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Abstract Hierarchical defects are defined as adjacent defects at different length scales.
Involved are the two scales where the stress field distribution is interrelated. Based on the
complex variable method and conformal mapping, a multiscale framework for solving the
problems of hierarchical defects is formulated. The separated representations of mapping
function, the governing equations of potentials, and the stress field are subsequently
obtained. The proposed multiscale framework can be used to solve a variety of simplified
engineering problems. The case in point is the analytical solution of a macroscopic elliptic
hole with a microscopic circular edge defect. The results indicate that the microscopic
defect aggregates the stress concentration on the macroscopic defect and likely leads to
global propagation and rupture. Multiple micro-defects have interactive effects on the
distribution of the stress field. The level of stress concentration may be reduced by
the coalescence of micro-defects. This work provides a unified method to analytically
investigate the influence of edge micro-defects within the scope of multiscale hierarchy.
The formulated multiscale approach can also be potentially applied to materials with
hierarchical defects, such as additive manufacturing and bio-inspired materials.
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Ω, domain in z-plane;
D, unit disk in ζ-plane;

Γ, unit circle.

1 Introduction

During the manufacturing process, microscopic edge defects emerge around non-ideal cracks
such as elliptic cracks and inclusion. The adjacent defects at different length scales can be
described as hierarchical defects. Usually, there are two scales involved. Presence of the
microscopic defect has substantial influence over the stress level at the macroscopic defect,
and possibly leads to global crack propagation and rupture[1–2]. The effects of the microscopic
defect on the macroscopic crack propagation cannot be over-emphasized. Seeking the solution
of the stress field at the crack tip is of great significance to engineering practice.

For non-ideal cracks, calculation of the stress field at the crack tip is relatively complex[3–4].
Analytical solutions and numerical methods stand out as the two main approaches. Pioneering
research work includes the Westergaard stress function, the integral equation method, and
the complex variable method[5–6]. These analytical solutions play an important role in
the early stage of fracture mechanics. With the development of computational technique,
numerical methods emerged, such as the finite element method[7–8] and the boundary element
technique[9–10]. Through commercial softwares, the discretization method is generally adopted
to approximately calculate the stress field distribution at the crack tip. Considering the
complexity and variety of cracks, formulating a universal representation of the stress field at
the crack tip is almost impossible. Tremendous calculation is needed, and the major effect
factors are difficult to be extracted through the numerical methods. On the contrary, the
major factors can be straightforwardly reflected in the analytical solutions. Although certain
limitations cannot be avoided, accurate analytical solutions for the stress field at the crack tip
remain prevalent yet more challenging among modern researchers.

A series of studies are initiated to seek the analytical solutions of notches and cracks[11–13].
Based on the analytical framework, the notch stress intensity factor (NSIF) is applied to the
weld roots of welded joints with inclusion of the T-stress component[14]. It is noteworthy
that the T-stress is determined from the finite element models evaluating the ligament stresses
close to the pointed slit tip. Similar work can be found in Refs. [15] and [16]. Much progress
has also been made to analytically solve the problem of edge dislocation in front of blunt
crack for nanocrystalline materials[17–19]. Recent work witnesses that the use of digital image
correlation method is combined with analytical analysis for determining the stress field at blunt
V-notch neighborhood[20–21]. Despite the accumulating research on the analytical approach, it
shall be emphasized that the multiscaling features of hierarchal defects are rarely addressed
recently. A series of studies[16, 22–23] incorporated the multiscaling features in the crack growth
model. Analytical representation of the stress intensity factor is derived for macroscopic crack
possessing a micro/mesoscopic notch tip. The concept is further applied to the fatigue crack
growth model[24–26]. Nevertheless, the model is stipulated to ideal cracks that are different from
the hierarchical defects described here. To the best of the authors’ knowledge, the research on
the analytical solution for hierarchical defects is rather surprising within the framework of
multiscaling.

The aim of this paper is to formulate a multiscale framework for the analytical stress field
solution of hierarchical defects. The strategy is to employ the scale separation method, as well
as the conformal mapping of complex variable method. Therefore, the analytical solution for
the stress field at the crack tip is obtained. The present work focuses on the hierarchical defects
where two scales are involved through the process. Subsequently, the proposed framework is
applied to analytically investigate a macroscopic elliptic crack with microscopic circular edge
defects. The framework is flexible to solve a variety of simplified engineering problems.

The general multiscale framework is formulated in Section 2, which is mainly based on the
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complex variable method and the scale separation method. The applications of the proposed
framework are presented in Sections 3 and 4, with the emphasis put on single and multiple edge
defects at the microscopic scale. Conclusions are briefly summarized in Section 5.

2 Complex variable method for solving the stress field of hierarchical
defects: a multiscale framework

2.1 Basic formulation of the complex variable method
According to the complex variable method[5], the stress and displacement of an elastic

continuum can be expressed in the form of functions of complex variables when the body force
is ignored, which yields{

σx + σy = 2(ϕ′
1(z) + ϕ′

1(z)) = 4 Reϕ′
1(z),

σy − σx + 2i τxy = 2(zϕ′′
1(z) + ψ′

1(z)),
(1)

E

1 − ν
(ux + iuy) =

3 − ν

1 + ν
ϕ1(z) − zϕ′

1(z) − ψ1(z), (2)

where E and ν are Young’s modulus and Poisson’s ratio of the material, respectively. ϕ1(z)
and ψ1(z) are called the complex potentials which are both analytic or holomorphic functions
inside the domain of Ω. Since the analytic function is equivalent to the holomorphic function
in complex analysis, in what follows, these two terms are interchangeably used.

For the hole problems, technique of conformal mapping is jointly used with the above theory.
If a transformation that could map the actual domain Ω (usually an infinite plane containing a
hole/defect in the z-plane z = x + iy) onto a unit disk D in the ζ-plane (ζ = ξ + iη) is found
as follows:

z = ω(ζ), (3)

the complex potentials are in the forms of

ϕ(ζ) =
1 − ν

8π
(X + iY ) ln ζ +Bω(ζ) + ϕ0(ζ),

ψ(ζ) =
3 − ν

8π
(X − iY ) ln ζ + (B′ + iC′)ω(ζ) + ψ0(ζ),

where ϕ(ζ) = ϕ1

(
ω(ζ)

)
and ψ(ζ) = ψ1

(
ω(ζ)

)
are both analytic functions in the open unit disk,

and are determined by the boundary conditions. The complex number X + iY is related to the
boundary force applied on the inner hole. If the inner forces do not exist, the above equations
could be simplified as {

ϕ(ζ) = Bω(ζ) + ϕ0(ζ),
ψ(ζ) = (B′ + iC′)ω(ζ) + ψ0(ζ).

(4)

Furthermore, ϕ0(ζ) and ψ0(ζ) are governed by the following integral equations:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ϕ0(ζ) +

1
2πi

∫
Γ

ω(σ)
ω′(σ)

ϕ′
0(σ)
σ − ζ

dσ =
1

2πi

∫
Γ

f0
σ − ζ

dσ,

ψ0(ζ) +
1

2πi

∫
Γ

ω(σ)
ω′(σ)

ϕ′
0(σ)
σ − ζ

dσ =
1

2πi

∫
Γ

f0
σ − ζ

dσ,

(5)

where Γ is the unit circle, and σ = ζ|Γ = eiθ, denoting that ζ is now on the boundary Γ. Also,
we have

f0 = −2Bω(σ) − (B′ − iC′)ω(σ), (6)
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where B and B′− iC′ are determined by the remote stress status, corresponding to hydrostatic
and shearing stress, respectively,

B =
1
4
(σ1 + σ2), B′ + iC′ = −1

2
(σ1 − σ2)e−2iγ , (7)

in which γ is the included angle between the first principal stress σ1 and the x-axis. In the
condition of remotely uniaxial tension, assuming that the tensile stress q is applied in the
direction of γ, the above equations could be further simplified as⎧⎨

⎩
ϕ(ζ) =

q

4
ω(ζ) + ϕ0(ζ),

ψ(ζ) = − q
2
e−2iγω(ζ) + ψ0(ζ),

(8)

f0 = − q
2
ω(σ) +

q

2
ω(σ)e2iγ . (9)

Then, denote

Φ(ζ) = ϕ′
1(z) =

ϕ′(ζ)
ω′(ζ)

, Ψ(ζ) = ψ′
1(z) =

ψ′(ζ)
ω′(ζ)

. (10)

The stress components described on the mapped curvilinear coordinates could be further written
as[5] ⎧⎪⎪⎨

⎪⎪⎩
σθ + σρ = 4Re

ϕ′(ζ)
ω′(ζ)

= 4ReΦ(ζ),

σθ − σρ + 2iτρθ =
2ζ

ζω′(ζ)
(ω(ζ)Φ′(ζ) + ω′(ζ)Ψ(ζ)),

(11)

where ρ and θ are the directions mapped from the ξ-axis and the η-axis, respectively.
2.2 Conformal mapping and scale separation for problems of hierarchical defects

In this section, we start from a normalized case and further generalize the problem. Finally,
the universal form of separated mapping functions at multiple scales is derived.

First, we consider an infinite plate with a circular hole and a semicircular micro-defect on its
edge (specifically at z = 1), as shown in Fig. 1(a). The function, which transforms the unit disk
(the ζ-plane) into an infinite plane with a unit circular hole (the z1-plane), can be expressed as

ω0(ζ) =
1
ζ
. (12)

Assume that the analytic function of complex variable mapping the hierarchical-defects domain
(see Fig. 1(a) in the z-plane) onto the unit disk (see Fig. 1(b) in the ζ-plane) has been found as
z = ω(ζ). Then, the deviation from the original mapping function ω0 could be defined as

δ(ζ) = ω − ω0 = ω(ζ) − 1
ζ
. (13)

Generally, δ(ζ) maps the unit disk to a very small defect in the order of ρ � 1, as shown
in Fig. 1(c). The δ(ζ) function, which though may have branch points on the boundary of
|ζ| = 1, is holomorphic inside the open unit disk. Similar to a compactly supported function,
its value falls in the order of ρ in the very neighborhood of the micro-defect (i.e., ζ = 1 here),
and dramatically approaches zero when ζ is far from the defect. Detailed discussion on this
function could be found in Subsection 3.1. It should be noted that this paper just illustrates
an example where the microscopic edge defect is modeled as a semicircular hole. In fact, the
micro-defect could be a crack or other shapes in the multiscale framework.
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Fig. 1 Conformal mapping

δ(ζ) could be modified to embed the possibility of randomly distributed micro-defects. In
order to locate the defect at z = eiα, the function could be constructed as

δ(ζ, α) = ei αω(ei αζ) − 1
ζ
. (14)

Then, Eq. (14) could transform ζ = e−iα to a micro-defect. Now, a new mapping function
ω∗(ζ, α) that maps an ideal unit disk (the ζ-plane) to the micro-defected unit disk on its edge
(here described in the ζ1-plane), as shown in Fig. 1(d), could be constructed by combining
Eqs. (13) and (14),

ζ1 = ω∗(ζ) =
1

ei αω(ei αζ)
=

1
1/ζ + δ(ζ, α)

. (15)

From Eq. (15), a general form of conformal mapping that treats the arbitrary shape of hole
could be derived. Assuming that the original function which maps the unit disk onto an infinite
plate with this hole (without any edge defect) is known,

z0 = ω0(ζ) =
∞∑

n=−1

cnζ
n, (16)

where cn are complex constants. Substituting the variable ζ1 in Eq. (15) into ζ in Eq. (16),
the required function ω(ζ) is obtained. It could successfully map the unit disk to an infinite
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plate containing a general hole (the primary defect) as well as a microscopic edge defect (the
secondary defect).

z = ω(ζ) = ω0(ζ1) = ω0

( 1
1/ζ + δ(ζ, α)

)
. (17)

Figures 2(a) and 2(b) show two cases of elliptic and square holes, respectively, using Eq. (17),
where the original mapping functions ω0(ζ) could be found in Ref. [5].

Fig. 2 Conformal mapping for arbitrary shapes of holes

Since the value of δ(ζ, α) is far less than 1, the mapping function of Eq. (15) could be
asymptotically expanded as follows:( 1

1/ζ + δ(ζ, α)

)n

= ζn − nζn+1δ(ζ, α) +O(δ2).

Ignoring higher-order terms over O(δ), Eq. (17) turns out to be

z = ω(ζ) = ω0(ζ1) =
∞∑

n=−1

cn

( 1
1/ζ + δ(ζ, α)

)n

=
∞∑

n=−1

cn(ζn − nζn+1δ(ζ, α))

=
∞∑

n=−1

cnζ
n − ζ2δ(ζ, α)

∞∑
n=−1

cnnζ
n−1

= ω0(ζ) − ζ2ω′
0(ζ)δ(ζ, α).

It is noticed that δ(ζ) is a compactly supported function when ζ is far from e−iα, δ(ζ) approaches
zero rapidly. The above equation could also be written as

ω(ζ) = ω0(ζ) − ζ2ω′
0(ζ)δ(ζ, α) ≈ ω0(ζ) − e−2iαω′

0(e
−iα)δ(ζ, α). (18)

Obviously, ζ2ω′
0(ζ) �= 0 on the contour |ζ| = 1.

Equation (18) is the asymptotic form that transforms a unit disk in the ζ-plane onto the
plate with an arbitrary shape of the hole and a microscopic edge defect. To be specific, the
location of the micro-defect is at ζ = e−iα in the ζ-plane, ζ1 = eiα in the ζ1-plane, and/or
z = ω0(e−iα) in the z-plane.

Defining that

k = −e−2iαω′
0(e

−iα), (19)

Eq. (18) could be rewritten as

ω(ζ) = ω0(ζ1) ≈ ω0(ζ) + kδ(ζ, α), (20)
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or more directly, be written in the scale separated form as

ω(ζ) = ωmacro(ζ) + ωmicro(ζ). (21)

Here, ωmacro is ω0, and ωmicro = kδ(ζ). To facilitate formula writing, the notation of ω0 would
be kept later.

In Eq. (20), the first term is the mapping function for the primary defect (the hole), and the
second term is the perturbation due to the existence of the secondary defect (the microscale
edge defect). The parameter k defined in Eq. (19) is a scaling factor for micro-defect due to the
transformation process, which is related to ω0(ζ), the defect location, and the defect size.
2.3 Governing equations at separated scales

Starting from Eq. (4), we try to separate ϕmicro(ζ) from ϕ(ζ), as well as ψmicro(ζ) from ψ(ζ).

ϕ(ζ) = ϕmacro(ζ) + ϕmicro(ζ), ψ(ζ) = ψmacro(ζ) + ψmicro(ζ). (22)

It is found from Eq. (4) that the complex variables of B and B′ + iC′ are both scale
independent. Since the mapping function ω(ζ) has been written in a separated form as shown
in Eq. (20) or (21), we now focus on separating ϕ0,micro and ψ0,micro in Eq. (5), i.e.,

ϕ0 = ϕ0,macro(ζ) + ϕ0,micro(ζ), ψ0 = ψ0,macro(ζ) + ψ0,micro(ζ). (23)

First of all, f0 in the right-side integral of Eq. (5) could be simply divided into two parts.
According to Eqs. (6) and (7), we have

f0 = f0,macro+f0,micro, (24)

where {
f0,macro = −2Bω0(σ) − (B′ − iC′)ω0(σ),

f0,micro = −2Bωmicro(σ) − (B′ − iC′)ωmicro(σ).
(25)

Now, we focus on the integral on the left side of Eq. (5),

1
2πi

∫
Γ

ω(σ)
ω′(σ)

ϕ′
0(σ)
σ − ζ

dσ.

According to Eq. (17), the derivative of ω(ζ) could be written as

ω′(ζ) = ω′
0(ζ1)

dζ1
dζ

. (26)

Since ω0(ζ) and ω∗(ζ) are both conformal transformations that are reversible and single-
valued, ω′

0(ζ) has no zeros inside the open unit disk |ζ| < 1, which also applies to dζ1/dζ. It
should be noted that in some cases, the derivative may equal zero on the boundary Γ. A typical
example is a crack, where one geometric point on the crack surface may correspond to two
material points. At this time, ω′

0(ζ) = 0 occurs at the crack tip (the z-plane), corresponding
to one certain point on the boundary of |ζ| = 1 in the ζ-plane. Overall, there is no zero point
inside the unit circle for ω′(ζ).

As for poles, ω0(ζ) is holomorphic inside the unit domain except 0. At ζ = 0, ω0(ζ) has
order 1 singularity. Therefore, ω′

0(ζ) has only one pole of order 2 at 0 in |ζ| < 1. In the case of
ζ1(0) = 0 which could be satisfied during the construction of δ(ζ) function, ζ = 0 also becomes
the pole in order 2 for ω′(ζ).
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Considering σ on the boundary Γ, we have σ = 1/σ and

ω(σ)
ω′(1/σ)

=
σ2ω(σ)
ω′(σ)

.

Since ω′(σ) has no zeros and σ2ω(σ) is bounded, the above expression is analytic in the open
disk, and thus could be written in the form of Taylor series,

H(σ) =
ω(σ)
ω′(σ)

=
m∑

n=1

cnσ
n + h(σ), (27)

where h(σ) is analytic inside the unit circle, and is bounded at the infinite, i.e., h(∞) = C.
Recalling Eq. (5), ϕ0(σ) can be divided into into two parts, i.e.,

ϕ0(σ) = ϕ0,macro(σ) + ϕ0,micro(σ).

Here, ϕ0,macro(σ) and ϕ0,micro(σ) are both analytic inside the unit circle, and thus could

be expressed in polynomial series that ϕ0,macro(σ) =
∞∑

n=1
anσ

n and ϕ0,micro(σ) =
∞∑

n=1
bnσ

n,

respectively. We have

ϕ′
0(σ) = ϕ′

0

( 1
σ

)
=

∞∑
n=1

nanσ
1−n +

∞∑
n=1

nbnσ
1−n.

Together with Eq. (27), the integrand in Eq. (5) could be written as

ω(σ)
ω′(σ)

ϕ′
0(σ) =

( m∑
j=1

cjσ
j + h(σ)

)( ∞∑
n=1

nanσ
1−n +

∞∑
n=1

nbnσ
1−n
)

=
m∑

j=1

∞∑
n=1

nancjσ
1−n+j +

m∑
j=1

∞∑
n=1

nbncjσ
1−n+j

+
( ∞∑

n=1

nanσ
1−n +

∞∑
n=1

nbnσ
1−n
)
h(σ). (28)

It could further be simplified through Cauchy’s integral formula, which yields

1
2πi

∫
Γ

ω(σ)
ω′(σ)

ϕ′
0(σ)
σ − ζ

dσ =
1

2πi

∫
Γ

m∑
j=1

k∑
n=1

nancjσ
1−n+j

σ − ζ
dσ +

1
2πi

∫
Γ

m∑
j=1

k∑
n=1

nbncjσ
1−n+j

σ − ζ
dσ

+
1

2πi

∫
Γ

k∑
n=1

nanσ
1−nh(σ)

σ − ζ
dσ +

1
2πi

∫
Γ

k∑
n=1

nanσ
1−nh(σ)

σ − ζ
dσ

=
m∑

j=1

j−1∑
n=1

nancjζ
1−n+j +

m∑
j=1

j−1∑
n=1

nbncjζ
1−n+j

+
1

2πi

∫
Γ

k∑
n=1

nanσ
1−nh(σ)

σ − ζ
dσ +

1
2πi

∫
Γ

k∑
n=1

nanσ
1−nh(σ)

σ − ζ
dσ. (29)
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Here, we denote H1(σ) =
k∑

n=1
nanσ

1−nh(σ) and H2(σ) =
k∑

n=1
nbnσ

1−nh(σ). It is known

that H1(σ) and H2(σ) are analytic in the domain outside the unit circle, including the infinity.
Thus, σ = ∞ is a removable singular point, and

1
2πi

∫
Γ

k∑
n=1

nanσ
1−nh(σ)

σ − ζ
dσ = H1(∞) = 0,

1
2πi

∫
Γ

k∑
n=1

nbnσ
1−nh(σ)

σ − ζ
dσ = H2(∞) = 0.

Based on the above results, the first governing equation in Eq. (5) could thus be calculated
as

ϕ0,macro(ζ) + ϕ0,micro(ζ) +
m∑

j=1

j−1∑
n=1

nancjζ
1−n+j +

m∑
j=1

j−1∑
n=1

nbncjζ
1−n+j

=
1

2πi

∫
Γ

f0,macro

σ − ζ
dσ +

1
2πi

∫
Γ

f0,micro

σ − ζ
dσ. (30)

For a cluster of primary (macro) holes that the highest order in the polynomial expansion of
the transformation function ω0(ζ) is no more than 1, named as the simple hole here, cj = 0 (m
equals zero). The circle (ω0 = 1/ζ) and the ellipse (ω0 = 1/ζ+mζ) both fall into this category.
The above expression could easily be constituted as

ϕ0 = ϕ0,macro(ζ) + ϕ0,micro(ζ),

where

ϕ0,macro(ζ) =
1

2πi

∫
Γ

f0,macro

σ − ζ
dσ, ϕ0,micro(ζ) =

1
2πi

∫
Γ

f0,micro

σ − ζ
dσ. (31)

For simple-hole cases, the governing equations at macroscopic and microscopic scales could be
completely decoupled.

In the general case, the 2nd and 3rd terms in Eq. (30) do not automatically vanish. First,
according to Eq. (20), we have

ω(σ)
ω′(σ)

=
ω0(σ)
ω′

0(σ)
+
ω′

0(σ)kδ(σ, α) − ω0(σ)kδ′(σ, α)
ω′

0(σ) ω′(σ)
� ω0(σ)
ω′

0(σ)
+ Δ1(σ), (32)

where Δ1(σ) is defined as

Δ1(σ) =
ω′

0(σ)kδ(σ, α) − ω0(σ)kδ′(σ, α)
ω′

0(σ) ω′(σ)
, (33)

and if necessary, ω′(σ) could also be approximately calculated as ω′
0(σ) + kδ′(σ, α).

Substituting it into Eq. (5), it could be achieved that

ϕ0,macro(σ) + ϕ0,micro(σ) +
1

2πi

∫
Γ

(ω0(σ)
ω′

0(σ)
+ Δ1(σ)

)(ϕ′
0,macro(σ) + ϕ′

0,micro(σ)
σ − ζ

)
dσ

=
1

2πi

∫
Γ

f0,macro

σ − ζ
dσ +

1
2πi

∫
Γ

f0,micro

σ − ζ
dσ. (34)
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By the definition of ϕ0,macro(ζ), we have

ϕ0,macro(ζ) +
1

2πi

∫
Γ

ω0(σ)
ω′

0(σ)

ϕ′
0,macro(σ)
σ − ζ

dσ =
1

2πi

∫
Γ

f0,macro

σ − ζ
dσ, (35)

and the governing equation for ϕ0,micro(ζ) could thus be extracted,

ϕ0,micro(ζ) +
1

2πi

∫
Γ

(ω0(σ)
ω′

0(σ)
+ Δ1

)ϕ′
0,micro(σ)
σ − ζ

dσ

=
1

2πi

∫
Γ

(f0,micro − Δ1ϕ′
0,macro(σ))

σ − ζ
dσ. (36)

Factors that play roles in determining the potential function at the microscopic scale could be
identified from Eq. (36). First, on the left side, the integral kernel has been modified, introducing
the deviation of mapping function due to the microscopic edge defect. Also, the macroscopic
potential of ϕ0,macro should be passed into the governing equation at the microscopic level,
which could also be treated as a modification to f0,micro. Obviously, when ωmicro(σ) = 0, i.e.,
δ(σ, α) = 0, the complex potential ϕ0,micro(ζ) degenerates to zero.

In summary, Eqs. (35) and (36) are the governing equations of the potential ϕ0 at the
macroscopic and microscopic scales, respectively. ϕ0,macro(ζ) is first determined by Eq. (35).
Substituting it into Eq. (36), ϕ0,micro(ζ) could be calculated. Equation (23) is used to achieve
the expression of ϕ0(ζ).

In a similar way, the potential function ψ0 (see Eq. (5)) could also be decoupled,

ψ0(ζ) = ψ0,macro(ζ) + ψ0,micro(ζ),

where the macro and micro parts are governed, respectively, by

ψ0,macro(ζ) +
1

2πi

∫
Γ

ω0(σ)
ω′

0(σ)
ϕ′

0,macro(σ)
σ − ζ

dσ =
1

2πi

∫
Γ

f0,macro

σ − ζ
dσ (37)

and

ψ0,micro(ζ) +
1

2πi

∫
Γ

(ω0(σ)
ω′

0(σ)
+ Δ1

)ϕ′
0,micro(σ)
σ − ζ

dσ

=
1

2πi

∫
Γ

(
f0,micro − Δ1 ϕ

′
0,macro(σ)

)
σ − ζ

dσ. (38)

The decoupling of potential functions could be summarized here. First, according to Eq. (22),

ϕ(ζ) = ϕmacro(ζ) + ϕmicro(ζ), ψ(ζ) = ψmacro(ζ) + ψmicro(ζ).

Correspondingly, we have{
ϕmacro(ζ) = Bω0(ζ) + ϕ0,macro(ζ),
ψmacro(ζ) = (B′ + iC′)ω0(ζ) + ψ0,macro(ζ),

(39)

and {
ϕmicro(ζ) = Bωmicro(ζ) + ϕ0,micro(ζ),
ψmicro(ζ) = (B′ + iC′)ωmicro(ζ) + ψ0,micro(ζ),

(40)

where ϕ0,macro, ϕ0,micro, ψ0,macro, and ψ0,micro are governed by Eqs. (35)–(38), respectively.
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2.4 Determination of stress components
First, we denote the differentiation of ϕ′

1(z) as Φ(ζ),

Φ(ζ) =
ϕ′(ζ)
ω′(ζ)

=
ϕ′

macro(ζ) + ϕ′
micro(ζ)

ω′
0(ζ) + ω′

micro(ζ)
=
ϕ′

macro(ζ)
ω′

0(ζ)

+
ω′

0(ζ)ϕ
′
macro(ζ) + ω′

0(ζ)ϕ
′
micro(ζ)

ω′
0(ζ)(ω′

0(ζ) + ω′
micro(ζ))

− ϕ′
macro(ζ)ω

′
0(ζ) + ϕ′

macro(ζ)ω
′
micro(ζ)

ω′
0(ζ)(ω′

0(ζ) + ω′
micro(ζ))

=
ϕ′

macro(ζ)
ω′

0(ζ)
+
ω′

0(ζ)ϕ′
micro(ζ) − ϕ′

macro(ζ)ω′
micro(ζ)

ω′
0(ζ)(ω

′
0(ζ) + ω′

micro(ζ))
.

It could be separated in the form of

Φ(ζ) = Φmacro(ζ) + Φmicro(ζ), (41)

where ⎧⎪⎪⎨
⎪⎪⎩

Φmacro(ζ) =
ϕ′

macro(ζ)
ω′

0(ζ)
,

Φmicro(ζ) =
ω′

0(ζ)ϕ
′
micro(ζ) − ϕ′

macro(ζ)ω
′
micro(ζ)

ω′
0(ζ)(ω′

0(ζ) + ω′
micro(ζ))

.

(42)

Similarly, the differentiation of ψ1(z) could also be separated

Ψ(ζ) =
ψ′(ζ)
ω′(ζ)

= Ψmacro(ζ) + Ψmicro(ζ), (43)

where ⎧⎪⎪⎨
⎪⎪⎩

Ψmacro(ζ) =
ψ′

macro(ζ)
ω′

0(ζ)
,

Ψmicro(ζ) =
ω′

0(ζ)ψ
′
micro(ζ) − ψ′

macro(ζ)ω
′
micro(ζ)

ω′
0(ζ)(ω′

0(ζ) + ω′
micro(ζ))

.

(44)

The stress could thus be calculated as follows:

σθ + σρ = 4Re
ϕ′(ζ)
ω′(ζ)

= 4ReΦmacro(ζ) + 4ReΦmicro(ζ), (45)

and

σθ − σρ + 2iτρθ =
2ζ

ζω′(ζ)
(ω(ζ)Φ′(ζ) + ω′(ζ)Ψ(ζ))

=
2ζ

ζ(ω′
0(ζ) + ω′

micro(ζ))
((ω0(ζ) + ωmicro(ζ))(Φ′

macro(ζ) + Φ′
micro(ζ))

+ (ω′
0(ζ) + ω′

micro(ζ))(Ψmacro(ζ) + Ψmicro(ζ))). (46)

It could be expanded as

σθ − σρ + 2iτρθ =
2ζ

ζω′(ζ)
(ω(ζ)Φ′(ζ) + ω′(ζ)Ψ(ζ))

=
2ζ

ζ(ω′
0(ζ) + ω′

micro(ζ))
((ω0(ζ) + ωmicro(ζ))(Φ′

macro(ζ) + Φ′
micro(ζ))

+ (ω′
0(ζ) + ω′

micro(ζ))(Ψmacro(ζ) + Ψmicro(ζ)))

=
2ζ
ζ

( 1
ω′

0(ζ)
− ω′

micro(ζ)
ω′

0(ζ)(ω
′
0(ζ) + ω′

micro(ζ))

)(
ω0(ζ)Φ′

macro(ζ) + ω0(ζ)Φ′
micro(ζ)

+ ωmicro(ζ)Φ′
macro(ζ) + ωmicro(ζ)Φ′

micro(ζ) + ω′
0(ζ)Ψmacro(ζ)

+ ω′
0(ζ)Ψmicro(ζ) + ω′

micro(ζ)Ψmacro(ζ) + ω′
micro(ζ)Ψmicro(ζ)

)
.
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In order to simplify the above formula, we define

Δ3 =ω0(ζ)Φ′
micro(ζ) + ωmicro(ζ)Φ′

macro(ζ) + ωmicro(ζ)Φ′
micro(ζ)

+ ω′
0(ζ)Ψmicro(ζ) + ω′

micro(ζ)Ψmacro(ζ) + ω′
micro(ζ)Ψmicro(ζ). (47)

The above equation could be written as

σθ − σρ + 2iτρθ

=
2ζ

ζω′(ζ)
(ω(ζ)Φ′(ζ) + ω′(ζ)Ψ(ζ))

=
2ζ
ζ

( 1
ω′

0(ζ)
− ω′

micro(ζ)
ω′

0(ζ)(ω
′
0(ζ) + ω′

micro(ζ))

)(
ω0(ζ)Φ′

macro(ζ)+ω
′
0(ζ)Ψmacro(ζ) + Δ3

)

=
2ζ

ζω′
0(ζ)

(ω0(ζ)Φ′
macro(ζ)+ω

′
0(ζ)Ψmacro(ζ))+

2ζ
ζω′

0(ζ)
Δ3

− 2ζ
ζ

ω′
micro(ζ)

ω′
0(ζ)(ω

′
0(ζ) + ω′

micro(ζ))

(
ω0(ζ)Φ′

macro(ζ)+ω
′
0(ζ)Ψmacro(ζ) + Δ3

)
. (48)

Equations (45) and (48) could be split into two parts, namely,

σij = σmacro
ij + σmicro

ij , i, j = ρ, θ, (49)

where the macro part is naturally defined as⎧⎪⎪⎨
⎪⎪⎩
σmacro

θ + σmacro
ρ = 4Re

ϕ′
0(ζ)
ω′

0(ζ)
= 4ReΦmacro(ζ),

σmacro
θ − σmacro

ρ + 2iτmacro
ρθ =

2ζ
ζω′

0(ζ)
(ω0(ζ)Φ′

macro(ζ) + ω′
0(ζ)Ψmacro(ζ)).

(50)

Substituting the above equation into Eqs. (45) and (48), the micro level of stress expressions
could be extracted,

σmicro
θ + σmicro

ρ = 4ReΦmicro(ζ), (51)

σmicro
θ − σmicro

ρ + 2iτmicro
ρθ

=
2ζ

ζω′
0(ζ)

( ω′
0(ζ)

(ω′
0(ζ) + ω′

micro(ζ))
Δ3

− ω′
micro(ζ)

(ω′
0(ζ) + ω′

micro(ζ))

(
ω0(ζ)Φ′

macro(ζ)+ω
′
0(ζ)Ψmacro(ζ)

))
. (52)

Combining Eqs. (50) and (51), the stress field is distinctively solved, where the micro part
could be seen as a deviation (or perturbation) from the macro part due to the existence of
microscopic edge effect, making it possible to evaluate its effect on global behaviors. Also,
the macro part of stress would turn zero when ωmicro(ζ) = 0, which coincides with the actual
situation.

3 Multiscale framework application: an elliptic hole with single edge defect

In engineering practice, inclusions or certain defects can be simplified as elliptic holes. The
problem stated here is an elliptic hole (the primary defect) with an semicircular edge defect
(the secondary defect). The adjacent primary and secondary defects are thus referred to as
hierarchical defects. It should be noted that the framework is applicable for any other shapes
of primary and secondary defects.
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3.1 Mapping functions for semicircular micro-defect
First, an infinite plate containing a circular hole (unit size) and a semicircular edge defect

(radius of ρ � 1) at z = 1 is considered, as shown in Fig. 1(a) or Fig. A1. The transformation
that maps the above domain Ω (the z-plane) into a unit disk D (the ζ-plane) is written below.
The details could be found in Appendix A.

z = ω(ζ) =
ζ + 1
2ζ

+

√
(ζ − 1)2 + 4ρ2ζ

2ζ
, (53)

where ω(ζ) is a multi-valued function, and the branch of
√−1 = i is chosen here. It could be

verified that when ρ = 0, the above equation will be degenerated to 1/ζ, which is exactly the
mapping function for the classical solution of circular hole.

The deviation of mapping function could thus be obtained through Eq. (13),

δ(ζ) = ω(ζ) − 1
ζ

=
ζ − 1
2ζ

+

√
(ζ − 1)2 + 4ρ2ζ

2ζ
. (54)

The micro-defect location could also be taken into account by Eq. (14), allowing δ(ζ) to be
generalized as

δ(ζ, α) = eiαω(eiαζ) − 1
ζ

=
eiαζ − 1

2ζ
+

√
(eiαζ − 1)2 + 4ρ2eiαζ

2ζ
. (55)

δ(ζ, α) has two branch points on the unit circle around the location of e−iα, denoted as ζ1 and
ζ1, respectively.

ζ1,2 = e−iα(1 − 2ρ2 ± 2
√
ρ4 − ρ2). (56)

As seen in Fig. 1(c), the short arc linking the two branch points (the ζ-plane) is mapped to the
semicircular arc in the z-plane.

This ideal problem could be directly solved using the formulae presented in Subsection 2.1,
without using the multiscale framework presented in this article. Here, we briefly give the
solution for comparison. It is assumed that the plate is subject to a uniformly remote force of
q parallel to the y-axis, which allows Eqs. (8) and (9) to be

ϕ(ζ) =
q

4
ω(ζ) + ϕ0(ζ), ψ(ζ) =

q

2
ω(ζ) + ψ0(ζ), f0 = − q

2
ω(ζ) − q

2
ω(ζ). (57)

H(σ) of Eq. (27) could be calculated as

H(σ) =
ω(σ)
ω′(σ)

=

√
(−1+σ)2+4ρ2σ

σ2 (1 + σ + (−1 + σ)2 + 4ρ2σ)

σ2
(
2ρ2 +

(
− 1 + σ + σ

√
1 + 1

σ2 + −2+4ρ2

σ

)) . (58)

It could be verified that the integral on the left-side of Eq. (5) equals zero,

1
2πi

∫
Γ

ω(σ)
ω′(σ)

ϕ′
0(σ)
σ − ζ

dσ = 0, (59)

which suggests that

ϕ0(ζ) =
1

2πi

∫
Γ

f0
σ − ζ

dσ = − q
2

1
2πi

∫
Γ

ω(σ) + ω(σ)
σ − ζ

dσ. (60)
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ω(ζ) is analytic in the punctured unit disk D \ {0}, and has a simple pole at 0. Therefore,
it could be expanded by the Laurent series in the disk,

ω(ζ) =
1
ζ

+
∞∑

n=0

bnζ
n, (61)

where bn are complex constants. According to the Cauchy integral formula, Eq. (5) is reduced
to

ϕ0(ζ) =
1

2πi

∫
Γ

f0
σ − ζ

dσ = − q
2

(
ζ + ω(ζ) − 1

ζ

)
, (62)

and

ψ0(ζ) = −ω(1/ζ )
ω′(ζ)

ϕ′
0(ζ) −

q

2

(
ζ + ω(ζ) − 1

ζ

)
. (63)

Through further computation from Eq. (11), the SCF for this problem could be achieved,

K =
σmax

q
=

7 − ρ

1 + ρ
. (64)

3.2 Solutions of complex potentials and stresses
First, it has been known that the transformation for mapping an ideally elliptic-holed infinite

plane into a unit disk is

z0 = ω0(ζ) = R
(1
ζ

+mζ
)
. (65)

Here, R = a+b
2 , and m = a−b

a+b , where 2a and 2b are the width and the height of the ellipse,
respectively.

Following Eq. (17) or (18), the overall mapping function could be constructed as follows:

ω(ζ) = ω0

(
ω∗(ζ)

)
= ω0(ζ) +R(1 −mζ2)δ(ζ, α), (66)

where δ(ζ, α) could be found in Eq. (55). Due to the compactly supported property of δ function
(at ζ = e−iα), the above transformation could also be approximately written as

z = ω(ζ) = ω0(ζ) + kδ(ζ, α), (67)

where k = R(1 − me−2iα) is the scaling factor. It is found that the actual radius of the
micro-defect is

r ≈ |k| ρ. (68)

Figure 3 shows an example of the transformation. The branch points located in the
neighborhood of ζ = e−iα are ζ1,2 = e−iα(1 − 2ρ2 ± 2

√
ρ4 − ρ2), which are mapped to the

two points where the microscale circle intersects with the ellipse, i.e., Points B and C.
To exactly locate the micro-defect, the relationship of the radial angles between the two

coordinate systems is provided,

β = Arg((a+ b)eiα + (a− b)e−iα), (69)

where β is the angle between the x-axis and the center of the micro-defect (the z-plane).
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Fig. 3 Polar angles in the ζ-plane and the z-plane

Based on the above preparations, the potentials and stresses are ready to be solved. Since
the elliptic hole is a simple hole, Eq. (31) is adopted.⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ϕ0,macro(ζ) =

1
2πi

∫
Γ

f0,macro

σ − ζ
dσ = − q

2
1

2πi

∫
Γ

ω0(σ) − ω0(σ)e2iγ

σ − ζ
dσ,

ϕ0,micro(ζ) =
1

2πi

∫
Γ

f0,micro

σ − ζ
dσ = − q

2
1

2πi

∫
Γ

kδ(σ, α) − kδ(σ, α)e2iγ

σ − ζ
dσ.

(70)

Here, δ(ζ, α) is analytic in the punctured unit disk, and ζ = 0 is a removable pole. Hence,
it could be expressed in the form of Taylor series within the open unit disk,

δ(ζ, α) =
∞∑

n=0

cn(α)ζn, (71)

where cn are complex constants related to α.
Using the Cauchy integral formula, we have

1
2πi

∫
Γ

δ(σ, α)
σ − ζ

dσ = δ(ζ, α),
1

2πi

∫
Γ

δ(σ, α)
σ − ζ

dσ = 0. (72)

Then, Eq. (70) is ⎧⎪⎪⎨
⎪⎪⎩
ϕ0,macro(ζ) =

1
2πi

∫
Γ

f0,macro

σ − ζ
dσ = − q

2
R(m− e2iγ)ζ,

ϕ0,micro(ζ) =
1

2πi

∫
Γ

f0,micro

σ − ζ
dσ = − q

2
kδ(ζ, α).

(73)

Through similar integral operations, ψ0(ζ) could be obtained as follows:

ψ0,macro(ζ) = −qR
2

((1 −me−2iγ)ζ) − ω0(1/ζ)
ω′

0(ζ)
ϕ′

0,macro(ζ)

= −qR
2

(
(1 −me−2iγ)ζ + (m− e2iγ)

m+ ζ2

1 −mζ2
ζ
)
, (74)

ψ0,micro(ζ) =
q

2
kδ(ζ, α)e−2iγ − ω0(1/ζ) + kδ(1/ζ,−α)

ω′
0(ζ) + kδ′(ζ, α)

ϕ′
0,micro(ζ)

+
ω0(1/ζ)kδ′(ζ, α) − ω′

0(ζ)kδ(1/ζ,−α)
ω′

0(ζ)(ω
′
0(ζ) + kδ′(ζ, α))

ϕ′
0,macro(ζ). (75)
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The macroscale part of the stress components in the curvilinear coordinates could be
calculated through Eq. (50) as follows:

σmacro
θ + σmacro

ρ = qRe
(2e2iγ −m)ζ2 − 1

mζ2 − 1
,

σmacro
θ − σmacro

ρ + 2iτρθ = q
(mρ4

1 + ζ2)ζ2

ρ4
1(m− ζ2/ρ4

1 )(mζ2 − 1)

(
2e2iγ −m+m

1 +mζ2 − 2e2iγζ2

mζ2 − 1

)

+
q

ρ2
1(m− ζ2/ρ4

1 )

(
e−2iγ − 3e2iγζ2 +me2iγ −m2 − 1

mζ2 − 1
ζ2

+
e2iγζ2 +me2iγ −m2 − 1

(mζ2 − 1)2
2mζ4

)
, (76)

where ρ1 = |ζ| is the radial coordinate in the ζ-plane. Equation (76) is exactly the same as
the classical solutions. The microscale part of the stress which is seen as a deviation from the
macroscopic part could be calculated from Eq. (51),

σmicro
θ + σmicro

ρ

= 4 ReΦmicro(ζ)

= 4 Re
(ω′

0(ζ)ϕ
′
micro(ζ) − kδ′(ζ, α)ϕ′

macro(ζ)
ω′

0(ζ)(ω′
0(ζ) + kδ′(ζ, α))

)
. (77)

Substituting the expressions of ϕ′
macro(ζ) and ϕ′

micro(ζ) into the above equation, we have

σmicro
θ + σmicro

ρ = 4 Re
(ω′

0(ζ)ϕ
′
micro(ζ) − kδ′(ζ, α)ϕ′

macro(ζ)
ω′

0(ζ)(ω
′
0(ζ) + kδ′(ζ, α))

)

= qRe
(−kδ(ζ, α)ω′

0(ζ) − kδ′(ζ, α)(ω′
0(ζ) − 2R(m− e2iα1)ζ)

ω′
0(ζ)(ω

′
0(ζ) + kδ′(ζ, α))

)
. (78)

According to Eq. (47),

Δ3 =ω0(ζ)Φ′
micro(ζ) + kδ(ζ, α)Φ′

macro(ζ) + kδ(ζ, α)Φ′
micro(ζ)

+ ω′
0(ζ)Ψmicro(ζ) + kδ′(ζ, α)Ψmacro(ζ) + kδ′(ζ, α)Ψmicro(ζ),

the micro part of the stress field in Eq. (52) could be calculated as follows:

σmicro
θ − σmicro

ρ + 2iτmicro
ρθ =

2ζ
ζ(ω′

0(ζ) + ω′
micro(ζ))

Δ3 − 2ζω′
micro(ζ)

ζω′
0(ζ)(ω

′
0(ζ) + ω′

micro(ζ))

· (ω0(ζ)Φ′
macro(ζ) + ω′

0(ζ)Ψmacro(ζ)). (79)

3.3 Results and discussion
As an example, Fig. 4 shows the contours of the micro part of the circumferential stress

σmicro
θ and the global part with the parameters of a = 3mm, b = 1mm, α = 0, γ = π/2,
ρ = 0.1, and q = 1MPa. It is graphically displayed that the micro part of the stress field
σmicro

θ is appreciable around the micro-defect, while in the area afar, the stress can be ignored,
indicating that the influence of micro-defect is more local but not negligible. It is noteworthy
that σmicro

θ at the corner between the elliptic hole and circular micro-defect is negative, which
guarantees the corner stress be zero in overall (the macro part of stress at the corner is obviously
positive).
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Fig. 4 Stress contours (color online)

The level of stress concentration around the primary hole is significantly affected by the
presence of micro-defect. Here, we focus on investigating the situation of micro-defect located
at the long axis (the x-axis) of the elliptic hole, i.e., α = 0. Here, a = 3mm, b = 1 mm, and the
actual size of micro-defect is equal to the parameter of ρ (in the ζ-plane),

r ≈ |k| ρ = bρ = ρ.

Figure 5 shows the stress concentrations in front of the micro-defect with the changes of the
remote tensile direction γ and the defect radius ρ. To investigate the influence of micro effect,
an additional SCF caused by the microscale stress field is especially extracted and plotted in
Fig. 5 with dashed lines.

Kmicro = σmicro
θ,front/q. (80)

Besides that, the original value of the SCF without considering the micro-defect is denoted
as K0. It actually equals Kmacro, if it is defined in a similar way that Kmacro = σmacro

θ,front/q. K0,
as plotted with solid lines in Fig. 5, proves the independence of the micro-defect existence. The
overall SCF is the summation of K0 and Kmicro,

K = K0 +Kmicro. (81)

Here, the curve of K0 (the SCF in the case of no micro-defect) coincides with the classic
solution for elliptic holes[27]. Furthermore, it could be seen that the smaller the micro-defect,
the larger stress concentration it contributes. When ρ = 0.01, Kmicro contributed by the
micro-defect overtakes the original K0. Also, the stress at the front of the defect increases with
the angle γ of the remote force, reaching its maximum when the remote stress is parallel to the
y-axis, or perpendicular to the long axis. In the condition of γ parallel to the long axis, Kmicro

is shown to be zero, indicating that the defect has no extra contribution to the original stress
concentration.

-

°

Fig. 5 Influence of micro-defect on the SCF (color online)
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Here, the attention is paid to a special condition of γ = 90◦ for it has the greatest SCF
among all directions of remote forces. Through further calculation, the relationship between
the defect size r and the overall SCF K could be obtained as follows:

K =
4a+ 3b− r

b+ r
. (82)

In the special case of a = b = 1, it agrees well with Eq. (64). When r is sufficiently small, the
SCF approaches 3 + 4a/b. In comparison to K0 = 1 + 2a/b (Inglis’s solution[28]), we suggest a
modified formula to estimate the stress concentrations when it comes to evaluate the possible
effect of microscopic edge defect on the safety of holed structures

Ku = 1 + 2K0. (83)

As shown in Fig. 6, the effect of micro-defect location on the SCF is also investigated. Kmicro

reaches its maximum when micro-defect occurs on the long axis, i.e., β = 0◦. It decreases with
the increase in β, gradually falls to zero when β = 90◦. It shall also be noted that the maximum
influence on the SCF does not exceed 8, even the micro-defect might be very small, which could
be validated from Eq. (82).

β °

Fig. 6 Location of edge defect and the increase in the SCF (color online)

The affecting area of micro-defect on the stress field is also investigated. Figure 7 provides
the change of the normalized circumferential stress σmicro

θ /q along with the radial distance to
the micro-defect front. It clearly shows that the stress decreases rapidly with the increase in
the distance, suggesting that the influence along the radial direction is fairly local. Also, Fig. 8
shows the normalized circumferential stress on the hole edge, where the micro-defect is located
at α = 45◦ (i.e., β = 18.4◦) and ρ = 0.1. It is graphically displayed that in the circumferential
direction (described by its polar angle β in the z-plane), the influence area is mainly between
0◦ and 50◦.

The scale effect cannot be overemphasized in the proposed multiscale framework. At this
stage, we mainly focus on solving the designated problems with the features of hierarchical
defects. It is stipulated that the size of secondary defect is far smaller than the primary defect.
We investigate the relative defect sizes varying from 0.01 to 0.2. It could be verified that under
these situations, the separated form of conforming mapping, as shown from Eqs. (16)–(18),
agrees well with the exact defect boundary. Since the conformal mapping is the key procedure
in solving holed problems, using the complex variable method, the exact stress field could be
guaranteed through the exact mapping function.

It is undeniable that quantitatively studying the size range of micro-defect within the
multiscale framework is rather challenging. First of all, if the lower bound of the micro-defect
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Fig. 7 Variation of the normalized stress with
the change of the radial location (color
online)

fl

°

Fig. 8 Variation of the normalized stress
with the change of the circumferential
location

size is unlimited, according to the formulation between Eqs. (17) and (18), a smaller size of
micro-defect naturally leads to a more accurate approximation (see Eq. (18)), while for the upper
bound of micro-defect size, several factors may influence the accuracy of the approximation,
including the shape of the macro-hole that is expressed in the mapping function of Eq. (16),
the relative size of micro-defect expressed in the asymptotical expansion next to Eq. (17), and
the local curvature of the macro-defect boundary at the micro-defect location (as expressed
in Eq. (8)). Quantitatively defining an upper bound of the micro-defect size is not within the
scope of the present framework, which will be left for our forthcoming work.

It is also noted that for the micro-defect size, approaching zero and being zero are two
different cases in terms of the stress distribution. The presence of micro-defects causes the
stress concentration, regardless of the micro-defect size. When r is sufficiently small, the overall
SCF approaches 3+4a/b, as shown in Eq. (82). If r is directly set to be zero, Eqs. (18) and (53)
(the conformal mapping), as well as Eqs. (51) and (52) (the stress solution), are automatically
degenerated to the case of no edge defect, meaning that no extra stress concentration occurs.

A similar situation is the classical problem of stress concentration of a holed continuum.
Taking the axial tension for example, if a circular hole is small enough, the SCF is constantly
K = 3, even its size will approach zero. However, in the limit state of no hole, there is obviously
no stress concentration at all.

4 Multiscale framework application: a problem with multiple edge defects

One of the advantages of the multiscale framework is to treat the hierarchical problem
with multiple edge defects. Under this situation, the mapping function is hard to be exactly
constructed via ordinary methods. However, starting from the proposed multiscale framework,
micro-defects could be superimposed, which simplifies the process of finding the mapping
function and the forthcoming solutions of the stress field.
4.1 Conformal mapping and governing equations

Assuming that there are n different defects existing on the edge of the primary defect,
denoted as ζ = eiαn (n = 1, 2, · · · ), the transformation for multiple edge defects could be
constructed by extending Eq. (17) to a general form,

z = ω(ζ) = ω0

( 1
1/ζ + δ1(ζ, α1) + δ2(ζ, α2) + · · · + δn(ζ, αn)

)
. (84)

Ignoring the terms higher than the order of 2, the above function is expanded as
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z = ω0(ζ) + k1δ1(ζ, α1) + k2δ2(ζ, α2) + · · · + knδn(ζ, αn)

� ω0(ζ) + ωmicro(ζ), (85)

where kn = −e−2iαnω′
0(e

−iαn).
Figure 2(c) shows an example of the transformation. It indicates that the above

transformation could successfully map the complicated domain into a unit disk. In the
neighborhood of each defect center, there might be two branch points located on the unit
circle. Since the function is not differentiable at the branch point, the transformation is not
conformal anymore at the point. These points should not overlap with each other in order to
guarantee the accuracy of transformation.

Scale separation for multiple defect problems is similar to that of single micro-defect, except
for replacing the expressions related to ωmicro with the formula defined in Eq. (85) or (84).

First, H(σ) could be written as

ω(σ)
ω′(σ)

=
ω0(σ)
ω′

0(σ)
+
ω′

0(σ)
n∑

i=1

kiδi(σ, αi) − ω0(σ)
n∑

i=1

kiδ′i(σ, αi)

ω′
0(σ) +

n∑
i=1

kiδ′i(σ, αi)
. (86)

Substituting it into Eq. (36), we have the separated form of the complex potential ϕ0(ζ),

ϕ0,macro(ζ) +
1

2πi

∫
Γ

ω0(σ)
ω′

0(σ)

ϕ′
0,macro(σ)
σ − ζ

dσ =
1

2πi

∫
Γ

f0,macro

σ − ζ
dσ, (87)

ϕ0,micro(ζ) +
1

2πi

∫
Γ

(ω0(σ)
ω′

0(σ)
+ Δ4

)ϕ′
0,micro(σ)
σ − ζ

dσ

=
1

2πi

∫
Γ

f0,micro − Δ4ϕ′
0,macro(σ)

σ − ζ
dσ, (88)

where Δ4 is defined as

Δ4 =
ω′

0(σ)
n∑

i=1

kiδi(σ, αi) − ω0(σ)
n∑

i=1

kiδ′i(σ, αi)

ω′
0(σ) +

n∑
i=1

kiδ′i(σ, αi)
. (89)

Except for replacing Δ1 with Δ4 which takes the multiple defects into account
simultaneously, the above equations have the same forms as those of the single micro-defect
situation as shown in Eq. (36).

Similarly, the separated form of ψ(ζ) could also be obtained as follows:

ψ0,macro(ζ) +
1

2πi

∫
Γ

ω0(σ)
ω′

0(σ)
ϕ′

0,macro(σ)
σ − ζ

dσ =
1

2πi

∫
Γ

f0,macro

σ − ζ
dσ, (90)

ψ0,micro(ζ) +
1

2πi

∫
Γ

(ω0(σ)
ω′

0(σ)
+ Δ4

)ϕ′
0,micro(σ)
σ − ζ

dσ

=
1

2πi

∫
Γ

f0,micro − Δ4 ϕ
′
0,macro(σ)

σ − ζ
dσ. (91)

Equations (87)–(91) provide the governing equations of complex potentials for multiple

micro-defect problems. As for the stress field, by replacing kδ(σ, α) with
n∑

i=1

kiδi(σ, αi),

Eqs. (50)–(52) could also be used. Details of the formula are not elaborated here.
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4.2 Hierarchical defects: an elliptic hole with multiple semicircular defects
In this subsection, we consider the problem of an infinite plate with an elliptic hole and

multiple semicircular defects on its edge. For semicircular micro-defect, the polar angle between
the two branch points (see Fig. 3) could be estimated from Eq. (56),

θi ≈ 4ρi, (92)

where i denotes the ith micro-defect, and ρi could be calculated by Eq. (68). Thus, the polar
angle between the neighbored defect centers should satisfy the following requirement to avoid
overlapping of branch points:

αi+1 − αi > 2(ρi+1 + ρi). (93)

Assuming that there are n micro-defects on the elliptic hole, the mapping function (see
Eq. (85)) turns to be

z0 = ω0(ζ) +
n∑

i=1

kiδi(ζ, αi, ρi), (94)

where
ki = R(1 −me−2iαi).

ρi could be calculated from the actual defect size ri via the formula ri = |ki| ρi.
Here, we also assume the plate is subject to a uniformly remote force of q parallel to the

y-axis, which is the same as that in Subsection 3.2. Using Eqs. (87)–(91), the macro part as
well as the micro part of the stress field could be calculated.

As for the macro part, the expressions are the same,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σmacro
θ + σmacro

ρ = qRe
(2e2iγ −m)ζ2 − 1

mζ2 − 1
,

σmacro
θ − σmacro

ρ + 2iτρθ

= q
(mR4

1 + ζ2)ζ2

R4
1(m− ζ2/R4

1 )(mζ2 − 1)

(
2e2iγ −m+m

1 +mζ2 − 2e2iγζ2

mζ2 − 1

)

+
q

R2
1(m− ζ2/R4

1 )

(
e−2iγ − 3e2iγζ2 +me2iγ −m2 − 1

mζ2 − 1
ζ2

+
e2iγζ2 +me2iγ −m2 − 1

(mζ2 − 1)2
2mζ4

)
.

(95)

To make a distinction from the definition of ri in Eq. (94), we use R1 = |ζ| as the notation of
radial coordinate in the ζ-plane, making the above formula slightly different from Eq. (76).

The micro part of potentials could be calculated through similar operations described in
Subsection 3.2. First, we have

ϕ0,micro(ζ) = − q

2

n∑
i=1

kiδi(ζ, αi), (96)

ψ0,micro(ζ) =
q

2

n∑
i=1

kiδi(ζ, αi)e−2iγ −
ω0(1/ζ) +

n∑
i=1

kiδi(1/ζ,−αi)

ω′
0(ζ) +

n∑
i=1

kiδ′i(ζ, αi)
ϕ′

0,micro(ζ)

−
ω0(1/ζ)

n∑
i=1

kiδ
′
i(ζ, αi) − ω′

0(ζ)
n∑

i=1

kiδi(1/ζ,−αi)

ω′
0(ζ)(ω′

0(ζ) +
n∑

i=1

kiδ′i(ζ, αi))
ϕ′

0,macro(ζ), (97)
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where ϕ0,macro(ζ) is the same as Eq. (73),

ϕ0,macro(ζ) = − q
2
R(m− e2iγ)ζ.

Thus, we have

ψmicro(ζ) = − q
2
e−2iγ

n∑
i=1

kiδi(ζ, αi) + ψ0,micro(ζ). (98)

Finally, we can obtain

σmicro
θ + σmicro

ρ = 4 Re

(ω′
0(ζ)ϕ

′
micro(ζ) −

n∑
i=1

kiδ
′
i(ζ, αi)ϕ′

macro(ζ)

ω′
0(ζ)

(
ω′

0(ζ) +
n∑

i=1

kiδ′i(ζ, αi)
)

)
, (99)

and

σmicro
θ − σmicro

ρ + 2iτmicro
ρθ =

2ζ

ζ
(
ω′

0(ζ) +
n∑

i=1

kiδ′i(ζ, αi)
)Δ5 −

2ζ
n∑

i=1

kiδ′i(ζ, αi)

ζω′
0(ζ)

(
ω′

0(ζ) +
n∑

i=1

kiδ′i(ζ, αi)
)

· (ω0(ζ)Φ′
macro(ζ) + ω′

0(ζ)Ψmacro(ζ)), (100)

where Δ5 is defined as

Δ5 =ω0(ζ)Φ′
micro(ζ) +

n∑
i=1

kiδi(ζ, αi)Φ′
macro(ζ) +

n∑
i=1

kiδi(ζ, αi)Φ′
micro(ζ)

+ ω′
0(ζ)Ψmicro(ζ) +

n∑
i=1

kiδ
′
i(ζ, αi)Ψmacro(ζ) +

n∑
i=1

kiδ
′
i(ζ, αi)Ψmicro(ζ). (101)

As an example, we calculate a dual micro-defects problem with α1 = 0 (i.e., β = 0◦),
ρ1 = 0.1mm, α2 = π/4 (i.e., β = 18.4◦), and ρ2 = 0.01mm. Other parameters are a = 3 mm,
b = 1mm, γ = π/2, and q = 1MPa. The circumferential stress along the hole edge is plotted
in Fig. 9. It shows that the micro part of σθ oscillates in the neighborhood of α = 0◦ and 20◦,
and rapidly approaches zero afar. The curve has two stress peaks, which correspond to the
locations of the two micro-defects, respectively.

°

α π ρθ

Fig. 9 Area of influence for multiple micro-defects
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The interactive effect between multiple edge defects is also investigated. Let the first
micro-defect at β = 0◦ with r = 0.1mm be fixed. The location and size of the second
micro-defect vary. In this case, a = 3 m, b = 2 mm, γ = π/2, and q = 1MPa. The stress
concentrations at the front tip of the first defect Kmicro are shown in Fig. 10.

α

Fig. 10 Interaction effect of multiple edge defects (color online)

It could be seen that the multiple micro-defects have an interactive effect on the stress
field, especially when the distance is close. However, if the distance is large enough, the
interaction could be ignored as all curves retreat to its original SCF value caused solely by
the first micro-defect (here approximately at 4.1). Generally, the coalescence of micro-defects
may release the stress concentration, which is understandable if noticing that a smaller radius
of micro-defect leads to a higher stress concentration in the previous section. It can also be seen
from Fig. 10 that a larger radius of the second defect has a greater effect on the first defect, and
certainly has a larger area of influence. An extreme case is that when the size of the second
crack is 0.01mm, its effect is negligible.

5 Conclusions

A multiscale framework for the analytical solution of the stress field of hierarchical defects
is formulated. Emphasis is laid on the hierarchical defects at different scales. Within the
general multiscale framework, this mathematical model can be flexibly applied to a variety of
engineering problems. The accurate analytical solution is also capable of capturing the factors
that significantly affect the process of crack propagation. The main findings are summarized
as follows:

(i) Representation of the conformal mapping, the governing equations of potentials, and the
stress field at two scales is analytically achieved within the formulated multiscale framework.

(ii) The influence of the secondary micro-defect is local but cannot be ignored under certain
circumstances. The present work provides a general tool to exactly investigate the influence.
A modified formula Ku = 1 + 2K0 is proposed to estimate the stress concentrations.

(iii) One of the benefits of the multi-scale framework is to solve the problems of multiple
edge defects. The results show that multiple micro-defects have an interactive effect on the
stress filed. Coalescence of micro-defects may release the stress concentration.

The proposed framework can be extended to more general problems, such as primary defect
modeled as a square hole or a blunt crack, secondary defect modeled as a micro edge crack,
even solution of three levels of hierarchical defects is feasible. Nevertheless, it shall be noted
that the formulated multiscale framework is stipulated to elastic materials. Last but not least,
the approach can be also applied to additive manufacturing materials, bio-inspired materials
that have the features of hierarchical defects[29–31]. They are left for our forthcoming work.
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Appendix A

A plate with a hole of unit circle and a micro semicircular defect at z = 1, as shown in Fig. A1
(the z-plane). Assuming that the radius of the defect is ρ, the mapping function could be constructed
through the process below.

First, a fractional linear transformation f2(z) could transform the domain into a domain in the
upper plane as shown in the z2-plane in the figure.

z2 = f2(z) = i
1 − 1

z

1 + 1
z

= i
z − 1

z + 1
. (A1)

In the transformation, the intersection points between the unit circle and the micro-defect are mapped
to z2 = − ρ

2
and z2 = ρ

2
.

Now, another fractional linear transformation f3(z2) is introduced to map the domain in the z2-plane
onto the whole upper plane, as described in the z3-plane. The function maps the point z2 = − ρ

2
to be

z3 = 0, the point z2 = ρ
2
i to be z3 = 1, and the point z2 = ρ

2
to be ∞.

z3 = f3(z2) = −
“z2 + ρ

2

z2 − ρ
2

”2

. (A2)
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-

- -

-

-

Fig. A1 Conformal mapping

Once again, a fractional linear transformation is constructed, aiming to map z3 = 0, z3 = ∞, and
z3 = 1 to be z4 = − ρ

2
, z4 = ρ

2
, and the origin z4 = 0, respectively. Assuming that it has the form of

z4 = f4(z3) =
kz3 +m

n+ z3
, (A3)

the parameters of k, m, and n could be determined by satisfying the above mapping requirements,
yielding

z4 = f4(z3) =
ρ

2

z3 − 1

1 + z3
. (A4)

The above transformation does not change the shape of the domain, it just constructed for maps several
special points to required positions. Through Eqs. (A2) and (A3), the point of − ρ

2
, ρ

2
, and ρ

2
i in the

z2-plane are mapped to be − ρ
2
, ρ

2
, and 0 in the z4-plane.

In order to map the upper plane onto the unit disk, use the following transformation:

z5 =
i − z4
i + z4

. (A5)

It is found that the center of unit disk in z5 is mapped not from ∞ but ζ0 = − 4+ρ2

−12+ρ2 (in the z-plane).
Therefore, we introduce the transformation

ζ =
z5 − ζ0

1 − ζ0z5
. (A6)

Through Eqs. (A1)–(A5), the domain of an infinite plate with a circular hole and a semicircular edge
defect is successfully mapped onto a unit disk.


