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Abstract
In the last decades, the production of fuel ethanol from corn has spread as a valid renewable
alternative to pursue sustainability goals. However the uncertain nature of both input (corn)
and output (gasoline) prices, together with price dependent operational decisions, combine
to make this difficult plant valuation require a real options approach. Moreover, this project is
characterized by various sequential stages that contribute to increase its valuation difficulties.
The purpose of this paper is to provide a reliable valuation methodology of a corn ethanol
plant project able to consider the characteristics of the project. We apply the compound Real
Options Approach to price a corn ethanol plant project considering that the corn and gasoline
prices both follow a skew-geometric Brownian motion.We also propose a case study to show
a real implementation of our theoretical model. The results show that the corn ethanol plant
is financially attractive as renewable investment since the uncertainties inherent in the project
add value, via managerial flexibility, to the real option valuation.

Keywords Corn ethanol plant · Compound real options approach · Skew-Brownian
motion · Multi-stage investments

1 Introduction

There is no doubt that renewable energy investments represent a new frontier in the pursuit
of sustainability goals. Projects that involve wind farms, biomass, solar panels, tidal or hydro
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power are some of the most widespread investments in the renewable energy sector. Another
important renewable energy process is the conversion of corn to fuel ethanol (Commodity
Research Bureau, 2007) . Although this conversion process has received many criticisms
related to the excessive amount of energy required to produce fuel ethanol (Kim & Dale,
2005; Patzek et al., 2005) or related to the increase of food prices as a consequence of
production change from food to fuel (Pimentel, 2003) , it has become environmentally
attractive as renewable investment.

However, in general the valuation of renewable investments is not a simple task since they
are characterized by various types of uncertainties according to the different technologies
used. For example, solar panels performance depends on solar irradiation, materials and
technology of cells, and location of cells (Duong et al., 2019) . Wind farm investments
suffer from the difficult predicting wind power availability, as power cannot be produced
when the wind does not blow (Boyle, 2007) making them unreliable power producers.
Corn ethanol plant performance depends on the uncertain nature of process input (corn) and
output (gasoline) prices. If input prices fluctuate to exceed the price to be received for the
corresponding output, conversion becomes financially attractive and can be halted.

For these reasons, the classical valuation approaches such as Net Present Value (NPV)
are not adequate to make a reliable valuation of these projects characterized by uncertainty
(Ross, 1995) . Conversely, the Real Options Approach (ROA) has spread as one of the most
useful approaches to price uncertain projects by including in the valuation managerial flexi-
bility, also called optionality (Trigeorgis, 1993) . This managerial flexibility allows certain
project risks to be mitigated and gives a potential investor the possibility of changing invest-
ment decisions during the project lifetime. For example, Di Bari (2020) applied the ROA to
value solar energy projects by considering the uncertainty of meteorological conditions, the
unpredictable behavior of government that could encourage or not these renewable invest-
ments and managerial flexibility. Venetsanos et al. (2002) combined a framework with ROA
to assess the wind farm investments affected by the unstable conditions of the deregulated
energymarket by explaining the case of Greece. Again, Pederson and Zou (2009) applied real
options analysis andMonte Carlo simulation to valuate ethanol plant projects by considering
historical price data and representative operational parameters. Maxwell and Davison (2014)
used the ROA as support to valuate the impact of model variables on the decision of pursuing
the project given its financial performance and on the decision of switching between an idled
an operating facility states, focusing on the cost of switching between these states.

In the current paper, we propose a valuation methodology to price a corn ethanol plant
project by considering the particular stochastic nature of corn and gasoline prices that repre-
sent respectively the input and the output prices of the plant, since sometimes the historical
prices of some commodities follow skew-t distributions rather than having normal returns
(Orlando & Bufalo, 2021) . The skew Brownian motions can represent the best solution to
provide a realistic study of corn ethanol plant performance during its lifetime. Pasricha and
He (2022) formulated a closed-form pricing formula for European Exchange Options, intro-
duced by Margrabe (1978) under skew-Brownian motion. Moreover, since the corn ethanol
plant project can be viewed as a multi-stage process from the engineering of the plant to its
operation stage, we adopt the compound ROA to valuate this project. In fact, the compound
ROA is often used in the literature to price renewable investments characterized by sequen-
tial stages. For example, Loncar et al. (2017)) adopted the compound ROA to assess a wind
farm in Serbia by using a reliable wind farm project valuation to divide the investment from
the operating period. This work contributes to the existing literature by using the compound
ROA to valuate a corn ethanol plant project considering that corn and gasoline prices follow
a skew-geometric Brownian motion. The paper is organized as follows: Sect. 2 provides the
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methodology to valuate a typical corn ethanol plant project. Section3 provides a case study
by using representative data. Section4 provides the conclusive remarks.

1.1 Contributions and novelties

A strand of literature applies real options models to biofuels (corn-ethanol plant) production
investment. Our main novelty on this topic is the use of skew-Brownian motions that makes
more realistic the corn ethanol plant evaluation differently from the quoted literature. In fact,
in contrast to real option models that use a geometric Brownian motion, in our case we have
verified that corn and gasoline prices follow a skew-Brownian motion that performs a more
realistic evaluation about the corn ethanol plants.

Now, we explicitly discuss and compare our paper with the most relevant ones on this
topic. Pederson and Zou (2009), using the binomial option pricing approach, state that the
investment decision of a corn-ethanol plant can be valued as an American option assuming
the production capacity plant constant. In addition, Pederson and Zou (2009) use a two-period
plan start-up, where the investor has the right to start it any time before period 2. We connect
to Pederson and Zou (2009) for the sequential investment approach but we differ form them
since we provide a generalization assuming n + 1 engineering-construction investments and
then m operational phases. We improve their approach since we introduce a time-dependent
efficiency function γt , that describes how the plant can lose efficiency over time in converting
corn into gasoline. In addition, we consider the skew-Brownian motion and consequently the
real option evaluation under continuous setting.

Schmit et al. (2009) conduct a real options analysis of entry-exit decisions (based on Dixit
& Pindyck, 1994) for dry-grind corn ethanol plants in order to incorporate the impact of rising
volatility in market prices. In their approach, the stochastic gross margin follows a geomet-
ric Brownian motion. We differentiate since we use some of more restrictive assumptions,
as skew-Brownian motions, that reflects accurately the risk and uncertainty in the ethanol
industry and we prove that under the skew-geometric Brownian motions the project value
increases its value.

Kirby and Davison (2010) model ethanol production as a discrete sum of spark spread
options by considering the possibility that widespread ethanol production might cause a
correlation between the corn and gasoline prices. Moreover, Kirby and Davison (2010) con-
sider that ethanol production is highly subsidized and they value the real option investment
opportunity as a simple exchange option (see Margrabe, 1978). Our paper connects to Kirby
and Davison (2010) for the use of spread options in order to estimate the project value and
for the real option methodology that overcomes the limitations of the discounted cash flows
approaches. We differ from Kirby and Davison (2010) since we implement a compound
option strategy (Kirby & Davison, 2010 use a simple exchange option) in order to evaluate
a corn-ethanol plants organized in phased manner. The use of compound options is widely
employed for valuation of R&D investments and therefore in the field of corn-ethanol plants.
In addition, as seen above, we apply the skew-geometric Brownian motions assumption that,
as analyzed in the case study, makes the gasoline and corn prices more realistic with respect
to geometric Brownian motion considered in Margrabe (1978) approach.

Li et al. (2015) present aROA for valuing the investment of a new technology for producing
biofuels subject to construction lead times and uncertain fuel price. Their result indicates that
the project profitability changes if the plant-investment is realized immediately or postponed.
However, the sequential structure of the production process that requires the use of compound
options is not addressed. So, we differentiate since the compound real option valuation is
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able to capture the value of flexibility that arises in the decision-making and operational
processes.

Summing up, although previous works can represent a good starting point to propose a
valuation methodology of corn-ethanol plant, they can be inadequate if the projects are char-
acterized simultaneously by a high level of uncertainty, multistage nature and unpredictable
future performance of corn and ethanol fuel prices. By using the compound exchange options
model with skew-geometric Brownianmotion, our valuationmethodology can perform better
than the existing literature for several reasons. First, the proposed model allows to monitor
the uncertainty by including the operational flexibility to pursue the investment only if the
revenues, adjusted for a time-dependent decreasing efficiency function, are higher than costs.
Second, the compound options approach and its numerical valuation makes the model more
suitable to incorporate potential managerial flexibility to proceed with the next investment
stage only if the previous one is profitable. Third, we model adequately the corn and ethanol
fuel prices by adopting the skew-geometric Brownian motion that performs a more realistic
evolution of prices and fits better the relationship between corn and gasoline prices. This third
point is an important novelty in the compound option pricing. Some recent papers, such as
Bufalo et al. (2022), Zhu and He (2018), Pasricha and He (2022) apply the skew-geometric
Brownian motion theory to portfolio optimization, or to simple or exchange option pricing,
but to date we have seen no works which use these processes for compound option pricing.
The major benefit brought by the skew-geometric Brownian motions consists of a better fit-
ness with respect to the real data observed (see the statistical tests of Sect. 2.3), which results
in a more accurate prevision about the positive outcome from the plant investment. Last but
not least, our procedure provides an out of sample valuation methodology which allows an
ex-ante investment decision in a corn-ethanol plant by forecasting its future performance.
This is possible thanks to an accurate probabilistic assumption on the underlying processes
which are modeled as skew-geometric Brownian motions, according to the statistical prop-
erties of the related time series observed. In this way, the out-of sample valuation is needed
to make predictions on the processes and, consequently, on the future performances of the
corn-ethanol plant.

2 Methodology

In this section we present a valuation methodology of a corn ethanol plant considering the
basic characteristics of the project. First of all,we address our analysis to a general formulation
in which there are: one engineering investment at time t0; n construction investments at time
t1, t2, . . . , tn and subsequentlym operational phases. After that, to emphasize our results, we
describe a corn ethanol plant project in which there are threemain sequential phases related to
different investments. These phases are not independent: this means that a potential investor
should proceed to the following investments only if the previous stages are profitable. We
have identified three main stages that characterize corn ethanol plant implementation: the
first is the engineering design activities at time t0, then there is the construction of the plant at
time t1, and finally the investor can proceed to the operating stage in which the plant produces
fuel ethanol from corn at time t2. Different investment amounts are required for each stage.
Specifically, I0 is the capital required to start the project with the engineering activities. If
the engineering investment is successful, the investor should construct the plant by investing
I1, and in sequence, if the construction phase is achieved without any failure, the investor
can proceed to the operating stage by investing I2.
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Fig. 1 Corn ethanol plant as compound options—general case

We propose a valuation methodology giving the potential investor the possibility to con-
tinue the project in each stage only if it is not characterized by some failures that could make
the project unprofitable in the future. For example it might happen that the project turns
out to be unfeasible in the engineering phase, or there can be some failures of procedural
tasks in the construction phase, or again an increase of corn prices can makes the conversion
financially unprofitable in the operating period. We model the valuation methodology of
a corn ethanol plant project as a compound options model. In fact, the compound options
model, also called compound ROA in the case of infrastructure investment, is used to price
the investment characterized by various stages organized in phased manner (Villani, 2021;
Cortelezzi & Villani, 2009) . The goal of our valuation methodology is to allow the investor
to make an ex-ante valuation of a corn ethanol plant investment after making a projection
of the project in the future by embedding in the model skew-geometric stochastic motions.
Although previous studies valuated the ethanol plants by using the real options approach with
fluctuating corn and gasoline prices e.g., Kirby and Davison (2010), none of them embeds
the exchange options model into a multi-stage framework that affects these investments. We
proceed by adopting the compound ROA to valuate a corn ethanol plant taking into account
the sequential logic of projects and the unpredictable nature of corn and gasoline prices
included in the model by stochastic motions.

2.1 A compound options approach for corn ethanol plant valuation

The focus of this section is the value the corn ethanol project as a compound option with
stochastic input and output prices following a skew-Brownianmotion. The compound options
logic is shown graphically in the Fig. 1 where cmn represents the operational flexibility value
considered as a compound option, Etn represents the project value, and In represents the the
investments required in each stage.

Specifically, implementing the engineering investment (I0), the investor obtains the com-
pound option cmn so that he canmake a reliable valuation of project at time t0 considering both
the option both to abandon the project and the unpredictable possibility of corn conversion
in fuel ethanol. This value is called real option value RO, namely:

RO = −I0 + cmn (1)

where cmn is the n-fold compound option c whose value at time t0 is function of the next
compound option exercisable n − 1 times (as underlying asset), the investment I1 (as strike
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price), and deadline τ1 = t1 − t0. So we can write that:

cmn = c
(
cmn−1, I1, τ1

)

In particular cmn represents, at time t0, the value to realize the first construction phase investing
the amount I1 at time t1, that gives the (n − 1)-fold compound option. Recursively, cmn−1
denotes, at time t1, the value to implement the second construction investment I2 at time t2
in order to receive the (n − 2)-fold compound option. So:

cmn−1 = c
(
cmn−2, I2, τ2

)

with τ2 = t2 − t1.
Generalizing, the h-fold compound option, with h = 2, . . . , n can be write as:

cmh = c
(
cmh−1, In−(h−1), τn−(h−1)

)
(2)

In addition, when h = 1, we obtain the evaluation at time tn−1 of the last construction phase
that can be evaluated as a simple (1-fold) option denoted as s. So cm1 , values the opportunity
to implement the last construction investment In at time tn in order to receive the operating
benefits Vm

tn :

cm1 = s
(Vm

tn , In, τn
)

(3)

with τn = tn − tn−1. Below we describe in more detail our approach.
Let (Ω,P,F, (Ft )t≥0) be a filtered probability space. The project value is calculated at

time tn starting from the initial date t0 ≥ 0, once the construction phase is completed and the
operating phase represented by the real conversion starts. By selecting m equal time steps
between tn and the project maturity T each of length Δt = T−tn

m , by denoting the risk-free
rate by r , and by assuming that h = 1, 2, . . .m, we can compute the project value as1

Etn = E
Q
t0

[Vm
tn

]
, (4)

whereQ is an equivalent martingale measure under which the (discounted) corn and gasoline
processes are martingales (see Sect. 2.2),

Vm
tn =

m∑

h=1

e−r ·hΔt · Vtn+hΔt , (5)

and Vtn+hΔt is the project value represented by the revenues derived from the conversion of
corn to gasoline at all instants after time tn . For the sake of notation we shorten (tn + hΔt)
with tn,h . So, Vtn,h is calculated as follows:

Vtn,h = max{0; (Ftn,h · γtn,h − Ctn,h ) · q}, (6)

where Ftn,h andCtn,h are respectively the fuel and corn prices at time tn,h , γtn,h is an efficiency
factor at tn,h , q is the expected quantity of fuel to be sold.

Notice that γt is the product of a suitable constant γ̄ (see Sect. 3.1) by the decreasing
function f (t, b), i.e., γt = γ̄ · f (t, b), where b = [b1, b2] is a vector of some parameters.
More specifically, f (t, b) is defined as:

f (t, b) = 1 − b1

(
t − tn
T − tn

)b2
(t ∈ [tn, T ]). (7)

1 Fixed t ≥ 0, we denote by Et [·] the conditional expectation E[· | Ft ].
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Fig. 2 From the top left to the right, first row: a f (t, b)when b1 = 1 and b2 ∈ {2, 4, 8}; b f (t, b)when b2 = 2
and b1 ∈ {0.1, 0.3, 1}. From the top left to the right, second row: a f (t, b) when b2 = 2 and b1 ∈ [0, 1]; b
f (t, b) when b1 = 1 and b2 ∈ [1, 10]

where b1 ∈ [0, 1] denotes the ratio of industrial plant deterioration and b2 measures the
efficiency intensity of the plant. Figure2 shows the trend of plant efficiency f (t, b) by
varying the parameters b1 and b2. We remark that, when b2 rises, the plant efficiency remains
almost constant for a long time, after which it tends to rapidly decrease. Instead, when the
value of b1 = 1, the plant efficiency tends to zero at final time T . For other values of b1, the
plant efficiency remains positive in T .

The expression in Eq. (6) explains that the investor gains by the difference between the
price of the converted fuel Ftn,h and the price of corn Ctn,h during their time evolution, but
if the price of corn becomes higher than fuel the investor should avoid to produce fuel by
obtaining 0.

Finally, the simple (s) and compound (c) options are defined as
{
s
(Vm

tn , In, τn
) = e−rτn · EQ

t0

[
max{Vm

tn − In; 0}
]
.

c
(
cmh−1, In−(h−1), τn−(h−1)

) = e−rτn−(h−1) · EQ
t0

[
max

{
cmh−1 − In−(h−1); 0

}]
,

(8)

with the following boundary conditions

{
s
(Vm

tn , In, 0
) = max{Etn − In; 0}

c
(
cmh−1, In−(h−1), 0

) = max
{
E
Q
t0

[
cmh−1

] − In−(h−1); 0
}

.
(9)

We assume that the operational prices parameters change only slowly over time, in contrast to
the rapid fluctuations in corn and gasoline commodity prices. As such, it appears a reasonably
assumption that this cost set Ih can bemodelled as constantwithin this period. In fact, previous
studies such as Pederson and Zou (2009) does not consider the stochasticity in the investment
values Ih by adopting them as constant. However, for a generalization of Eqs. (2) and (3) to
stochastic costs Ih , refer to Appendix C.

We proceed using backward induction to the starting time t0. The value of c, calculated
at time tn−h for h ∈ [1, n] becomes the new underlying asset value from which is subtracted
the investment required to build the plant (In−(h−1)). We therefore have an n-fold that allows
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us to capture the sequential investment characterized by various stages. The value of such
compound option at t0 is given by cmn through Eqs. (2) and (3).

2.2 Gasoline and corn stochastic dynamics

As showed in Sect. 2.3, the historical gasoline and corn prices do not exhibit normal returns.
The same occurs in many project involving renewable energies whose price do not follow
the usual geometric Brownian motion, see e.g., Chinhamu et al. (2021), Nunes et al. (2021).

In contrast to claims by Andersen et al. (2001), and/or Rogers (2018) the asset returns
do not seem to be unconditionally normally distributed, but often show a significant amount
of skewness and extra-curtosis. As investigated by Orlando and Bufalo (2021), note that
a “more realistic work hypothesis is that time series follow a t-skew distribution”. The t-
skew distribution can be seen as a mixture of skew-normal distributions Kim (2001) which
generalizes the normal distribution thanks to an extra parameter regulating the skewness.

The main properties of the skew-normal distribution, first introduced by Azzalini (1985)
and Henze (1986), are summarized in Appendix A.

First of all, recall the definition of a skew-Brownian motion.

Definition 1 The stochastic process Yt is said to be a (standard) skew-Brownian motion if
the following conditions hold true

(i) Y0 = 0;
(ii) for any t ≥ 0, Yt has continuous sample paths;
(iii) for any t ≥ 0, Yt is skew-normally distributed with location and scale parameters equal

to 0 and t , respectively.

Following Corns and Satchell (2007), we characterize a (standard) skew-Brownian motion
Yt as the sum of a standard Brownian motion and a reflected Brownian motion, i.e.,

Yt =
√
1 − δ2 · Wt + δ|Ut |, (10)

where Wt and Ut are two independent (standard) Brownian motions and δ is the rescaled
shape parameter. In the light of the above, we assume that both the gasoline and corn price
follows a skew-geometric Brownian motion, i.e.,

{
Ft = F0 eμt+σY F

t

Ct = C0 eθ t+ηYC
t ,

(11)

where (F0,C0) ∈ R
2+ and Y F

t and YC
t are two correlated (standard) skew-Brownian motions.

In order to correlate the two processes in Eq. (11) we follow (Bufalo et al., 2022, Proposi-
tion 4).More precisely, the next proposition generalizes such a result which is valid in the case
of centered skew-Brownian motions, while our statement holds true for any skew-Brownian
motion with non-zero expectation. So, let us define the process YC

t as

YC
t = ρY F

t +
√(

1 − 2δ2

π

)
(1 − ρ2) · Bt , (12)

where ρ ∈ (−1, 1) is the correlation coefficient, δ = β√
1+β2

is the rescaled shape parameter

of Y F
t and Bt is a (standard) Brownian motion independent from Y F

t .

123



Annals of Operations Research

Proposition 1 The stochastic process YC
t is a (standard) skew-Brownian motion with shape

parameter

α = β
√

1 + (1 + β2)

(
1 − 2δ2

π

)(
1
ρ2 − 1

) , (13)

such that Corr(YC
t , Y F

t ) = ρ.

Proof See Appendix B.1. ��
To evaluate the project at the starting time t0 through the compound option cmn (see Eq. (1))
we have to determine an equivalent martingale measure under which we compute the (con-
ditioning) expectations.

We consider a market comprising two assets Ft and Ct with dynamics as in Eq. (11)
together with a zero-coupon non-defaultable bond Dt with deterministic dynamics given by

dDt = r Dtdt, D0 = 1,

where r is the risk-free rate. According to Eq. (10), Y F
t may be written as

Y F
t =

√
1 − δ2 · Wt + δ|Ut |.

Then, following Zhu and He (2018), there exists an equivalent martingale measureQ, under
wich the process

Ft = Fs e
(
r− σ2

2

)
(t−s)+l(t−s)+σ Ȳ F

t−s (s ≥ 0), (14)

with

l(t − s) = ln

[
Φ

(
(t − s)δσ 2 + δ|Us |√

t − s · δσ

)
+ e−2δ|Us |Φ

(
(t − s)δσ 2 − δ|Us |√

t − s · δσ

)]
, (15)

and

Ȳ F
t =

√
1 − δ2 ·

(
Wt +

(
μ − r + σ 2

2

)
(t − s)√

1 − δ2 · σ

)
+ δ|Ut |, (16)

is a martingale if discounted at risk-free rate r , i.e., EQ
s
[
e−r t Ft

] = e−rs Fs (0 ≤ s < t). The
same occurs for Ct , more specifically, we set2

Ȳ C
t = ρȲ F

t +
√(

1 − 2δ2

π

)
(1 − ρ2) · B̄t , (17)

where B̄t is a (standard) Brownian motion independent of Ȳ F
t .

From here on we express the processes Ft ,Ct under the risk-neutral measure Q.
With refer to Sect. 2.1, in order to evaluate any (compound) option cmh (h ∈ [1, n]) we

give the next result. The next Proposition 2 and its related considerations help to implement
the Monte Carlo technique for simulating the processes involved in our model.

2 Note that, for the sake of clarity, we use the bar symbol to denote the stochastic part of our variables, when
they are defined under the measure Q.
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First of all, let us introduce RF
t and RC

t the (log-)returns of the processes Ft , Ct , respec-
tively; i.e.,

RF
t = ln

(
Ft
Fs

)
, RC

t = ln

(
Ct

Cs

)
(0 ≤ s < t); (18)

and denote by XF
t , XC

t the stochastic part of such processes. Notice that the function Φ(·)
denotes, hereinafter, the (standard) normal CDF.

Proposition 2 The conditional densities of the processes X F
t , XC

t are:

fX F
t |XF

s
(x1|y, z) = 1√

2π(t − s)σ

(
e
− (x1−y−z)2

2σ2(t−s) Φ(a1) + e
− (x1−y+z)2

2σ2(t−s) Φ(a2)

)
(x1 ∈ R+), (19)

and

fXC
t |XC

s
(x2|ỹ, z̃) = 1√

2π(t − s)η

(
e
− (x2−ỹ−z̃)2

2η2(t−s) Φ(ã1) + e
− (x2−ỹ+z̃)2

2η2(t−s) Φ(ã2)

)
(x2 ∈ R+), (20)

respectively, where

a1,2 = δ2(x1 − y ∓ z) ± z

δσ
√

(t − s)(1 − δ2)
, ã1,2 = δ2ρ2(x2 − ỹ ∓ z̃) ± z̃

δηρ
√

(t − s) · [√
1 − δ2 +

√(
1 − 2δ2

π

)
(1 − ρ2)

] ,

y =
√
1 − δ2 · Ws , ỹ = ρy +

√(
1 − 2δ2

π

)
(1 − ρ2) · B̄s , z = δ|Us |, z̃ = ρz.

Proof See Appendix B.2 ��
Now,we can compute the density of the processVtn defined inEq. (5) by the convolution of the
densities of each variable e−r ·hΔt Vtn,h , due to the independence of the skew-Brownianmotion
increments. But Vtn ,h is a function of two correlated logarithmic skew-normal variables (see,
e.g., Lin & Stoyanov, 2009), whose explicit density is unknown in literature.

To avoid this issue, we will use the densities (19), (20) to simulate underQ the stochastic
part of the processes Ftn,h ,Ctn,h and, consequently, those of Vtn,h and Vtn,h . These considera-
tions, allow us to evaluate the simple and compound options in Eqs. (2) and (3) through the
Monte Carlo approach.

2.3 Empirical analysis on the distribution of gasoline and corn returns

This subsection provides a statistical analysis on the gasoline and corn returns. Our dataset
is referred to a period from January 1994 to September 2021 (see Fig. 3), and it consists of
monthly global price of corn inU.S.Dollars perBushel and theU.S. all grades all formulations
monthly retail gasoline prices in U.S. Dollars per Gallon.3

Among our tests, we mention the moments (see Table 1), the histograms (see the first
picture of Figs. 4 and 5) and the quantile–quantile (Q–Q) plotWilk and Gnanadesikan (1968)
where are considered the normal distribution versus the skew-normal distribution. In order
to prove that such returns are skewed and not normally distributed, we perform:

• the Kolmogorov–Smirnov (K–S) test Kolmogorov (1933), that is a nonparametric test
of the equality of probability distributions, used to compare a sample with one reference
probability distribution;

3 The information about the dataset used are given in Sect. 3.1.
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Fig. 3 From the top left to the right, first row: a Gasoline prices ($/gallon), b Gasoline log-returns (%). From
the top left to the right, second row: a Corn prices ($/bushel), b Corn log-returns (%)

• the Dvoretzky–Kiefer–Wolfowitz (DKW) inequality Dvoretzky et al. (1956) which pro-
vides a measure of the distance between the empirical and normal CDF. This method is
based on the Glivenko–Cantelli TheoremTucker (1959) that estimates the tail probability
of the Kolmogorov–Smirnov statistic.
As in Orlando and Bufalo (2021), we introduce the variable, named “DKW exceeds”,
which enumerates the percentage of points of the theoretical CDF that exceed the DKW
upper and lower bounds.

To be thorough, we compare the normal and skew-normal distribution with the following
ones:

• Generalized hyperbolic (GH) distribution,

f (x; a1, a2, a3, a4, a5) =
(a22 − a23)

a1/2 · aa1+1/2
2

√
a24 + (x − a5)2 Ka1−1/2

√
2π(a22 − a23) a

a1+1
4 Ka1 · (a24 + (x − a5)2)1/4−a1/2

(x ∈ R), (21)

where a3 ∈ R is the asymmetry parameter, a4 ∈ R is the scale parameter, a5 ∈ R is the
location, a2 ∈ R, (a22 > a23), and Ka1 (a1 ∈ R) denotes the modified Bessel function of
the second kind.

• Generalized Pareto (GP) distribution,

f (x;α1, α2, α3) = (1 + α3
( x−α1

α2

)
)−(1/α3+1)

α2
(x > α1), (22)

where α3 ∈ R is the shape parameter, α2 ∈ R+ is the scale parameter, and α1 ∈ R is the
location.

The second rowofFigs. 4 and5displays theQ–Qplots. These graphs represent the distribution
quantiles comparing the CDF of the observed time series, which is unknown, a priori, with
that of a specified distribution, chosen as benchmark. If the observed variable follows the
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Table 1 First four central moments for Gasoline and Corn prices and their log-returns

Time series Mean SD Skewness Kurtosis

Gasoline 2.2602 0.8716 0.1972 1.8736

Corn 4.0098 1.5883 1.0050 3.2779

Gasoline (log-returns) 0.0036 0.0579 − 1.0614 7.9150

Corn (log-returns) 0.0019 0.0604 − 0.3563 5.1987

Fig. 4 From the top left to the right, first row: a Gasoline log-returns histogram, b Empirical CDF versus
standard normal CDF for Gasoline log-returns. The dotted black lines represent the DKW upper and lower
bounds. From the top left to the right, second row: aGasoline log-returns Q–Q plot fromGaussian distribution,
b Gasoline log-returns Q–Q plot from skew-normal distribution

theoretical distribution chosen, the Q–Q plot thickens across the line that connects the first
and third quantiles of the data. The Q–Q plots show that the skew-normal performs better
than the Gaussian (with the exception of some outliers).

The second picture of first row of Figs. 4 and 5 reveals that the empirical CDF of returns
is far from the theoretical normal CDF and widely exceeds from the DKW lower and upper
bounds.

The last check on the normality is performed by the KS test (see Table 2), which
demonstrates that the most indicated distributions are the skew-normal and the general-
ized hyperbolic while the Gaussian and the generalized Pareto distributions do not seem to
fit well.

2.4 Calibration and numerical simulation

The parameters of a skew-geometric Brownian motion are calibrated through the maximum
log-likelihood (MLE) estimation.

Let RF
t be the returns of the corn price process defined in Eq. (18), then RF

t = μt+σY F
t ∼

SN (μt, σ 2t, β). Hence, if rCt denote the observations of RC
t over n periods, the likelihood
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Fig. 5 From the top left to the right, first row: a Corn log-returns histogram, b Empirical CDF versus standard
normal CDF for Corn log-returns. The dotted black lines represent the DKWupper and lower bounds. From the
top left to the right, second row: a Corn log-returns Q–Q plot from Gaussian distribution, b Corn log-returns
Q–Q plot from skew-normal distribution

Table 2 K–S test to detect the original distribution for the log-return time series

Time series Normal Skew-normal Gen. Hyperbolic Gen. Pareto

Resp p-value DKW exceeds (%) Resp p-value Resp p-value Resp p-value

Gasoline 1 0.0035 48.04 0 0.9641 0 0.4451 1 0

Corn 0 0.0316 54.65 0 0.9023 0 0.4877 1 0

The response is a boolean where 0 indicates that there is no evidence to reject the null hypothesis, and the
value 1 is the opposite case

function of RC
t is

LC (μ, σ, β) = 2n

(σ
√
t)n

n∏

t=1

ϕ

(
rCt − μt

σ
√
t

)
Φ

(
β
rCt − μt

σ
√
t

)
,

and the estimated parameters can be found as

(μ̂, σ̂ , β̂) = arg

(
max

(μ,σ,β)
lnLC (μ, σ, β)

)
.

The above procedure is implemented in the helpful R package of Azzalini (2021).
To estimate the correlation coefficient ρ we use the Spearman’s rank correlation (see, e.g.,

Wayne, 1990) between rct and the observations r Ft of RF
t . Then, Proposition 1 soon implies

that

α̂ = β̂
√

1 + (1 + β̂2)

(
1 − 2δ̂2

π

)(
1
ρ̂2 − 1

) ,
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Table 3 Estimated parameters for the processes Ct and Ft

Parameters μ σ β δ ρ θ η α

Estimates 0.4669 0.3675 12.0651 0.9966 0.2265 0.9942 0.1633 0.3705

where δ̂ = β̂√
1+β̂2

(see also Appendix A).

Finally, followingBufalo et al. (2022, Section 5.1), the likelihood function of the correlated
process RF

t = θ t + ηY F
t ∼ SN (θ t, η2t, α) (conditioned to (α̂, δ̂, ρ̂)) is

LC (θ, η) = 2n
(

η

√
ρ̂2t +

(
1 − 2δ̂2

π

)
(1 − ρ̂2)t

)n

·
n∏

t=1

ϕ

⎛

⎜
⎜
⎝

r Ft − θ t

η

√
ρ̂2t +

(
1 − 2δ̂2

π

)
(1 − ρ̂2)t

⎞

⎟
⎟
⎠ Φ

⎛

⎜
⎜
⎝α̂

r Ft − θ t

η

√
ρ̂2t +

(
1 − 2δ̂2

π

)
(1 − ρ̂2)t

⎞

⎟
⎟
⎠ ,

and the remaining estimations can be found as

(θ̂ , η̂) = arg

(
max
(θ,η)

lnLF (θ, η)

)
.

In particular, in order to simulate the processes Ft ,Ct underQ, we use the risk-free rate r in
their drift instead of the estimates μ̂, θ̂ , which are involved into the skew-Brownian motions
Ȳ F
t , Ȳ C

t (according to Eq. (16)).
The above parameters are estimated in the time horizon [0, t0], while the out of sample

simulations regards the remaining period (t0, T ]. The simulations are taken through the mean
of N = 105 trajectories of a discretized scheme for the processes Ct , Ft .

Figure 6 shows the corn and gas prices (the solid black line and the dotted black one, in
the horizon [0, t0] and (t0, T ], respectively) versus the their future expected values (the solid
blue line in (t0, T ]). We set t0 = 14 Y , T = 13 Y , according to the case study analyzed in
Sect. 3. The dotted red lines represent the 95% confidence interval of our predictions, which
are calculated according to Qi et al. (2022). Moreover, Table 3 lists the estimated parameters
of our model for any t ∈ [0, t0].

Observe that the correlation ρ is 0.2265, while Fig. 7 displays the Spearman’s correlation
between Ct and Ft from t0 on, through a rolling window of (fixed) size equal to 60, i.e.,
5 years. With a minimum value of 0.18, we can assess that the corn and gas time series are
always correlated both before and after the starting date of project t0.

3 Case study

3.1 The project valuation with compound options approach

In this section we propose an ideal case study by using plausible parameters that involves
all the steps to start a corn ethanol plant project with 20 million gallons total production
capacity of fuel ethanol. With refer to Sect. 2.1, we set the construction-engineering phases
equal to n = 2. The investor expects to pursues the engineering costs I0 at time t0 = 0,
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Fig. 6 Upper figure. Real corn prices (past, i.e., t ∈ [0, t0]—solid black line, and future, i.e., t ∈ (t0, T ]—
dotted black line) versus forecasted corn prices (t ∈ (t0, T ]—solid blue line). Lower figure. Real gas prices
(past, i.e, t ∈ [0, t0]—solid black line, and future, i.e., t ∈ (t0, T ]—dotted black line) versus forecasted gas
prices (t ∈ (t0, T ]—solid blue line). The dotted red line represent the 95% confidence interval. (Color figure
online)

Fig. 7 Spearman’s correlation between Ct and Ft computed for any t ∈ [t0, T ] through a rolling window of
size 60 months

the construction investment I1 at time t1 = 1 Y , the operating costs I2 at time t2 = 3 Y that
lasts up to maturity T = 13 Y .4 We expect that in the operating period the plant is able to
produce an expected quantity of fuel to be sold 1.818 million gallons per year (20 million
gallons/11 Y) in order to obtain a total production capacity of 20 million gallons.

4 Notice that we have used likely time-frames for different stages that characterized a corn ethanol plant
project. However, these period can change according unpredictable variable that can affect these project
(public administration behavior, investor performance, environment, etc. ).
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This corn ethanol plant involves a construction cost of 2.25 $/gallons and the plant expects
to produce 20 million gallons of fuel ethanol in order to obtain I1 = $ 45 million (2.25× 20
million gallons).5 Once the construction investment is calculated, it is easy to calculate the
engineering investment I0 as a percentage of I1 that in this case is equal to 2%, by obtaining
I0 = $ 0.90million. As above, to proceed in the operating period requires another investment
I2 that includes production expenses such as labor and maintenance costs, administrative
and insurance costs, fees. This cost is equal to 0.15$/gallons × 1.818 million gallons of fuel
ethanol per year (our expected production).6 The value of I2 = $ 2.103 million is calculated
as the discounted sum of operating costs at time t2 = 3 Y that is the starting year of operating
period by using a discount rate equal to i = 8%.7 Moreover, we use a conversion factor
γ̄ = 3.09 that has been chosen by using the average value of the range studied by Kirby
and Davison (2010) that goes from 2.87 to 3.31. We set the parameters b1, b2 of Eq. (7)
equal to 1 and 2, respectively.8 Before proceeding to apply our compound options model
with stochastic parameters, we pursue a static Net Present Value (NPV) based on the simple
Discounted Cash Flows (DCF) approach. This allows to make a comparison between the
two approaches by discussing them. To make this analysis we consider the annual average
of global prices of corn in terms of U.S. Dollars per Bushel9 and the U.S. all grades all
formulations annual average retail gasoline prices in terms of Dollars per Gallon from 2011
to 2021.10 By using a discount rate i = 8%, a static DCF analysis is shown in Table 4.

Following the DCF analysis, the investor should reject the corn ethanol plant project since
it gives a negative result (NPV=−$ 1.096million). At this point, we can apply the compound
options approach by considering the stochastic nature of revenues and costs.

The analysis starts by calculating the project value Et2 where the gasoline (Ft ) and corn
price (Ct ) follows a skew-geometric Brownian motion (as described in Sect. 2.2). To obtain
Et2 we consider a simulation derived from the historical series of monthly global price of
corn in terms of U.S. Dollars per Bushel11 and the U.S. all grades all formulations monthly
retail gasoline prices in terms of Dollars per Gallon12 from January 1994 to September 2021.
Since we consider monthly time series, we use a monthly expected quantity of fuel to be sold
q = 151 515.15 gallons (1 818 181/12).

The first step gives a project value Et2 equal to $ 53.6 million after using a risk-free
rate r = 4%.13 Then, we proceed via backward induction according the logic described in

5 The construction cost of 2.25$/gallons has been extrapolated from the study of Pederson and Zou (2009).
6 The operating cost of 0.15$/gallons has been extrapolated from the study of Pederson and Zou (2009).
7 The discount rate value has been taken considering the study of Schmit et al. (2009).
8 Based on Report CTI -Biomass Plant for the energy production by Riva et al., it is plausible that on the basis
of a technical-economic analysis, the profitability index of this type of plant, taking into account the humidity
accumulated of the vegetable fuel and the weight of the ashes, can be estimated assuming b2 = 2.
9 Note that the yearly global prices of corn from 2011 to 2021 in terms of U.S. Dollars per Bushel have been
extrapolated fromFREDeconomic data (https://fred.stlouisfed.org/series/PMAIZMTUSDM) after converting
the metric ton in bushels and making an average of monthly prices.
10 Note that yearly retail gasoline prices in terms of dollars per gallon from 2011 to 2021 have been
extrapolated from “eia” website (https://www.eia.gov/dnav/pet/pet_pri_gnd_a_epm0_pte_dpgal_m.htm),
Indipendent Statistics&AnalysisU. S. Energy InformationAdministration aftermaking an average ofmonthly
prices.
11 Note that the global price of corn in terms of U.S. Dollars per Bushel have been extrapolated from FRED
economic data (https://fred.stlouisfed.org/series/PMAIZMTUSDM) after converting themetric ton in bushels.
12 Note that retail gasoline prices in terms of dollars per gallon have been extrapolated from “eia” website
(https://www.eia.gov/dnav/pet/pet_pri_gnd_a_epm0_pte_dpgal_m.htm), Indipendent Statistics & Analysis
U. S. Energy Information Administration.
13 The risk-free rate r = 4% has been extrapolated from the study of Pederson and Zou (2009).
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Table 4 Discounted cash flows method

Years Gasoline prices ($) Corn prices ($) Margin after conversion ($) Cash flows (million $)

0 0 0 0 −0.90

1 0 0 0 −45.00

2 0 0 0 0

3 3.58 7.41 3.6378 6.341

4 3.69 7.58 3.8097 6.654

5 3.58 6.58 4.4729 7.860

6 3.44 4.90 5.7350 10.154

7 2.51 4.31 3.4510 6.002

8 2.25 4.04 2.9159 5.029

9 2.53 3.93 3.8919 6.803

10 2.82 4.18 4.5269 7.958

11 2.69 4.32 3.9765 6.957

12 2.26 4.21 2.7768 4.776

13 2.98 6.66 2.5564 4.375

NPV=−$ 1.096 million

Eqs. 8 and 1 by using monthly instant times, and we obtain a real option (RO) value skew-
geometric Brownian motion equal to $ 0.8 million. Moreover, we extrapolated the RO value
under the geometric Brownian motion in order to make a comparison between it and our
skew-geometric Brownian motion assumption.

All the values used for the NPV and compound options valuation are summarized in
Table 5.

3.2 Sensitivity analysis

This section provides a sensitivity analysis of how the RO value under skew-geometric
Brownian motion varies by changing t1, t2, γ̄ and b2. Figure8 shows that by delaying the
time period of construction investment t1 or time period of operating investment t2, the RO
value tends to increase. This is because the extension of the time period of project investment
makes the project riskier about its future performance and the operational flexibility captured
by RO value becomes more valuable. Figure8 also shows that if the value of γ̄ goes up, the
RO value tends to increase. This is a quite intuitive aspect since by improving the conversion
factor allows tomakes the projectmore attractive.Moreover, we can also state that an increase
in the plant efficiency intensity b2 increases average plant efficiency and the RO value.

3.3 Discussion of results

According the analysis made in the previous section, the corn ethanol plant investment is
profitable for potential investor since the RO value under skew-geometric Brownian motion,
equal to $ 0.8 million, is positive and quite high. In fact, we note that the ratio between the
compound option value (cm2 ) and the investment to initiate the project (I0) is higher than 1 to

demonstrate the positive revenue-generating capacity of the plant (
cm2
I0

= 1.7
0.9 = 1.89 > 1).
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Table 5 Results of compound ROA

Item Description Value

Et2 Project value at time t2 $ 53.6 million

I0 Investment for engineering $ 0.90 million

I1 Investment for construction $ 45 million

I2 Investment for operation $ 2.103 million

γ̄ Conversion factor 3.09

r Risk free rate 4%

i Discount rate 8%

q Expected quantity of fuel to be sold
per month

0.1515 million gallons

t0 Year of engineering investment 0 (starting point)

t1 Year of construction investment 1

t2 Year of operating investment 3

T Year of maturity 13

NPV Static DCF approach −$ 1.096 million

RO value with
geometric
Brownian motion

Value of project under uncertainty and
sequential logic

$ 0.194 million

cm2 Compound option value $ 1.7 million

RO value with
skew-geometric
Brownian motion

Value of project under uncertainty and
sequential logic

$ 0.8 million

Fig. 8 From the top left to the right, first row: a RO values when t1 ∈ [1, 36] (months), b RO values when
t2 ∈ [330, 350] (months). From the top left to the right, second row: a RO values when γ̄ ∈ [3, 3.2], b RO
values when b2 ∈ [2, 18]. The red circle point denotes the RO value reported in Table 5, i.e., $ 0.8 million.
(Color figure online)
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The profitability of the corn-ethanol plant is confirmed also by theROvalue underGeometric-
Brownian motion since its positive value is equal to $ 0.194 million, even if it is lower than
RO value under skew-geometric Brownian motion. In fact, by making a comparison between
these twoROvalues, we note that the compound optionsmodel based on geometric Brownian
motion tends to underestimates the project value. This is because the skew-Brownian motion
allows to price more adequately the irregularity of corn and gasoline prices in comparison
to Geometric-Brownian motion. The compound options valuation under skew-Brownian
motion encourages the corn-ethanol plant projects. These findings are in line with the studies
of Pederson and Zou (2009) and Schmit et al. (2009). The RO value represents an ex-ante
project valuation that allows to makes aware the investor about the future opportunities of
the project. Differently from the classical Net Present Value (NPV), the RO value embeds
the “optionality” to change investment decision during the lifetime of the project if a certain
stage turns out to be unprofitable. The literature terms this as ‘managerial flexibility’. We
have also shown a valuation comparison between NPV and RO approaches. Following the
NPV method the investor should reject the corn-ethanol plant project since it is not able to
value the managerial flexibility. So, we can state that, there is a huge difference between the
discounted cash flows approach and our innovative approach. The standard indicator based
on discounted cash flows method leads to a rejection of this corn-ethanol plant investments
since it gives a negative results (NPV=−$ 1.096 million). This would represents a wrong
support to decision making. Differently from the NPV, the corn-ethanol plant valuation
based on our compound options approach increases in value (RO=+$ 0.8 million) since
the model includes the managerial flexibility aspects and an adequate stochastic approach of
prices evolution based on skew-Brownian motion. In this sense, the operational flexibility
to activate the investment options at each stage—acting as compound options—is valuable.
These results are in line with the study of Ross (1995) that explained that the NPV can lead
to reject a project that should be accepted.

In this case study, a positive RO value means that the project appears attractive in financial
terms in addition to pursue sustainability goal considering that it is viewed as a renewable
investment. As the results of Sect. 3.1 show, despite the presence of uncertainty and sequential
stage decisions, using compound ROA with skew-geometric Brownian motion driven price
uncertainties and incorporating the value of managerial flexibility allows the investor to
appropriately price corn ethanol plant projects.

4 Conclusions

This article proposes a methodology to value corn ethanol plant projects characterized by
corn and gasoline price uncertainty. The staged nature of the decisions available to the project
owner arises because the investor proceeds with the following investment only if it is on
average profitable given the information obtained at the end of the previous stage. To consider
these valuation characteristics, we adopt compound ROAmodelling corn and gasoline prices
to follow, in accordance with historical data, skew-geometric Brownian motions. We also
propose a case study to apply our valuation methodology to likely data. The results show that
the corn ethanol plant project appears attractive and financially profitable by using compound
ROA with skew-geometric Brownian motions for corn and gasoline prices. By adding these
results to the sustainability goal of the plant allows to have a wider vision of the benefits of
the renewable investments like this. In this paper wemodel a corn ethanol plant valuation as a
compound options approach with stochastic revenues and costs parameters. Further research
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can embed in this approach the option to abandon the corn ethanol plant project for a salvage
value. This would allow to provide a broader view of the operational flexibility insight in
the project valuation. In addition, it could be interesting to determine, as another subsequent
contribution, an optimal time in which, before reaching the lifetime ends in which efficiency
approaches zero, it is advisable to replace the plant with a new one, modelled as the real
option to switch.
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A Skew-normal density

In this appendix we recall some well-known definitions and properties of the skew-normal
density, described by Azzalini (see e.g., Azzalini, 1985, 2013).

Definition A1 Arandomvariable X is said to be (standard) skew-normal if it has the following
density

p(x) = 2ϕ(x)Φ(βx) (x ∈ R), (23)

where ϕ and Φ are the normal density and the normal cumulative distribution functions,
respectively. The real number β is called shape parameter.

More generally, if X is a standard skew-normal random variable, the random variable

Y = ξ + ωX (ξ ∈ R, ω ∈ R+),

is a skew-normal with location parameter ξ , scale parameter ω and shape parameter β. Its
density function is

p(y) = 2

ω
ϕ

(
y − ξ

ω

)
Φ

(
β
y − ξ

ω

)
(y ∈ R), (24)

and it is named Y ∼ SN (ξ, ω2, β).

The principal moments of a skew-normal random variable are given by the following propo-
sition.

Proposition A2 If Y ∼ SN (ξ, ω2, β), its moment generating function is given by

E
[
ekY

] = 2ekξ+ k2ω2
2 Φ(kδω), (25)
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Fig. 9 PDF and CDF of a skew-normal random variable X for different values of β

where

δ = β
√
1 + β2

, (26)

is the rescaled shape parameter. In particular, one has

E[Y ] = ξ + ωδ

√
2

π
, (27)

and

Var(Y ) =
(
1 − 2δ2

π

)
ω2. (28)

From the above result comes an interesting property that will be helpful in Sect. 2.2.

Proposition A3 If Y1, Y2 are two independent random variables, with Y1 ∼ SN (ξ, ω2, β)

and Y2 ∼ N (μ, σ 2), then

Y1 + Y2 ∼ SN (ξ + μ,ω2 + σ 2, β̃), (29)

where

β̃ = β
√
1 + (1 + β2) σ 2

ω2

.

Proof See Azzalini (2013, Proposition 2.3). ��

Remark A4 Observe that the sum of two independent skew-normal random variables is not
skew-normally distributed. The exact distribution of the sum of independent is given by
Nadarajah and Li (2017, Theorem 2.1), and it involves the so-calledKampé de Fériet function
de Fériet (1937).
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B Proofs of Subsection 2.2

B.1 Proof of Proposition 1

Proof Definition 1 states that YC
0 = 0, YC

t has continuous sample paths and YC
t ∼

SN (0, t, α), with shape parameter α given by Eq. (13) due to Proposition 1. In particular,

Var(YC
t ) = ρ2 Var(Y F

t ) +
(
1 − 2δ2

π

)
(1 − ρ2)Var(Bt ) =

(
1 − 2δ2

π

)
t .

Moreover, due to the independence between Y F
t and Bt , we can write

Cov(Y F
t , YC

t ) = E[Y F
t · YC

t ] − E[Y F
t ] · E[YC

t ]

= ρE[(Y F
t )2] +

√(
1 − 2δ2

π

)
(1 − ρ2) · E[Y F

t ] · E[Bt ] − ρ(E[Y F
t ])2

= ρVar(Yt )

= ρ

(
1 − 2δ2

π

)
t .

which soon implies

Corr
(
Y F
t , YC

t

)
= Cov

(
Y F
t , YC

t

)

√
Var

(
Y F
t

) · Var
(
YC
t

) = ρ.

��

B.2 Proof of Proposition 2

Proof As suggested inZhu andHe (2018) the skew-Brownianmotion does not have stationary
increments, and generally, for any 0 ≤ s < t , the conditioning density of the skew-Brownian
motion Yt defined in Eq. (10) is given by

f
Yt

∣∣Ys = f√
1−δ2·Wt

∣∣√1−δ2·Ws
∗ f

δ|Ut |
∣∣δ|Us |, (30)

where

f√
1−δ2·Wt

∣∣√1−δ2·Ws
(u1|w1) = 1

√
2π(t − s)(1 − δ2)

e
− (u1−w1)2

2(t−s)(1−δ2) (u1 ∈ R),

f
δ|Ut |

∣∣δ|Us |(u2|w2) = 1

δ
√
2π(t − s)

[
e
− (u2−w2)2

2(t−s)δ2 + e
− (u2+w2)2

2(t−s)δ2

]
(u2 ∈ R+),

and ∗ denotes the usual convolution product (being Wt and Ut independent). In particular,
we have set w1 = √

1 − δ2 · Ws, w2 = δ|Us |, while f
δ|Ut |

∣∣δ|Us | represents a (conditioning)
folded-normal density (see e.g., Tsagris et al., 2014).

Now, if

XF
t := σYF

t ,
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is the stochastic part of the return process RF
t , by virtue of Eq. (30), we get

f
X F
t

∣
∣XF

s
(x1|y, z) = 1

2π(t − s)σ 2δ
√
1 − δ2

∫ +∞

0
e
− (x1−ζ−y)2

2(t−s)(1−δ2)σ2

[
e
− (ζ−z)2

2(t−s)δ2σ2 + e
− (ζ+z)2

2(t−s)δ2σ2

]
dζ,

which easily leads to formula (19).
With analogous arguments, we may conclude that the conditioning density of

XC
t := η

[
ρ
√
1 − δ2 · Wt +

√(
1 − 2δ2

π

)
(1 − ρ2) · Bt

]
+ ρδ|Ut |,

is given by Eq. (20). ��

C Stochasticity of costs

As a further generalization, we may assume that also the costs Ih (h ∈ [1, n]) are stochastic
processes, whose dynamics are given by

Ih,t = kh( Īh − Ih,t ) + βhd Zh,t , (31)

where Zh,t are independent Brownian motions, Īh represent the long-run mean with speed
rate kh ∈ R+ and volatility βh ∈ R+. For simplicity, one can set the starting value of such
processes equal to Īh so that any expectation coincide with Īh itself (see e.g., the values taken
in Sect. 3.1). Otherwise, if real data were available for Ih , one could calibrate the parameters
of the process (31) like in Orlando et al. (2019, Section 4.3).

In the general case of random costs, the boundary conditions (9) become
{
s
(Vm

tn , In, 0
) = E

P
[
max{Etn − Ih,n; 0}

]

c
(
cmh−1, In−h+1, 0

) = E
P
[
max{EQ

t0 [cmh−1] − Ih,n−h+1; 0}
]
.

(32)

It is clear the measure used to compute each payoff is just the objective probability measure
(P), as distinct from the risk-neutral (Q) measure used for option pricing.

D Generating skew-Brownianmotions

As described in Lejay (2006) a natural construction of a (standard) skew-Brownian motion
is given by solving the stochastic equation

Yt = Y 0
t + δLY

t , (33)

where Y 0
t is a standard Brownian motion, |δ| < 1, and LY

t is the symmetric local tine at 0 of
Yt , i.e.,

LY
t = lim

ε↘0

1

2ε

∫ t

0
1[−ε,ε](Yu) du.

As observed in Corns and Satchell (2007), an alternative construction of a (standard) skew-
Brownian motion Yt consists of the sum of a standard Brownian motion and a reflected
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Brownian motion, i.e., Yt = √
1 − δ2 · Wt + δ|Ut |, as in Eq. (10). By virtue of Tanaka’s

formula, Eq. (10) may be rewritten as

√
1 − δ2 · Wt + δ

∫ t

0
sign(Uu) dUu + δLU

t , (34)

which is equivalent to Eq. (33) (see Corns & Satchell, 2007, Proposition 2.1).
Lejay and Martinez (2006) develops a numerical comparison about several methods,

including an Euler and a deterministic scheme, used to simulate skew processes. It is clear
that the main difficulty in simulating the skew-Brownian motion in Eq. (10) is the presence
of a reflected Brownian motion. However, as showed in Asmussen et al. (1995), the dis-
cretization error associated with the Euler scheme for simulating such process has an order
of convergence of 1/2. In Lejay (2006), Lejay and Martinez (2006) many sophisticated tech-
niques are considered in order to approximate a skew-Brownian motion by some classical
SDEs (without a reflected Brownian motion) but they are more expensive, having an order
of convergence greater than 1. Therefore, it appears that the representation (10) is the most
convenient from a numerical point of view.
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