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Abstract
This is the first part of a series of three strongly related papers in which three equivalent
structures are studied:

– internal categories in categories of monoids, defined in terms of pullbacks relative to a
chosen class of spans

– crossed modules of monoids relative to this class of spans
– simplicial monoids of so-called Moore length 1 relative to this class of spans.

The most important examples of monoids that are covered are small categories (treated as
monoids in categories of spans) and bimonoids in symmetric monoidal categories (regarded
as monoids in categories of comonoids). In this first part the theory of relative pullbacks is
worked out leading to the definition of a relative category.

Keywords Relative pullback · Internal category · Crossed module

Introduction

Loosely speaking, a crossed module of a group [44] looks like a normal subgroup but it needs
not be an inclusion in general. Its significance stems from its relation to various structures. A
strict 2-groupmeans an internal category in the category of groups. Its internal nerve is a sim-
plicial group whose Moore complex is concentrated in degrees 1 and 2. The Moore complex
is the corresponding crossed module. These constructions establish, in fact, equivalences
between these three notions. Via the above links, crossed modules found diverse applica-
tions: in combinatorial homotopy, differential geometry, the theory of classifying spaces, in
non-abelian cohomology and even in (mathematical) physics, in topological and homotopi-
cal quantum field theories [2,4–6,9–11,15,29,38–41,43–46]. Nice surveys can be found in
[33,37].

A proof of the equivalence between crossed modules and strict 2-groups can be found
in [13], where it is referred also to an unpublished proof [16]. Based on purely category
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642 G. Böhm

theoretical arguments, using the semi-abelian structure of the category of groups, in [26]
George Janelidze gave another concise and highly elegant proof. An extensive analysis in the
semi-abelian context was carried out in [42]. Semi-abelian categories include, in addition to
the category of groups, also the category of Lie algebras, categories of varieties of �-groups
in the sense of [25], the category of Heyting semi-lattices, the dual of the category of pointed
sets and much more. Thus by working in an arbitrary semi-abelian category, not only a more
transparent proof is obtained, but also a much wider generality, also unifying earlier results
in [27,35].

Groups can be thought of as the Hopf monoids in the cartesian monoidal category of sets.
Indeed, in any monoidal category one can discuss monoids (i.e. objects equipped with an
associative and unital multiplication). Ordinary monoids are re-covered as monoids in the
cartesian monoidal category of sets. Dually, one can define comonoids in arbitrary monoidal
categories as monoids in the opposite category. In cartesian monoidal categories every object
has a unique comonoid structure so this gives nothing interesting in the category of sets.
Whenever a monoidal category is braided as well—that is, there is a natural isomorphism
allowing to switch the order of the factors in the monoidal product—both monoids and
comonoids of this monoidal category constitute monoidal categories. Using this fact, one
can define bimonoids as monoids in the category of comonoids; equivalently, as comonoids
in the category of monoids. Again, if the monoidal structure is cartesian (e.g. in the cate-
gory of sets) this gives nothing new: bimonoids coincide with monoids. Hopf monoids in
braided monoidal categories are distinguished bimonoids for which a canonical morphism is
invertible. Hopf monoids in the category of sets are precisely the groups. Hopf monoids have
been studied most intensively in the category of vector spaces where they are known asHopf
algebras.

Motivated by various applications, some research on crossed modules of Hopf algebras
[19,31] and of more generalHopf monoids [1,20] began. In these papers, crossed modules of
Hopf monoids were related to category-like objects in the category of Hopf monoids. Most
recently, after making this paper public in the arXiv, in [23] the category of cocommutative
Hopf algebras was proven to be semi-abelian; and therefore from Janelidze’s theorem [26]
the equivalence between internal categories and crossed modules of cocommutative Hopf
algebras was derived. In [18] crossed modules over cocommutative Hopf algebras were
related to cocommutative simplicial Hopf algebras with length 2 Moore complex (using
arguments based on direct computation).

While Janelidze’s approach in [26] via semi-abelian categories gives a very short proof and
a very clear explanation of the equivalence between internal categories and crossed modules,
it is not directly applicable to categories of Hopf monoids in arbitrary braided monoidal
categories. While groups constitute a semi-abelian category, general Hopf monoids do not
(their category is not even protomodular by [21]; see however [22,23]). In order to obtain a
theory which is conceptually as clear as [26], but has a wider application, in the current series
of papers we develop a theory dealing with monoids in general—not necessarily cartesian—
monoidal categories. In this way we recover the following classes of examples:

• The classical notion of crossedmodules of groupswas generalized tomonoids in [34].Our
theory covers it if applied to the cartesian monoidal category of sets. (The generalization
in [32], however, seems to be beyond our scope.)

• In the paper [12] one can find the definition of crossed modules of groupoids, which is
generalized to any categories in a straightforward way. Regarding small categories as
monoids in categories of spans, in our theory we re-obtain the crossed modules of small
categories as a particular case.
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Crossed Modules of Monoids I: Relative Categories 643

• In [20] one can find the definition of crossed modules of Hopf monoids in symmet-
ric monoidal categories, which is again smoothly generalized to bimonoids. Regarding
bimonoids as monoids in categories of comonoids, in our theory we re-obtain the crossed
modules of bimonoids (so in particular of ordinary monoids in the category of sets) as a
particular case. Placing the results of [20] in our more general framework, we also find a
conceptual reason why they only hold in a symmetricmonoidal category, what obstructs
the generalization to an arbitrary braiding.

Internal categories can be defined in arbitrary categories possibly admitting no pullbacks
[30, Chapter III Section 6]. Dealing with such a category C, one may use the Yoneda embed-
ding of C into the presheaf category C∗(of functors Cop → set); and consider a category
object in C∗ whose object of objects and object of morphisms are representable functors.
This classical notion, however, turns out not to be useful for our purposes. Hence in carrying
out our programme, the first question to understand is what to mean by an internal category
in categories where arbitrary pullbacks may not exist (note the lack of pullbacks in categories
of comonoids of our main interest). Resolving this problem, in this first part of the series
we propose some ‘admissibility’ axioms on a class of spans and define pullbacks relative to
such a class S. Assuming that relative pullbacks of those cospans whose ‘legs are in S’—a
terminology to be made precise later in Definition 2.10—exist, as they do in the examples in
our mind, we obtain a monoidal category whose objects are the spans with their legs in S.
An S-relative category is meant then to be a monoid therein.

Working in a monoidal category C, we may require the compatibility of our admissible
class S of spans with the monoidal structure. With this compatibility at hand, S induces an
admissible class of spans in the category of monoids in C; hence relative categories in the
category of monoids are available. In Part II of this series [7] their category is shown to be
equivalent to the category of relative crossed modules of monoids in a suitable sense; and in
Part III [8] to the category of relative simplicial monoids of so-called Moore length 1.

Extending the picture on internal categories and crossed modules (of groups) recalled
above, suitable nerves of Catn-groups (i.e. n-fold categories in the category of groups) are
simplicial groups whose Moore complex is concentrated in degrees up-to n + 1 and these
Moore complexes are known as n-crossed modules. Again, these correspondences are in
fact equivalences [14,36]. These equivalent viewpoints are both of conceptual and practical
use: each of them gives a different insight and interpretation of the same thing; and they
provide the possibility for finding the (sometimes technically) smoothest approach in the
applications [14,17,24,28,36]. We believe that our methods should be suitable to obtain an
analogous theory of higher relative categories and crossed modules of monoids what we plan
to discuss elsewhere.

1 Preliminaries onMonoids in Monoidal Categories

In this preliminary section we recall—without, or with very sketchy proofs—some known
facts about monoids that will play important roles in our later constructions; in particular
Part II [7]. Throughout the section M denotes a monoidal category whose monoidal unit
is I and the monoidal product is denoted by juxtaposition. For the monoidal product of n
copies of the same object A also the power notation An is used. The monoidal structure is not
assumed to be strict but the associativity and unit coherence isomorphisms are not explicitly
denoted. Whenever M is assumed to be braided monoidal, its braiding will be denoted by c.
Composition of morphisms f : A → B and g : B → C is denoted by g· f : A → C and
identity morphisms are denoted by 1.
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644 G. Böhm

Definition 1.1 A monoid in M consists of an object A together with a multiplication mor-

phism A2 m
A and a unit morphism I

u
A such that the associativity condition

m ·m1 = m ·1m and the unit conditionsm ·u1 = 1 = m ·1u hold (note the omitted coherence

isomorphisms). A monoid morphism is a morphism A
f

A′ for which f ·m = m′· f f and
f ·u = u′.

Lemma 1.2 Two monoid morphisms A f C Bg in M are jointly epimorphic mor-
phisms of monoids whenever the induced morphism

q := AB
f g

C2 m
C (1.1)

is an epimorphism in M.

Proof If x· f = y· f and x·g = y·g for some parallel monoid morphisms x and y, then also
x·q = y·q . ��

Definition 1.3 A distributive law in M consists of two monoids A and B together with a

morphism BA
x

AB such that the following identities (using the notation m for both
multiplications and u for both units) hold.

x·m1 = 1m·x1·1x x·u1 = 1u

x·1m = m1·1x·x1 x·1u = u1

Lemma 1.4 For any distributive law BA
x

AB, there is an induced monoid structure on

AB with the unit I
uu

AB and the multiplication (AB)2
1x1

A2B2 mm
AB. For

this monoid both A
1u

AB and B
u1

AB are monoid morphisms.

Lemma 1.5 Consider monoid morphisms A f C Bg such that the induced morphism
q of (1.1) is invertible. Then the unique monoid structure on AB for which q is a monoid
morphism is induced by the distributive law

BA
g f

C2 m
C

q−1

AB.

Lemma 1.6 For a distributive law BA
x

AB and a monoid C, there is a bijective corre-
spondence between the following data.

(i) monoid morphisms AB
c

C (where the monoid structure of AB is induced by x)

(ii) pairs of monoid morphisms ( A
a

C , B
b

C ) such that m·ab·x = m·ba.

Proof A monoid morphism c in part (i) is sent to the pair (c·1u, c·u1). Conversely, a pair
(a, b) in part (ii) is sent to m·ab. ��

Corollary 1.7 Consider monoid morphisms A f C Bg such that the induced mor-
phism q of (1.1) is invertible. For any monoid D, there are mutually inverse bijections below.
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Crossed Modules of Monoids I: Relative Categories 645

(i) The map sending a monoid morphism C
c

D to the pair of monoid morphisms
(c· f , c·g) rendering commutative the following diagram.

BA
g f

g f

C2 m
C

q−1

AB
f g

C2

cc

C2

cc

D2
m D D2

m

(ii) The map sending a pair of monoid morphisms ( A
a

D , B
b

D ), satisfying m·ab·
q−1·m·g f = m·ba, to the monoid morphism C

q−1

AB
ab

D2 m
D .

Proof The top row of the diagram of part (i) is a distributive law by Lemma 1.5. Hence
Lemma 1.6 yields a bijection between the pairs of monoid morphisms as in (ii) and the
monoid morphisms AB → D. Composition with the monoid isomorphism q−1 yields then
the stated bijection with the monoid morphisms C → D. ��

2 Admissible Classes of Spans

We are interested in categories—like the categories of comonoids in symmetric monoidal
categories, see the Introduction—in which general pullbacks may not exist. Instead, we will
assume the existence of certain relative pullbacks with respect to some distinguished class
of spans. By this motivation in this section we investigate the expected properties of such a
class.

Definition 2.1 A class S of spans in any category C is said to be admissible if it satisfies the
following two conditions.

(POST) If X A
f g

Y ∈ S then X ′ X
f ′

A
f g

Y
g′

Y ′ ∈ S too, for any

morphisms X
f ′

X ′ and Y
g′

Y ′ .

(PRE) If X A
f g

Y ∈ S then X A
f

B
h h

A
g

Y ∈ S too, for any

morphism B
h

A .

Example 2.2 The class of all spans in a category is clearly admissible.

Example 2.3 For a monoidal categoryM, let C be the category of comonoids inM (that is, the
category of monoids in the monoidal categoryMrev with the opposite composition). Assume
that M is braided monoidal (with braiding c). Then C inherits the monoidal structure of M:
the monoidal unit I is a trivial comonoid with comultiplication I ∼= I 2 provided by the unit
isomorphisms, and the monoidal product AC of any comonoids A and C is a comonoid via

the comultiplication AC
δδ

A2C2 1c1
(AC)2 induced by the comultiplications A

δ
A2

and C
δ

C2 .
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646 G. Böhm

Define S to contain precisely those spans X A
f g

Y in C for which the composite

morphism A
δ

A2 f g
XY is a comonoid morphism; equivalently, the equality c· f g ·δ =

g f ·δ holds.
For any comonoid morphisms f ′ and g′ of respective domains X and Y , the monoidal

product f ′g′ is a comonoid morphism. Then so is f ′g′· f g ·δ for any X A
f g

Y ∈ S,
so that condition (POST) is satisfied.

On the other hand, for any comonoid morphism h of codomain A, f g·δ·h = f g·hh·δ is a
comonoid morphism so also (PRE) holds.

The current example can be considered in the particular situation when M is a cartesian
monoidal (so symmetric monoidal) category. Then every object has a unique comonoid
structure; that is, C and M are isomorphic. In particular, every comonoid is cocommutative
(that is, the comultiplication δ and the symmetry c satisfy c·δ = δ). Then the class S of spans
above is the class of all spans in C ∼= M.

Lemma 2.4 LetS beanadmissible class of spans in anarbitrary categoryCand let A
i

B
s

be a split epimorphism in C (that is, s·i = 1).

(1) The following assertions are equivalent.

(a) B B B ∈ S.
(b) X B

f g
Y ∈ S for any morphisms f and g of domain B.

(c) A B
i

B ∈ S.

(2) The equivalent assertions of part (1) hold whenever A A
s

B ∈ S.
Proof Assertion (a) of part (1) implies (b) by condition (POST) on S, post-composing by f
on the left and by g on the right. Assertion (b) trivially implies (c). Finally, (c) implies (a) by
(POST), post-composing on the left by s and using s·i = 1. The condition in part (2) implies
(c) of part (1) by (PRE), pre-composing by i and using s·i = 1 again. ��
Definition 2.5 AclassS of spans in amonoidal categoryM is said to bemonoidal if it satisfies
the following two conditions.

(UNITAL) For any morphisms f and g whose domain is the monoidal unit I ,

X I
f g

Y ∈ S.
(MULTIPLICATIVE) If both X A

f g
Y ∈ S and X ′ A′f ′ g′

Y ′ ∈ S then also

XX ′ AA′f f ′ gg′
YY ′ ∈ S.

A class of spans satisfying (POST) is unital if and only if I I I ∈ S.
Example 2.6 The class of all spans in a monoidal category is clearly monoidal.

Example 2.7 For a braided monoidal category M (with braiding c) let C be the category of
comonoids in M. It is monoidal via the monoidal product of M, see Example 2.3. Below we
show that the class S in Example 2.3 of spans in C is monoidal whenever the symmetry is
a braiding; that is, c−1 = c. (This explains in a conceptual way why in [20] it is dealt only
with symmetric monoidal categories not with arbitrary braidings.)
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Crossed Modules of Monoids I: Relative Categories 647

By the coherence of the braiding, the comultiplication δ of I satisfies c·δ = δ. Then
I I I ∈ S, and so the unitality of S follows by its property (POST), see Example
2.3.

For any X A
f g

Y ∈ S and X ′ A′f ′ g′
Y ′ ∈ S the following diagram com-

mutes.

(AA′)2

f f ′gg′

A2A′2

f g f ′g′

1c1
AA′δδ′ δδ′

A2A′2

g f g′ f ′

1c1
(AA′)2

gg′ f f ′

Y XY ′X ′ 1c1

c−1c−1

YY ′XX ′

c−1
XX ′,YY ′

XX ′YY ′ XY X ′Y ′
1c1

XY X ′Y ′
1c−11

XX ′YY ′

If c is a symmetry, then the arrows of the bottom row are equal isomorphisms proving the

equality of the top-left and the top-right paths; that is, XX ′ AA′f f ′ gg′
YY ′ ∈ S.

Example 2.8 Consider any class S ′ of spans in an arbitrary category C′. For any functor
U : C → C′ define the class S which contains precisely those spans in C whose image
belongs to S ′.
(1) If S ′ is admissible then so is S.
(2) Assume that C and C′ are monoidal categories andU is a strict monoidal functor. If S ′ is

monoidal then so is S.

For (1) note that X A
f g

Y ∈ S if and only if UX U A
U f Ug

UY ∈ S ′. If this is

the case, then by property (POST) of S ′, also UX ′ UX
U f ′

U A
U f Ug

UY
Ug′

UY ′ ∈ S ′
for all morphisms f ′ and g′ in C with respective domains X and Y . By definition this is

equivalent to X ′ X
f ′

A
f g

Y
g′

Y ′ ∈ S proving property (POST) of S. Analogous
reasoning applies to property (PRE).

For (2) observe that for any span X I
f g

Y in C, UX U I = I ′U f Ug
UY ∈ S ′

by the unitality of S ′. Then X I
f g

Y ∈ S by definition so that S is unital.

For X A
f g

Y ∈ S and X ′ A′f ′ g′
Y ′ ∈ S, UX U A

U f Ug
UY ∈ S ′ and

UX ′ U A′U f ′ Ug′
UY ′ ∈ S ′ by definition. Then by the multiplicativity of S ′, also

U (XX ′) = (UX)(UX ′) U (AA′) = U (A)U (A′)
U ( f f ′)=(U f )(U f ′) U (gg′)=(Ug)(Ug′)

U (YY ′) = (UY )(UY ′) ∈ S ′.

By definition this is equivalent to XX ′ AA′f f ′ gg′
YY ′ ∈ S, proving the multiplicativity

of S.
Example 2.9 As a particular instance of Example 2.8, consider a monoidal category M and
a class S ′ of spans in M. Take C to be the category of monoids in M and S to be the class
containing precisely those spans in C whose image under the forgetful functor U : C → M
belongs to S ′. From Example 2.8 we infer the following.
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648 G. Böhm

(1) If S ′ is admissible then so is S.
(2) Assume thatM is a braided monoidal category (so that also C is monoidal andU is strict

monoidal). If S ′ is monoidal then so is S.

Definition 2.10 For any class S of spans in some category C we say that a cospan

A
f

B C
g

has legs in S if A A
f

B and B C
g

C belong to S.
A span B A

g f
B (with equal objects at the left and the right) is said to have its

legs in S if the cospan A
f

B A
g

has legs in S.

3 Relative Pullbacks

Definition 3.1 Consider an admissible class S of spans in an arbitrary category C. For some

morphisms A
a

B C
c

in C the relative pullback with respect to S—if it exists—is

a span A A�
B
C

pA pC
C belonging to S such that the following properties hold (see

diagram (3.1) below).

(i) a·pA = c·pC
(ii) Universality: for any A X

f g
C ∈ S such that a · f = c·g, there is a unique

morphism X
h

A�
B
C in C which satisfies pA·h = f and pC·h = g.

X ∃!h
g

f

A�
B
C

pC

pA

C

c

A a B

(3.1)

(iii) Reflection: if both A A�
B
C

pA
D

f g
E and C A�

B
C

pC
D

f g
E belong

to S, then also A�
B
C D

f g
E belongs to S; and symmetrically, if both

E D
g f

A�
B
C

pA
A and E D

g f
A�

B
C

pC
C belong to S, then also

E D
g f

A�
B
C belongs to S.

By property (PRE) of S, part (ii) of Definition 3.1 implies that the morphisms

A A�
B
C

pA pC
C are jointly monic. Therefore the S-relative pullback is unique up-to

isomorphism whenever it exists.

Example 3.2 If S is the class of all pullbacks in some category C, then S-relative pullbacks
are just usual pullbacks.
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Crossed Modules of Monoids I: Relative Categories 649

Example 3.3 As in Example 2.3, let C be the category of comonoids in a monoidal category
M. Assume that M has equalizers which are preserved by taking the monoidal product with

any object on either side. Then in C any parallel morphisms A
f

g
B have an equalizer;

computed as the equalizer

E
j

A
̂f :=1 f 1·δ1·δ
ĝ:=1g1·δ1·δ

ABA

in M, where δ stands for the comultiplication of A. (In [3, Lemma 1.1.3 (4)] the analogous
form of the equalizers in the category of Hopf algebras over a field was verified.) Clearly,
any comonoid morphism of codomain A equalizes f and g if and only if it equalizes ̂f and
ĝ. So in order to prove that j : E → A is the equalizer of f and g in C, we need to equip E
with a comonoid structure so that j becomes a comonoid (mono)morphism.

The counit is E
j

A
ε

I , where ε stands for the counit of A. The comultiplication
is constructed in two steps. First the universality of the equalizer in M in the bottom row of
the first serially commutative diagram below is used to construct an auxiliary morphism δr ;
and then the comultiplication δ is constructed using the universality of the equalizer in M in
the bottom row of the second serially commutative diagram in

E
j

δr

A
̂f

ĝ
δ

ABA

11δ

E A
j1

A2
̂f 1

ĝ1
ABA2

E
j

δ
δr

A
̂f

ĝ
ABA

δ11

E2 1 j
E A

j ̂f

j ĝ
A2BA.

Assume furthermore that M is a braided monoidal category so that C inherits the

monoidal structure of M (cf. Example 2.3). Any comonoid morphisms A
f

B C
g

induce comonoid morphisms AC
f ε

εg
B (where ε stands for both counits of A and C). So

we can take their equalizer

A�
B
C

j
AC

f ε

εg
B (3.2)

in C. Below we claim that it gives in fact the pullback

A�
B
C

j

j

AC
ε1

C

gAC
1ε

A
f

B

(3.3)

relative to the admissible class S in Example 2.3 of spans in C.

The square of (3.3) commutes since (3.2) is a fork. The span A A�
B
C

1ε· j ε1· j
C

belongs to S since 1εε1· j j ·δ = j is a comonoid morphism by construction. In order to
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650 G. Böhm

check the universality of (3.3), take a span A D
k l

C in S for which f ·k = g·l. Then
f ε·kl·δ = f ·k = g·l = εg·kl·δ. Thus since kl·δ is a comonoid morphism by assumption, a
filler h of the first diagram in

D l

k

h

A�
B
C

j

j

AC
ε1

C

gAC
1ε

A
f

B

D
δ

h

D2

kl

A�
B
C

j
AC

f ε

εg
B

(3.4)

is constructed via the universality of the equalizer in C in the bottom row of the second
diagram. It is a comonoid morphism by construction. The uniqueness of a comonoid mor-
phism h rendering commutative the first diagram of (3.4) follows by the observation that
any comonoid morphism h making the first diagram commute, renders commutative also the
second diagram of (3.4) by the commutativity of

D
δ

h

D2

hh
kl

A�
B
C

δ

j

(A�
B
C)2

j j

AC
δδ

A2C2 1c1
(AC)2

1εε1
AC .

For the reflection property on the left, assume that

A AC
1ε

A�
B
C

j
D

k l
E ∈ S and C AC

ε1
A�

B
C

j
D

k l
E ∈ S.

(3.5)

Then the diagram of Fig. 1 commutes (the region marked by (1) commutes by the first
condition, and the region marked by (2) commutes by the second condition of (3.5)). Since
the right column and the bottom row of the diagram of Fig. 1 are equal monomorphisms, this

proves the equality of the left column and the top row; that is, A�
B
C D

k l
E ∈ S.

A symmetrical reasoning verifies the reflection property on the right.
Summarizing, we proved that the pullback relative to the class S in Example 2.3 of spans

in C exists for any comonoid morphisms A
f

B C
g

. It is computed as the equalizer in

C of the comonoid morphisms AC
f ε

εg
B .

Consider now comonoid morphisms A
f

B C
g

in a braided monoidal category

M, such that A A
f

B and B C
g

C belong to the class S in Example 2.3 of
spans in the category C of comonoids inM. (In [20, Definition 5] this assumption occurs for
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Crossed Modules of Monoids I: Relative Categories 651

D
δ

δ

δ

δ

D2 kl

δ1

(A
B
C)E

δ1

j1

c
E(A

B
C)

1j

ACE

δδ1

A2C2E

1c11

D2 1δ

1δ (2)

D3 kkl (A
B
C)2E

jj1
(AC)2E 1εε11

ACE

1c

D2 δ1

δ1

(1)

D3 klk (A
B
C)E(A

B
C)

j1j
ACEAC

1ε1ε1
AEC

c1
D

1δ

lk

D3

lkk

E(A
B
C)2

1jj
E(AC)2 11εε1

EAC

EA2C2

11c1

A(A
B
C)

1δ

1j
EAC

1δδ

Fig. 1 Reflection property

morphisms ofHopfmonoids in a symmetricmonoidal category.) Then theS-relative pullback
(3.3) becomes isomorphic to the so-called cotensor product; defined as the equalizer

A�
B
C

j
AC

1 f 1·δ1
1g1·1δ

ABC (3.6)

in M, thanks to the serially commutative diagrams

AC
̂f ε

ε̂g
ACBAC

1ε1ε1

AC
1 f 1·δ1
1g1·1δ

ABC

AC
1 f 1·δ1
1g1·1δ

ABC

1cA,CB1·11c1·δ1δ

AC
̂f ε

ε̂g
ACBAC .

The current example can be considered in the particular situation when M is a cartesian
symmetric monoidal category. Then the class S of spans in Example 2.3 is the class of all
spans in C ∼= M and thus S-relative pullbacks are just usual pullbacks; see Example 3.2.

Lemma 3.4 For any admissible class S of spans in an arbitrary category take an S-relative
pullback (3.1). The following assertions hold.

(1) If A′ A
a

A ∈ S then also A′ A
a

A�
B
C

pA
A�

B
C ∈ S.

(2) If C C
c

C ′ ∈ S then also A�
B
C A�

B
C

pC
C

c
C ′ ∈ S.
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652 G. Böhm

Proof We only prove part (1), part (2) follows analogously. By assumption the span

A′ A
a

A is in S hence by (PRE)

A′ A
a

A�
B
C

pA pA
A ∈ S.

By construction A A�
B
C

pA pC
C ∈ S. Then by (POST)

A′ A
a

A�
B
C

pA pC
C ∈ S.

By the reflection property of A�
B
C the displayed properties imply the claim. ��

Proposition 3.5 Let S be an admissible class of spans in an arbitrary category. Consider
S-relative pullbacks

A�
B
C

pC

pA

C

g

A
f

B

A′�
B′C

′ pC ′

pA′

C ′

g′

A′
f ′ B ′

A′′�
B′′C

′′ pC ′′

pA′′

C ′′

g′′

A′′
f ′′ B ′′.

(1) For any morphisms A
a

A′ , B
b

B ′ and C
c

C ′ such that b· f = f ′ ·a
and b · g = g′ · c, there is a unique morphism a �c rendering the following diagram
commutative.

A�
B
C

pC

pA

a�c

C

c

A′�
B′C

′ pC ′

pA′

C ′

g′

A a A′
f ′ B ′

(2) The operation � of part (1) is functorial in the sense that for any further morphisms

A′ a′
A′′ , B ′ b′

B ′′ and C ′ c′
C ′′ such that b′· f ′ = f ′′·a′ and b′·g′ = g′′·c′,

the equality (a′ �c′)·(a �c) = a′·a �c′·c holds.

Proof (1) By construction A A�
B
C

pA pC
C belongs to S. Hence by property (POST),

also A′ A
a

A�
B
C

pA pC
C

c
C ′ belongs to S. Therefore the stated morphism a �c

exists by the universality of the S-relative pullback A′�
B′C

′ and the commutativity of
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A�
B
C

pA

pC
C

g

c
C ′

g′
A

a

f
B

b

A′
f ′ B ′.

(2) Both morphisms (a′ �c′)·(a �c) and a′·a �c′·c render commutative the same diagram

A�
B
C

pC

pA

C
c

C ′

c′

A′′�
B′′C

′′ pC ′′

pA′′

C ′′
g′′

A a A′
a′ A′′

f ′′ B ′′.

Hence they are equal by the universality of A′′�
B′′C

′′. ��
Proposition 3.6 For any admissible class S of spans in an arbitrary category, the following
assertions hold.

(1) If A A
f

B ∈ S then the first diagram below is an S-relative pullback and if

B C
g

C ∈ S then the second diagram is so.

A
f

B

A
f

B

C

g

C

g

B B

That is to say, A�
B
B

pA
A and B�

B
C

pC
C are isomorphisms.

(2) Consider morphisms A
f

B C
g h

D E
k

such that all of the S-relative pull-
backs

A�
B
C

pC

pA

C

g

A
f

B

(A�
B
C)�

D
E

pE

pA�BC

E

k

A�
B
C

h·pC
D

C�
D
E

pE

pC

E

k

C
h

D

A�
B

(C�
D
E)

pA

pC�D E
C�

D
E

g·pC

A
f

B

exist. Then (A�
B
C)�

D
E and A�

B
(C�

D
E) are isomorphic.

(3) Consider morphisms A
f

B C
g

such that the first listed S-relative pullback A�
B
C

in part (2) exists. Then the isomorphisms of part (1) and the isomorphism (A�
B
B)�

B
C →

A�
B
(B�

B
C) of part (2) satisfy Mac Lane’s triangle condition.
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(4) Consider morphisms A B C D E F G such that all of the S-
relative pullbacks A�

B
C�

D
E�

F
G with any (hence by part (2) all) possible bracketing exist.

Then the isomorphisms of part (2) satisfy Mac Lane’s pentagon condition.

To the question of the existence of the S-relative pullbacks in parts (2) and (4) of Proposition
3.6 we shall return in Proposition 4.5.

Proof Part (1) is obvious. For part (2) note that by part (1) of Proposition 3.5 the top row of
the commutative diagram

(A�
B
C)�

D
E

pC�1

pA�BC

C�
D
E

pC

A�
B
C

pC

pA

C

g

A
f

B

is well-defined. By construction

A A�
B
C

pA pC
C and A�

B
C (A�

B
C)�

D
E

pA�BC pE
E

belong to S. Then by properties (PRE) and (POST) of S, respectively, also the spans

A A�
B
C

pA
(A�

B
C)�

D
E

pA�BC pA�BC

pC�1

A�
B
C

pC
C

C�
D
E pC

A A�
B
C

pA
(A�

B
C)�

D
E

pA�BC pE

pC�1

E

C�
D
E pE

belong to S. Hence we conclude by the reflection property of C�
D
E that

A A�
B
C

pA
(A�

B
C)�

D
E

pA�BC pC�1
C�

D
E

belongs to S. With all that information at hand, there is a unique morphism l rendering
commutative the first diagram of

(A�
B
C)�

D
E

pA�BC

pC�1

l

A�
B

(C�
D
E)

pC�D E

pA

C�
D
E

g·pC

A�
B
C

pA
A

f
B

A�
B

(C�
D
E)

pC�D E

1�pC

˜l

C�
D
E

pE

(A�
B
C)�

D
E

pA�BC

pE
E

k

A�
B
C

h·pC
D.
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A symmetric reasoning yields a morphism˜l in the second diagram. Since the right vertical
morphisms in the next diagrams are jointly monic, the commutativity of

(A�
B
C)�

D
E

pC�1

pA�BC

C�
D
E

pC

A�
B
(C�

D
E)

˜l

1�pC

pC�DE

A�
B
C

pC
C

C�
D
E

pC

(A�
B
C)�

D
E

pC�1

pE

C�
D
E

pE

A�
B
(C�

D
E)

˜l

pC�DE

E

C�
D
E

pE

proves (pC �1) ·˜l = pC�DE . This is used to see the commutativity of the second diagram of

(A�
B
C)�

D
E

l

pA�BC

A�
B
(C�

D
E)

pA

A�
B
(C�

D
E)

1�pC

˜l

A�
B
C

pA
A

A�
B
(C�

D
E)

pA

(A�
B
C)�

D
E

l

pC�1

A�
B
(C�

D
E)

pC�D E

A�
B
(C�

D
E)

˜l

C�
D
E

A�
B
(C�

D
E).

pC�D E

Since their right verticals are jointly monic, the commutativity of these diagrams implies
l·˜l = 1. A symmetric reasoning leads to˜l·l = 1 so that l and˜l are mutual inverses.

(3) Since A A�
B
C

pA pC
C are jointly monic, the claim follows by the commutativity

of both diagrams below.

A�
B
C

pA

(A�
B
B)�

B
C

pA�B B

pA�1

l

A�
B
B

pA
A

A�
B
(B�

B
C)

1�pC

pA

A�
B
C

pA

A�
B
C

pC

(A�
B
B)�

B
C

pC

pA�1

l

pB�1

C

B�
B
C

pC

A�
B
(B�

B
C)

1�pC

pB�BC

A�
B
C

pC

(4) The claim follows by similar standard arguments; using the construction of l and the fact
that the morphisms
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A�
B
(C�

D
(E�

F
G))

pA
A

A�
B
(C�

D
(E�

F
G))

pC�D (E�FG)

C�
D
(E�

F
G)

pC
C

A�
B
(C�

D
(E�

F
G))

pC�D (E�FG)

C�
D
(E�

F
G)

pE�FG
E�

F
G

pE
E

A�
B
(C�

D
(E�

F
G))

pC�D (E�FG)

C�
D
(E�

F
G)

pE�FG
E�

F
G

pG
G

are jointly monic. ��
Since S-relative pullbacks are defined up-to isomorphisms, Proposition 3.6 allows us to

pretend that � is associative and omit the parentheses as well as the isomorphisms l in
Proposition 3.6.

Proposition 3.7 For a monoidal admissible class S ′ of spans in a monoidal category M,
consider an S ′-relative pullback

A�
B
C

pC

pA

C

g

A
f

B

(3.7)

in which f and g are monoid morphisms.

(1) There is a unique monoid structure on A�
B
C such that pA and pC are monoid morphisms.

(2) The diagram of (3.7) is a pullback relative to the admissible class S of spans in the
category of monoids in M defined in Example 2.9.

Proof (1) By construction A A�
B
C

pA pC
C ∈ S ′ hence by the multiplicativity of S ′

A2 (A�
B
C)2

pA pA pC pC
C2 ∈ S ′. Then by (POST) A A2m

(A�
B
C)2

pA pA pC pC
C2 m

A ∈
S ′. Hence by the commutativity of the first diagram in

(A�
B
C)2

pA pA

pC pC
C2 m

gg

C

gA2
f f

m

B2

m

C
f

B

(A�
B
C)2

pC pC

pA pA

m

C2

m

A�
B
C

pC

pA

C

g

A2
m

A
f

B

I u

u

u

A�
B
C

pC

pA

C

g

A
f

B

(3.8)

there is a unique filler m for the second diagram of (3.8). By the unitality of S ′, the span

A I
u u

C belongs to S ′. Then by f ·u = u = g·u, there is a unique filler u for the third
diagram of (3.8). By a standard reasoning, associativity and unitality of the monoid A�

B
C
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follow from the respective properties of A and C making use of the fact that the morphisms

A A�
B
C

pA pC
C are jointly monic.

(2) Since the span A A�
B
C

pA pC
C in M belongs to S ′, as a span of monoids it

belongs to S by definition. The square of (3.7) commutes by construction. In order to see

its universality, take a span of monoids A D
a c

C in S such that f ·a = g·c. Then by

definition A D
a c

C ∈ S ′. Since (3.7) is an S ′-relative pullback inM, there is a unique
filler d of the diagram

D c

a

d

A�
B
C

pC

pA

C

g

A
f

B

in M. Using again that the morphisms A A�
B
C

pA pC
C are jointly monic in M, the mor-

phism d is multiplicative by the commutativity of the diagrams

(A�
B
C)2

m

pA pA

A�
B
C

pA

D2

dd

aa

m

A2 m
A

D

a

d
A�

B
C

pA

(A�
B
C)2

m

pC pC

A�
B
C

pC

D2

dd

cc

m

C2 m
C

D

c

d
A�

B
C

pC

and unital by the commutativity of the diagrams

A�
B
C

pA

I

u

u

u

A

D

a

d
A�

B
C

pA

A�
B
C

pC

I

u

u

u

C

D

c

d
A�

B
C .

pC

The reflection property is obviously inherited from M. ��
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4 Relative Categories

Assumption 4.1 For an admissible classS of spans in some categoryCwemake the following

assumption: whenever a cospan A
f

B C
g

has legs in S (see Definition 2.10), there

exists their S-relative pullback A A�
B
C

pA pC
C .

Example 4.2 If S is the class of all spans in some category C, then Assumption 4.1 reduces
to the assumption that pullbacks exist in C.

Example 4.3 As in Example 3.3, let C be the category of comonoids in a braided monoidal
category M in which equalizers exist and are preserved by the monoidal product with any
object on either side. Then it is proven in Example 3.3 that in C all pullbacks exist relative
to the admissible class S in Example 2.3 of spans in C. Thus in particular Assumption 4.1
holds for this class S.
Example 4.4 Suppose that Assumption 4.1 holds for a monoidal admissible class S ′ of spans
in a monoidal category M. Then it also holds for the admissible class S of spans in the
category of monoids in M in Example 2.9.

Indeed, if for some monoid morphisms A
f

B C
g

the spans A A
f

B and

B C
g

C belong toS, thenbydefinition theybelong toS ′ too.ThenbyAssumption4.1
there exists their S ′ relative pullback in M. And it is an S-relative pullback of monoids in M
by Proposition 3.7.

Proposition 4.5 If Assumption 4.1 holds for some admissible class S of spans in an arbitrary
category C then all of the S-relative pullbacks listed in part (2) of Proposition 3.6 exist
provided that the following spans belong to S.

A A
f

B B C
g

C C C
h

D D E
k

E

Proof Existence of the S-relative pullbacks listed first and third in part (2) of Proposition
3.6 immediately follows by Assumption 4.1. In order to see existence of the S-relative
pullback listed second, use first that by the assumption that C C

h
D ∈ S and by

Lemma 3.4 (2) also A�
B
C A�

B
C

h·pC
D is in S. Since D E

k
E is in S by

assumption, the existence of the statedS-relative pullback (A�
B
C)�

D
E follows byAssumption

4.1. An analogous reasoning applies to the S-relative pullback A�
B
(C�

D
E) listed last in part

(2) of Proposition 3.6. ��
Corollary 4.6 Consider an admissible class S of spans in an arbitrary category C for which
Assumption 4.1 holds. For any object B in C for which B B B ∈ S, there is a
monoidal category whose

objects are spans B A
t s

B which have their legs in S (cf. Definition 2.10)
morphisms are the morphisms of spans over B

monoidal product of B A
t s

B and B A′t ′ s′
B is B A�

B
A′t ·pA s′·pA′

B (its

legs are in S by Lemma 3.4) where A�
B
A′ is the S-relative pullback of A

s
B A′t ′
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monoidal unit is B B B .

For any positive integer n, we denote by A�
B
n
the n’th monoidal power of the object

B A
t s

B . We adopt the convention A�
B
0 = B.

Proof For morphisms of spans, the S-relative pullback in Proposition 3.5 is obviously a
morphisms of spans. So in view of Proposition 3.5, Proposition 3.6 and Proposition 4.5, we
only need to check the naturality of the unit and associativity constraints in Proposition 3.6.
Naturality of the unit constraints—that is, commutativity of

A�
B
B

pA

a�1

A

a

A′�
B
B pA′ A′

B�
B
C

pC

1�c

C

c

B�
B
C ′

pC ′ C ′

for any morphisms of spans A
a

A′ and C
c

C ′ —holds by construction.

For any morphisms of spans A
a

A′ , C
c

C ′ and E
e

E ′ , let us compose both
(a � (c�e))·l and l·((a �c)�e) with the jointly monic morphisms

A′�
B′(C

′ �
D′E

′)
pA′

A′ A′�
B′(C

′ �
D′E

′)
pC ′�D′ E ′

C ′ �
D′E

′ pC ′
C ′ A′�

B′(C
′ �
D′E

′)
pC ′�D′ E ′

C ′ �
D′E

′ pE ′
E ′ .

The resulting pairs of composite morphisms are easily seen to be equal to

(A�
B
C)�

D
E

pA�BC

A�
B
C

pA

A

a

A′ (A�
B
C)�

D
E

pA�BC

A�
B
C

pC

C

c

C ′ (A�
B
C)�

D
E

pE

E

e

E ′,

respectively. This proves the naturality of the associativity constraint. ��

It may happen that in some category not only those cospans have pullbacks relative to
some class S of spans whose legs are in S. (Recall fromExample 3.3 that in certain categories
of comonoids all pullbacks exist relative to the class of spans in Example 2.3). However, the
monoidal structure of Corollary 4.6 is available only on the category of those spans whose
legs are in S; see Proposition 3.6 (1).

Example 4.7 If S is the class of all spans in a category C having pullbacks, then Corollary 4.6
describes the monoidal category of spans in C via the usual pullback.

Example 4.8 As in Example 3.3, let C be the category of comonoids in a braided monoidal
category M in which equalizers exist and are preserved by the monoidal product with any
object on either side. Then we know from Example 4.3 that Assumption 4.1 holds for the
admissible class S in Example 2.3 of spans in C. For a comonoid B in M the condition
B B B ∈ S reduces to the cocommutativity of the comonoid B. So by Corollary 4.6
the category of spans of comonoids over a cocommutative comonoid B with legs in S is
monoidal via the B-cotensor product of (3.6).

Definition 4.9 Consider an admissible class S of spans in an arbitrary category C for which
Assumption 4.1 holds, and an object B in C for which B B B ∈ S. An S-relative
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category with object of objects B is a monoid in the monoidal category of Corollary 4.6.
Explicitly, this means the data in

B i A
s

t
A�

B
A

d
(4.1)

subject to the following axioms.

(a) The legs of B A
t s

B are in S (so that the pullback A A�
B
A

p1 p2
A of

A
s

B A
t

relative to the class S exists).

(b) i is a common section of s and t (that is, B i A
s

t
is a reflexive graph).

(c) t·d = t·p1 and s·d = s·p2.
(d) d·(i �1) = 1 = d·(1� i).
(e) d·(d �1) = d·(1�d).

Definition 4.10 Consider an admissible class S of spans in an arbitrary category C for
which Assumption 4.1 holds, and objects B and B ′ in C for which B B B and

B ′ B ′ B ′ belong to S. An S-relative functor between S-relative categories as in

(4.1) consists of a pair of morphisms ( B
b

B ′ , A
a

A′ ) which is

(a) amorphism of spans in the sense that b·s = s′ ·a and b·t = t ′ ·a (hence by Proposition 3.5
there exists the S-relative pullback morphism A�

B
A

a�a
A′�

B′A
′ )

(b) it is compatible with the monoid structure in the sense that a·i = i ′·b and a·d = d ′·(a �a).

In Part II, in and after [7, Proposition 3.13], the category of so-called cat1-Hopf monoids
in a symmetric monoidal categoryM in [20] is proven to be a full subcategory of the category
of categories relative to the class of spans in Example 2.3 in the category of comonoids inM.

Summary and Outlook

In this paper pullbacks were introduced relative to a chosen class of spans. On this class we
made assumptionswhich allow for the pullback to define amonoidal structure on the category
of spans with their ‘legs in this class’. Relative (to the above class of spans) categories were
defined as monoids in the so obtained monoidal category. Non-trivial examples are presented
in categories of comonoids in braided monoidal categories.

All this is meant to be a preparation for a further analysis to be carried out in [7] and
[8]. In these sequel papers we will apply this theory to categories of monoids in symmetric
monoidal categories; that is, we consider relative categories of monoids. Those of them for
which a canonical family of morphisms are invertible, will be shown to be equivalent to
relative crossed modules of monoids (see [7]) and to suitable relative simplicial monoids of
Moore length 1 (in [8]).

Again, interesting examples will arise from categories of comonoids in braided monoidal
categories; whose monoids are known as bimonoids. Taking the full subcategory of Hopf
monoids in a category of bimonoids, some recent results in the literature—[1,18–20,23,31]—
will be placed in a broader context.
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