Skip to main content
Log in

Improved quadratic isogeometric element simulation of one-dimensional elastic wave propagation with central difference method

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Two improved isogeometric quadratic elements and the central difference scheme are used to formulate the solution procedures of transient wave propagation problems. In the proposed procedures, the lumped matrices corresponding to the isogeometric elements are obtained. The stability conditions of the solution procedures are also acquired. The dispersion analysis is conducted to obtain the optimal Courant-Friedrichs-Lewy (CFL) number or time-step sizes corresponding to the spatial isogeometric elements. The dispersion analysis shows that the isogeometric quadratic element of the fourth-order dispersion error (called the isogeometric analysis (IGA)-f quadratic element) provides far more desirable numerical dissipation/dispersion than the element of the second-order dispersion error (called the IGA-s quadratic element) when appropriate time-step sizes are selected. The numerical simulations of one-dimensional (1D) transient wave propagation problems demonstrate the effectiveness of the proposed solution procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kampanis, N. A., Dougalis, V. A., and Ekaterinaris, J. A. Effective Computational Methods for Wave Propagation, Chapman & Hall/CRC, New York (2008)

    MATH  Google Scholar 

  2. Bathe, K. J. Finite Element Procedures, Prentice-Hall, New Jersey (2014)

    MATH  Google Scholar 

  3. Mullen, R. and Belytschko, T. Dispersion analysis of finite element semidiscretizations of the two-dimensional wave equation. International Journal for Numerical Methods in Engineering, 18, 11–29 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Abboud, N. N. and Pinsky, P. M. Finite element dispersion analysis for the three-dimensional second-order scalar wave equation. International Journal for Numerical Methods in Engineering, 35, 1183–1218 (2010)

    Article  MATH  Google Scholar 

  5. Thompson, L. L. and Pinsky, P. M. Complex wavenumber Fourier analysis of the p-version finite element method. Computational Mechanics, 13, 255–275 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Suleau, S., Deraemaeker, A., and Bouillard, P. Dispersion and pollution of meshless solutions for the Helmholtz equation. Computer Methods in Applied Mechanics & Engineering, 190, 639–657 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Noh, G. and Ham, S. Performance of an implicit time integration scheme in the analysis of wave propagations. Computers & Structures, 123, 93–105 (2013)

    Article  Google Scholar 

  8. Kolman, R., Okrouhlík, M., Berezovski, A., Gabriel, D., Kopačka, J., and Plešek, J. B-spline based finite element method in one-dimensional discontinuous elastic wave propagation. Applied Mathematical Modelling, 46, 382–395 (2017)

    Article  MathSciNet  Google Scholar 

  9. Komijani, M. and Gracie, R. An enriched finite element model for wave propagation in fractured media. Finite Elements in Analysis and Design, 125, 14–23 (2017)

    Article  Google Scholar 

  10. Petersen, S., Dreyer, D., and von Estorff, O. Assessment of finite and spectral element shape functions for efficient iterative simulations of interior acoustics. Computer Methods in Applied Mechanics and Engineering, 195, 6463–6478 (2006)

    Article  MATH  Google Scholar 

  11. Komatitsch, D. and Vilotte, J. P. The Spectral Element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bulletin of the Seismological Society of America, 88, 368–392 (1998)

    MATH  Google Scholar 

  12. Pasquetti, R. and Rapetti, F. Spectral element methods on triangles and quadrilaterals: comparisons and applications. Journal of Computational Physics, 198, 349–362 (2004)

    Article  MATH  Google Scholar 

  13. Seriani, G. and Priolo, E. Spectral element method for acoustic wave simulation in heterogeneous media. Finite Elements in Analysis and Design, 16, 337–348 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Żak, A. A novel formulation of a spectral plate element for wave propagation in isotropic structures. Finite Elements in Analysis and Design, 45, 650–658 (2009)

    Article  Google Scholar 

  15. Herreros, M. I. and Mabssout, M. A two-steps time discretization scheme using the SPH method for shock wave propagation. Computer Methods in Applied Mechanics and Engineering, 200, 1833–1845 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jia, X. and Hu, T. Element-free precise integration method and its applications in seismic modelling and imaging. Geophysical Journal of the Royal Astronomical Society, 166, 349–372 (2006)

    Article  Google Scholar 

  17. Godinho, L., Dors, C., Soares, D., Jr., and Amado-Mendes, P. Solution of time-domain acoustic wave propagation problems using a RBF interpolation model with “a priori” estimation of the free parameter. Wave Motion, 48, 423–440 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Soares, D. J. A time-domain FEM-BEM iterative coupling algorithm to numerically model the propagation of electromagnetic waves. Computer Modeling in Engineering & Sciences, 32, 57–68 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Nicomedes, W. L., Mesquita, R. C., and Moreira, F. J. S. Meshless local Petrov-Galerkin (MLPG) methods in quantum mechanics. Compel International Journal for Computation & Mathematics in Electrical & Electronic Engineering, 30, 1763–1776 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kim, K. T. and Bathe, K. J. Transient implicit wave propagation dynamics with the method of finite spheres. Computers & Structures, 173, 50–60 (2016)

    Article  Google Scholar 

  21. Ham, S., Lai, B., and Bathe, K. J. The method of finite spheres for wave propagation problems. Computers & Structures, 142, 1–14 (2014)

    Article  Google Scholar 

  22. Ded`e, L., Jäggli, C., and Quarteroni, A. Isogeometric numerical dispersion analysis for twodimensional elastic wave propagation. Computer Methods in Applied Mechanics and Engineering, 284, 320–348 (2015)

    Article  MathSciNet  Google Scholar 

  23. Wang, D., Liang, Q., and Zhang, H. A superconvergent isogeometric formulation for eigenvalue computation of three dimensional wave equation. Computational Mechanics, 57, 1037–1060 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Idesman, A., Pham, D., Foley, J. R., and Schmidt, M. Accurate solutions of wave propagation problems under impact loading by the standard, spectral and isogeometric high-order finite elements: comparative study of accuracy of different space-discretization techniques. Finite Elements in Analysis and Design, 88, 67–89 (2014)

    Article  MathSciNet  Google Scholar 

  25. Wang, D., Liu, W., and Zhang, H. Novel higher order mass matrices for isogeometric structural vibration analysis. Computer Methods in Applied Mechanics and Engineering, 260, 92–108 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, D., Liu, W., and Zhang, H. Superconvergent isogeometric free vibration analysis of Euler–Bernoulli beams and Kirchhoff plates with new higher order mass matrices. Computer Methods in Applied Mechanics and Engineering, 286, 230–267 (2015)

    Article  MathSciNet  Google Scholar 

  27. Cohen, G., Joly, P., and Tordjman, N. Higher-order finite elements with mass-lumping for the 1D wave equation. Finite Elements in Analysis and Design, 16, 329–336 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hughes, T. J. R., Reali, A., and Sangalli, G. Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS. Computer Methods in Applied Mechanics and Engineering, 197, 4104–4124 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Cottrell, J. A., Reali, A., Bazilevs, Y., and Hughes, T. J. R. Isogeometric analysis of structural vibrations. Computer Methods in Applied Mechanics and Engineering, 195, 5257–5296 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Benson, D. J., Bazilevs, Y., de Luycker, E., Hsu, M. C., Scott, M., Hughes, T. J. R., and Belytschko, T. A generalized finite element formulation for arbitrary basis functions: from isogeometric analysis to XFEM. International Journal for Numerical Methods in Engineering, 83, 765–785 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Idesman, A. Accurate time integration of linear elastodynamics problems. CMES-Computer Modeling in Engineering and Sciences, 71, 111–148 (2011)

    MathSciNet  MATH  Google Scholar 

  32. Idesman, A. V. and Mates, S. P. Accurate finite element simulation and experimental study of elastic wave propagation in a long cylinder under impact loading. International Journal of Impact Engineering, 71, 1–16 (2014)

    Article  Google Scholar 

  33. Idesman, A. Optimal reduction of numerical dispersion for wave propagation problems, part 1: application to 1-D isogeometric elements. Computer Methods in Applied Mechanics & Engineering, 317, 970–992 (2017)

    Article  MathSciNet  Google Scholar 

  34. Idesman, A. and Dey, B. Optimal reduction of numerical dispersion for wave propagation problems, part 2: application to 2-D isogeometric elements. Computer Methods in Applied Mechanics and Engineering, 321, 235–268 (2017)

    Article  MathSciNet  Google Scholar 

  35. Jiang, L. and Rogers, R. J. Effects of spatial discretization on dispersion and spurious oscillations in elastic wave propagation. International Journal for Numerical Methods in Engineering, 29, 1205–1218 (1990)

    Article  Google Scholar 

  36. Yue, B. and Guddati, M. N. Dispersion-reducing finite elements for transient acoustics. Journal of the Acoustical Society of America, 20, 2132–2141 (2005)

    Article  Google Scholar 

  37. Chien, C. C., Yang, C. S., and Tang, J. H. Three-dimensional transient elastodynamic analysis by a space and time-discontinuous Galerkin finite element method. Finite Elements in Analysis and Design, 39, 561–580 (2003)

    Article  Google Scholar 

  38. Chung, J. and Lee, J. M. A new family of explicit time integration methods for linear and non-linear structural dynamics. International Journal for Numerical Methods in Engineering, 37, 3961–3976 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  39. Subbaraj, K. and Dokainish, M. A. A survey of direct time-integration methods in computational structural dynamics, I: explicit methods. Computers & Structures, 32, 1371–1386 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  40. Subbaraj, K. and Dokainish, M. A. A survey of direct time-integration methods in computational structural dynamics, II: implicit methods. Computers & Structures, 32, 1387–1401 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  41. Noh, G. and Bathe, K. J. An explicit time integration scheme for the analysis of wave propagations. Computers & Structures, 129, 178–193 (2013)

    Article  Google Scholar 

  42. Wen, W. B., Duan, S. Y., Yan, J., Ma, Y. B., Wei, K., and Fang, D. N. A quartic B-spline based explicit time integration scheme for structural dynamics with controllable numerical dissipation. Computational Mechanics, 59, 403–418 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengyu Duan.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11602004 and 11325210)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, W., Luo, S., Duan, S. et al. Improved quadratic isogeometric element simulation of one-dimensional elastic wave propagation with central difference method. Appl. Math. Mech.-Engl. Ed. 39, 703–716 (2018). https://doi.org/10.1007/s10483-018-2330-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-018-2330-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation