids are
bimonoids including Hopf monoids in particular.

In the first part [3] of this series of papers we discussed classes of spans satisfying appro-
priate conditions; and relative pullbacks with respect to them. Assuming that such pullbacks
exist—as they do in our key examples—we introduced a monoidal category with monoidal
product provided by these pullbacks. We defined a relative (to the chosen class of spans)
category as a monoid in this monoidal category. It is given by the usual data

s
B i =a<9  Apa (%)
< ; B

where [ is now a relative pullback.

B
In the current article we make the next step and prove the equivalence of the following
categories for a fixed class of suitable spans in a monoidal category:

— The category of relative categories in the category of monoids,
— The category of relative crossed modules of monoids.

Our methodology is inspired by Janelidze’s paper [14]. In Sect. 1 we investigate first
some category of the category of split epimorphisms of monoids. We obtain an equivalent

l
description of a split epimorphism of monoids B === A in terms of a distributive law which
\)

allows for handy characterizations of possible morphisms 7 and d in (x). This is used in Sects.
2 and 3, respectively, to present equivalent descriptions of some reflexive graphs of monoids
in terms of relative pre-crossed modules of monoids; and of relative category objects ()
in categories of monoids in terms of relative crossed modules of monoids. Applying our
results to categories of spans and to categories of comonoids, respectively, we re-obtain the
definitions of crossed modules of groupoids in [5] and of crossed modules of Hopf monoids
in [25], respectively.

Our next aim is to extend to our setting the equivalence of the category of strict 2-groups
(that is, internal groupoids in the category of groups) and the category of crossed modules of
groups to the further category of simplicial groups whose Moore complex has length 1. This
will be achieved in Part III of this series [2].
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1 Split Epimorphisms of Monoids Versus Distributive Laws

We freely use definitions, notation and results from [3]. Throughout, the composition of some

morphisms A “ B and B L C in an arbitrary category will be denoted by A ﬁ> C.
Identity morphisms will be denoted by 1 (without any reference to the (co)domain object if it
causes no confusion). In any monoidal category C the monoidal product will be denoted by
juxtaposition and the monoidal unit will be /. For the monoidal product of n copies of the same
object A also the power notation A” will be used. For any monoid A in C, the multiplication

and the unit morphisms will be denoted by A2 S A and 15 A, respectively. If C is
also braided, then for the braiding the symbol ¢ will be used.

Recall that a class S of spans in an arbitrary category is said to be admissible if it satisfies
the following two properties in [3, Definition 2.1].

POST) It XL A%y esthen X L xL A5 v 5 ¥ < Stoo, for any mor-
phisms X 2> X’ and ¥ 5 v’ .
(PRE) If XLALY € S then XiALBLAiY € S, for any morphism

BA.

The relative pullback of acospan A L B < ¢ with respect to such aclass S was introduced

in [3, Definition 3.1] as a span A 2aocxcoins satisfying the following properties.
B

— Commutativity of the diagram

AECLC

PA\L 8

v

A > B.
f

— Universality. For any A L X % ¢ e S such that f-f''=g- g, there is a unique
morphism X " ADC which satisfies pa-h=f"and pc-h=¢g.
B
— Reflection. If both

ALAA%CQD$E and c”éA%céDLE
belong to S then also AEC L plek belongs to S; and symmetrically, if

EéDLAECLAA and EéDLA%cLCC
belong to S then also E Lpk AEC belongs to S.
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As in [3, Definition 2.10], we say that a cospan A L B<LC has legs in a class S of

spans if A=A L Band BELCc=cC belong to S. [3, Assumption 4.1] asserts that
there exists the S-relative pullback of those cospans whose legs are in an admissible class
S. Under this assumption it was proven in [3, Corollary 4.6] that for any object B for which

B—=— B =B € §, those spans B< A>B over B whose legs B< A=A and

A= A -> B arein S, constitute a monoidal category with the monoidal product given by
the S-relative pullback over B. An S-relative category (with object of objects B) is defined
in [3, Definition 4.9] as a monoid therein. Explicitly, this means morphisms

s
B=—i—=a-2% ACA
t

subject to the following axioms.

The legs of B < AL B are in S (so that its S-relative pullback denoted by

AL a0a A exists).
B

N
i is a common section of s and ¢ (thatis, B =i> A is a reflexive graph).
t

—td=t-pyands-d =s-p;.
d-(iol)=1=d-(1oi).
d-(dol) =d-(1od).

A class S of spans in a monoidal category is said to be monoidal if it satisfies the following
two conditions in [3, Definition 2.5].

(UNITAL) For any morphisms f and g whose domain is the monoidal unit 7,
xLi1%yes
(MULTIPLICATIVE) Ifboth X <- A %y eSand X' L- A’ *~ ¥' € S then also

xx' Lan vy es.
It is discussed in [3, Example 2.8] that a monoidal admissible class S of spans in a braided
monoidal category C induces a monoidal admissible class of spans in the category of monoids
in C; and it is shown in [3, Example 4.4] that if S satisfies [3, Assumption 4.1] then so does
the induced class in the category of monoids. This allows for the discussion of S-relative
categories in the category of monoids.

In this paper we will be interested mainly in these relative categories of monoids. They
contain, in particular, a split epimorphism of monoids (consisting of the morphisms i and s
of () in the Introduction). So we start with the analysis of the following category of split
epimorphisms of monoids.

Theorem 1.1 Consider a monoidal admissible class S of spans in a monoidal category C for
which [3, Assumption 4.1] holds. The following categories are equivalent.

SplitEpiMon 5 (C) whose
objects are split epimorphisms B g A of monoids in C subject to the following con-

1
ditions.

@ Springer



Crossed Modules of Monoids Il: Relative Crossed Modules 605

(@) A=A ->B € S; so that by the unitality of S and [3, Assumption 4.1], there
exists the S-relative pullback

b) g = (ADI)B Ay A2 s A is invertible.

morphisms are pairs of monoid morphisms ( B g . A% A" )suchthats'-a = b-s
andi’-b=a-i.
DistLaws (C) whose

objects consist of monoids B and Y, a monoid morphism Y 5 I and a distributive

law BY =~ YB subject to the following conditions.

@) Y=Y -1 €¢Sand B=B=—B € S. Then by the monoidality of S also

YB—VYB-LB €S0 by [3, Assumption 4.1] there exists the S-relative pull-
back Y BUI in the diagram below.

B
) el-x = le.
(¢") The morphism f occurring in the diagram below is invertible. (It is well-defined

since by (a’) and condition (POST) in [3, Definition 2.1], Y B & Y51 € S.)
e
Y
if\\
N

yBOI — L o ]

B
lu
Pml lu

YBHI-B.

e

morphisms are pairs of monoid morphisms ( B g .Y 2> Y such that ¢ - y=e
and x'-by = yb-x.
Proof We prove the theorem by constructing mutually inverse equivalence functors. The first
one SplitEpiMon(C) — DistLaws(C) sends
-1

S
B=—=4A (Aol B, Aol 2L, B(ADN R Ny (A0DB)
i B B
bl la s aD]\L \Lb
/
s ’ / , Pr ”n ’ ’
B'«TA/ (AE[, B, DI%—I B(ADI)%—A %—A%—(ADI)B)

1

Let us see that the object map is meaningful. By construction B is a monoid and B Lo

is a monoid morphism. By [3, Proposition 3.7 (1)] ALJI is a monoid and AT/ LT isa
B B

@ Springer



606 G.Béhm

: -1
monoid morphism. By [3, Lemma 1.5] B(AOI) 22 A2 2 A% (AQI)B is adistributive
B B

law. Concerning property (a’), [ = [ =1 € S by the unitality of S; hence by [3, Lemma
3.4 (2)] AOI = AL PL I € S.By[3,Lemma 2.4 (1)] lalso B=B =28 belongs
B B

to S. Condition (b’) holds since commutativity of the first diagram of

q

/_2\ i 5
(AOI)B — A — A B(AUI) A (A%”)B (1.1)

N

ul B—— B

B—“ -p2 "™ p B

\—//v

implies the commutativity of the second diagram. For condition (c’) observe that by the
unitality of the monoid morphism i the equality g-1u = p4 holds, equivalently, g~ '-p4 = lu.
With this identity in mind we see that the morphism f of condition (c’) is equal to ¢ ~' 01
in the first diagram of

(AODBOI
B B pi
> ~N qDl
AN

N
Pa (ADDBOI "1 pucyns AOT "~ 1
P(ADBI)Bl J” pAl l”
A— ~(AONB——>B (AODB A B.

g ! B pil B S

Then by [3, Proposition 3.5 (2)] it is invertible with the inverse ¢ 01 in the second diagram.
Both morphisms ¢ ~' 01 and ¢ 01 are well-defined by the commutativity of the first diagram
of (1.1); see [3, Proposition 3.5 (1)]. This proves that the object map of our candidate functor
is meaningful.

Concerning the morphism map, a1 is a well-defined morphism in C by the assumption
that b-s = s"-a (see [3, Proposition 3.5 (1)]) and it is a monoid morphism by [3, Proposition
3.7 (2)]. Condition p; - (an1) = p; holds by construction and the other equality holds since
the commutativity of the first diagram of

1 Apologies about a regrettable typo in the first line of [3, Lemma 2.4], interchanging the symbols A and B.
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q
/—\ ]
(AOB —= A? —= A B(AO) P4 A2 Mo 1o (ADI)B (1.2)
B pAi B
(aDl)b\L l““ a b(aml)l k““ a \L(aml)b
(A’DI)B/ LA g B/(A'OI) — A/2 — A/ (A/DI)B/
\_/ B i'py
q/

implies the commutativity of the second diagram.
In the opposite direction DistLaws(C) — SplitEpiMon 5(C) we define a functor sending

1

(Y, B, Y-“1I, BY “>YB) B=—<=VYB
ul

yl ib — bl lyb

Y’, B, Y/g-l, B’Y’L Y'B") Bl'éY/B/.
u'l

Here Y B is considered with the monoid structure induced by the distributive law x, see
[3, Lemma 1.4]. Then B LIS Y B is a monoid morphism by [3, Lemma 1.4] again. By [3,
Lemma 1.6] condition (b’) implies that Y B 1 B is a monoid morphism too. (For a more

direct proof consider the commutative diagrams

1x1

YBYB y2p? ™. yB ] yB
elell @ \Lel \Lel
eell
B2 B 1 — B
m

whose unlabelled regions commute since e¢ : ¥ — [ is a monoid morphism.) The rows are
split epimorphisms (of monoids) by the unitality of the monoid morphism e. By (a’) and the

multiplicativity of S, YB=—=YB L B € S so that condition (a) holds. For condition
(b) note that the commutativity of

YB YB
lut %
11 YB? ——VYB?
lllul llull
(YBOI)B — (Y B)? y2RB? YB
B pypul 1x1 mm

implies that the bottom row is the inverse of the isomorphism f'1 in the left column hence it
is invertible. This proves that the object map is well defined.
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Concerning the morphism map, it follows by the assumption yb-x = x’-by that yb is a
monoid morphism, see

YBYB Y?B? YB I —>YB
ybybl \Lyybb \Lyb lyb
Y'B'Y'B’ Y/ZB/Z Y’'B’ I — Y'B’.

1x'1 m'm’

The monoid morphisms (b, yb) are compatible with the monomorphisms B “LyB

and B “L y'B’ by the unitality of y, and they are compatible with the epimorphisms

el

1 .
YB -~ B and Y'B’ “> B’ by the assumption that ¢’ -y = e.
So we have well-defined functors in both directions, it remains to see that their composites
are naturally isomorphic to the identity functors. The composite

SplitEpiMon g (C) — DistLaws(C) — SplitEpiMong(C)

acts as
prl
BHA B=——= (AOIl)B
ul B
”l l b \L(aljl)b
prl
B’SA B"‘(%(A DI)B/

u'l
We claim that a natural isomorphism from this to the identity functor has the components
(B=B, (AOJI)B LS A) . Since p4 is a monoid morphism by [3, Proposition 3.7 (1)], so
B

is ¢ by [3, Lemma 1.5]. The stated pair (1, ¢) is a morphism in SplitEpiMon 5 (C) by the com-
mutativity of the first diagram of (1.1) and by the fact that the unitality of p4 implies g-1u = i.

Naturality with respect to any morphism ( B —> B, A - A’ ) in SplitEpiMon 5 (C) fol-
lows by the commutativity of the first diagram of (1.2).
Composing our functors in the opposite order

DistLaws(C) — SplitEpiMong(C) — DistLaws(C)

we obtain the functor sending

(Y, B, Y-1I, BY ~=YB)

I

. B, Y “~1I BY >~Y'B)
to

(yBOI, B, YBI]I . B(YBDI) Pype g2y p L (YBI]I)B)
B

ybal b
pI u'lpyrpr Ix'1 m'm’ f1

v'B'0I1, B, Y'B'OI = I,B'(Y'B'OI) > (Y'B)?> = Y?B? = Y'B > (Y'B'OIB).
B’ B’ B’ B’
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We claim that a natural isomorphism from this to the identity functor has the invertible

components (B—=2B, Y L Y BUOI ). By construction f is a monoid morphism, see [3,
B

Proposition 3.7 (2)]. The compatibility of the monoid morphisms (1, f) with ¥ —> I and
YBOI 2% I holds by the definition of f and the compatibility with the distributive laws
B

BY — Y B and B(Y BUI) — (Y B1I)B holds by the commutativity of
B B

X

BY ———— BY YB 11
11u
1fl lnu /
B(YBOI) BYB Y B2 YB —— (YBOI)B.
B lpys x1 1m f1 B

Finally, the naturality with respect to an arbitrary morphism ( B L B LY >y ) in
DistLaw s (C) follows by the commutativity of the diagrams

b1 ybO1
YBOI — 27—~ y'p'OI yBOI -2 y'p'01
B B’ B B’
fT XY\I: \Lﬂy/g/ fT \ \LPI
b
y —"“ yp— 2 yp y — ¢ =
yt 1u’ TPY’B/ )‘L / TPI
Y’ Y'B'OI Y ———Y'B'LI
I pr 7 5
using that the morphisms Y B 2% ypor 21 are jointly monic in C. O
B

Example 1.2 For any fixed set X, the category C of spans over X is monoidal via the pullback
over X. A monoid in C is a small category with the object set X and a monoid morphism is a
functor acting on the objects as the identity map. Moreover, C has all pullbacks (computed in
the underlying category of sets). So taking as S the class of all spans in C, from Theorem 1.1
we obtain the equivalence of the following categories (from now on we shall denote by s the
source map and by t the target map of any category).

SplitEpiMon(C) whose
objects are pairs of identity-on-objects functors B % A between categories of the

L
common object set X such that the composite o is the identity functor, and the map

q: (A%X)EB ={(@a,x,b)lo(a) =1y, x =t(b)} > A (a,x,b) — a-t(b) (1.3)

is invertible. (The map of (1.3) is invertible e.g. if B is a groupoid; then its inverse takes
amorphism a to (a-t(o(a)™1), t(a), o (a)).)

morphisms are pairs of identity-on-objects functors ( A %X A", B L B’ ) for which
at =B and Bo =o’a.
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610 G.Béhm

DistLaw(C) whose
objects consist of categories B and Y with the common object set X such that Y has no
morphisms between non-equal objects (that is, its source map s and target map ¢ coincide;
using the terminology of [4] this means that Y is a totally disconnected category); and an

action BOY = {(b, y)|s(b) = t(y)} = Y in the sense of [5, Definition 1.1]; meaning
X

the following axioms for all morphisms b, b’ in B and y, y" in Y for which s(b) = t(b)
and s(b) =t(y) = s(y) = t(y) = s(¥).

(i) 1(bry) =1t()
(i) be(y-y)=(brey)-(bey)andbe lyp) = 1)
(i) @ -b)y>y=">b'v>(bry)and l;y>y=y.

morphisms are pairs of identity-on-objects functors ( Y 7Y, B L B’ ) for which
v(b>y) = B(b) > v(y) for all morphisms b in B and y in Y for which s(b) = ¢(y).

Only the above description of an object in DistLaw(C) requires some explanation.
The monoidal unit of C is the trivial span X = X = X . Its trivial monoid structure

yields the discrete category D(X). An identity-on-objects functor Y — D(X) as in Theo-
rem 1.1 exists if and only if Y is totally disconnected. Then there is precisely one such functor
sending any morphism to the identity morphism on its equal source and target objects. For

this functor e, precisely those maps BJY — YOB satisfy (eo1)-x = 10e which are of the
X X

form (b, y) — (b, b) in terms of some map > obeying condition (i). It is straightforward
to see that x is then a distributive law if and only if conditions (ii) and (iii) hold.
The morphism f of Theorem 1.1 (¢’) is invertible because the diagram

yoc - ¢ (1.4)

g

YUB ——
X

enl

is clearly a pullback of X-spans for any span morphism g.

Example 1.3 Let M be a symmetric monoidal category in which equalizers exist and are
preserved by taking the monoidal product with any object.
Take C to be the category of comonoids in M with the monoidal admissible class S in

[3, Example 2.3] of spans in C. This means that X i ALy belongs to S if and only if

AL A2 g XY isacomonoid morphism, which holds if and only if ¢ - fg -8 = gf - §.

Thanks to the symmetry of M, its monoidal structure is inherited by C. A monoid A in C is
known as a bimonoid in M. Recall that the monoidal structure of M is lifted to the category of
(left or right) modules over the monoid A in M. A monoid (respectively, a comonoid) in the
category of A-modules is known as an A-module monoid (respectively, A-module comonoid).

Recall from [3, Example 3.3] that for a cospan A L B < C of comonoids whose legs
are in S, the S-relative pullback is given by the so-called cotensor product, defined as the
equalizer
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j 1£1-81
AOC ——= AC —=< ABC (1.5)
B 1g1-18

in M (where § denotes both comultiplications of the comonoids A and C.)
Below we describe the equivalent categories of Theorem 1.1 in this context.

SplitEpiMon 5 (C) whose

objects are split epimorphisms B % A of bimonoids in M subject to the following
— i

conditions.
(a) The comultiplication § of A satisfiesc-1s-§ = s1-§.

(b) In terms of the morphism j of (1.5), ¢ := (AOI)B LU A2 A s invertible.
B

morphisms are pairs of bimonoid morphisms which are compatible with the epimor-
phisms s as well as their sections i.

DistLaw s (C) whose
objects consist of a cocommutative bimonoid B and a bimonoid Y in M, together with
a left B-action on Y which makes Y both a left B-module monoid and a left B-module
comonoid.

morphisms are pairs of bimonoid morphisms ( B LY B',Y Ly ) which are com-

patible with the actions BY Ly and B'Y' =¥’ in the sense that U'by=y-l

This concise description of DistLaw s (C) requires a proof. Note that the monoidal unit /
is now a terminal object in C; the unique morphism Y — [ is the counit . It obviously sat-
isfies ¥ =Y - I € S. The other condition B=— B =— B € Sin(a’) of Theorem 1.1
reduces to the requirement that the comonoid B is cocommutative.

Next we establish a bijective correspondence between distributive laws BY — Y B sat-
isfying property (b’) of Theorem 1.1 and left actions BY — Y as in the description above.
Starting with a distributive law BY —> Y B , put [ := l¢ - x. It is a unital action by the left
unitality of x and it is associative by the left multiplicativity of x:

Y Y B%Y BYB BY
\ 1x 1le
Q?\ lxl x
\:1‘\\ 11
ul lu \‘\.\\‘\ ml YB2 - vB |I
i\
\
iii[ 1m le
l
BY —“~yB_—.y BY YB— oy
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By the right unitality of x the unit [ Y isa morphism of B-modules and by the right

multiplicativity of x the multiplication Y2 ¥ is a morphism of B-modules:

lu 1m

B —"> BY BY? By?— " S By
811
p2y2 L pays

x H % o
B2y? ‘

lcll

lcl¢ X
2 111el 2

o BY)2 2L (By)2y YBY !

B >YB | J o) asl\L —\

YB2Y < (YB)?Y <— Y?B’Y — > YBY
1lell lell leell
i 1x J/u

ml

e le (YB)? v?2B L~ YB
¢l£]8 ¢115 l€¢
y? y2——vy

(note that here we also used the comultiplicativity of x). The condition that the counit
Y I is a morphism of B-modules coincides with the counitality of / and also with the

counitality of x. The comultiplication Y 2 ¥? isa morphism of B-modules, equivalently,
[ is comultiplicative by the comultiplicativity of x:

16 81 lcl

BY BY? B%y? (BY)?
|+ |
i yBsy2p Y y2p2 I vy y
llg ine \Lllss 1gls¢
Y —— Y? y? Y2
Conversely, given an action / as above, put x := BY gy X gyp L yB. 1t

clearly satisfies (b") by the counitality of / hence it is counital. It is comultiplicative by the
comultiplicativity of /:
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X

BY//—\

= B%y 1 BYB m
C
55\L ia&s isaa
B2y?2 4y2 4y2 B2Y2R2
8811 lelll 1y 2
' lelll
lel ey y1 (BY)2B2 1 ui
l/lchYBl
(BY)Z 51681 (BZY)Q 1cle (BYB)Z 1111

XX

where the top-left region commutes by the coassociativity and cocommutativity of the

comonoid B. This morphism x is a distributive law. Indeed, the left unitality and the left
multiplicativity follow by the unitality and the associativity of the action /, respectively

YB

Y2RB?

\Llcl

(YB)?

1x
1” /\
Y —= BY —=YB B?Y —— B3Y ——— B2YB ——— BYB
ul c 151 11c 171
S111 S11
DI O 1 5
\ B*Y — B3YB ——> B2YB
N\ lell leg gyl el
\\\'\ Hepa y 111
\ ml gy —L gryp2 M pyp2
ul ull  y11 \3.\
i
i\ mill mil 1
(X |
\l‘ ‘%Y 2 M 2
\ By —— L pypz 1 yp
] 1m1 11m 1m
| 81 5o e n
J BY By BYB YB
By 2% g2y S pyp s v

X

\/

X

x1

and the right unitality and the right multiplicativity of x follow using that the unit and the
multiplication of ¥ are B-module morphisms
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B —— BY BY? BY
S11 $
Sl
b) 81 leg yo
811 B2y? — > BY?B B2y
2 11u 2 1m1
B® ——— B°Y J{am J{am IC\L
* 1511 leg y2
le B2y? B3y? B*Y?B BYB |x
Ll x1 lel lega 1 lell
B2 —> BYB 1181 1llc
(BY)? BYB2Y —> (BY)’B n
le I3 lm illl] J{llll
181 ) 1le UL,
B——> B YBY YB2Y (YB) Y’B—>YB
u
1x

The above correspondences between / and x are bijective by the commutativity of

lc

51 B%Y BYB BY
T s ™\
111e Sl
By —% . p2y2 11 (gyy? xl BYY — = BY
£
Xl xxl lc
YB > y2B* L (vB)? Y B2 BYyB . By
K ll&‘é‘l & lel 1 \Ll
YB YB

YB—Y
le

for a comultiplicative morphism x satisfying (b’) and any morphism /.

Finally, we show that the morphism Y L YBUOI in part (c’) of Theorem 1.1
B

is invertible without any further assumption; its inverse is constructed as f~! :=

Y BOI 2 yp e Y . In order to see that it is the inverse, indeed, recall that by [3,
B

Example 3.3] the morphism pyp is the equalizer of Y B L yB? and vB L yB2.

Hence the following diagrams commute.

f*l
Y—Y YBOI YB Y / Y BOI
B PYB le B
fl llu Pysl lllu Llu \LI’YB
yBOI 2 yp oy YB— o yp2 ¥l _yp YB
B v
£

This completes the characterization of the objects of DistLaws(C). Concerning the mor-

phisms ( B e B ,Y A Y’ ), the first condition in Theorem 1.1 is the counitality of the
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bimonoid morphism y hence it identically holds. The second condition in Theorem 1.1 is
equivalent to y -/ = I’- by by the commutativity of

x 1

/\

BY B%Y BYB YB BY YB

Y
81 lc 11 X le
byl \Lbby \Lbyb lyb byl \Lyb l}'
! /

B'Y’ g_ B2y’ e B'Y'B’ g_ Y'B’ BY —X~Y'B le Y.

\—/

x! v

Example 1.4 We can apply Example 1.3 to the particular case of a finitely complete category
M regarded with the cartesian monoidal structure. Then the category C of comonoids in M is
isomorphic to M.
Since in this case the monoidal unit / of M is a terminal object, with the trivial monoid
structure it becomes the zero object in the category of monoids in M. Then for any morphism
A —> B of monoids in M, we may identify p4 : ALJI — A with the kernel of s.

The equivalent categories of Theorem 1.1 reduce to the following ones.
SplitEpiMon (M) whose

S
objects are split epimorphisms B == A of monoids in M such that in terms of the
— i

morphism j of (1.5), ¢ := (AOI)B 2> A2 " A is invertible.

B
morphisms are pairs of monoid morphisms which are compatible with the epimorphisms
s as well as their sections i.

DistLaw s (M) whose
objects consist of monoids B and Y in M, together with a left B-action on ¥ which makes
the multiplication and the unit of the monoid Y left B-linear.

morphisms are pairs of monoid morphisms ( B L p , Y Ly ) which are compati-

ble with the actions BY —> Y and B'Y’ -~ Y’ in the sense that I/ -by = y-1.
In particular, if M is the cartesian monoidal category of sets, then the morphism ¢ in the
above description of the objects of SplitEpiMon (M) is invertible if and only if B ﬁ A
1

satisfies the Schreier property of [20]. That is, for each element a of A, there is a unique
element z, in the kernel of s such that a = z, - is(a). (Indeed, this condition clearly implies
the surjectivity of ¢. For its injectivity assume z - i (b) = z’ - i (b’) for some z, ' in the kernel
of s and b, b’ in B. Applying the monoid morphism s we obtain b = b’. From

z-is(z-i(b) =z-i(b)y=2"-i(b) =2 -is(z-i(b))
and the uniqueness part of the Schreier property we infer z = z’. Conversely, if g is invertible
then its inverse a +— (z4, s(a)) defines the required element z, of the kernel.) On the other
hand, in this case an object of DistLaws (M) reduces to a monoid morphism from B to the
monoid of monoid endomorphisms of Y.
Recall that a bimonoid B—with monoid structure (m, u) and comonoid structure (§, £)—is

a Hopf monoid provided that there exists a morphism B — B —the so-called antipode—
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which renders commutative the diagram

B2 .pr . p

~

B>——=B?>—=B.
1z m

If the antipode exists then it is unique. It is a monoid morphism from B to the monoid with

the opposite multiplication m - ¢ and comonoid morphism from B to the comonoid with the

opposite comultiplication c - §.

Proposition 1.5 (1) The equivalent categories of Example 1.3 have equivalent full subcate-
gories as follows.
e The category whose
s
objects are split epimorphisms B == A of bimonoids in M subject to the following
— i
conditions.
(a) The comultiplication § of A satisfies c-1s-§ = s1-6.
(b) B is a Hopf monoid.
morphisms are pairs of bimonoid morphisms which are compatible with the epimor-
phisms s as well as their sections i.
e The category whose
objects consist of a cocommutative Hopf monoid B and a bimonoid Y in M, together
with a left B-action on Y which makes Y both a left B-module monoid and a left
B-module comonoid.

morphisms are pairs of bimonoid morphisms ( B Y , Y Ly ) which are com-
patible with the actions BY ¥ and B'Y' - Y' in the sense thatl'-by = y-I.
(2) The equivalent categories of part (1) have equivalent full subcategories as follows.
e The category whose

objects are split epimorphisms B ﬁ A of cocommutative Hopf monoids.
1

morphisms are pairs of bimonoid morphisms which are compatible with the epimor-
phisms s as well as their sections i.

e The category whose
objects consist of cocommutative Hopf monoids B and Y in M, together with a left
B-action on Y which makes Y both a left B-module monoid and a left B-module
comonoid.

morphisms are pairs of bimonoid morphisms ( B g , Y Ly ) which are com-
patible with the actions BY oy and B'Y 1= Y inthe sense thatl'-by = y-I.

Proof (1) The second listed category is obviously a full subcategory of DistLaws(C) of
Example 1.3; thus via the equivalence of Theorem 1.1 it is equivalent to some full subcategory
of SplitEpiMong(C) of Example 1.3. Our task is to show that it is the first listed category
above. For that we only need to show that it is a subcategory of SplitEpiMong(C); that is,
that for any object B % A of it, the morphism g in part (b) of Example 1.3 is invertible.

1
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Following ideas in [24], we use the antipode z of B and the image of the equalizer (1.5) under
the functor — B to construct the inverse:

e — > (AOI)B
- B
AT - A2 s AB 15 A32 1z1 AB2 1il AzB ml AB

ls1~81\u lul

AB?

This definition works because the horizontal morphism equalizes the parallel morphisms of
the fork on the right; see Fig. 1. The so constructed morphism g~ ! is the inverse of ¢ by
the commutativity of the diagrams of Fig. 2 (in the second case we also need to use that the
columns are equal monomorphisms).

(2) If both Y and B are cocommutative comonoids then clearly so is Y B; and if both Y

and B have antipodes z then Y B “2 YB isthe antipode of the Hopf monoid Y B.
Conversely, if A is cocommutative then evidently so is its sub-comonoid ACI/. If further-

B
more A has an antipode z then it restricts to ALJ/ by the commutativity of the following
B

diagram.

The top right region commutes by the Hopf monoid identity § -z = zz-c -4 and the assumed
cocommutativity of A. The bottom right region commutes since any bimonoid morphism s
commutes with the antipodes. O

Example 1.6 Proposition 1.5 can be applied in particular to a finitely complete category M,
regarded as a cartesian monoidal category. From Proposition 1.5 we obtain equivalences
between the following pairs of categories.

(1) e The category whose

objects are split epimorphisms B ﬁ A of monoids in M such that B is a group
— i

object.
morphisms are pairs of monoid morphisms which are compatible with the epimor-
phisms s as well as their sections i.

e The category whose
objects consist of a group object B and a monoid Y in M, together with a left B-action
on Y which makes Y a left B-module monoid.
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morphisms are pairs of monoid morphisms ( B Lo , Y Ly ) which are com-

patible with the actions BY Ly and B'Y' > ¥’ in the sense that U'-by =y-l
(2) e The category whose

objects are split epimorphisms B ﬁ A of group objects.
— i

morphisms are pairs of monoid morphisms which are compatible with the epimor-
phisms s as well as their sections i.

e The category whose
objects consist of group objects B and Y in M, together with a left B-action on Y
which makes Y a left B-module group.

morphisms are pairs of monoid morphisms ( B Lo , Y Ly ) which are com-
patible with the actions BY Ly and B'Y' > ¥’ in the sense that U'-by =y-l

Remark 1.7 There are particular symmetric monoidal categories M whose cocommutative
Hopf monoids constitute semi-abelian categories Hopf(M); e.g. the category of sets (which
is cartesian monoidal hence the Hopf monoids are the groups, all of them cocommutative)
or the category of vector spaces over an arbitrary field [12] (for the particular case of an
algebraically closed field see [11]). In such cases the equivalence of Proposition 1.5 (2) is in
fact the equivalence SplitEpi(Hopf(M)) = Act(Hopf(M)) discussed in [14, Section 1], see
[14, Example 3.10].

2 Reflexive Graphs of Monoids Versus Pre-crossed Modules

Consider a monoidal admissible class S of spans in a monoidal category C for which
[3, Assumption 4.1] holds. Take an object B % A in the category SplitEpiMong(C)
of Theorem 1.1. Then by property (b) in Theolrem 1.1, the induced morphism g :=
(AEI )B P A2 = A is invertible. Therefore by [3, Corollary 1.7] there is a bijec-
tive correspondence between the retractions ¢ of the monoid morphism i and the monoid

. k . . .
morphisms AL/ — B rendering commutative the diagram
B

-1

ipA q

B(AO) A2 A (AODHB
B B
lkl lkl
B2 B B2.
m m

The correspondence is given by
PA t q! k1l 0 m
t—k:= AOl —A—B k—~t:= A— (AO)B—B~—B. (2.1
B B
Combining this observation with the equivalence of Theorem 1.1, next we present an equiva-

lent description of a suitable category of reflexive graphs of monoids. This leads to the notion
of pre-crossed module over a monoid.
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Theorem 2.1 Consider a monoidal admissible class S of spans in a monoidal category C for
which [3, Assumption 4.1] holds. The following categories are equivalent.

ReflGraphMon g (C) whose

N
objects are reflexive graphs B =i> A of monoids in C subject to the following condi-
t

tions.

a A=A S~ B es (hence the S-relative pullback Al in Theorem 1.1 exists).
B

(b) ¢:= (AODB 2% A2 "o A s invertible.
B

morphisms are pairs of monoid morphisms ( B Lop , A% A")suchthats’-a = b-s,
t"“a=b-tandi’"-b=a-i.

PreXs(C) whose

objects consist of monoids B and Y, monoid morphisms Y —> I and Y e B anda

distributive law BY > YB subject to the following conditions.
(@) Y=Y %1 eSand B=B=—B €.
®’) el-x =leandm-kl-x =m-1k.
(c’) The morphism f of Theorem 1.1 (¢’) is invertible.
morphisms are pairs of monoid morphisms ( B g LY >y ) suchthate'-y = e,

k'-y=b-kand x'-by = yb-x.

Proof We show that the equivalence functors of Theorem 1.1 lift to the equivalence of the
claim. In the direction ReflGraphMong(C) — PreXs(C) we send

s
B>=—i— A

t
bl \La
5

to

Pr PA .t iAo om_ 4!
(AQI, B, AQI—>1, AOI —> A —> B, B(AQD) —> A2 "> A == (AODB)
B B

B B B
¢aDl lb
—1

Dt ’ i'p s ’
@WOI, B, ADI5 1 AOL% A = B, B0~ 42 " 4 T (WODB)).
B’ B’ B B B

By [3, Proposition 3.7 (1)], p4 is a monoid morphism hence so is ¢- p 4. The second condition
in (b’) holds by the considerations preceding the theorem. Hence in light of the proof of
Theorem 1.1 the object map is well-defined. Concerning the morphisms, the second condition
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holds by the commutativity of

AT Ao 4t o B

B
aol \L J/a J/h
A0 ——=A ——= B,
B’ pa ¢
Thus using again the proof of Theorem 1.1 we conclude that this functor is well-defined.
In the opposite direction the functor PreXs(C) — ReflGraphMong(C) is defined by

el

(Y, B, Y-“1I1, v-* B, By *-vB B=.—=7VB

T L=

’ ’ ’ 1
', B, Y %1, Y B, BY *YB) B =1=Yy'B

m'-k'1
By [3, Lemma 1.6], it follows from the second equality of (b’) that m - k1 is a monoid

morphism. It is a retraction of B “LoAB by the unitality of k. The monoid mor-
phisms (b, yb) are compatible with m - k1 by the compatibility of (b, y) with k and the
multiplicativity of b. So using again the proof of Theorem 1.1 we conclude that this functor
is well-defined too.

By the commutativity of

1
(ADDB 4~ ap L5 g2 ™. B Yy———v—* . B

B

\Lp"" 1 \\
i

\Lm ))

A ; B YBOI YB B? B

B PYB k1 m

the components (1, g) and (1, f) of the natural isomorphisms in the proof of Theorem 1.1
are morphisms in the appropriate category. This proves that the stated functors are mutually
inverse equivalences. o

Example 2.2 As in Example 1.2, take the (evidently admissible and monoidal) class of all
spans in the monoidal category C of spans over a fixed set X. Then the equivalent categories
of Theorem 2.1 take the following forms.

ReflGraphMon(C) whose
o
objects are reflexive graphs B >¢> A of categories with the common object set X and
- T

identity-on-objects functors between them, such that the map (1.3) in Example 1.2 is
invertible (recall that this holds e.g. if B is a groupoid).
morphisms are pairs of compatible identity-on-objects functors.
PreX(C) whose
objects consist of categories B and Y of the common object set X such that Y is totally
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disconnected (in the sense of [4]); an action (cf. Example 1.2) BOY —~Y and an
X

identity-on-objects functor Y ~ B such that
k(bey)-b=>b-k(y) 2.2)

for all morphisms b in B and y in Y for which s(b) = #(y). (If B is a groupoid then (2.2)
has the equivalent form « (b > y) = b-«(y)-b~'; so when both B and Y are groupoids
we recover the notion of pre-crossed module of groupoids in [5, Definition 1.2].)

morphisms are pairs of identity-on-objects functors ( B L B', Y —=Y') such that
k'v = Bk and v(b > y) = B(b) > v(y) for all morphisms b in B and y in Y for which
s(b) =t(y).

Example 2.3 1In the setting of Example 1.3, the equivalent categories of Theorem 2.1 take the
following explicit forms.

ReflGraphMon g (C) whose

S
objects are reflexive graphs B =i> A of bimonoids in M subject to the following
t

conditions.
(a) The comultiplication § of A satisfiesc-1s-§ = s1-§.

(b) In terms of the morphism j of (1.5), ¢ := (AOI)B A2 M A s invertible.
B

morphisms are pairs of bimonoid morphisms ( B Lop, AL A ) such that s"-a =
b-s,t'-a=b-tandi’"-b=a-i.

PreXs(C) whose
objects consist of a cocommutative bimonoid B and a bimonoid Y in M, together with
a left B-action / on Y which makes Y both a left B-module monoid and a left B-

module comonoid, and a bimonoid morphism Y LY B for which the following diagram

commutes.
By . gy ' _pgyp— .y (2.3)
lkl lkl
B2 B B2
m m

morphisms are pairs of bimonoid morphisms ( B Lop , Y Ly ) which are com-

patible with the actions BY Ly and B'Y' > ¥’ in the sense that / -by = y-l and
which satisfy k'-y = b -k.
Proposition 2.4 The equivalent categories of Example 2.3 have equivalent full subcategories
as follows.

e The category whose

s
objects are reflexive graphs B >=i> A of bimonoids in M such that the comultiplication
t

8 of A satisfiesc - 1s -6 = s1 -8 and B is a Hopf monoid.
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morphisms are pairs of bimonoid morphisms ( B g , A% A')suchthats'- a =
b-s,t'-a=b-tandi’-b=a-i.

e The category whose
objects consist of a cocommutative Hopf monoid B and a bimonoid Y in M, together

with a left action BY "Ly Which makes Y both a left B-module monoid and a left

B-module comonoid, and a bimonoid morphism Y L B for which the diagram

BY B3 B3 5 p2 (2.4)
li im
Y B’

occurring in [25, Definition 12 (iv)], commutes.

morphisms are pairs of bimonoid morphisms ( B LS B ,Y Ly ) for which !’ -by =
y-landk'-y =b-k.

N
Proof For a reflexive graph B =i> A of bimonoids such that B is a Hopf monoid,
t

(AOIB L Ain part (b) of Example 2.3 is invertible by Example 1.5.
B

Whenever B has an antipode z, the commutative diagram (2.3) has an equivalent form
(2.4). Their equivalence follows by the commutativity of the diagrams of Fig. 3. O

Lemma 2.5 Consider a monoidal admissible class S of spans in a monoidal category

N
C for which [3, Assumption 4.1] holds. For any object B =i> A of the category
‘

ReflGraphMon g (C) of Theorem 2.1, the following assertions are equivalent.

(i) BL-A=—A €8

.. k:=t-pa

(i) B<—"2 A0l = AOI €.
B B

N

Proof Assertion (i) implies (ii) by [3, Lemma 3.4]. Conversely, since B=i> A is an
t

object of ReflGraphMong(C), we have A = A —>~ B € S. Then it follows by [3, Lemma

24]1%that B=B =B € S, whence (ii) implies B? L3 (AOIB = (AJI)B € S by
B B

—1 —1
the multiplicativity of S. Then by (PRE) also B2 <L (A0NB L A%~ (ALNB € 8. So
B B

using the identity t = m-k1 -¢~! from (2.1), (i) follows by (POST) (composing by m on the
left and by ¢ on the right). O

2 Apologies about a regrettable typo in the first line of [3, Lemma 2.4], interchanging the symbols A and B.
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3 Relative Categories of Monoids Versus Crossed Modules

Consider again a monoidal admissible class S of spans in a monoidal category C for which

s
[3, Assumption 4.1] holds. Take an object B =i> A of the category ReflGraphMons(C)

t
of Theorem 2.1 such that also B<—A=—A ¢ S; that is, the legs of the cospan
A-S~B<L A areinsS (hence there exists its S-relative pullback A 2Loaoa 24 ).
B
Whenever the morphism

pal (1oi)@ ol)

A2

¢ = (AODA (A0A)? 2> ADIA 3.1
B B B

is invertible, we infer from [3, Corollary 1.7] that there exists at most one monoid morphism
d rendering commutative

iol

A0 " 4 190 ADa

| //'j:/
A /
P
! A

which is our candidate to serve as the composition morphism of a relative category. Note that
if there is a monoid morphism d rendering commutative the diagram of (3.2), then it satisfies

d-gp=d-m-(10)G01) - pal =m-dd - A0)GOD) - pal =m - pal.  (3.3)

A (3.2)

So if g, is invertible, then the only candidate isd = m - pal - q, I By this motivation, in
this section first we investigate the condition that g, of (3.1) is invertible. Assuming so, next

N
we show that whenever the morphism d of (3.2) exists, it makes the object B =i> A of
t

ReflGraphMong (C) to an S-relative category. Finally, based on Theorem 2.1, we give an
equivalent description of the category of S-relative categories in the category of monoids in
C, in terms of crossed modules introduced hereby.

3.1 Invertibility of Some Canonical Morphisms
Lemma 3.1 Consider a monoidal admissible class S of spans in a monoidal category C for
which [3, Assumption 4.1] holds. For any monoid B in C for which B— B — B isin S,

for any span of monoids B < A B with legs in S, and for any natural number n, the

following assertions hold. (Recall the convention A V=B from [3, Corollary 4.6].)

(1) There exists the S-relative pullback

P n
(AONDBOAT" — 2%~ A"
B B
P(ADRI)B r-p1
(AOD)B B.
B prl
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(2) There is a unique morphism h,, rendering commutative the diagram

(AODHAS"
B

EN

pP,0
1y (AONBOAT" 225
B B

]7(ADBI)Bl/ lf'Pl

(AONHA ——— (AUJI)B—— B.
B 1z B prl

Bpn

(3) For a common section i of s and t, consider the morphism

AA%n (loio---0i) (i olo---ol) (A %n+l

m

) ——

on pal
—_—

Gui1 = (ADI)AS s
B

A
34
(it is well-defined by 3, Proposition 3.5] and q is equal to q in Theorem 1.1 (b)). If g, 41

is invertible for some n, then gy is invertible for all 0 < k < n.

(4) For a common section i of s and t the following are equivalent.

(1) hy, in part (2) and q, in part (3) are invertible.
(i1) gn+1 in part (3) is invertible.

Proof (1) By assumption B <L A—A e€Sand by the unitality of S, I =1 =1 € S.
Then by [3, Lemma 3.4],

B<L AL AT — A" €S and A%I:A%Ilg-l €S. (3.5)

By assumption also B=— B = B € S hence by the second assertion in (3.5) and the
multiplicativity of S

(AN B — (AUDB nlpes. (3.6)

1 .
The first assertion of (3.5) and (3.6) say that the legs of (ACJI)B Ly i AP arein S
B
hence their S-relative pullback exists by assumption.
(2) By (3.5) and the multiplicativity of S,

on PI

1 1
(AODB <= (anna L2 (anona? 2> A% e s.
B B B

Hence by the evident commutativity of the exterior of the diagram in part (2), universality of
the S-relative pullback in its codomain implies the existence of the unique morphism 4,,.

(3) For some positive integer n assume that g, is invertible. Then so is ¢, with the
inverse

-1
on 10i on+1 D1
B

A

Pl..n—1 on—1

(ADDA gn _plnct (ADDAT". (3.7)
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Indeed, (3.7) renders commutative both diagrams

~1 Ip1.n-1

_ _ 9n+1 _
(AODAT ! AODAT ™D AT 2 A0nA™ — = (AaOnaA !
B B \ B B
1(1D\)A on 1pin— \ WH]
n (AN A ' A "
B 1oi
qn+l¢ \ Pl.n
AT AT anna® 4w AT
1oi o B

The leftmost region of the first diagram commutes by the explicit expression (3.4) of g, and
gn+1, multiplicativity of 10/ and the functoriality of [J, see [3, Proposition 3.5 (2)]. The
rightmost region of the second diagram commutes again by the explicit expression (3.4) of
gn and g, and the multiplicativity of p;_ .

(4) Our strategy is to prove that ¢, 1 can be rewritten as

on

1
(ACI)A'S FAa
B

e (ADNDBOAT 17 A (3.8)
B B

Then (i) obviously implies (ii) and in view of part (3) also the opposite implication holds.
The occurring morphism ¢ 01 is defined as the unique morphism rendering commutative
the diagram

(AONHBOAT PaOsn
B N ol
AL
AE’H_] A%n
Punghs P2.n
P1 t-pi
(AODB A B
B 4 s

It is well-defined by the commutativity of the first diagram of (1.1); see [3, Proposition
3.5 (2)]. The morphism of (3.8) is equal to ¢+ by the commutativity of both diagrams

h gol 1

n (AEII)B[IAEH A%n+
B B

V(Amgnb’/—q\ l”l

1p 1
Aaona? > aona — = (aons AB A2 A
B B B ral Li m
14
A2 P1pP1 P
11’11\
pal AA%n - (A§"+l)2 — A%n+1

(loio-oi)(@olo-ol)

(3.9)
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h n qol n+1
" (AQDBOAYT g
B B
¢[’ADB,I/,/\ \LPZ..J:
n rrl n /’/n—\ n
(AODAT A% BAY — a2 A%
B ul (io-ni)l m
31? ¢P2...n P2.n ¢P2“.n

n n+1 n+1
Xﬁ AAg (AE )2 A%

pal m

(loio-oi)(iolo-ol)

(3.10)

whose right vertical arrows are jointly monomorphic. O

Example 3.2 1In the category C of spans over a given set X from Example 1.2, the morphisms
h, of Lemma 3.1 (2) are isomorphisms, see the pullback (1.4). Hence for any reflexive

a
graph B >=:t> A of categories with common object set X and identity-on-objects functors
T

between them, all morphisms {g, },~0 in Lemma 3.1 (3) are invertible if and only if g is so;
see Lemma 3.1 (4). The latter condition holds e.g. if B is a groupoid, see Example 1.2.

Example 3.3 In the context of Example 1.3 we know from [3, Example 4.3] that [3, Assump-
tion 4.1] holds for the monoidal admissible class S in [3, Example 2.3] and [3, Example 2.7]
of spans in C.

In this situation, for any cocommutative comonoid B in M and any comonoid morphism

C L B such that the comultiplication § of C satisfies f1-6 = f1-c-4, there is a unique
isomorphism h rendering commutative the diagram

el

AC/\
N h
AN

ABOC — 2~ ¢
B

1f
o] j

AB —B

el

with the inverse ABOIC -~ ABC 1% AC (where j = pappc -4 is the equalizer of 151
B

and 11f1-116 as in (1.5); and ¢ stands for both counits of A and B). Indeed, the following

diagrams commute.

J

T lel h

ABOC (ABOIC)? ABC AC ABOC
B § B PABPC B

PAB\L PABPAB\L l“f Llf \LPAB
AB 20 o a2p2 1 a2 Ml g2 El 4B AB

\\——//
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J

//\
ABOC > (ABOCY: —— = ABC — "'~ Ac—" . ABOC
B ) B PABPC B
\\ g1l el lpc
B pc
AC m AC
88 1cl leel
hl lhh Llfal
ABOIC d (ABOIC)? 22PC ABC AC
B \—/B// lel

J

By [3, Example 2.8] there is an induced monoidal admissible class (also denoted by S)
in the category of monoids in C (that is, the category of bimonoids in M) also satisfying
[3, Assumption 4.1] by [3, Example 4.4]. So whenever the above morphism f is a monoid
morphism as well, there is a bimonoid isomorphism # in the diagram, see [3, Proposition
3.7]. Consequently, in the category of bimonoids in M, the morphisms %, of Lemma 3.1 (2)
are isomorphisms. Therefore g, in Lemma 3.1 (3) is an isomorphism for all positive integer
n if and only if it is invertible for n = 1; and this holds whenever B is a Hopf monoid, see
Proposition 1.5.

Lemma3.4 Let S be a monoidal admissible class of spans in a monoidal category C for
which [3, Assumption 4.1] holds and let (B,Y, Y -1, Y *~ B, BY “~YB ) be an
object of the category PreXs(C) in Theorem 2.1 such that B Ly—vy € S. For any

o
natural number n denote by B"t! 2~ B the n-times iterated multiplication (unique by the

associativity of m; by definition the identity morphism for n = 0) and consider the span

m™

B Bn_H k..k1

y'B —='_ B (3.11)

For any natural number n the following assertions hold.

o)
(1) The cospan Y B el g pntl koKl

its S-relative pullback Y BLIY" B).
B

(2) There exists a unique morphism b, 41 of spans (for the spans (3.11)) rendering commu-

Y"B has its legs in S (hence there exists

tative
Yn-HB el...11
~ \bn+l
= Pynp
YBOY"B Y"B
1. k1 B \Lk...kl
PYB Bn+1
W(n)
y B"t! YB B
1m®™ el
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(3) If byy1 in part (2) is an isomorphism then also by is an isomorphism for all 0 < k < n.
(4) For the morphism

on pysl (1oulo--oul)(ulol) jn+1

4 = BODY B T VBB (YB)S 7

> "~ (YB)s

the following diagram commutes

by 10b, 10b
yrtig 2 ypoyrp e 20 vy OB
B B
f..f1 lp(YB>En+l
(YBOI"t'B —— (YBOI)'YB (yB)#™!
B 1...1q1 B 1...1q2 qn+1

where f is the isomorphism in Theorem 1.1 (c’).
(5) by in part (2) is an isomorphism if and only if gn41 in part (4) is an isomorphism.

Proof (1) By definition the first two spans in

Yy—Y- %] B—B—B B<LXy—Y YB—VYBLB (312
belong to S hence so does the last one by the multiplicativity of S. Again, by definition the
second and the third spans of (3.12) belong to S hence by the multiplicativity of S so does

the first one in

k..kl

k..kl m™
-

Bl Y"B—Y"B B Bl

Y'"B=Y"B. (3.13)

Then the second span of (3.13) is in S by (POST).
(2) Since the first span of (3.12) and the second span of (3.13) are in S, the multiplicativity
of S implies that so is

lm(n)

YB <" ypntl o 1k

yntlpg &2 el..11

Y"B.

So by the evident commutativity of the exterior of the diagram of part (2) the stated morphism
bp41 exists. It is a morphism of spans (for the spans (3.11)) by the commutativity of the
following diagrams.

Yn+lB e..el B Yn+lB 1k"'k1; YBI’H—I k1.1 Bn+2 m Y B
byt \L eld hn-Hl le(") llm(")
YBOY"B Y"B B YBOY"B YB B? B

B pynp e...el B PyB k1 m

(3) Since for a positive integer n, Y"~!B —"s Llul ynp jsa morphism between the spans

of (3.11), the morphism in the top row of the following diagram is well-defined by [3,
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Proposition 3.5].

101...1ul

1ol...1ul
by YBDY” IB»YBDY” YBOY" 'B —~ YBOY"B
B B
PYB b"
y"B — y"B Kkl ypn 1’"("\)‘\ J/ lpy"l’* pyre
1...1m1 }’l 61 11 Y" lB 1.. lul nB

lm(")
lL.iml  YB"H!
1...1ul / pynp
YBDY"

y"tip y"tiB = YBOY"B

bn+]

By their commutativity we infer b,41-1...1ul = (1o01...1ul) - b, Similarly, since for
n>0also Y"B "L yn-lp igqa morphism between the spans of (3.11), the morphism

in the top row of the following diagram is well-defined by [3, Proposition 3.5].

101...1m1

boer > YBOY"B 21"y poyn-ip YBOY"B —~ YBOY"" !B
B B B B
PYB ¢]7YB b1
yntlglhekly pppyr  Im®™ s 1m ™ pynp Pyn—ip
\) / yrtig el pnpg Ldml puyp
11...1m1 YB” =) PYB
1k . el...l Pyn—1p

1...Im1 Lo1ml

Y"B -~ YBOY" B YB" — = YBOY" !B
by B by, B

By their commutativity, b,-1...1m1 = (1o0l...1m1)-b, 4. It follows from these identities
and the unitality of the monoid Y that whenever b, is invertible then so is b, with the

inverse

bll
yBOY 1B 2y pryn g L ynlg _Lelmlng
B B

(4) We proceed by induction in n. For n = 0 the diagram in the claim reduces to the

diagram

b
YB—"" - YBOB
B

\LPYB

(YBOI)B——~YB
B q1

f1

whose upper half part commutes by construction (see part (2)) and the lower half part com-
mutes since f1 and g are mutual inverses (see the proof of Theorem 1.1).
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For any positive value of n, denote the top-right path in the diagram of the claim by 5n+]
and the bottom row by ¢,,+1. Then the diagram takes the form

buyi on+1
B

y"t+ip (YB)

fl..,lll

(YBONY"B
B

15y
1f...f1$ \
a qn+1 on+1
B .

(YBOD"™B o (YBOD(YB) " = (v B)
\—/

an+l

The region at the bottom left corner commutes if the claim holds for » — 1; and the commu-
tativity of the large region is proven in Fig. 4.
(5) By Theorem 1.1 g is an isomorphism without any further assumption; it is the inverse

1
of the isomorphism Y B L> (YBUOI)B . Also by is an isomorphism; the inverse of the
B

isomorphism YBEB PEZYB in [3, Proposition 3.6 (1)].

Assume that b; is iso for some [ > 1. Take the diagram of part (4) for n = 1; it says
by = q> - f11. Since f is an isomorphism by definition and b, is an isomorphism by part
(3), also g3 is an isomorphism. If / = 2 then this completes the proof. If / > 2 then take
next the diagram of part (4) for n = 2; it says (10b2) - b3 =q3 - 1q2 - ff11. All of the
occurring morphisms but g3 are known to be isomorphisms proving that so is g3. Repeating
this reasoning for all n < [ we conclude that g, is an isomorphism for all0 < n <1.

The opposite implication is proven by the same steps. Assume that g; is iso for some/ > 1.
Take the diagram of part (4) for n = 1; it says b» = g2 - f11. Since f is an isomorphism by
definition and ¢ is an isomorphism by Lemma 3.1 (3), also b; is an isomorphism. If / = 2
then this completes the proof. If / > 2 then take next the diagram of part (4) for n = 2; it
says (10b2)-b3 = g3 -1q2 - ff11. All of the occurring morphisms but b3 are known to be
isomorphisms proving that so is b3. Repeating this reasoning for all n < [ we conclude that
by, is an isomorphism for all 0 < n <. O

Example 3.5 Take S to be the (monoidal and admissible) class of all spans in the monoidal
category C of spans over a given set. For any object of the category ReflGraphMon(C) of
Example 2.2 and for any positive integer n, the morphism b, in Lemma 3.4 (2) is invertible,
see the pullback (1.4).

Example 3.6 In the setting of Example 1.3 we know from Example 3.3 that the mor-
phism g, of Lemma 3.1 (3) is invertible for any positive integer n and for any object of
ReflGraphMong (C). By the isomorphism of Theorem 2.1 this means that the morphism gy,
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ug f- 114 = 11Ug jo yooig b4

THug

q
s (A X) TuADI A
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T+up
Tr:m

q
Lty (T X) o duADd A
- em\w&
qA T
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A T9Ad .N_H_m\w 1+ufll A AT ul g A = d14ulk
T 1T
% R T: \
. (g X A (1098 1) -t AT
?v\: 5%
q q
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of Lemma 3.4 (4) is invertible for any object of PreXs(C). Then also the morphism b, of
Lemma 3.4 (2) is invertible by Lemma 3.4 (5). Since the diagram

Y"B Y"B

leyl...11
Sydyn—1p

YZ(yn—lB)2 YI’L+IB
eyuyplodl
ICY’yn_lBln.”l Teyn 15111 1831.4.111\ legl...11
Y"B (Y"B)? YB"Y"B—— > YBY"B

Synp Tk..k11...11 1m®=D1.1
b bub,
i l nn uh

PYBPyn—1
YyBOY"'B —2~ (v BOY" B)? s YBY" !B
B B

J

commutes, we conclude that the morphism in its bottom-right path—involving the equalizer
Jj as in (1.5)—is the inverse of b,,.

Let S be a monoidal admissible class of spans in a monoidal category C for which [3,
Assumption 4.1] holds. For any object (B, Y, Y Ly , Y e B, BY X vB ) of the
category PreXs(C) in Theorem 2.1, it follows by the conditions in (a’) and the multiplicativity

of Sthatthespan YB —1YB “Lp belongstoS. Then by [3, Proposition 3.6] the S-relative
pullback in the first diagram of

YyBOB 22 B BOyB 2. yB (3.14)
B B
Pyﬂl PBl lm‘kl

YB%I-B B—B
e

exists and the left vertical of the first diagram is an isomorphism. If in addition
B<L vy =Y €, thenby (a’) and the multiplicativity of S also B> £~ YB=7YB ¢

S.Hence by (POST) B <~ B2 XL yB — YB e S. We infer again by [3, Proposition 3.6]
that the S-relative pullback in the second diagram of (3.14) exists and the top row of of the
second diagram is an isomorphism.

Lemma 3.7 LetS be a monoidal admissible class of spans in a monoidal category C for which
[3, Assumption 4.1] holds and let (B, Y, Y SI1.,v - B, BY >~YB ) be an object

of the category PreXs(C) in Theorem 2.1 such that B fy—vy € S. The morphism by
in Lemma 3.4 (2) satisfies the identities

(1) br-ull =ulol and
2) by-1lul = 10oul,

@ Springer



636 G.Béhm

whose right hand sides are defined as the unique fillers of the respective diagrams

BUYB
B

=

YBOB e
B ~
;\
el

YB

YB
~
R
A

s YBOYB —2~YB
B

PYB
mkl pll m-kl

B YB B

ul el

Proof Assertion (1) follows by the commutativity of the diagrams

b b
Y2B A YBOYB Y2B A yBOYB
ull ¢1k1 B ull B
ull Y B2 m | ell lm
» / 1\* YB——— YR
YyBL-p2 "o p_ " _YB T
2

Ml
xé YBOYB ulol YBOYB

and part (2) follows by the commutativity of the diagrams

b b
Y2B A YBOYB Y2B 2 YBOYB
lul B 1ul B
1k \LPI ell \LPZ
vyl yp2 "™ _yp yB—<p_"“ _yp
v
P1 P2
10wl YBOYB frul Y BOOY B.
B B

3.2 The Composition Morphism of a Relative Category of Monoids

Proposition 3.8 Consider a monoidal admissible class S of spans in a monoidal cate-
N
gory C such that [3, Assumption 4.1] holds. Take an object B =i> A of the category

t

ReflGraphMong (C) of Theorem 2.1 such that the following properties hold.

e BL A=—A belongs to S
e the morphism g3 of Lemma 3.1 (3) is invertible.

The following assertions hold.
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(1) There is at most one monoid morphism d rendering commutative

(2) The monoid morphism d of part (1) exists if and only if the following diagram commutes
(recall that q> is invertible by Lemma 3.1 (3)).

1 (ol (1oi 3
AAOT) —2 o 42 CODU00 sy apa — 2 anna
B B B B
IPA\L ipAl
A2 A A2
m m

. . . ‘12_1 ral 5 m
Moreover, in this case d is equal to ALJA — (AOI)A — A~ — A.
B B

S
(3) Whenever the monoid morphism d of part (1) exists, B>=i> A LA AEA isan S-
!

relative category in the category of monoids in C.

Proof The proof is built on [3, Corollary 1.7].
(1) Since the morphism ¢, in Lemma 3.1 (3) is invertible, we know from [3, Corollary
1.7] that there is at most one monoid morphism rendering commutative

AT A A 1B 4 A. (3.15)
B 7

Since a monoid morphism d as in part (1) obviously renders commutative (3.15), this proves
its uniqueness.

(2) By [3, Corollary 1.7] commutativity of the diagram of part (2) is equivalent to the
existence of a (unique) monoid morphism making (3.15) commute. Since a monoid morphism
d in part (1) provides such a morphism, its existence implies commutativity of the diagram
of part (2).

In order to prove the converse implication, we show that any monoid morphism d making
(3.15) commute renders commutative also the diagram of part (1). Recall from [3, Lemma 1.2]
that the invertibility of g in Theorem 2.1 (b) implies that p4 and i are jointly epic morphisms
of monoids. Hence if d makes (3.15) commute then it does so the left hand side of the diagram
ofpart (1) by d-(1oi)-i =d-(iol)-i =i.

The stated expression of d immediately follows from [3, Corollary 1.7] (see also (3.3)).

(3) In order to see that the monoid morphism d in part (1) is a morphism of spans, we
use that by the invertibility of ¢, there are unique morphisms rendering commutative the

iol

tA
B
\
i
A
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respective diagrams

ADI%—A%—ADA%A and ADI%—A%—ADA%A

N SN S

see [3, Corollary 1.7]. Now s - d obviously makes the first diagram commute and so does

ADA 2 A S B by the commutativity of
B

AD -2 A9 A0A  and A2 ApA

B B B
s \L . ¢ P2 k ¢ p
B LS A A
\K—/_/ is ix
B B
Thus they are equal. Similarly, both 7 -d and ACOA PL A B render commutative the
B

second diagram proving that they are equal.

The to-be composition morphism d in part (1) admits the unit i by construction. Its
associativity follows again by [3, Corollary 1.7] since by the invertibility of g3 there is at
most one morphism rendering commutative

loioi

ACp A p 1ot ADADIA iotol ADIA.
B B

R S

Since both d - (do1) and d - (10d) do so by the commutativity of

loioi , 03

ADT 24 A A

loioi , 33

ADI%—A AR

iolol o3

ADAS ool 452 A 45

Al
B N N N L
10§ dol 10§ 1od dol 1od
o Lo \ |
ALA ALA ALA A ——

. ADA
NFONE RO

this proves their equality (modulo the omitted associativity isomorphism in [3, Proposition
3.6)). ]

Proposition 3.9 Consider a monoidal admissible class S of spans in a monoidal category
C such that [3, Assumption 4.1] holds. Between S-relative categories in the category of
monoids in C for which the morphisms qy in Lemma 3.1 (3) are invertible, any morphism of
reflexive graphs of monoids is in fact an S-relative functor.

s

Proof Take S-relative categories B =i> A <4 AI:]A and B' =i/ A’ <— A’DA’
t t’
as in the claim. We need to check the compatibility of any morphism of reflexive graphs
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(B LAl ) with the composition morphisms d and d’. The first diagram of
P d
(AODA — A? ————= (AQA)? —> ADA ADA —= (ADDA —= A> = A
2 _

ral (loi)@i ol B B B g B PA
(aol)a \L aa \L (ava)(ana) lamu ada \L \L (aol)a aa a
, q/—l parl

parl 10i’)(i'ol) /
(A/E!I)A/$—A/2%(A/D/A/)2LA/D,A/ A/E!A/Z%-(A/E!I)A/$-A/2 Mmoo
B B B N

75 d

commutes since a Oa is multiplicative by [3, Proposition 3.7 (2)] and by the functoriality of
[J; see [3, Proposition 3.5 (2)]. It is used to prove the commutativity of the second diagram.
O

3.3 The Equivalence Between Relative Categories and Crossed Modules of Monoids

Theorem 3.10 Consider a monoidal admissible class S of spans in a monoidal category C
such that [3, Assumption 4.1] holds. Use the same notation S for the induced admissible
class of spans in the category of monoids in C from [3, Example 2.8] (also satisfying [3,
Assumption 4.1] by [3, Example 4.4]). The following categories are equivalent.

CatMons (C) whose

S
. . . -~ d . L
objects are S-relative categories B =i> A <— AIEA in the category of monoids in
'
C such that the morphisms q, of (3.4) are invertible for any positive integer n.
morphisms are S-relative functors in the category of monoids in C.

Xmods (C) whose
objects consist of monoids B and Y, monoid morphisms Y 1 and Y X B and a

distributive law BY > Y B subject to the following conditions.

@) BLyY—Y €S Y—Y %1 c¢Sand B—B—B €.

b’) el-x =leandm-kl1-x =m-1k.

(c’) The morphism f of Theorem 1.1 (c’) is invertible and the morphisms b, of
Lemma 3.4 (2) are invertible for all positive integers n.

(d’) Regarding Y B as a monoid via the structure induced by the distributive law x, the
following diagram commutes.

ullluu

bob
yBy “ML (y2py2 2 (yBOYB)? — "~ YBOYB
B B

ui |

Y2B YB Y2B

ml ml

morphisms are pairs of monoid morphisms ( B Lop LY >y ) such thate'-y = e,
k'-y=b-kand x'-by = yb-x.
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Proof Tt follows by Propositions 3.8 and 3.9 that CatMongs(C) is a full subcategory of
ReflGraphMong(C) and obviously Xmods(C) is a full subcategory of PreXs(C). Below
we show that the mutually inverse functors of Theorem 2.1 restrict to functors between these
subcategories thus establishing the stated equivalence.

N s
Regarding an object B =i> A <4 AOJA of CatMong(C) as an object B =i> A
t B '

of ReflGraphMong(C), the functor in the proof of Theorem 2.1 takes it to the object
(B, AT, ADI Ly, ADI LA LB, B(ADID) LN AN (ADDB ) of the
category PreXs(C); we claim that it is in fact an object of Xmods(C).

It satisfies the condition B <— A <% Agl — A € SbyLemma 2.5.

From Lemma 3.4 (5) we know that the morphism b, of Lemma 3.4 (2) is invertible if and
only if the left column of the commutative diagram

(goDg™""!

((AEI)BEI)((A%I)B)E"_I (ATDA 7!
P(ADBI)Bl\L pAlJ/
On—1
(AN B((ACIHB) 7" 1 AATT!
B B
(IDuIDn-Dul)(ulDl)\L “D"D"'D"WD‘)l an
On ,On
(AODB) 7> 1 (A2
B
mi ml
((AODB) " A"
B an

is invertible. Recognize the isomorphism g, of Lemma 3.1 (3) in the right column. Since
also the rows are isomorphisms by assumption, so is the left column and hence b,. This

N
also shows that the morphism of Lemma 3.1 (3) for the reflexive graph B >=i> A , and the
t

morphism of Lemma 3.4 (4) for the corresponding object (B, AQI, py,t-pa,q~"
B

m-ipy)
of PreXs(C), differ by the isomorphisms of the top and bottom rows (justifying our use of
the same symbol ¢, for them).

The proof of the commutativity of the diagram in part (d’) requires some preparation. The
commutativity of

b qq
2 (AONBOAOIB — ALA
B B B B
"2 Ve

(AO2B — (AONAB — (AONAB 2 (an0nB? — "~ (a0nB —21—~ A
B Ipal™ B B B B

}‘\ M

(AO)A?
B

1t

(AOHA —— ALJA
B 92 B
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by qoq
(AghBO(AQHB AQA
B B B B
711 ¢p2 ¢p2
A

V4
(AgD?2B (A B
B B

prl
pr sz
(AgDhA AQA
B B

lg 92

proves (qOq) - by = g2 - 1q. (Here the bottom-right region of the first diagram commutes
since the lower half of the diagram of (3.9) commutes and the bottom-right region of the
second diagram commutes since the lower half of the diagram of (3.10) commutes.) By the

associativity of the monoid A and the multiplicativity of A/ P4 A also the following
B

diagram commutes.

lq
T
(AODN?B —— (AN A? —— (AODA
B 1pai B Im B
ypall | pal
. A3 1m A2
\Lml \Lm
AONB — 2 o A2 " A
B \—/
q

With the help of these identities and Lemma 3.7, and using that the region marked by (x)
commutes by Proposition 3.8 (2), the diagram of Fig. 5 is seen to commute. This proves that
the stated object belongs to Xmods(C) indeed.

In the opposite direction, consider an object (B, Y, Y L Y LY B, BY X vB )
of Xmods(C) as an object of PreXs(C). The functor in the proof of Theorem 2.1 takes it to
el
the object B =—u1> Y B of ReflGraphMong(C); we claim that it can be seen as an object
m-kl
of CatMong (Q).

By Lemma 3.4 (1) the span B 2 g2l yp—vyp belongs to S.

The morphism ¢, of Lemma 3.4 (4) is invertible for all positive integers n by
Lemma 3.4 (5).
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(.p) 1ed ur weierp oy jJo Aanenwwo) b4

q w q w q
q.(100v) : qa(igv) : q.(100v)
o
q
b1 =P &V ~va v(rgv)
w %~RH %ﬁﬁ
z q q
1= V(oY) —— Vv @ V < &V < v I0OV)
qmv% (%) <&H%
q w q (ro1)(10%) vd a
vov vVOv) - ¥ —— (IOV)V van
x&w‘\ (bib) (bib) \ﬁ (Tno1)(10TR) bb H AH/
g g q g g q - g g g g
a(rov)og (1ov) w g (10v)Dg(10V)) 57, «(g(10v)) < (g (10V)) T (rov)a(iov)

it

pringer

as
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el
By Proposition 3.8 (2) and (3), the reflexive graph of monoids B =—ui> Y B extends
m-k1
to an S-relative category in the category of monoids in C by the commutativity of

1

(ulol)(1oul) 5 m a
(YBOYB) —= YBJYB —= (YBOI)YB
B B B

11p
Y B(Y BOI) —22 (v B)2
B

111u ulllul byby
11
YBY (r2B)? by! i
pyp Lx ) pypll
111
" Y2B y2p ——— v2B
11ul
1m ml / 11%1
(YB)? Y2B? YB Y22 (YB)2.
1)(1 mm mm le

The region at the top-right corner is the commutative diagram of Lemma 3.4 (4) forn = 1.
The region bounded from below by the curved arrows commutes by Lemma 3.7. The region
marked by (d’) coincides with the diagram of part (d”) hence it commutes. O

Example 3.11 As in Example 1.2, take the (evidently admissible and monoidal) class of
all spans in the category C of spans over a given set X. Then the equivalent categories of
Theorem 3.10 take the following forms.

CatMon(C) whose

objects are the double categories with the object set X and only identity horizontal
morphisms and such that the morphism (1.3) is invertible. (This last condition holds e.g.
if the vertical edge category is a groupoid.)

morphisms are the double functors which are identities on the objects (and hence on the
horizontal morphisms).

Xmod(C) whose
objects consist of categories B and Y with the common object set X such that Y is totally

disconnected (in the sense of [4]); an action (see Example 1.2) BOY Y and an
X

identity-on-objects functor ¥ —> B such that

k(bey)-b=b-k(y) and (k(y)>y)-y=y-y
for all morphisms b in B and y, y’ in Y for which s(b) = t(y) = t(y').
morphisms are the same as the morphisms in PreXMon(C), see Example 2.2.

Note that these equivalent categories have equivalent full subcategories whose objects are
such that the category B is a groupoid; and other equivalent full subcategories whose objects
are such that both of the occurring categories are groupoids. In the latter case these are the
category of categories in the category of groupoids; and the category of crossed modules of
groupoids in [5, Definition 1.2], respectively.

Example 3.12 In the setting of Example 1.3, the equivalent categories of Theorem 3.10 take
the following explicit forms.
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CatMongs (C) whose

S
. . . < d . .
objects are S-relative categories B —i> A <— A%JA in the category of monoids
1

in C—that is, in the category of bimonoids in M—such that the morphism ¢ of Theo-
rem 1.1 (b) is invertible.
morphisms are S-relative functors in the category of monoids in C—that is, in the category
of bimonoids in M.

Xmods(C) whose
objects consist of a bimonoid Y and a cocommutative bimonoid B together with a left

action BY e Y which makes Y both a B-module monoid and a B-module comonoid

and a bimonoid morphism Y £ B for which the following diagrams commute.

y S y2 S y2  pydlpry 1o pypllyp y23Llys 1o y3kll gy

| - i

y? — > BY B2 B B2 Y Y2

The third condition appears in [25, Definition 12 (v)] under the name Peiffer condition
(motivated by the terminology for groups).

morphisms are pairs of bimonoid morphisms ( B Lo LY v ) such that k" -y =
b-kand!-by =y-I.
These equivalent categories are equivalent furthermore to the full subcategory of

N
ReflGraphMon g (C) of Example 2.3 for whose objects B =i> A the following diagrams
13

commute.
A s A2 ¢ A2
Sl \Ltl
A? BA
t1
(3.16)
ipal -1
A(ADI) *>A2(ADI)*>B(ADI)A DA A3 M A2 1 ADDBA
B

IPAJ/ lmasl

A? A A?
m m
(3.17)
The above description of CatMons (C) requires no further explanation. In the description
of Xmods(C) we need to show that the third diagram (the Peiffer condition) is equivalent to
the diagram of Theorem 3.10 (d’) in the current setting. The path on the right hand side of the
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diagram of Theorem 3.10 (d’) appears as the left bottom path of the commutative diagram

dypl k1111

YBY ————> (YB)%Y

ullllluy
ullluu $ullullluu
8,2 ,111
);

B2YBY

25 lkley 11111
(v?By? ————— > (v?B)® —————> YB?YBY?B mill
=1
baby by llmlllll
1111
(YBOYB)Y? — > (YB* ——— > (vB)2r2B <" (BY)?
B JjJ I111legll

l/“cYB,Y“ \Llcyg_y

leypypll yBY2BY B <1 pyop

J/llllll \Llll

llepllll wllluu
Y2B

(YBY* ——— > Y3BYB

m
ilxllxl l/“]/
1legepgllll ullulu
_—

(Y232)2 Y4BZ
immmm mm
J 2 legll 2
YBOYB ——— > (YB) Y“B YB
B ml

—1
b2

(in which x stands for the distributive law BY > B2y & BYB 'L Y B of Example 1.3).
Hence it can be replaced by the top right path yielding the equivalent form

Sypl
YBY 2 (yp2y — KL _ paypy ML (pyy? (3.18)
1831¢
1‘
Y BY rer
mi BY2B
(YB)? It
1ty
Y2B YB Y2B
ml ml

of the diagram of Theorem 3.10 (d’). The first diagram of Fig. 6 shows that if the diagram of
(3.18) commutes then the Peiffer condition in the above presentation of Xmods(C) holds.
The opposite implication is proven by the second diagram of Fig. 6.

In order to justify the further equivalent characterization of these categories as a full
subcategory of ReflGraphMon 5 (C), we need to see the equivalence of the diagram of Propo-
sition 3.8 (2) in the current setting and the diagram of (3.17). This follows by noting that the
top row of the diagram of Proposition 3.8 (2) in the current setting appears in the left-bottom
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A~ A~ — AF A~y A A) ~— o~ A eA ~— Ad A )
%EL %ﬂ :::% %ﬂ i mo
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path of the commutative diagram

A(A%I) L Az(ADI) le A(AODA
w\ 1”% im
11
1pa AZ(AD1)2 pabt e . a3 B(AODA
111 B
\LUPAPA i[“ \LIPAI
A2 B g BA? BA2
\Lzllsy J{ill \Lin
Gon(oi) BA2B A3 ke A3
(ADA)2 JJ A4 lel A4 ml
B mm
m A?
/ g1
ADIA (AONBOA —— = (AD)BA
B g 'ol B B J B

i]{?[}]

(AODA
B

—1
h]

hence it can be replaced by the top-right path. (The expression of h;l in the bottom-right
corner was computed in Example 3.3.)

In the particular case when M is the cartesian monoidal category of sets, the current
example yields an equivalence between the category of those internal categories

N

B=i=A<" AT
t

in the category of ordinary monoids for which the split epimorphism (i, s) satisfies the

Schreier property of [20] (see Example 1.3), and the category of crossed semimodules in

[20]. Hence it extends the main result of [20].

Proposition 3.13 The equivalent categories of Example 3.12 have equivalent full subcate-
gories as follows.

N
o The full subcategory of CatMons(C) for whose objects B —=i> A <4 AOA the
=~ B

t

bimonoid B in M is a Hopf monoid.

e The full subcategory of Xmods (C) for whose objects (B,Y, BY Ly , Y Ly ) the
bimonoid B in M is a Hopf monoid.
N
e The full subcategory of ReflGraphMon g (C) for whose objects B =i> A the following
t
conditions hold.

— B is a Hopf monoid (with antipode 7)
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—tl-§=tl-c-§
— for the morphisms

Ti= A2 L apliap L2 ng,

Ti=ataALpalpailang

the following diagram commutes.
T
A2 20 A2 42 (3.19)

|

A2 A
m

Proof The only ingredient that requires a proof is the equivalence of diagrams (3.17) and

(3.19) in the case when B has an antipode z. The proof will repeatedly use the identity on
5 encoded in the following commutative diagram.

A2 o A
1_s)$ K{\ sJ/
A2 A3 116 A4 Icl A4 mm Az
\Lllss 1s
Ie He/ p2gr ™ Ap
¢llc
A3 151 A4 11ss A282 1z -
s1l11s \Lllzz
A2B2 "™ . AB
151 \Lllii 1,\L
A4 mm A2
¢lml mi
A3 A3 A’B A’B > A3 A2 A
lc 11s 11z 11i ml m

(3.20)
Recall from [24] that if B has an antipode z then A/ 24 Aisa split monomorphism
B

—1

in M; a retraction is provided by g4 := A L (AOB LY AOI . Indeed,
B B

8A"PA = le.q_]'q~1u= le-1u = 1.

On the other hand, since in Proposition 1.5 the inverse ¢ ~! was constructed as the unique
solution of pa1-g~' = ¥ s-8, also the equality

pa-ga=pa-leqg  =lepal-g ' =1e-Fs:6=75

holds, proving that T s idempotent.
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Pre-composing both paths around (3.17) with the split epimorphism 1g4, we obtain the
equivalent diagram

A2 81 A3 le 43 tl1 BA2 ill

A3 A?
1ga

11ga Igal 151
1 o Ic 111 ipal 3
A(AOID) —— A“(AQ]) — A(AODA — B(AONHA —> A
B B B B

15 lm Kg!

A2
Ipa

\*3;1
A2

A A2,
m m
(3.21)

Its rightmost region commutes by (3.20) and the fact that 5 is idempotent.

The morphism around the right hand side of (3.21) occurs as the left-bottom path of the
commutative diagram

A2 §1 A3 1c A3 111 BA2
Bli ilél
A3 O 44 118
lci $llc
A3 §11 A4 lcl A4
zui inu izm il
BA? B2A? (BA)?
illi iiill \L““
A3 §11 A4 lcl A4
\Lllsl

ml \Lllzl \Ln‘z_

A2 (3.20)

Im

ml

A2,
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Hence it can be replaced by the top-right path yielding the equivalent form
A28 43t pao i1l A3l 43 157 A3 (3.22)
15 \L \L 1m
A2 A AZ
m m
of (3.21).

Finally, observe that for any morphisms A2 g A thefollowing diagrams are equivalent:

11
. Ba?

ill

A2

A2 A3 BA2 BA2 A3
A AZ,
m
(3.23)

Indeed, the first diagram below shows that if the first diagram of (3.23) commutes then so
does the second one; and the opposite implication follows by the second diagram below.

11

ill

t11

i11
A2 2o A3 DA oA oo A3 A2 O 43 ML g A3
/|
/// 51 151 151 //J/Bl 151 IBI\L
/A3 BIL yq ML o3 1L g i1l g //A3 L g4 ML g3 L 44
11 111 1111 v J/[H \le lm\L "’
t 13 1
511 111
BA2 811 g2a2 AL g0 il b0 BA? =~ B2A2 S5 AB A2
_—
1z11  1z11
\ mll \ B2 42 L i111 ABA2
ell BA2 il ST \Lmn
\ ull ill \\\ BA2 1i11
\ ull mll \\ ull i
A2 A3 A4 \\\ l
' 11 mll
A2 u A3 A4
14 114
1y uwi
| !
A2 <" 4
A2 Eml A3
1
¢ m v lm\L
A2 2
ul m ul m A
m \Lﬂl
A A A A
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Applying the equivalence of the diagrams of (3.23) to ¢ := A2 £A2 25 A22 A and
—
v = A2 1S A2 " A we obtain from (3.22) the equivalent form
71
s
81 111 z11 i1l ml
\Lll? \Ll?
c A3 ml A2
¢lm
A? A?
Tﬂt_i lm m
A? A
m

which is equivalent to (3.19) by the naturality of the symmetry c.
Note that by the equalities

Pl 8A =€ U D[ 8A =€ S PA-8A=E 5 =¢&,

the above morphism g4 in the splitting of the idempotent morphism 5 can also be obtained
as the unique filler of the first diagram in

T
N\ 84 N
N\ N\

A0 o I0A 245 A
B B
e e
]’A\L u ml !
A—=B I ———B.

The symmetrically con(s_tructed filler of the second diagram above yields a splitting of the
idempotent morphism ¢ in the ambient category M. So commutativity of the diagram of
(3.19) is equivalent also to the commutativity of

(ADID(I0A) PAPA p2 €L p2 (3.24)
B B
pApAl l’"
A? A.
m

m}

In the particular case of Proposition 3.13 when M is cartesian monoidal (e.g. it is the
category of sets), ALJ P4 A is the kernel of the monoid morphism s and I0JA Ly
B B

is the kernel of the monoid morphism ¢, see Example 1.4. Hence in this case the equivalent
diagrams of (3.19) and (3.24) say precisely that the kernels of s and  commute in the monoid
A.

The equivalent categories of Proposition 3.13 have equivalent full subcategories in whose
objects both occurring bimonoids are Hopf monoids, and other equivalent full subcategories
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in whose objects they are both cocommutative Hopf monoids. In this way, Proposition 3.13
includes [25, Proposition 11] and [25, Theorem 14] about the equivalence between the cate-
gory of so-called Cat! -Hopf algebras and the category of crossed modules over Hopf algebras;
hence in particular the equivalence between the category of Catl-groups and the category of
crossed modules over groups in [6, Theorem 1]—where it is also referred to unpublished
works by Verdier and Duskin—, [17, Lemma 2.2] and [14, Section 3.9] (whose language is
most similar to ours).
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