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1 Introduction

Functionally graded (FG) materials are an advanced class of composite structures with ma-
terial properties changing continuously in one or more directions. In recent years, with the rapid
development of nanotechnology, FG nanoscale and microscale structures with potential applica-
tions in nanoelectromechanical systems (NEMS) and microelectromechanical systems (MEMS)
have attracted a great deal of attention. Consequently, investigating the size-dependent me-
chanical behaviors of FG nano-/micro-structures is of great importance for better understand-
ing and designing those small-scaled systems. Since the experimental study in nanoscale may
be technically difficult and financially expensive, and molecular dynamics simulation is time-
consuming for analyzing large size system, the continuum mechanics approach, as an alterna-
tive way to model the mechanical response of nano-/micro-structures, has been widely used.
It is well-known that classical continuum mechanics is size-independent and cannot capture
the size effects in small scale. In this regard, several non-classical continuum theories have
been developed to assess the remarkable size effects on the mechanical characteristics of nano-
/micro-structures, such as nonlocal elasticity theory[1–2], strain gradient elasticity theory[3–6],
and surface elasticity theory[7–8].

Based on the nonlocal elasticity theory and strain gradient elasticity theory, a large number
of works on the size-dependent analysis of nano-/micro-structures have been carried out in the
last two decades (see review articles [9]–[11]), these works have shown that the nonlocal theory
captures only the stiffness-softening effect and the strain gradient theory captures only the
stiffness-hardening effect. Recently, the nonlocal elasticity theory and strain gradient elasticity
theory have been combined into a single theory, namely, the nonlocal strain gradient theory
(NSGT)[12]. NSGT takes not only the nonlocal stress field but also the strain gradient stress
field into account, which is capable of describing both stiffness-softening effect and stiffness-
hardening effect. Based upon the NSGT, numerous works have been performed to investigate
the size-dependent linear or nonlinear bending, buckling, vibration, and wave propagation of
FG small-scaled beams[13–24], plates[25–32], and shells[33–37]. To mention a few, She et al.[38]

analyzed the wave propagation of porous FG nanotubes with the help of NSGT and a refined
beam model. Sobhy and Zenkour[39] investigated the buckling and vibration behaviors of a
double-layered FG porous nanoplate via NSGT in conjunction with a quasi-3D refined theory.
Moreover, by using NSGT and first-order shear deformation shell theory, the free and forced
vibrations of porous FG cylindrical nanoshells were studied by Barati[40] and Faleh et al.[41],
respectively. In another work, Ma et al.[42] investigated the wave propagation characteristics in
magneto-electro-elastic nanoshells within the framework of NSGT.

On the other hand, it is known that for a solid with large surface area to bulk volume ratio,
the atom arrangement and material properties of the surface are different from those in the bulk
part, which makes the mechanical behavior of the solid become unusual compared with conven-
tional structures. To capture the surface effects, Gurtin and Murdoch[7–8] proposed the surface
elasticity theory, which defines the surface as a membrane without thickness, and suggests
that the surface has different material properties and constitutive relations than the bulk part.
Based on the surface elasticity theory, a large amount of research has focused on the analysis
of surface effects on the mechanical response of FG nanostructures[43–52]. For example, Zhu et
al.[53] investigated surface energy effects on the torsional buckling of FG cylindrical nanoshells
covered with piezoelectric nano-layers based on the surface elasticity theory. Norouzzadeh and
Ansari[54] analyzed the size-dependent vibration characteristics of FG rectangular and circular
nanoplates in the framework of nonlocal elasticity and surface elasticity theories. In a recent
work, Attia and Abdel-Rahman[55] studied the simultaneous effects of the microstructure rota-
tion and surface energy on the vibration of FG viscoelastic nanobeams by using the modified
couple stress theory and surface elasticity theory.

From the above-mentioned, we can find that NSGT and surface elasticity theory describe
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the remarkable size effects at small scale in totally different ways. Therefore, there is a scientific
need to explore the combined effects of nonlocal stress, strain gradient, and surface energy by
using NSGT in conjunction with the surface elasticity theory. Recently, the combined effect of
nonlocal stress, strain gradient, and surface energy on the mechanical behaviors of homogenous
nanoplates and nanoshells have been addressed by some researchers[56–58]. However, to the best
of the authors’ knowledge, no works have been concerned with combining NSGT with surface
elasticity theory to assess the size effects in FG nanoshells so far.

In this regard, the primary objective of the present work is to develop a nonlocal strain
gradient shell model including surface effects for the size-dependent analysis of FG cylindrical
nanoshells. To achieve this goal, firstly, NSGT in conjunction with surface elasticity theory will
be applied to establish the governing equations in Section 2. Afterwards, closed-form solutions
for the free vibration problem will be formulated in Section 3. Then, a comparative study is
performed in Section 4 to examine the validity of the proposed model and the accuracy of the
analytical method. Next, the effects of various parameters, such as nonlocal parameter, material
length scale parameter, radius-to-thickness ratio, length-to-radius ratio, power-law index, and
surface energy on the vibration response of FG cylindrical nanoshells are investigated in Section
5. Finally, the main conclusions of the present work are summarized in Section 6.

2 Nonlocal strain gradient shell model incorporating surface effects

As depicted in Fig. 1, an FG cylindrical nanoshell of length L, thickness h, and radius R is
considered. The coordinate system (x, θ, z) is established in the mid-plane of the nanoshell,
and the x-, θ-, and z-axes are taken along the axial, circumferential, and radical directions,
respectively. It is assumed that the FG cylindrical nanoshell is made of a mixture of ceramics
and metals, and the material properties vary continuously from metals at the inner surface
(z=−h/2) to ceramics at the outer surface (z=h/2) along the thickness direction according to
a power-law distribution. Thus, the effective Young’s modulus E(z), effective Poisson’s ratio
µ(z), and effective mass density ρ(z) of the FG cylindrical nanoshell can be written as follows[59]:



























E(z) = (Ec − Em)
( z

h
+

1

2

)ξ

+ Em,

µ(z) = (µc − µm)
( z

h
+

1

2

)ξ

+ µm,

ρ(z) = (ρc − ρm)
( z

h
+

1

2

)ξ

+ ρm,

(1)

where ξ is the power-law index (0 6 ξ < ∞). The subscripts “c” and “m” stand for the ceramic
and metal constituents, respectively.
2.1 Kinematics

Based on the FSDT, the displacement field of a cylindrical shell is given by










ux(x, θ, z, t) = u(x, θ, t) + zϕx(x, θ, t),

uθ(x, θ, z, t) = v(x, θ, t) + zϕθ(x, θ, t),

uz(x, θ, z, t) = w(x, θ, t),

(2)

where u(x, θ, t), v(x, θ, t), and w(x, θ, t) are the displacements in axial, circumferential, and
radical directions, respectively. ϕx(x, θ, t) and ϕθ(x, θ, t) represent the rotations about θ- and
x-axes, respectively. Accordingly, the strain field can be written as

εxx =
∂u

∂x
+ z

∂ϕx

∂x
, εθθ =

1

R

∂v

∂θ
+

z

R

∂ϕθ

∂θ
+

w

R
, (3)

γxθ =
1

R

∂u

∂θ
+

∂v

∂x
+

z

R

∂ϕx

∂θ
+ z

∂ϕθ

∂x
, γxz = ϕx +

∂w

∂x
, γθz = ϕθ +

1

R

∂w

∂θ
−

v

R
. (4)
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θ

Fig. 1 Schematic diagram of an FG cylindrical nanoshell (color online)

2.2 Constitutive relations

In the current work, constitutive relations of the FG cylindrical nanoshell including surface
effects are established within the framework of NSGT. To account for surface effects, the surface
elasticity theory proposed by Gurtin and Murdoch[7–8] is applied. According to the surface
elasticity theory, the FG cylindrical nanoshell is assumed to be composed of a bulk part and
two thin surface layers (inner surface z = −h/2 and outer surface z = h/2). The two surface
layers are treated as zero thickness films, and perfectly adhere to the underlying bulk material
without slipping. In doing this, the constitutive relations of the two surface layers are introduced
as

{

σs±
αβ = τ s±δαβ + (τ s± + λs±)ε±γγδαβ + 2(µs±

− τ s±)ε±αβ + τ s±us±
α,β,

σs±
αz = τ s±us±

z,α, α, β = x, θ,
(5)

where λs± and µs± denote the surface Lamé constants, τ s± represents the surface residual
stress, and δαβ is the Kronecker delta. Note that the superscript s± stand for the outer surface
and inner surface, respectively.

In surface elasticity theory, the surface balance conditions cannot be satisfied due to the
fact that the stress component σzz is usually neglected in classical continuum mechanics. To
improve this weakness, following Lu et al.[60], it is assumed that σzz varies linearly through the
thickness and satisfies the surface balance conditions, and therefore σzz is expressed as

σzz =
1

2

((∂σs+
xz

∂x
+

1

R

∂σs+
θz

∂θ
− ρs+ ∂2w

∂t2

)

+
(

ρs− ∂2w

∂t2
−

∂σs−
xz

∂x
−

1

R

∂σs−
θz

∂θ

))

+
z

h

((∂σs+
xz

∂x
+

1

R

∂σs+
θz

∂θ
− ρs+ ∂2w

∂t2

)

−

(

ρs− ∂2w

∂t2
−

∂σs−
xz

∂x
−

1

R

∂σs−
θz

∂θ

))

. (6)

By substituting Eq. (5) into Eq. (6), σzz can be rewritten as

σzz =
(1

2
(τ s+

− τ s−) +
z

h
(τ s+ + τ s−)

)(∂2w

∂x2
+

1

R2

∂2w

∂θ2

)

−

(1

2
(ρs+

− ρs−) +
z

h
(ρs+ + ρs−)

)∂2w

∂t2
, (7)

in which ρs+ and ρs− are the surface mass densities of the outer surface and inner surface,
respectively.
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By taking σzz into account, the constitutive relations of the bulk part in surface elasticity
theory are given by[60]

σαβ =
E(z)

1 + µ(z)

(

εαβ +
µ(z)

1 − µ(z)
εγγδαβ

)

+
µ(z)

1 − µ(z)
σzzδαβ . (8)

On the other hand, the constitutive relation with the framework of NSGT is written as[12]

(

1 − (ea)2∇2
)

tij = (1 − l2∇2)Cijklεkl, (9)

where ∇
2 = ∂2

∂x2 + 1
R2

∂2

∂θ2 is the Laplacian operator in cylindrical coordinate system, tij is the
total stress, Cijkl is the elastic modulus, and εkl is the strain. (ea) is the nonlocal parameter
introduced to describe the nonlocal effect, and l is the material length scale parameter involved
to capture the strain gradient effect. It is seen that the remarkable nonlocal effect and strain
gradient effect in small scale can be captured by the NSGT simultaneously.

By applying Eq. (9) to both the bulk part and two surface layers of the FG cylindrical
nanoshell, and substituting Eqs. (3) and (4) into the stress components, the constitutive equa-
tions based on the NSGT including surface effects can be obtained as follows:

(

1 − (ea)2∇2
)

txx = (1 − l2∇2)
( E(z)

1 − µ(z)2

(∂u

∂x
+ z

∂ϕx

∂x
+ µ(z)

( 1

R

∂v

∂θ
+

z

R

∂ϕθ

∂θ
+

w

R

))

+
µ(z)

1 − µ(z)

((1

2
(τ s+

− τ s−) +
z

h
(τ s+ + τ s−)

)(∂2w

∂x2
+

1

R2

∂2w

∂θ2

)

−

(1

2
(ρs+

− ρs−) +
z

h
(ρs+ + ρs−)

)∂2w

∂t2

))

, (10)

(

1 − (ea)2∇2
)

tθθ = (1 − l2∇2)
( E(z)

1 − µ(z)2

(

µ(z)
(∂u

∂x
+ z

∂ϕx

∂x

)

+
1

R

∂v

∂θ
+

z

R

∂ϕθ

∂θ
+

w

R

)

+
µ(z)

1 − µ(z)

((1

2
(τ s+

− τ s−) +
z

h
(τ s+ + τ s−)

)(∂2w

∂x2
+

1

R2

∂2w

∂θ2

)

−

(1

2
(ρs+

− ρs−) +
z

h
(ρs+ + ρs−)

)∂2w

∂t2

))

, (11)

(

1 − (ea)2∇2
)

txθ =
E(z)

2(1 + µ(z))
(1 − l2∇2)

( 1

R

∂u

∂θ
+

∂v

∂x
+

z

R

∂ϕx

∂θ
+ z

∂ϕθ

∂x

)

, (12)

(

1 − (ea)2∇2
)

txz =
E(z)

2(1 + µ(z))
(1 − l2∇2)

(

ϕx +
∂w

∂x

)

, (13)

(

1 − (ea)2∇2
)

tθz =
E(z)

2(1 + µ(z))
(1 − l2∇2)

(

ϕθ +
1

R

∂w

∂θ
−

v

R

)

, (14)

(

1 − (ea)2∇2
)

ts±xx = (1 − l2∇2)
(

(λs± + 2µs±)
(∂u

∂x
±

h

2

∂ϕx

∂x

)

+ (λs± + τ s±)
( 1

R

∂v

∂θ
±

h

2R

∂ϕθ

∂θ
+

w

R

)

+ τ s±
)

, (15)

(

1 − (ea)2∇2
)

ts±θθ = (1 − l2∇2)
(

(λs± + τ s±)
(∂u

∂x
±

h

2

∂ϕx

∂x

)

+ (λs± + 2µs±)
( 1

R

∂v

∂θ
±

h

2R

∂ϕθ

∂θ
+

w

R

)

−
w

R
τ s± + τ s±

)

, (16)
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(

1 − (ea)2∇2
)

ts±xθ = (1 − l2∇2)
(

µs±
( 1

R

∂u

∂θ
±

h

2R

∂ϕx

∂θ

)

+ (µs±
− τ s±)

(∂v

∂x
±

h

2

∂ϕθ

∂x

))

, (17)

(

1 − (ea)2∇2
)

ts±θx = (1 − l2∇2)
(

µs±
(∂v

∂x
±

h

2

∂ϕθ

∂x

)

+ (µs±
− τs±)

( 1

R

∂u

∂θ
±

h

2R

∂ϕx

∂θ

))

, (18)

(

1 − (ea)2∇2
)

ts±xz = τ s±(1 − l2∇2)
∂w

∂x
, (19)

(

1 − (ea)2∇2
)

ts±θz = τ s±(1 − l2∇2)
1

R

∂w

∂θ
. (20)

2.3 Variational formulation

The equilibrium equations for the vibration of FG cylindrical nanoshell will be formulated
using Hamilton’s principle. According to the Hamilton’s principle, one can get that

∫ t

0

(δK − δU + δW )dt = 0, (21)

where δU , δK, and δW are the first variation of strain energy, kinetic energy, and work done by
external forces, respectively. Due to the surface effects, the strain energy should include both
the bulk part and two surface layers. Thus, we have

δU =

∫

V

tijδεijdV +

∫

s+

ts+ij δεijdS +

∫

s−

ts−ij δεijdS

=

∫ L

0

∫ 2π

0

(

Nxx
∂δu

∂x
+ Mxx

∂δϕx

∂x
+

Nθθ

R

(∂δv

∂θ
+ δw

)

+
Mθθ

R

∂δϕθ

∂θ

+ Nxθ

( 1

R

∂δu

∂θ
+

∂δv

∂x

)

+ Mxθ

( 1

R

∂δϕx

∂θ
+

∂δϕθ

∂x

)

+ Qx

(

δϕx +
∂δw

∂x

)

+ Qθ

(

δϕθ +
1

R

∂δw

∂θ
−

δv

R

)

+ Qs
x

∂δw

∂x
+

Qs
θ

R

∂δw

∂θ

)

Rdθdx, (22)

in which the resultant forces and bending moments are defined as



































Nxx =

∫ h/2

−h/2

txxdz + ts+xx + ts−xx,

Nθθ =

∫ h/2

−h/2

tθθdz + ts+θθ + ts−θθ ,

Nxθ =

∫ h/2

−h/2

txθdz +
1

2
(ts+xθ + ts+θx + ts−xθ + ts−θx ),

(23)



































Mxx =

∫ h/2

−h/2

txxzdz +
h

2
(ts+xx − ts−xx),

Mθθ =

∫ h/2

−h/2

tθθzdz +
h

2
(ts+θθ − ts−θθ ),

Mxθ =

∫ h/2

−h/2

txθzdz +
h

4
(ts+xθ + ts+θx − ts−xθ − ts−θx ),

(24)

Qx = κ

∫ h/2

−h/2

txzdz, Qθ = κ

∫ h/2

−h/2

tθzdz, Qs
x = ts+xz + ts−xz , Qs

θ = ts+θz + ts−θz , (25)
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where κ is the shear correction factor. Similarly, the kinetic energy should also consider the
bulk part as well as the two surface layers, which leads to

δK =

∫

V

ρ(z)
∂ui

∂t

∂δui

∂t
dV +

∫

s+

ρs+ ∂ui

∂t

∂δui

∂t
dS +

∫

s−

ρs− ∂ui

∂t

∂δui

∂t
dS

=

∫ L

0

∫ 2π

0

(

I0

(∂u

∂t

∂δu

∂t
+

∂v

∂t

∂δv

∂t
+

∂w

∂t

∂δw

∂t

)

+ I1

(∂ϕx

∂t

∂δu

∂t
+

∂ϕθ

∂t

∂δv

∂t

+
∂u

∂t

∂δϕx

∂t
+

∂v

∂t

∂δϕθ

∂t

)

+ I2

(∂ϕx

∂t

∂δϕx

∂t
+

∂ϕθ

∂t

∂δϕθ

∂t

))

Rdθdx, (26)

where


































I0 =

∫ h/2

−h/2

ρ(z)dz + ρs+ + ρs−,

I1 =

∫ h/2

−h/2

ρ(z)zdz +
h

2
(ρs+

− ρs−),

I2 =

∫ h/2

−h/2

ρ(z)z2dz +
h2

4
(ρs+ + ρs−).

(27)

The first variation of the work done by external forces can be written as

δW =

∫ L

0

∫ 2π

0

(fxδu + fθδv + fzδw)Rdθdx, (28)

where fx, fθ, and fz are the distributed axial, circumferential, and radical forces, respectively.
Substituting Eqs. (22), (26), and (28) into Eq. (21) and integrating by parts, the equilibrium

equations can be obtained as

δu :
∂Nxx

∂x
+

1

R

∂Nxθ

∂θ
+ fx = I0

∂2u

∂t2
+ I1

∂2ϕx

∂t2
, (29)

δv :
∂Nxθ

∂x
+

1

R

∂Nθθ

∂θ
+

Qθ

R
+ fθ = I0

∂2v

∂t2
+ I1

∂2ϕθ

∂t2
, (30)

δw :
∂Qx

∂x
+

∂Qs
x

∂x
+

1

R

∂Qθ

∂θ
+

1

R

∂Qs
θ

∂θ
−

Nθθ

R
+ fz = I0

∂2w

∂t2
, (31)

δϕx :
∂Mxx

∂x
+

1

R

∂Mxθ

∂θ
−Qx = I1

∂2u

∂t2
+ I2

∂2ϕx

∂t2
, (32)

δϕθ :
∂Mxθ

∂x
+

1

R

∂Mθθ

∂θ
−Qθ = I1

∂2v

∂t2
+ I2

∂2ϕθ

∂t2
. (33)

The associated boundary conditions are given as follows:

either u = 0 or Nxxnx + Nxθnθ = 0, (34)

either v = 0 or Nxθnx + Nθθnθ = 0, (35)

either w = 0 or (Qx + Qs
x)nx + (Qθ + Qs

θ)nθ = 0, (36)

either ϕx = 0 or Mxxnx + Mxθnθ = 0, (37)

either ϕθ = 0 or Mxθnx + Mθθnθ = 0, (38)

in which (nx, nθ) are the directional cosines of the outward unit normal to the boundary of the
mid-plane.
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2.4 Governing equations

By substituting Eqs. (10)–(20) into Eqs. (23)–(25) and integrating through the thickness, the
stress resultants can be rewritten as

(

1 − (ea)2∇2
)

Nxx = (1 − l2∇2)
(

A1
∂u

∂x
+ A2

∂ϕx

∂x
+

A4

R

(∂v

∂θ
+ w

)

+
A5

R

∂ϕθ

∂θ

+ S1

(∂2w

∂x2
+

1

R2

∂2w

∂θ2

)

− S3
∂2w

∂t2
+ τ s+ + τ s−

)

, (39)

(

1 − (ea)2∇2
)

Nθθ = (1 − l2∇2)
(

A4
∂u

∂x
+ A5

∂ϕx

∂x
+

A1

R

(∂v

∂θ
+ w

)

+
A2

R

∂ϕθ

∂θ

+ S1

(∂2w

∂x2
+

1

R2

∂2w

∂θ2

)

− S3
∂2w

∂t2
+
(

1 −
w

R

)

(τ s+ + τ s−)
)

, (40)

(

1 − (ea)2∇2
)

Nxθ = (1 − l2∇2)
(

A7

( 1

R

∂u

∂θ
+

∂v

∂x

)

+ A8

( 1

R

∂ϕx

∂θ
+

∂ϕθ

∂x

))

, (41)

(

1 − (ea)2∇2
)

Mxx = (1 − l2∇2)
(

A2
∂u

∂x
+ A3

∂ϕx

∂x
+

A5

R

(∂v

∂θ
+ w

)

+
A6

R

∂ϕθ

∂θ

+ S2

(∂2w

∂x2
+

1

R2

∂2w

∂θ2

)

− S4
∂2w

∂t2
+

h

2
(τ s+

− τ s−)
)

, (42)

(

1 − (ea)2∇2
)

Mθθ = (1 − l2∇2)
(

A5
∂u

∂x
+ A6

∂ϕx

∂x
+

A2

R

(∂v

∂θ
+ w

)

+
A3

R

∂ϕθ

∂θ

+ S2

(∂2w

∂x2
+

1

R2

∂2w

∂θ2

)

− S4
∂2w

∂t2
+

h

2

(

1 −
w

R

)

(τ s+
− τ s−)

)

, (43)

(

1 − (ea)2∇2
)

Mxθ = (1 − l2∇2)
(

A8

( 1

R

∂u

∂θ
+

∂v

∂x

)

+ A9

( 1

R

∂ϕx

∂θ
+

∂ϕθ

∂x

))

, (44)

(

1 − (ea)2∇2
)

Qx = A10(1 − l2∇2)
(

ϕx +
∂w

∂x

)

, (45)

(

1 − (ea)2∇2
)

Qθ = A10(1 − l2∇2)
(

ϕθ +
1

R

∂w

∂θ
−

v

R

)

, (46)

(

1 − (ea)2∇2
)

Qs
x = (τ s+ + τ s−)(1 − l2∇2)

∂w

∂x
, (47)

(

1 − (ea)2∇2
)

Qs
θ = (τ s+ + τ s−)(1 − l2∇2)

1

R

∂w

∂θ
, (48)

where the coefficients Ai (i = 1, 2, · · · , 10) and Sj (j = 1, 2, · · · , 4) are given in Appendix A.

Employing Eqs. (39)–(48) into Eqs. (29)–(33), the governing equations in terms of displace-
ments for vibration of the FG cylindrical nanoshells based on NSGT including surface effects
are given by

(1 − l2∇2)
(

A1
∂2u

∂x2
+

A7

R2

∂2u

∂θ2
+ A2

∂2ϕx

∂x2
+

A8

R2

∂2ϕx

∂θ2
+

A4 + A7

R

∂2v

∂x∂θ

+
A5 + A8

R

∂2ϕθ

∂x∂θ
+

A4

R

∂w

∂x
+ S1

(∂3w

∂x3
+

1

R2

∂3w

∂x∂θ2

)

− S3
∂3w

∂x∂t2

)

=
(

1 − (ea)2∇2
)

(

I0
∂2u

∂t2
+ I1

∂2ϕx

∂t2

)

, (49)
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(1 − l2∇2)
(

A7
∂2v

∂x2
+

A1

R2

∂2v

∂θ2
+ A8

∂2ϕθ

∂x2
+

A2

R2

∂2ϕθ

∂θ2
+

A4 + A7

R

∂2u

∂x∂θ
+

A5 + A8

R

∂2ϕx

∂x∂θ

+
A10

R
ϕθ −

A10

R2
v +

A1 + A10 − τ s+
− τ s−

R2

∂w

∂θ
+

S1

R

∂3w

∂x2∂θ
+

S1

R3

∂3w

∂θ3
−

S3

R

∂3w

∂θ∂t2

)

=
(

1 − (ea)2∇2
)

(

I0
∂2v

∂t2
+ I1

∂2ϕθ

∂t2

)

, (50)

(1 − l2∇2)
(

(A10 + τ s+ + τ s−)
(∂2w

∂x2
+

1

R2

∂2w

∂θ2

)

+
(

A10 −
A5

R

)∂ϕx

∂x
+
(A10

R
−

A2

R2

)∂ϕθ

∂θ

−
A1 + A10

R2

∂v

∂θ
−

A4

R

∂u

∂x
−

A1 − τ s+
− τ s−

R2
w −

S1

R

∂2w

∂x2
−

S1

R3

∂2w

∂θ2
+

S3

R

∂2w

∂t2

)

= I0
(

1 − (ea)2∇2
) ∂2w

∂t2
, (51)

(1 − l2∇2)
(

A3
∂2ϕx

∂x2
+

A9

R2

∂2ϕx

∂θ2
+ A2

∂2u

∂x2
+

A8

R2

∂2u

∂θ2
+

A5 + A8

R

∂2v

∂x∂θ
+

A6 + A9

R

∂2ϕθ

∂x∂θ

+
(A5

R
−A10

)∂w

∂x
−A10ϕx + S2

(∂3w

∂x3
+

1

R2

∂3w

∂x∂θ2

)

− S4
∂3w

∂x∂t2

)

=
(

1 − (ea)2∇2
)

(

I1
∂2u

∂t2
+ I2

∂2ϕx

∂t2

)

, (52)

(1 − l2∇2)
(

A9
∂2ϕθ

∂x2
+

A3

R2

∂2ϕθ

∂θ2
+ A8

∂2v

∂x2
+

A2

R2

∂2v

∂θ2
+

A5 + A8

R

∂2u

∂x∂θ

+
A6 + A9

R

∂2ϕx

∂x∂θ
+

S2

R

∂3w

∂x2∂θ
+

S2

R3

∂3w

∂θ3
−

S4

R

∂3w

∂θ∂t2

+
(A2

R2
−

A10

R
−

h

2R2
(τ s+

− τ s−)
)∂w

∂θ
+

A10

R
v −A10ϕθ

)

=
(

1 − (ea)2∇2
)

(

I1
∂2v

∂t2
+ I2

∂2ϕθ

∂t2

)

. (53)

For homogenous cylindrical nanoshells, material properties are constants. Thus, we have
E(z) = E, µ(z) = µ, ρ(z) = ρ, λs+ = λs− = λs, µs+ = µs− = µs, τ s+ = τ s− = τ s and
ρs+ = ρs− = ρs. In this case, A2 = A5 = A8 = S1 = S3 = I1 = 0, and Eqs. (49)–(53) can be
simplified to

(1 − l2∇2)
(

A1
∂2u

∂x2
+

A7

R2

∂2u

∂θ2
+

A4 + A7

R

∂2v

∂x∂θ
+

A4

R

∂w

∂x

)

= I0
(

1 − (ea)2∇2
) ∂2u

∂t2
, (54)

(1 − l2∇2)
(

A7
∂2v

∂x2
+

A1

R2

∂2v

∂θ2
+

A4 + A7

R

∂2u

∂x∂θ
−

A10

R2
v +

A10

R
ϕθ

+
A1 + A10 − 2τ s

R2

∂w

∂θ

)

= I0
(

1 − (ea)2∇2
) ∂2v

∂t2
, (55)

(1 − l2∇2)
(

(A10 + 2τ s)
(∂2w

∂x2
+

1

R2

∂2w

∂θ2

)

+ A10

(∂ϕx

∂x
+

1

R

∂ϕθ

∂θ

)

−
A4

R

∂u

∂x

−
A1 + A10

R2

∂v

∂θ
−

A1 − 2τ s

R2
w
)

= I0
(

1 − (ea)2∇2
) ∂2w

∂t2
, (56)

(1 − l2∇2)
(

A3
∂2ϕx

∂x2
+

A9

R2

∂2ϕx

∂θ2
+

A6 + A9

R

∂2ϕθ

∂x∂θ
+ S2

(∂3w

∂x3
+

1

R2

∂3w

∂x∂θ2

)

− S4
∂3w

∂x∂t2
−A10

(∂w

∂x
+ ϕx

))

= I2
(

1 − (ea)2∇2
) ∂2ϕx

∂t2
, (57)
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(1 − l2∇2)
(

A9
∂2ϕθ

∂x2
+

A3

R2

∂2ϕθ

∂θ2
+

A6 + A9

R

∂2ϕx

∂x∂θ
+

S2

R

∂3w

∂x2∂θ
+

S2

R3

∂3w

∂θ3

−
S4

R

∂3w

∂θ∂t2
−A10

(

ϕθ +
1

R

∂w

∂θ
−

v

R

))

= I2
(

1 − (ea)2∇2
) ∂2ϕθ

∂t2
. (58)

It should be stated that by setting all the surface elastic constants to be zero, Eqs. (54)–(58)
can be reduced to the governing equations of the nonlocal strain gradient shell model, which
is identical to those of Mehralian et al.[61]. By taking the nonlocal and material length scale
parameters to be zero, Eqs. (54)–(58) will be degenerated to the governing equations based on
the surface elasticity theory, which is consistent with the formulation of Rouhi et al.[62].

3 Closed-form solutions for natural frequencies

In this section, closed-form solutions for natural frequencies of the FG cylindrical nanoshells
under various boundary conditions are obtained through an analytical approach. Three typical
types of boundary condition are considered, which are simply supported-simply supported (SS-
SS), clamped-clamped (C-C), and clamped-simply supported (C-SS). In order to solve the
governing equations, the displacement components are expressed as the following double Fourier
series form[40–41]:

u(x, θ, t) =
∞
∑

m=1

∞
∑

n=1

Umn
dXm(x)

dx
cos(nθ) exp(iωmnt), (59)

v(x, θ, t) =

∞
∑

m=1

∞
∑

n=1

VmnXm(x) sin(nθ) exp(iωmnt), (60)

w(x, θ, t) =

∞
∑

m=1

∞
∑

n=1

WmnXm(x) cos(nθ) exp(iωmnt), (61)

ϕx(x, θ, t) =

∞
∑

m=1

∞
∑

n=1

Φxmn
dXm(x)

dx
cos(nθ) exp(iωmnt), (62)

ϕθ(x, θ, t) =

∞
∑

m=1

∞
∑

n=1

ΦθmnXm(x) sin(nθ) exp(iωmnt), (63)

where Umn, Vmn, Wmn, Φxmn, and Φθmn are unknown constants, m and n are two positive
integers denoting the wave numbers in the axial and circumferential directions, respectively,
and Xm(x) is the axial modal function. The explicit forms of Xm(x) for different boundary
conditions are given as follows[62–65]:

For the SS-SS boundary condition,

Xm(x) = sin
mpx

L
. (64)

For the C-C and C-SS boundary conditions,

Xm(x) = cos
amx

L
− cosh

amx

L
−

cos am − cosham
sin am − sinh am

(

sin
amx

L
− sinh

amx

L

)

, (65)

where a1 = 4.73, a2 = 7.853 2, a3 = 10.995 6, and am = (m+ 0.5)p (m > 4) for C-C boundary
condition, and a1 = 3.926 6, a2 = 7.068 6, a3 = 10.210 2, and am = (m + 0.25p) (m > 4) for
C-SS boundary condition.

For free vibration analysis, the external forces fx = fθ = fz = 0. Substituting Eqs. (59)–
(63) into Eqs. (49)–(53) and multiplying each equation by the corresponding eigenfunction, then
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integrating along the length, we can obtain that

(

K5×5 + ω2
mnM5×5

)













Umn

Vmn

Wmn

Φxmn

Φθmn













=













0
0
0
0
0













, (66)

where K5×5 and M5×5 are the stiffness matrix and the mass matrix, respectively. The elements
of the two matrices are given in Appendix B. By setting the determinant of the coefficient matrix
of Eq. (66) to be zero, the natural frequencies of FG cylindrical nanoshells can be obtained.

4 Comparative study

Before carrying out the numerical analyses, the validity of the present model and the accu-
racy of the analytical method are examined by comparing the degenerated results with those
available in the literature. In Table 1, natural frequencies of an FG macroscale cylindrical shell
with SS-SS boundary condition predicted by the present model (by ignoring all the size effects)
are compared with those obtained by Loy et al.[59]. For comparison purpose, the inner surface
of the FG cylindrical shell is assumed to be made of stainless steel with material properties:
Em = 207.788 GPa, µm = 0.317 756, and ρm = 8 166 kg·m−3, and the outer surface of the
FG cylindrical shell is assumed to be made of Nickel with material properties: Ec = 205.098
GPa, µc = 0.31, and ρc = 8 900 kg·m−3. It is seen from Table 1 that the present results are
in good agreement with the results of Loy et al.[59] for different circumferential wave numbers,
power-law indices, and thickness-to-radius ratios.

Table 1 Comparisons of natural frequencies (Hz) of an FG macroscale cylindrical shell with SS-SS
boundary condition (m = 1, R = 1 m, and L/R = 20)

n

h/R = 0.002 h/R = 0.05

ξ = 0 ξ = 1 ξ = 2 ξ = 0 ξ = 1 ξ = 2

Ref. [59] Present Ref. [59] Present Ref. [59] Present Ref. [59] Present Ref. [59] Present Ref. [59] Present

1 12.894 12.894 13.211 13.211 13.321 13.321 12.917 12.917 13.234 13.234 13.344 13.344

2 4.369 0 4.369 0 4.474 2 4.474 2 4.511 4 4.511 5 31.603 31.552 32.418 32.372 32.683 32.637

3 4.048 9 4.048 8 4.148 6 4.148 6 4.182 7 4.182 7 88.267 87.922 90.569 90.239 91.309 90.976

4 6.857 7 6.857 6 7.033 0 7.033 0 7.090 5 7.090 6 168.99 167.80 173.41 172.23 174.83 173.63

5 10.955 10.954 11.238 11.238 11.329 11.329 273.14 270.10 280.28 277.23 282.57 279.49

6 16.037 16.037 16.453 16.453 16.587 16.587 400.56 394.15 411.03 404.56 414.39 407.85

7 22.061 22.060 22.633 22.633 22.454 22.818 551.22 539.28 565.63 553.51 570.25 558.02

8 29.017 29.015 29.770 29.769 30.014 30.013 725.08 704.76 744.04 723.34 750.13 729.22

9 36.902 36.900 37.861 37.859 38.171 38.169 922.15 889.81 946.27 913.24 954.0 920.65

10 45.716 45.713 46.904 46.902 47.288 47.285 1 142.4 1 093.6 1 172.3 1 122.3 1 181.9 1 131.4

To examine the accuracy of the present analytical method for more complex boundary
conditions, Table 2 compares the dimensionless natural frequencies of a homogenous macroscale
cylindrical shell, under SS-SS, C-SS, and C-C boundary conditions, obtained by the present
analytical method with those obtained by Loy et al.[66] using generalized differential quadrature
(GDQ) method and Zhang et al.[67] through wave propagation approach. One can find that for
the three types of boundary conditions considered, the present analytical solutions agree well
with the results obtained by the GDQ method and the wave propagation method.
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As the third example, a comparative study is performed to verify the accuracy of the present
model in capturing size effects. For this objective, Table 3 tabulates the dimensionless natural
frequencies of a homogenous nanoscale cylindrical shell with SS-SS and C-C boundary condi-
tions predicted by the present work and Ghorbani et al.[58]. Results are presented for different
values of nonlocal parameter and material length scale parameter with and without surface
effects. Material properties are taken as: E = 210 GPa, ρ = 2 331 kg·m−3, µ = 0.24, λs =
−4.488 N·m−1, µs = −2.774 N·m−1, τs = 0.605 N·m−1 and ρs = 3.17× 10−7 kg·m−3. It can be
seen from Table 3 that the present results have a good consistency with those of Ghorbani et
al.[58] for both SS-SS and C-C boundary conditions. From the above comparisons, the reliability
of the present model and analytical method are well-validated.

Table 2 Comparisons of dimensionless natural frequencies (ωR
p

ρ(1 − µ2)/E) of a homogeneous
macroscale cylindrical shell under different boundary conditions (m = 1, L/R = 20, h/R =
0.01, and µ = 0.3)

n
SS-SS C-C C-SS

Ref. [66] Ref. [67] Present Ref. [66] Ref. [67] Present Ref. [66] Ref. [67] Present

1 0.016 101 0.016 101 0.016 102 0.032 885 0.034 879 0.034 395 0.023 974 0.024 721 0.024 831

2 0.009 382 0.009 382 0.009 387 0.013 932 0.014 052 0.014 263 0.011 225 0.011 281 0.011 369

3 0.022 105 0.022 105 0.022 105 0.022 672 0.022 725 0.022 716 0.022 310 0.022 335 0.022 325

4 0.042 095 0.042 095 0.042 085 0.042 208 0.042 271 0.042 208 0.042 139 0.042 166 0.042 133

5 0.068 008 0.068 008 0.067 978 0.068 046 0.068 116 0.068 023 0.068 024 0.068 054 0.067 999

6 0.099 730 0.099 731 0.099 665 0.099 748 0.099 823 0.099 691 0.099 738 0.099 771 0.099 680

7 0.137 239 0.137 240 0.137 117 0.137 249 0.137 328 0.137 137 0.137 244 0.137 279 0.137 130

8 0.180 527 0.180 527 0.180 317 0.180 535 0.180 617 0.180 336 0.180 531 0.180 569 0.180 329

9 0.229 594 0.229 596 0.229 254 0.229 599 0.229 684 0.229 272 0.229 596 0.229 636 0.229 266

10 0.284 435 0.284 438 0.283 916 0.284 439 0.284 526 0.283 934 0.284 437 0.284 478 0.283 928

Table 3 Comparisons of dimensionless natural frequencies (ωR
p

ρ/E) of a homogeneous nanoscale
cylindrical shell with C-C and SS-SS boundary conditions (h = 0.3 nm, R = 10h, L = 20R,
and m = n = 1)

((ea), l)

C-C SS-SS

With surface effects Without surface effect With surface effects Without surface effect

Ref. [58] Present Ref. [58] Present Ref. [58] Present Ref. [58] Present

(0, 0) 0.074 945 0.075 190 0.034 699 0.035 944 0.072 410 0.072 410 0.017 016 0.017 016

(50h, 0) 0.014 497 0.014 528 0.006 712 0.006 945 0.014 035 0.014 035 0.003 298 0.003 298

(0,10h) 0.106 870 0.107 222 0.050 013 0.051 382 0.103 033 0.103 033 0.024 213 0.024 213

(50h,10h) 0.020 683 0.020 716 0.009 678 0.009 928 0.019 971 0.019 971 0.004 693 0.004 693

5 Results and discussion

In this section, based on the proposed size-dependent shell model, the effects of nonlocal
parameter, material length scale parameter, power-law index, radius-to-thickness ratio, length-
to-radius ratio, and surface effects on the free vibration behavior of FG cylindrical nanoshells
with different boundary conditions (SS-SS, C-SS, and C-C) are investigated. The ceramic and
metal constituents are selected as Silicon and Aluminum, respectively. Material properties of
Silicon and Aluminum are given in Table 4. In the numerical analyses, the thickness of the FG
cylindrical nanoshell is considered as h = 1 nm, axial wave number is fixed at m = 1, and the
shear correction factor is taken as κ = 5/6.
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Table 4 Material properties of silicon and aluminum[55,68]

Silicon
Ec/GPa µc ρc/(kg·m−3) µs+/(N·m−1) λs+/(N·m−1) τ s+/(N·m−1) ρs+/(kg·m−3)

210 0.24 2 331 −2.774 −4.488 0.604 8 3.17×10−7

Aluminum
Em/GPa µm ρm/(kg·m−3) µs−/(N·m−1) λs−/(N·m−1) τ s−/(N·m−1) ρs−/(kg·m−3)

68.5 0.35 2 700 −0.376 6.842 0.910 8 5.46×10−7

To illustrate the numerical results and to highlight the size effects, the dimensionless natural
frequency ̟mn and frequency ratio are defined as

̟mn = 100ωmnh

√

ρc

Ec
, (67)

Frequency ratio =
̟mn predicted by NSGT with/without surface effects

̟mn predicted by classical continuum theory
. (68)

Note that the results of the classical continuum theory can be acquired from the present model
by setting the two scale parameters and all the surface elastic constants to be zero.
5.1 Benchmark results

Tables 5–7 illustrate the dimensionless natural frequencies of an FG cylindrical nanoshell
based on the NSGT without surface effects for SS-SS, C-SS, and C-C boundary conditions,
respectively. The geometric parameters are taken as: R/h = 10 and L/R = 5. Results are
presented for different values of normalized nonlocal parameter ((ea)/h), normalized material
length scale parameter (l/h), circumferential wave number (n) and power-law index (ξ). Note
that when ξ = 0, the nanoshell is made of pure silicon, and the inner and outer surface have
the same surface material properties. It can be seen from Tables 5–7 that an increase in the
nonlocal parameter or power-law index leads to a decrease in the natural frequency; conversely,
an increase in the strain gradient parameter results in an increase in the natural frequency.
Moreover, with the increase in the circumferential wave number, the natural frequencies first
decrease and then increase. In particular, the fundamental frequency always occurs at n = 2.
On the other hand, we can find that for the three types of boundary condition considered, the
natural frequencies associated with the C-SS boundary condition are higher than those of the
SS-SS boundary condition, but lower than those of C-C boundary condition, which indicates
that stiffer boundary condition produces higher natural frequencies. The corresponding dimen-
sionless natural frequencies of the FG cylindrical nanoshell based on NSGT with surface effects
for different boundary conditions are tabulated in Tables 8–10. Comparing the results with
surface effects with those without surface effects, it can be found that surface effects may affect
the circumferential wave number at which the fundamental frequency occurs. For instance,
when ignoring surface effects, the fundamental frequency of the SS-SS FG cylindrical nanoshell
with ξ = 1 and (ea) = 0 occurs at n = 2. However, by taking surface effects into account, the
fundamental frequency occurs at n = 1. Moreover, the results tabulated in Tables 5–10 can be
used as benchmarks for prospective researchers to compare their results.
5.2 Coupling effect of nonlocal parameter and material length scale parameter

To explore the coupling effect of nonlocal parameter and material length scale parameter on
the vibrational behavior of FG cylindrical nanoshell under different boundary conditions, Fig.
2 plots the variations of the frequency ratio as a function of the scale parameter ratio (l/(ea))
for SS-SS, C-SS, and C-C boundary conditions, when R/h = 10, L/R = 2, ξ = 1, and n = 3.
Surface effects are neglected in this example. It is seen that, for SS-SS boundary condition (see
Fig. 2(a)), when the nonlocal parameter is smaller than the material length scale parameter
(l/(ea) < 1), the FG cylindrical nanoshell exhibits a stiffness-softening behavior, leading to the
natural frequencies predicted by NSGT always lower than those of classical continuum theory.
When the nonlocal parameter is larger than the material length scale parameter (l/(ea) > 1),
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Table 5 Dimensionless natural frequencies of FG cylindrical nanoshells without surface effects under
SS-SS boundary condition

(ea)/h n
ξ = 0 ξ = 1 ξ = 2

l/h = 0 l/h = 2 l/h = 4 l/h = 0 l/h = 2 l/h = 4 l/h = 0 l/h = 2 l/h = 4

0 1 1.966 4 2.020 5 2.174 7 1.536 0 1.578 2 1.698 7 1.381 6 1.419 6 1.528 0

2 1.190 6 1.291 0 1.553 8 0.896 3 0.971 8 1.169 7 0.816 0 0.884 8 1.064 9

3 2.355 4 2.762 7 3.726 5 1.762 7 2.067 5 2.788 8 1.623 3 1.904 1 2.568 3

4 4.320 2 5.559 1 8.223 3 3.240 1 4.169 3 6.167 4 2.984 8 3.840 8 5.681 4

5 6.818 4 9.680 7 15.342 4 5.117 6 7.265 9 11.515 4 4.711 6 6.689 4 10.601 7

2 1 1.913 7 1.966 4 2.116 5 1.494 8 1.536 0 1.653 3 1.344 6 1.381 6 1.487 1

2 1.098 0 1.190 6 1.433 0 0.826 5 0.896 3 1.078 7 0.752 5 0.816 0 0.982 1

3 2.008 1 2.355 4 3.177 1 1.502 8 1.762 7 2.377 6 1.384 0 1.623 3 2.189 7

4 3.357 4 4.320 2 6.390 6 2.518 0 3.240 1 4.792 9 2.319 6 2.984 8 4.415 3

5 4.802 4 6.818 4 10.806 2 3.604 5 5.117 6 8.110 6 3.318 5 4.711 6 7.467 1

4 1 1.778 0 1.826 9 1.966 4 1.388 8 1.427 0 1.536 0 1.249 2 1.283 6 1.381 6

2 0.912 3 0.989 3 1.190 6 0.686 8 0.744 7 0.896 3 0.625 2 0.678 0 0.816 0

3 1.488 7 1.746 2 2.355 4 1.114 1 1.306 8 1.762 7 1.026 0 1.203 5 1.623 3

4 2.269 6 2.920 5 4.320 2 1.702 2 2.190 4 3.240 1 1.568 1 2.017 8 2.984 8

5 3.030 2 4.302 3 6.818 4 2.274 3 3.229 1 5.117 6 2.093 9 2.972 9 4.711 6

Table 6 Dimensionless natural frequencies of FG cylindrical nanoshells without surface effects under
C-SS boundary condition

(ea)/h n
ξ = 0 ξ = 1 ξ = 2

l/h = 0 l/h = 2 l/h = 4 l/h = 0 l/h = 2 l/h = 4 l/h = 0 l/h = 2 l/h = 4

0 1 2.491 4 2.574 8 2.809 6 1.939 7 2.004 8 2.188 2 1.743 1 1.801 7 1.966 7

2 1.457 7 1.585 2 1.917 2 1.108 1 1.204 9 1.457 0 1.0054 1.093 2 1.321 9

3 2.417 8 2.840 1 3.837 7 1.811 0 2.127 2 2.874 1 1.666 5 1.957 4 2.644 7

4 4.348 0 5.600 6 8.291 8 3.260 8 4.200 2 6.218 4 3.003 6 3.868 8 5.727 8

5 6.839 1 9.717 6 15.408 0 5.132 9 7.293 2 11.563 9 4.725 5 6.714 4 10.646 1

2 1 2.421 3 2.502 3 2.730 5 1.885 1 1.948 4 2.126 6 1.694 1 1.751 1 1.911 4

2 1.342 8 1.460 2 1.766 0 1.020 7 1.109 9 1.342 1 0.926 1 1.007 0 1.217 6

3 2.059 3 2.419 0 3.268 6 1.542 5 1.811 8 2.448 0 1.419 4 1.667 2 2.252 6

4 3.376 3 4.349 0 6.438 7 2.532 1 3.261 5 4.828 6 2.332 3 3.004 2 4.447 7

5 4.813 8 6.839 9 10.845 3 3.612 9 5.133 5 8.139 5 3.326 1 4.726 0 7.493 5

4 1 2.241 8 2.316 8 2.528 1 1.745 5 1.804 1 1.969 1 1.568 7 1.621 4 1.769 8

2 1.113 4 1.210 7 1.464 3 0.846 4 0.920 3 1.112 8 0.767 9 0.835 0 1.009 6

3 1.524 9 1.791 3 2.420 4 1.142 2 1.341 6 1.812 7 1.051 1 1.234 5 1.668 1

4 2.280 9 2.938 0 4.349 8 1.710 6 2.203 4 3.262 1 1.575 6 2.029 6 3.004 7

5 3.036 2 4.314 1 6.840 4 2.278 8 3.237 8 5.133 8 2.097 9 2.980 9 4.726 4
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Table 7 Dimensionless natural frequencies of FG cylindrical nanoshells without surface effects under
C-C boundary condition

(ea)/h n
ξ = 0 ξ = 1 ξ = 2

l/h = 0 l/h = 2 l/h = 4 l/h = 0 l/h = 2 l/h = 4 l/h = 0 l/h = 2 l/h = 4

0 1 2.805 1 2.935 9 3.294 0 2.174 5 2.276 6 2.556 1 1.951 6 2.043 5 2.294 9

2 1.710 1 1.872 3 2.289 6 1.304 5 1.428 3 1.746 8 1.180 5 1.292 5 1.580 6

3 2.491 8 2.932 8 3.971 9 1.869 3 2.199 8 2.978 7 1.718 3 2.022 1 2.738 0

4 4.374 4 5.640 1 8.356 7 3.281 2 4.230 3 6.267 7 3.021 9 3.896 0 5.772 3

5 6.854 1 9.744 8 15.456 8 5.144 2 7.313 7 11.600 5 4.735 8 6.733 0 10.679 4

2 1 2.724 4 2.851 5 3.199 2 2.112 0 2.211 2 2.482 6 1.895 6 1.984 8 2.229 0

2 1.574 3 1.723 6 2.107 8 1.200 9 1.314 9 1.608 1 1.086 8 1.189 9 1.455 1

3 2.121 3 2.496 7 3.381 3 1.591 4 1.872 7 2.535 8 1.462 9 1.721 4 2.330 9

4 3.395 4 4.377 9 6.486 6 2.546 9 3.283 6 4.865 1 2.345 6 3.024 1 4.480 6

5 4.822 9 6.856 9 10.876 1 3.619 7 5.146 3 8.162 6 3.332 3 4.737 7 7.514 6

4 1 2.518 7 2.636 1 2.957 3 1.952 7 2.044 4 2.295 2 1.752 7 1.835 1 2.060 7

2 1.304 0 1.427 6 1.745 8 0.994 8 1.089 2 1.332 0 0.900 2 0.985 6 1.205 3

3 1.569 9 1.847 7 2.502 4 1.177 8 1.386 0 1.876 7 1.082 6 1.274 0 1.725 0

4 2.293 1 2.956 6 4.380 7 1.720 1 2.217 6 3.285 6 1.584 1 2.042 4 3.026 0

5 3.041 3 4.324 0 6.858 6 2.282 6 3.245 3 5.147 5 2.101 4 2.987 6 4.738 8

Table 8 Dimensionless natural frequencies of FG cylindrical nanoshells with surface effects under
SS-SS boundary condition

(ea)/h n
ξ = 0 ξ = 1 ξ = 2

l/h = 0 l/h = 2 l/h = 4 l/h = 0 l/h = 2 l/h = 4 l/h = 0 l/h = 2 l/h = 4

0 1 1.757 7 1.806 1 1.944 0 1.407 7 1.446 5 1.556 9 1.284 2 1.319 6 1.420 3

2 1.571 6 1.704 2 2.051 1 1.498 3 1.624 7 1.955 5 1.456 6 1.579 5 1.901 1

3 2.644 8 3.102 4 4.185 7 2.525 2 2.962 3 3.997 3 2.449 7 2.873 8 3.878 0

4 4.200 4 5.406 4 8.003 5 3.902 0 5.023 3 7.440 9 3.752 1 4.830 4 7.155 6

5 6.139 9 8.722 8 13.850 2 5.576 5 7.926 4 12.604 7 5.323 8 7.567 5 12.036 0

2 1 1.710 7 1.757 7 1.891 9 1.370 0 1.407 7 1.515 2 1.249 9 1.284 2 1.382 3

2 1.449 3 1.571 6 1.891 6 1.381 7 1.498 3 1.803 3 1.343 3 1.456 6 1.753 2

3 2.254 7 2.644 8 3.568 0 2.152 6 2.525 2 3.407 1 2.088 3 2.449 7 3.305 4

4 3.263 8 4.200 4 6.216 3 3.031 6 3.902 0 5.776 8 2.915 0 3.752 1 5.555 1

5 4.323 2 6.139 9 9.739 8 3.925 5 5.576 5 8.852 7 3.747 5 5.323 8 8.452 2

4 1 1.589 3 1.633 0 1.757 7 1.272 9 1.307 9 1.407 7 1.161 2 1.193 2 1.284 2

2 1.204 2 1.305 8 1.571 6 1.148 0 1.244 9 1.498 3 1.116 1 1.210 2 1.456 6

3 1.671 4 1.960 5 2.644 8 1.595 7 1.871 8 2.525 2 1.548 0 1.815 8 2.449 7

4 2.206 1 2.839 0 4.200 4 2.048 9 2.636 8 3.902 0 1.970 2 2.535 5 3.752 1

5 2.727 3 3.872 7 6.139 9 2.476 1 3.516 3 5.576 5 2.363 8 3.356 8 5.323 8
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Table 9 Dimensionless natural frequencies of FG cylindrical nanoshells with surface effects under
C-SS boundary condition

(ea)/h n
ξ = 0 ξ = 1 ξ = 2

l/h = 0 l/h = 2 l/h = 4 l/h = 0 l/h = 2 l/h = 4 l/h = 0 l/h = 2 l/h = 4

0 1 2.193 8 2.266 8 2.472 4 1.726 5 1.784 0 1.945 9 1.565 5 1.617 6 1.764 3

2 1.732 6 1.883 0 2.275 2 1.603 2 1.741 7 2.103 3 1.546 0 1.679 5 2.027 9

3 2.687 3 3.156 5 4.265 5 2.553 2 2.998 8 4.052 5 2.474 4 2.906 2 3.927 3

4 4.221 3 5.438 7 8.058 0 3.916 6 5.046 9 7.481 7 3.765 3 4.852 0 7.193 2

5 6.155 8 8.752 0 13.903 0 5.588 1 7.948 8 12.646 2 5.334 5 7.588 3 12.074 5

2 1 2.132 0 2.202 9 2.402 7 1.677 9 1.733 8 1.891 2 1.521 5 1.572 1 1.714 7

2 1.595 9 1.734 4 2.095 7 1.476 8 1.604 4 1.937 4 1.424 1 1.547 0 1.868 0

3 2.288 7 2.688 3 3.632 5 2.174 5 2.553 8 3.450 8 2.107 3 2.474 9 3.344 1

4 3.277 4 4.222 1 6.253 6 3.040 5 3.917 2 5.803 8 2.923 0 3.765 8 5.579 8

5 4.331 5 6.156 4 9.770 5 3.931 1 5.588 6 8.875 9 3.752 6 5.334 9 8.473 6

4 1 1.974 0 2.039 6 2.224 6 1.553 7 1.605 4 1.751 1 1.408 8 1.455 7 1.587 7

2 1.323 2 1.438 1 1.737 6 1.224 4 1.330 2 1.606 3 1.180 8 1.282 7 1.548 8

3 1.694 7 1.990 5 2.689 4 1.610 0 1.890 8 2.554 6 1.560 3 1.832 4 2.475 6

4 2.213 9 2.851 8 4.222 8 2.053 6 2.645 3 3.917 6 1.974 2 2.543 1 3.766 3

5 2.731 5 3.881 6 6.156 8 2.478 7 3.522 6 5.588 9 2.366 0 3.362 5 5.335 2

Table 10 Dimensionless natural frequencies of FG cylindrical nanoshells with surface effects under
C-C boundary condition

(ea)/h n
ξ = 0 ξ = 1 ξ = 2

l/h = 0 l/h = 2 l/h = 4 l/h = 0 l/h = 2 l/h = 4 l/h = 0 l/h = 2 l/h = 4

0 1 2.457 8 2.570 8 2.880 7 1.910 6 1.998 6 2.240 2 1.726 1 1.805 5 2.023 4

2 1.895 7 2.070 1 2.521 3 1.708 8 1.863 6 2.264 9 1.635 4 1.783 0 2.165 9

3 2.736 5 3.219 2 4.357 9 2.585 7 3.040 6 4.114 7 2.502 4 2.942 5 3.981 8

4 4.240 8 5.468 3 8.107 6 3.930 3 5.068 1 7.517 8 3.777 5 4.871 1 7.225 9

5 6.167 2 8.773 2 13.941 5 5.596 6 7.964 9 12.675 8 5.342 1 7.603 1 12.101 8

2 1 2.387 1 2.496 9 2.797 7 1.855 7 1.941 2 2.175 8 1.676 6 1.753 7 1.965 3

2 1.745 1 1.905 7 2.321 0 1.573 1 1.715 6 2.085 0 1.505 5 1.641 4 1.993 8

3 2.329 5 2.740 3 3.709 4 2.201 0 2.588 1 3.502 0 2.130 1 2.504 6 3.388 8

4 3.291 2 4.243 5 6.289 6 3.049 9 3.932 1 5.829 5 2.931 3 3.779 2 5.602 9

5 4.338 2 6.169 4 9.794 3 3.935 8 5.598 1 8.893 8 3.756 7 5.343 6 8.489 9

4 1 2.206 8 2.308 2 2.586 1 1.715 8 1.794 8 2.011 6 1.550 2 1.621 5 1.817 0

2 1.445 5 1.578 4 1.922 3 1.303 0 1.421 0 1.726 9 1.247 1 1.359 6 1.651 5

3 1.723 9 2.027 8 2.744 7 1.628 7 1.915 1 2.591 0 1.576 2 1.853 3 2.507 2

4 2.222 4 2.865 2 4.245 7 2.059 3 2.654 6 3.933 7 1.979 2 2.551 3 3.780 6

5 2.735 2 3.889 0 6.170 6 2.481 1 3.527 9 5.599 1 2.368 2 3.367 4 5.344 4

the FG cylindrical nanoshell exerts a stiffness-hardening behavior, resulting in the natural
frequencies of NSGT always higher than those of classical continuum theory. In particular, when
the two scale parameters are equal (l/(ea) = 1), the results of NSGT reduce to those of classical
continuum theory. These observations have been reported by many researchers[13,14,69–70].
Nevertheless, for C-SS and C-C boundary conditions (see Figs. 2(b) and 2(c)), it is interesting
to see that, when l/(ea) < 1, the results of NSGT can be lower or higher than or even equal
to those of classical continuum theory by taking a specific scale parameter ratio, which is quite
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different than the case of SS-SS boundary condition. More interestingly, when l/(ea) = 1, unlike
the SS-SS FG cylindrical nanoshells whose natural frequencies obtained by NSGT are identical
to those of classical continuum theory, the natural frequencies of C-SS and C-C FG cylindrical
nanoshells evaluated using NSGT are higher than the results of classical continuum theory. In
other words, under C-SS and C-C boundary conditions, the predictions of NSGT cannot reduce
to those of classical continuum theory when the nonlocal parameter equals to the material
length scale parameter. From this observations, we can conclude that the coupling effect of
nonlocal stress and strain gradient on the vibrational behavior of FG nanoshells depends not
only on the relative magnitude of the two scale parameters but also on the boundary condition.
Therefore, it is of great importance to take different boundary conditions into account when
studying the mechanical behaviors of nanostructures with the framework of NSGT.

-

- -

Fig. 2 Variation of frequency ratio with respect to scale parameter ratio for different values of nor-
malized nonlocal parameter (color online)

5.3 Effect of power-law index

The effect of power-law index on the frequency ratio of FG cylindrical nanoshell under dif-
ferent boundary conditions is shown in Figs. 3 and 4 for various normalized nonlocal parameters
and material length scale parameters, respectively. Parameters R/h = 10, L/R = 5 and n = 2
are taken in this example. It is observed from Figs. 3 and 4 that when surface effects are not
included, for different values of scale parameters, the frequency ratios are nearly unchanged
as the power-law index increases from 0 to 10. This implies that nonlocal effect and strain
gradient effect on the vibration of FG cylindrical nanoshells are not sensitive to the change in
the power-law index. However, for the case of including surface effects, it can be seen that
increasing the power-law index leads to an increase in the frequency ratio. In other words,
surface effects on the vibration behavior of FG cylindrical nanoshell becomes more and more
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important as the increase in the power-law index. In addition, comparing the results of SS-SS,
C-SS and C-C boundary conditions, it is clearly seen that surface effects play a more important
role in the vibration of FG cylindrical shells with SS-SS boundary condition.

- ξ

- ξ - ξ

-

- -

Fig. 3 Variation of frequency ratio with respect to power-law index for different values of normalized
nonlocal parameter (l/h = 0) (color online)

5.4 Effect of radius-to-thickness ratio

The effect of radius-to-thickness ratio on the frequency ratio of FG cylindrical nanoshell
with SS-SS, C-SS, and C-C boundary conditions is depicted in Figs. 5 and 6 for different values
of normalized nonlocal parameter and material length scale parameter, respectively. Results
are obtained with L/R = 10, ξ = 1 and n = 2. It is seen that when surface effects are
not considered, the frequency ratios associated with different nonlocal parameters or material
length scale parameters all approach to 1 as the radius-to-thickness ratio increases from 5 to
25, which means that nonlocal effect and strain gradient effect gradually decrease with the
increase in radius-to-thickness ratio. When accounting for surface effects, one can observe that
the gaps between the frequency ratios with surface effects and those without surface effects are
getting wider as the radius-to-thickness ratio increases, revealing that increasing the radius-
to-thickness ratio will increase surface effects, and this trend is more remarkable for SS-SS
boundary condition. Besides, it can be concluded from Figs. 5 and 6 that, at higher values of
radius-to-thickness ratio, surface effects play a dominant role in the vibration of FG cylindrical
nanoshells, and nonlocal and strain gradient effects are less important in this situation.
5.5 Effect of length-to-radius ratio

Figures 7 and 8 illustrate the variations of frequency ratio with respect to the length-to-
radius ratio for various normalized nonlocal parameters and material length scale parame-
ters, respectively. Same as Figs. 5 and 6, results are presented for SS-SS, C-SS, and C-C FG
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- ξ - ξ
- -

- ξ
-

Fig. 4 Variation of frequency ratio with respect to power-law index for different values of normalized
material length scale parameter ((ea)/h = 0) (color online)

- -

- - - -

-

- -

Fig. 5 Variation of frequency ratio with respect to radius-to-thickness ratio for different values of
normalized nonlocal parameter (l/h = 0) (color online)
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- -

- -
- -

-

--

Fig. 6 Variation of frequency ratio with respect to radius-to-thickness ratio for different values of
normalized material length scale parameter ((ea)/h = 0) (color online)

cylindrical nanoshells with or without surface effects. Parameters R/h = 5, ξ=1 and n=1 are
selected in this example. It is observed that without considering surface effects, the frequency
ratios corresponding to different scale parameters gradually reduce with the increase in length-
to-radius ratio for all three boundary conditions, which implies that increasing the length-to-
radius ratio results in the decrease in nonlocal effect and strain gradient effect on the vibrational
behavior of FG cylindrical nanoshell, but compared with surface effects, nonlocal effect and
strain gradient effects are not sensitive to the change in length-to-radius ratio. Under the
influence of surface effects, it can be seen from Figs. 7 and 8 that as the length-to-radius ratio
increases, the frequency ratios with surface effects are first lower than then higher than those
without surface effects. That is to say, surface effects tend to decrease the natural frequencies
of short nanoshells, but increase the natural frequencies of long nanoshells. Moreover, it is
found that, at higher values of length-to-radius ratio, surface effects play a more important role
than nonlocal effect and strain gradient effect in the vibration of FG cylindrical nanoshells,
and similar to the case of Figs. 5 and 6, this phenomenon is more notable for SS-SS boundary
condition.

6 Conclusions

In the present work, a size-dependent FG cylindrical shell model is developed within
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- -

- -- -

-

--

Fig. 7 Variation of frequency ratio with respect to length-to-radius ratio for different values of nor-
malized nonlocal parameter (l/h = 0) (color online)

the framework of NSGT and surface elasticity theory. By adopting the proposed model, the
influences of nonlocal parameter, material length scale parameter, power-law index, radius-to-
thickness ratio, length-to-radius ratio and surface effects on the free vibration of FG cylindrical
nanoshells under SS-SS, C-SS and C-C boundary conditions are investigated. From the numer-
ical results, the following main conclusions can be drawn:

(i) The coupling effect of nonlocal parameter and material length scale parameter on the
vibration of FG cylindrical nanoshells depends not only on the relative magnitude of the two
scale parameters but also on the boundary condition. In particular, when the two scale param-
eters are equal, the predictions of NSGT reduce to those of the classical continuum theory for
SS-SS boundary condition. However, the results of NSGT are higher than those of the classical
continuum theory for C-SS and C-C boundary conditions.

(ii) Nonlocal effect and strain gradient effect on the vibration of FG cylindrical nanoshells
are not sensitive to the change in power-law index, while surface effects on the vibration of FG
cylindrical nanoshells becomes more and more important with the increase in the power-law
index.

(iii) Increasing the radius-to-thickness ratio or length-to-radius ratio will decrease nonlocal
effect and strain gradient effect on the vibration of FG cylindrical nanoshells, whereas increase
surface effects on the vibration of FG cylindrical nanoshells.

(iv) Surface effects play a more important role than nonlocal effect and strain gradient effect
in the vibration of FG cylindrical nanoshells with higher values of radius-to-thickness ratio and
length-to-radius ratio, and this situation is more significant for SS-SS boundary condition.
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- -

-

-

- -- -
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Fig. 8 Variation of frequency ratio with respect to length-to-radius ratio for different values of nor-
malized material length scale parameter ((ea)/h = 0) (color online)
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Appendix A

Coefficients appearing in Eqs. (39)–(48) are listed as follows:
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1 − µ(z)2
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Appendix B

Elements of the coefficient matrix of Eq. (66) are listed as follows:
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