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Abstract  The incompressible two-phase flows are simulated using combination of an
etching multiblock method and a diffuse interface (DI) model, particularly in the com-
plex domain that can be decomposed into multiple rectangular subdomains. The etching
multiblock method allows natural communications between the connected subdomains
and the efficient parallel computation. The DI model can consider two-phase flows with
a large density ratio, and simulate the flows with the moving contact line (MCL) when a
geometric formulation of the MCL model is included. Therefore, combination of the etch-
ing method and the DI model has potential to deal with a variety of two-phase flows in
industrial applications. The performance is examined through a series of numerical exper-
iments. The convergence of the etching method is firstly tested by simulating single-phase
flows past a square cylinder, and the method for the multiphase flow simulation is vali-
dated by investing drops dripping from a pore. The numerical results are compared with
either those from other researchers or experimental data. Good agreement is achieved.
The method is also used to investigate the impact of a droplet on a grooved substrate
and droplet generation in flow focusing devices.
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1 Introduction

Interfacial flows in the domain with the complex geometry are often encountered in nature
and industrial applications. These flows are usually difficult for numerical simulations, partially
because they may involve with intricate physical phenomena, such as the moving contact line
(MCL) at which the gas, liquid, and solid meet. Examples are the striding of insects on the
water surfacel’ and the floating/sinking of solid objects[?l. It requires appropriate models for
the interface and MCLs to perform the accurate computation. Moreover, the complex geometry
also demands the generation of appropriate meshes, on which the equations of motion are
solved. Traditionally, a body-fitted mesh is generated for this purpose, either structured® or
unstructured!). Nowadays, because of its efficiency and simplicity, immerse boundary (IB)
methods become more and more popular in dealing with flow problems in the presence of
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complex geometry® 7. In the IB methods, the solid boundaries can be represented by a set

of linked Lagrangian points, while the flows are solved on the Eulerian mesh. Since the solid
boundaries generally do not coincide with the mesh lines, a feedback force is added in the
momentum equation to account for the presence of the embedded solid boundaries. Recently, we
combined the IB method!® with the diffuse interface (DI) modell!, and successively simulated
the flows with MCLs on curved substrates!!?l. Despite of the success of IB methods, their
accuracy depends on the way of representing the solid boundary, e.g., the use of delta function
in the distribution of the feedback force makes this kind of IB methods essentially first-order
accurate in modeling the solid boundaries.

Under certain circumstance, the complex geometry can be decomposed into several regular
subdomains/blocks, of which each can be discretized by a structured mesh. Therefore, the
governing equations can be solved in the individual block, and the communications between
the blocks are exchanged by implementing appropriate boundary conditions (BCs). This way
of dealing with the complex geometry is often referred to as the multiblock method. In the
multiblock methods, we can still enjoy the merits of the structured mesh, such as easiness in
constructing numerical schemes of high accuracy and simplicity in the parallel computation.
Clearly, the main challenge in the multiblock approach lies in how to properly decompose the
blocks and provide the BCs for each block. Wan et al.['!] used block-structured grids with ficti-
tious overlapping interfaces to decompose a complex computational geometry. Raspol'?! solved
the incompressible Navier-Stokes (NS) equations by a direct domain-decomposition method cou-
pled with a Chebyshev collocation method. Abide and Viazzo!*3! used a direct non-overlapping
multidomain method to simulate the incompressible viscous flows, such as von Karman vortex
street behind a square cylinder. All these works only consider single-phase flows. This fact
motivates us to examine the performance of the multiblock method in simulating multiphase
flows, particularly in the presence of MCLs.

In the present study, we use an etching multiblock method coupled with the DI model
to investigate incompressible multiphase flows with complex regular geometries. The etching
multiblock method defines a regular domain as the global domain, and marks all the embedded
solid boundaries. As a result, the blocks can be considered as the patches on a global structured
mesh, which naturally establishes the connections between the blocks. The fluid-fluid interface
is represented by a DI modell’®. This model replaces the mathematically sharp interface by a
DI with the finite thickness, where the fluids are mixed to some extent. The DI model allows
for the simulation of two-phase flows with the large density ratiol®!, and has been used to a
variety of flow problems, such as vesicle dynamics!*®, Hele-Shaw flows!'®! and head-on droplet
collision!'”). We choose the geometric formulation of a DI model to model the motion of contact
line on the substrate!®l. This model has been used to many two-phase flows in the presence of
MCLs, including droplet spreading!¥), sliding of a three-dimensional droplet on a wall20-21],
and ejection of satellite droplet in a rapid spreading/2l.

We present the modeling and numerical methods in Section 2, including the governing equa-
tions, MCL model, etching multiblock method, and BCs. A variety of numerical experiments
are performed to validate the method in Section 3. We first simulate the flow past a square
cylinder for the convergence study. Then, we investigate the drops dripping from a pore for code
validation, and quantitatively compare the numerical results with experimental observations.
We also investigate a drop impacting on a grooved substrate in Subsection 3.3 and droplet
generation in flow focusing in Subsection 3.4.

2 Methodology

2.1 DI model
We investigate here the flows of two incompressible immiscible liquids (A and B) and use a DI
method®! to model the interface between the two liquids. In the DI method, the mathematically
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sharp interface is replaced by a DI with the finite thickness of a length scale e. The DI is
represented by the volume fraction C' of the fluid A (0 < C < 1). Consequently, the time
evolution of the interface can be governed by the convective Cahn-Hilliard (CH) equation,

oC

_ L oo
o TV WO = Y, (1)

where u = (u, v) is the flow velocity, and 1) is the chemical potential defined by
¥ =¢'(C) — Cn*V*C, (2)

in which v and v are the velocity components in the a- and y-directions, respectively, ¢(C) =
C?(1 — C)?/4 is the bulk energy density, the Cahn number Cn = ¢/L is the dimensionless
measure of the thickness of the DI, and L is the characteristic length. Pe is the Péclet number
that represents the relative importance of the convective fluxes (uC) to the diffusive fluxes
(V). According to Ref. [9], we choose Pe = 1/Cn so that the DI would approach the sharp
interface limit with the mesh refinement.

A geometric formulation of wetting condition® is used here to model the MCL, and serves
as the BC for C at a solid substrate. In the geometric formulation, the local variation of C'
along the normal direction to the solid substrate should satisfy

n-VC = —|1-VC|cosbs/ sin b, (3)

where n and 7T are the normal vector and the tangential vector of the solid boundary, respec-
tively, and 65 is the microscale contact angle.

2.2 NS equations

The equations of motion for the fluids are the dimensionless NS equations and continuity
equation,

ou _ 1 T s P .
p(é)t +u-V'u,) =—-Vp+ ReV (u(Vu+Vu')) + We =~ Frd (4)
V-u=0, (5)

where j denotes the unit vector in the vertical direction, and f; is the surface tension force,
fs = 6V/2VC/Cn. (6)
The dimensionless averaged density p and viscosity p are defined as
p=C+pp(l—0C)/pa, (7)
p=C+pus(l—C)/pa, (8)
where the subscripts A and B denote the liquids A and B, respectively. The dimensionless group
includes the Reynolds number Re = paUL/ua, the Weber number We = ppU?L/o, and the
Froude number F'r = U?/(gL), where o is the surface tension coefficient, g is the gravitational
acceleration, and L and U are the characteristic length and velocity, respectively. We shall also

refer to the Ohnesorge number Oh = v/We/Re and the Bond number Bo = psL%g/o in the
discussion.
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2.3 Etching method and discretization

We consider here to use an etching multiblock method in the simulation of incompressible
viscous two-phase flows in a domain with the complex geometry, which can be decomposed into
multiple rectangle subdomains (or blocks). For the convenience of coding, the computational
domain is defined on a rectangle that contains the physical domain. In such a way, we can use
a uniform Cartesian mesh to discretize the domain, and the boundaries of the physical domain
coincide with the mesh lines. As a result, each flow variable such as u, v, p, and C in the
domain is stored in one array, and thus can be accessed in the same manner as on a structured
mesh, regardless of the complex geometry involved. Therefore, we can adopt the discretization
method on the structured mesh to discretize the governing equations.

In the present study, the spatial discretization of the governing equations is performed on
a staggered grid, as shown in Fig.1. All the scalar quantities such as the volume fraction,
chemical potentials, and pressure are defined at the cell centers, while the vector quantities
such as the velocity components are defined at the cell faces. Unless otherwise mentioned, the
central finite difference schemes are used for the spatial discretization of the CH equation and
the NS equations.

4
|

Vi, j1/2

U172,
—

Vi joar

Fig. 1 Staggered grid, where all scalars such as volume fraction, chemical potential, and pressure are
defined at cell centers (o), while vectors such as velocity components are defined at cell faces
(—), and subscripts (4, j) denote indices of cell

To solve the CH and NS equations in a temporally matched manner, the volume fraction
C field is defined at the time levels t”fé, while the velocity u and the pressure p are defined
at t" (n =1,2,3,---). Consequently, the CH equation (1) is discretized at the time level n as
follows:

Crte—Cmmr 43 1
N —(2M(u O = MO ))
CTL2 4 41 4, m—1
— op (VIO 4 VIO 2, (9)

where we set the time step At ~ h? due to the explicit discretization of the second term in
the next equation, and h is the mesh space. We use the Adams-Bashforth and Crank-Nicolson
schemes for the discretization of M (u,C) and V4C, respectively, where the term M (u,C) is
defined as

M(u,C) = —V - (uC) + Plev2¢'(0). (10)

Note that the fluxes at the cell faces (the first term in Eq. (10)) are evaluated with a fifth-order
weighted essentially non-oscillatory (WENO) scheme, using the local flow velocity to determine
the upwind direction!?!.
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A standard projection method is used to couple the momentum equation with the continuity
equation. The equations are discretized at the time level (n + é) as follows:

n+§<u*_un) _ 1 (L(unJrl n+§)+L(un n+é))+ fsn-‘r; _anr; .
p At " 2Re s o We rr Y
1
o (SH") —  H@ ), (11)

where we use the Crank-Nicolson scheme in the discretization of the viscous term L = V -
1 . . . . .
(u* 2 (Vu + VauT)), and the Adams-Bashforth scheme in the discretization of the advective

1
term, H = (V - uu). Note that p"t2, y"+2 and 72 are functions of O™+ 3.
The pressure p"*! is updated by solving a Poisson equation, i.e.,

v () =Tar 2

The velocity u"t! is eventually made divergence-free after the pressure correction,

= B8 g, (13)

p 2
An over-relaxation iterative method is used to solve the Poisson equation in Eq. (12).
2.4 BCs

How to deal with BCs is the most important issue in the computation with the etching
multiblock method. Here, we choose the case of drops dripping from a pore as an example
to illustrate the solution procedure. The computational domain is shown in Fig.2, in which
the actual computational domain can be divided into two blocks, i.e., the rectangles AHFE
and HBCG, respectively. There are four kinds of flow BCs at the edges of these blocks, i.e.,
symmetric (AH and HB), inlet (AFE), outlet (CB and CG), and solid (EF and FG). There
are also BCs particularly related to the etching multiblock method. For example, the edge FH
is considered as the block boundary, since it separates the blocks a and b, although it is inside
the computational domain. It is referred here to as the connection BC. A mixed BC is enforced
at the boundary GH of the block b, which consists of two edges (GF and F'H) with different
BCs.

D G C
b
E F
a
A_,_._._,_H_ _______________________________ 5

Fig. 2 Illustration of etching method, where computational domain is defined as rectangle ABCD
including solid wall EDGF', and actual computational domain can be decomposed into two
blocks, AHFE and HBCG

During the computation, the governing equations are solved in the two blocks one by one,
along with the update of the BCs at the boundaries of each block. In the present study, we use
one layer of ghost cells around each block to help the implementation of the BCs (see Fig. 3).
In particular, the values of the flow variables at the ghost cells are updated according to the
local BCs.
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Fig. 3 Layer of ghost cells (o) around inner cells (e)

In the simulation of drops dripping from a pore, the BCs are specified as follows: at the left
boundary (inlet), u = uj,, v = 0, gi’ =0, and C = C},, where u;, and Cj, are the prescribed
horizontal velocity and the volume fraction at the inlet, respectively; at the right boundary
(outlet), we use a characteristic BC, which is an approximation of the far-field BC, so that all
the generated drops can pass smoothly through the boundary. Specially, the characteristic BCs

can be expressed as

ou ou ov dp oC oC
o tU() =0 e =0 5= Gy +U(5,) =0 (14)
At the bottom boundary, a symmetric BC is enforced, which can be expressed as
ou dp oC
=0 =0 =0 =0. 15
ay ? ,U ) ay ) ay ( )

At the solid wall, the no-slip BC is used for the velocity, and the geometric wetting condition
is used for C, i.e.,

u=0, v=0, gizo,
aC - (80) coty, if C €[0.005,0.995], (16)
o = or

0, otherwise.

In the implementation of the connection BC, there is no need to update the values at the ghost
cells, which are essentially the inner cells. In this sense, we do not require any treatment at the
connection BC. For the mixed BC, we only enforce the solid BC at the part of boundary at the
solid wall, while leaving alone the part of boundary connected with other blocks.
The details of the discretized BCs are listed as follows:
(i) Solid BC
Ur/2,5 = 0, Vo,j+1/2 = —V1,541/2, Po,j = P1,j,
‘ { Coj+|C1jy1 — Cija|cotd, if Ci € [0.005,0.995],
0,j =

C1,, otherwise.
(ii) Symmetric BC

Uy/2; =0, Vo 12 ="1541/2, Do, =P1j, Coj=Cuj.
(iii) Inlet BC

Uy/2,j = Uin, Voj+1/2 =0, Dpoj=p1j Coj=Ch.
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(iv) Characteristic BC
At
1
Uy oy = Uiz~ b W2 (U525 = Uiy ),

Vo,j4+1/2 = V1,54+1/25
Po,; = P15,

_ At
n+1/2 n—1/2
Coy'/* = Co5"* - B 172515 — Coj);

where all the flow variables are defined in Fig. 4, and the subscript i = 0 denotes the ghost cells.

I
I
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I
1
| Vo, j+3/2 V1, j+3/2
I
I
| U2, j+1 U3/, j+1
I (o) —+>= [ ] —1>
1
! Do, j+1 D1, j+1
I
! A
R\ W,
1
! Yo, j+1/2 V1, jr1/2
I
I
1 Uy, j Uz, j
| [e] 1 L] —1>
1
' Po,j P1j
I
I
e ¢
1
! Vo, j-1/2 V1, j-172

Fig. 4 Update of flow variables at ghost cells according to BCs at boundaries of block, where variables
with subscript ¢ = 0 are supposed to be at ghost cells

For simplicity and convenience, we refer the solid BC to as BCy, and similarly, the symmetric
BC (BCy), the inlet BC (BCs), the characteristic BC (BCy), the connection BC (BCjs), and the
mixed BC (BCg). In the following, we shall list the BCs for the block in a boundary sequence of
left, bottom, right, and top. For example, for the block a in Fig. 2, the BCs can be represented
by (BC3, BCQ7 BC5, BCl)

3 Results and discussion

In all the tests, the liquid-gas interface is represented by the contour Cp, = 0.5, and the
Cahn number is set to Cn = h.

3.1 Flow past square cylinder

The convergence of the etching multiblock method is tested by simulating a two-dimensional
single-phase flow past a square cylinder inside a channel. The numerical setup is shown in
Fig.5, in which the computational domain of the size 8D x 50D is split into four blocks (a, b,
¢, and d), where D is the side length of the square cylinder. The BCs are (BCs, BC;, BCg,
BCy) for the block a, (BCs, BCq, BCs, BCy) for the blocks b and ¢, and (BCg, BCy, BCy,
BCy) for the block d. It is assumed that the flow at the inlet is a fully developed laminar
channel flow. Therefore, the prescribed velocity at the inlet u;, has a parabolic velocity profile,
Uin = Upmax(—y?/(16D?) +y/(2D)), where Upax is the velocity in the middle of the inlet of the
channel. The blockage ratio, i.e., the length of the cylinder side over the height of the channel,
is 0.125.



1412 Haoran LIU, Kai MU, and Hang DING

50D
) a b d
[—>
|—>|
___________________ - D _._._._._._.8D R ———
c 4D

12D

Fig. 5 Sketch of flow past square cylinder, where computational domain is decomposed into four
blocks, i.e., blocks a, b, ¢, and d, respectively

We choose D and Up,,x as the characteristic length and velocity, respectively. For the flow
past a square cylinder, it is known that there exists a steady recirculating flow region at the
downstream of the square cylinder at a relatively low Re (0.5 < Re < 60). In contrast, the
vortex shedding occurs at a relatively high Re (60 < Re < 300)[23]. We select the cases at
Re = 40 and 100 to test the etching multiblock method. Figure 6 shows the numerical results
in terms of streamlines. It is clear that steady flows are obtained at Re = 40, and unsteady
flows with vortex shedding occur at Re = 100 (the time step A¢ = 0.003 and the mesh is
256 x 1600), consistent with the prediction in Ref. [23]. To quantitatively validate the method,
we make a comparison of our results with those from other researchers!'32324 in Table 1, where
EXP, FVM, LBA, and PDM represent the experiment, the finite-volume method, the lattice-
Boltzmann automata, and the projection decomposition method, respectively. In particular,
we compare the length of the recirculating flow region (L;) and the drag coefficient (Cy) at
Re = 40, and the averaged drag coefficient (Cq) and the Strouhal number St (= f D/Upax) at
Re = 100, where f is the vortex shedding frequency. Cy is defined by

_ 2F,
- pU2. D’

max

Ca (17)
where F is the drag force along the flow direction exerted by the surrounding fluid on the
square cylinder. The present results on the successively refined meshes are listed in Table 1,
i.e., 192 x 1200, 256 x 1600, and 320 x 2 000, to test the convergence of the method. Clearly, the
present results are in agreement with those from other researchers, and they are also converged
with the successive mesh refinement.
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Fig. 6 Numerical results of flow past square cylinder at (a) Re = 40 and (b) Re = 100 in terms of
streamlines

3.2 Drops dripping from pore
Due to the effect of gravity, a drop attached to the ceiling could drip down if its volume is
beyond a critical valuel?®!. This process exhibits many interesting phenomena, such as genera-
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tion of droplets, formation of a jet, and MCLs. We consider here the axisymmetric simulation
of the dripping process of the water that leaks out of a pore. The density and viscosity ratios
of the two liquids, water and air, are p,/pw = 0.001 and p,/pw = 0.025, respectively, where
the subscripts a and w denote air and water, respectively. Figure 7 shows the numerical setup,
in which the domain has a size of 1.5D x 9D, where D is the diameter of the pore. The
computational domain can be divided into two blocks (a and b), and the former has a size of
0.5D x D and the latter is 1.5D x 8D. The BCs are (BCs, BCy, BCs, BCy) for the block a
and (BCs, BCq, BCy4, BC,) for the block b. The simulation is performed on a Cartesian mesh
of 1800 x 300. We choose the liquid velocity U on the entry boundary and the diameter of the
pore D as the characteristic velocity and length, respectively. The time step At = 0.000 1.

Table 1 Comparison of numerical results at Re = 40 and 100

—4 =1
Method Mesh Re =40 Re =100
Cd Ly Cd St
EXPl24] _ — — — 0.137 4+ 0.003
FVMI[23] 340 x 560 1.760 2.180 1.350 0.139
LBAI23] 320 x 2000 1.710 2.150 1.380 0.138
pPDMI[13] 1644 x 1644 - - 1.390 0.143
320 x 2000 1.772 2.184 1.389 0.1379
Present 256 x 1600 1.774 2.186 1.400 0.1379
192 x 1200 1.779 2.192 1.412 0.1371
D
g,
Gas
Q
b 10
>
] 05D
= e L —————

Fig. 7 Sketch of drops dripping from pore, where gray area shows initial space occupied by liquid,
blank area is supposed to be filled with air, and direction of gravity is from left to right

We simulate two cases with the same Re (= 4.34), Bo (= 0.33), and wettability 6 (= 120°)
but different We: We = 0.16 and 0.2. All the dimensionless numbers are defined by the use of
the properties of the water. In the simulation, the liquid that leaks out of the pore gradually
accumulates at the end of the pore, and due to the surface tension force, a drop comes into being
and grows with the time. When the drop becomes sufficiently large, a droplet breaks up from
the drop and drips down under the influence of gravity. During the whole dynamic process,
the contact lines are pinned at the corner of the pore, primarily due to the geometry-induced
contact-angle hysteresis!?6 271, Figure 8 shows the snapshots of the periodic dripping process
from the pore. It is interesting to see that the difference in We leads to different dripping modes,
i.e., the single-droplet mode and the double-droplet mode. More details of the dripping process
are shown in Fig. 9, in which the time interval between the successive generation of droplets (¢4)
is presented as a function of the sequence number of the droplets (V). Clearly, the dripping
process results in a periodic generation of droplets, and the Strouhal number St (= f \/ Dgy/g,
where Dy is the diameter of the generated droplet) is 19.2 for the single-droplet mode and 23.6
and 20.1 for the double-droplet mode. Subramani et al.[?8! conducted experiments with similar
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parameters, and they also found the two modes. Moreover, they observed that the volume
of the generated droplet was 20.8 for the single-droplet mode, and our numerical result gives
nearly the same value (20.7). For the double-droplet mode, the experimental data showed the
volumes of the two droplets were 16.6 and 20.8, respectively, and our numerical results predict
18.7 and 21.9, which are in agreement with the experimental results.

Fig. 8 Snapshots of interface shapes at Re = 4.34, Bo = 0.33, and § = 120° (left: We = 0.16 and
from top to bottom, ¢t = 1.09, 1.10, 1.12, 1.17, and 1.19, and right: We = 0.2 and from top to
bottom, ¢ = 0.81, 0.82, 0.89, 0.90, and 0.98)

3.3 Drop impacting on rough substrate

We consider axisymmetric simulations of drop impacting on a rough substrate. The flow
phenomena of drop impacting on the smooth substrate have been extensively investigated, and
a recent review can be found in Ref.[29]. We represent the rough substrate by a grooved
substrate similar to the study of droplet motion inside a grooved channel by Huang et al.l3%,
In the present work, we investigate the impact dynamics of a droplet on a grooved substrate
(see Fig.10). The diameter of the droplet is D, and the size of the computational domain
is 1.1D x 2.5D (the mesh 440 x 1000). The grooves are of uniform width and depth, i.e.,
0.08D x 0.05D, which also corresponds to the size of the blocks a to e. There are totally ten
blocks in the domain (see Fig. 10), and they can be classified into five groups according to their
BCs. The BCs are (BCy, BCy, BCy, BCj) for the block a, (BCq, BCy, BCq, BCj5) for the
blocks b to e, (BCq, BCg, BCs, BC4) for the block f, (BCs, BCg, BC5, BCy) for the blocks
g to i, and (BCs, BCg, BCy4, BCy) for the block j. The density and viscosity ratios of the air
to the liquid are 0.001 and 0.025, respectively. We choose the impact velocity of the droplet V'
and D as the characteristic velocity and length, respectively, and also use the properties of the
liquid to define the dimensionless group. The time step At = 0.000 025.
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Fig. 10 Sketch of drop impacting on grooved

substrate

We simulate two cases at Oh (= 0.0035), i.e., Case 1: We = 12.5 and 6 = 120°, and Case 2:
Figure 11 shows the snapshots of the droplet shapes at different
time for the two cases. It is seen that in both cases, the droplet spreads on the substrate
horizontally after the impact. However, the droplet in Case 2 also penetrates into the grooves
and touches the bottom of some cavities during the spreading. In contrast, the droplet in
Case 1 only forms the contact lines pinned at the corners of the grooves. As a result, the
droplet in Case 1 rebounds from the substrate at the time ¢ = 3.6, while the droplet in
Case 2 generates a satellite droplet ejected into the air, leaving the rest of the liquid attached
to the substrate. It is found that the inertia of the droplet plays an important role in the
impact dynamics, and may lead to the change of the wetting state on the rough substrate, e.g.,
partial transition from the Cassie state to the Wenzel state herel®!l. Tt is also clear that the
etching multiblock method can successfully capture the contact line pinned at the corners of
the grooves, which has been observed in previous experiments/32.

We = 32 and 6 = 140°.

(®)

Fig. 11 Snapshots of drop impacting on grooved substrate with Oh = 0.0035, (a) We = 12.5,
0 = 120°, and snapshot time 77 = 0.13, T> = 1.00, T3 = 1.75, and Ty = 3.60; (b) We = 32,

0 = 140°, and snapshot time T7 = 0.50, T> = 1.00, T5 = 1.50, and T, = 3.13
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3.4 Flow focusing

The last application is the droplet generation by flow focusing, in which the liquid A in the
capillary tube is driven by the liquid B through a pore (see Fig.12). Flow focusing has been
shown to be an effective way to generate uniform and monodispersed dropletst®!. However,
because the geometry of the flow focusing device is rather complicated, and the flows involve
two-phase flows and MCLs, there are only a few numerical studies of flow focusing phenomena,

mainly using commercial softwares®436],

D 0.6D 0.4D

e
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Fig. 12 Sketch of flow focusing device, where gray area shows initial space occupied by liquid A, and
blank area is filled with liquid B

Figure 12 shows the numerical setup for axisymmetric simulations. The computational
domain is 10D x 2D (the mesh is 1000 x 200), where D is the inner diameter of the capillary
tube. There are five blocks (a, b, ¢, d, and e), and the BCs of these blocks are (BCs, BCy, BCs,
BCl), (BCg, BCl7 BC57 BCl), (BCg, BCQ7 BCG7 BCl), (BC57 BCQ7 BC57 BCl) and (BCg, BCQ7
BCy, BC,), respectively. We choose the average velocity at the inlet of the capillary tube U
and D as the characteristic velocity and length, respectively. The effect of gravity is considered
to be negligible. The properties of the liquid A are used to define the dimensionless group:
Re and We. The density and viscosity ratios of the liquid B to the liquid A are 1.03 and 0.2,
respectively. The time step At = 0.000 025.

We investigate here two cases with Re = 1.7, We = 0.009, and 6 = 120° but different average
velocities at the inlet of the fluid B, particularly Ug = 0.92 and 1.26, respectively. Figure 13
shows the numerical results of two cases in terms of the interface shape. It is interesting to
see that the difference in the flow rate of the liquid B leads to the occurrence of different flow
modes. The case with Ug = 0.92 appears to enter a dripping mode, in which droplets of uniform
size are generated near the pore, and the cone of the liquid A oscillates periodically. The case
with Ug = 1.26 appears to enter a jetting mode, in which a slender liquid jet is formed at the
downstream of the pore, and the shape of the liquid cone is kept unchanged with the time.
The second case also continuously generates droplets, which are smaller than those in the first
case. We note that the dripping and jetting modes are in consistence with the experimental

observations37].

00000

@) (b)

Fig. 13 Dripping and jetting modes in droplet generation by flow focusing device, (a) Us = 0.92
(dripping) and (b) Ug = 1.26 (jetting)
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4 Conclusions

We combine the etching multiblock method with the DI method and the geometric formu-
lation of MCL model to simulate incompressible two-phase flows in the presence of a complex
geometry. The complex geometry can be decomposed into multiple blocks of regular shapes
such as rectangles and squares. One layer of ghost cells is placed around each block, for the
convenience of implementing the BCs. The BCs include the physical ones, such as the MCL
model for the volume fraction, and those for the connections between the blocks. The latter
shall require no treatment at all. As a result, the etching multiblock method can be extended
from the single-phase flows to the multiphase flows in a straightforward manner. The etching
multiblock method is shown to be able to effectively deal with the incompressible two-phase
flows in a domain with multiple blocks. Its performance is examined through a few numerical
experiments. The simulation of single-phase flow past a square cylinder shows that the results
converge with the mesh refinement. The numerical results of drops dripping from a pore are
in good agreement with the experimental results qualitatively and quantitatively. Finally, we
use the method to the droplet generation in flow focusing and drop impacting on the rough
substrate.
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