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Abstract
The paper presents a newmixed-integer programming formulation for the maximally diverse
grouping problem (MDGP) with attribute values. The MDGP is the problem of assigning
items to groups such that all groups are as heterogeneous as possible. In the version with
attribute values, the heterogeneity of groups is measured by the sum of pairwise absolute
differences of the attribute values of the assigned items, i.e. by the Manhattan metric. The
advantage of the version with attribute values is that the objective function can be refor-
mulated such that it is linear instead of quadratic like in the standard MDGP formulation.
We evaluate the new model formulation for the MDGP with attribute values in comparison
with two different MDGP formulations from the literature. Our model formulation leads to
substantially improved computation times and solves instances of realistic sizes (for example
the assignment of students to seminars) with up to 70 items and three attributes, 50 items and
five attributes, and 30 items and ten attributes to (near) optimality within half an hour.

Keywords Mixed-integer programming · Assignment · Grouping · Combinatorial
optimization

1 Introduction

The maximally diverse grouping problem (MDGP) is the problem of assigning a set of items,
i, j ∈ I , to groups, g ∈ G, such that each group gets the same or a similar number of items
assigned and the sum of pairwise distances di j between all items assigned to the same group
is maximized. Thus, for equal-sized groups the heterogeneity inside groups is maximized,
which leads also to similar groups.

Although the MDGP is in its general version formulated with arbitrary distances di j ,
common applications like the assignment of students to seminars use attribute values avai
for all students and attributes. Examples are grades or other performance scores or zero-
one attributes (e.g. for international or non-international). Given these attribute values, the
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distances are computed as dai j = |avai − avaj |, i.e. by the Manhattan metric, for all attributes
a ∈ A and items/students i, j ∈ I .

In this paper, we consider the MDGP where dai j = |avai − avaj | for attribute values
avai ∈ Q≥0 and use results of Schulz (2021b) to introduce a new mixed-integer program-
ming formulation for the problem setting. We prove that our formulation leads to the same
optimal objective values as the standard formulation. Our computational results show that
this formulation outperforms the standard formulation and the model formulation by Papen-
berg and Klau (2021) for the MDGP by far. Moreover, we outline how the approach by
Schulz (2021b) for the balanced MDGP, i.e. the problem of finding a best balanced solution
among all optimal MDGP solutions, can be adapted if there is no MDGP solution fulfilling
Assumption 1 (compare page 6) for every attribute or if not equal-sized groups are considered.

The paper is organised as follows: In Sect. 2, the relevant literature is reviewed.Afterwards,
we give a formal problem description in Sect. 3. Our mixed-integer programming (MIP)
formulation is introduced in Sect. 4. The MIP is compared with the standard formulation
and the model by Papenberg and Klau (2021) in a computational study in Sect. 5. The paper
closes with a conclusion (Sect. 6).

2 Literature review

The MDGP has been investigated in different settings in the literature. Weitz and Lakshmi-
narayanan (1997) showed that it is mathematically equivalent to VLSI design (group highly
connected modules onto the same circuit) and exam scheduling (assigning exam blocks to
days). In a further paper, Weitz and Lakshminarayanan (1998) mentioned the assignment of
students to project groups as a possible application.

Assignments of students are a common application of grouping problems. In an earlywork,
Beheshtian-Ardekani and Mahmood (1986) assigned students to project groups. In more
recent works, students were assigned to study groups (Krass and Ovchinnikov, 2010), work
groups (Caserta and Vo, 2013), and multiple teaching groups (on the basis of preferences;
Heitmann andBrüggemann (2014)). Johnes (2015) published a review on operations research
in education and considered amongst others the assignment of students to courses. Dias
and Borges (2017) applied the MDGP to assign students to teams. Students are mostly
assigned according to their academic performance (overall average grade or grades in specific
courses) to groups. Furthermore, students can be distributed to groups according to their
gender to reach an equally distribution of male, female, and third gender students. Moreover,
international students can be distributed equally over all groups. All these measures can be
implemented as attribute values (e.g. attribute value 0 for male, 1 for female, and 2 for third
gender, or 0 for non-international and 1 for international).Mingers andO’Brien (1995), Krass
and Ovchinnikov (2006), Krass and Ovchinnikov (2010), and Caserta and Voß (2013) assign
students to groups according to binary attributes.

Baker and Benn (2001) investigated in a case study how pupils in a school should be
assigned to tutor groups such that the groups are as similar as possible. Criteria are the
gender, the ability level, ethnic minority groups, feeder schools, and special educational
needs of pupils. All of them can also be represented by attribute values. Rubin and Bai
(2015) considered the problem of assigning individuals to teams to make the teams as similar
as possible. Schulz (2021b) extended the MDGP (in the version with attribute values) by
such a balancing component.
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Homogeneity over different days and therefore heterogeneity inside days is also helpful to
distribute workload evenly over days. This is, for example, important in surgery scheduling
to avoid overtime (surgery durations can be represented by attribute values). Overtime mini-
mization is a frequently investigated objective in surgery scheduling (compare the review by
Cardoen et al. (2010)). Schulz (2021c) assigned surgeries to days such that the days are bal-
anced according to the surgery durations. Schulz and Fliedner (2021) analyzed the intra-day
assignment of surgeries to starting times and rooms according to several balancing criteria.
Papenberg and Klau (2021) used the fact that die MDGP aims at homogeneity over groups
and heterogeneity inside groups in psychology to partition data sets into equivalent parts.

The MDGP is NP-hard (Feo and Khellaf, 1990) which may be the reason why only a few
exact solution approaches for the MDGP were investigated. Gallego et al. (2013) presented
a computational study with the standard formulations of both problem variants presented
in Sect. 3.1 ((1)–(4) and (1)–(2), (4)–(5), respectively), where only instances with up to 12
items could be solved to optimality within 1800s (general di j ). Papenberg and Klau (2021)
introduced an exact MDGP formulation for the setting with equal-sized groups (compare
Sect. 3.2) based on a work by Grötschel andWakabayashi (1989). They could solve instances
with 28 items in 950s and instances with 30 items in nearly 10000s to optimality.

Schulz (2021b) investigated theMDGPwith attribute values. The author proved that the set
of optimal solutions for the MDGP with attribute values equals for at most two attributes the
set of feasible solutions of a special system of equations (formore than two attributes this does
not hold in general). He searched for the best balanced solution amongst all optimal solutions
of the MDGP with attribute values in the case if there is a solution fulfilling Assumption 1
(compare page 7) for every attribute. We explain the ideas of this paper further in Sect. 4,
where we work with them. Schulz (2021a) generalised this research for the case in which no
MDGP solution fulfilling Assumption 1 for every attribute exists. The paper considered also
only equal-sized groups. Schulz (2021a) solved instances with up to 15 items and 5 attributes
to optimality within 600s (version with equal sized-groups; (1–4)).

In contrast to exact approaches, the MDGP has been solved by a variety of heuristic
solution approaches. Fan et al. (2011) applied a hybrid genetic algorithm to it. An artificial
bee colony algorithm has been investigated for theMDGPbyRodriguez et al. (2013). Gallego
et al. (2013) developed a tabu search algorithm with strategic oscillation. Tabu search in an
iterated version was considered by Palubeckis et al. (2015). Moreover, Brimberg et al. (2015)
applied a skewed general variable neighbourhood search algorithm to solve the MDGP, Lai
and Hao (2016) iterated maxima search, and Singh and Sundar (2019) a hybrid genetic
algorithm. Lai et al. (2020) implemented a neighbourhood decomposition based variable
neighbourhood search and a tabu search algorithm to solve the MDGP. A recent review on
metaheuristics applied to solve grouping problems can be found in Ramos-Figueroa et al.
(2020).

Brimberg et al. (2017) solved the clique partitioning problem as anMDGP. A similar class
of problems are dispersion problems. In contrast to the MDGP, only a single group of a given
size is selected. Dispersion problems are considered for example in Fernández et al. (2013),
Aringhieri et al. (2015), and Amirgaliyeva et al. (2017).

3 Problem description

In this paper, we consider a set of items i, j ∈ I , a set of groups g ∈ G, and a set of attributes
a ∈ A as given. Each item has an attribute value avai ∈ Q≥0 for each attribute a ∈ A. Given
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them, we compute the distances between each pair of items for each attribute according to
the Manhattan metric as

dai j = |avai − avaj |.
Note that it is no restriction to consider non-negative attribute values. As dai j measures only
differences between them, we can add a constant ca = maxi∈I :0>avai

{|avai |} to all attribute
values of attribute a without changing the dai j values since

dai j = |avai − avaj | = |avai + ca − avaj − ca | = |(avai + ca) − (avaj + ca)|.
In the following subsections, we present the standard formulation of the MDGP (Sect. 3.1)
and the formulation by Papenberg and Klau (2021) (Sect. 3.2).

3.1 Standard formulation

The standard integer programming formulation for the MDGP with equal-sized groups is
(compare e.g. Gallego et al. (2013), Singh and Sundar (2019) or Schulz (2021a)):

max
∑

a∈A

∑

g∈G

∑

i∈I

∑

j∈I : j>i

dai j xigx jg (1)

with the constraints
∑

g∈G
xig = 1 ∀i ∈ I (2)

∑

i∈I
xig = |I |/|G| ∀g ∈ G (3)

xig ∈ {0, 1} ∀i ∈ I , g ∈ G (4)

xig is a binary variable which equals to one if item i is assigned to group g and is zero
otherwise. Objective function (1) maximizes the pairwise differences between each pair of
items assigned to the same group according to all attributes. Constraints (2) ensure that each
item is assigned to exactly one group while Constraints (3) take care that all groups are
equal-sized. Constraints (4) are the binary constraints for the x variables.

Several authors (Fan et al., 2011; Gallego et al., 2013; Singh and Sundar, 2019; Lai et al.,
2020) relax (3) to

lg ≤
∑

i∈I
xig ≤ ug ∀g ∈ G, (5)

where lg is a lower bound and ug an upper bound for the number of items in group g. In this
paper, we consider as a start the more restricted case with (3) and relax it afterwards to (5).

Objective function (1) is quadratic. Thus, we have to linearize it to use an off-the-shelf
solver for mixed-integer programming. Therefore, we introduce a new set of variables zi jg ,
i, j ∈ I with i < j and g ∈ G, such that the variable zi jg is one if items i and j are assigned
to group g and zero otherwise. Then, we replace (1) by

max
∑

a∈A

∑

g∈G

∑

i∈I

∑

j∈I :i< j

dai j zi jg (6)

and add the constraints
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zi jg ≤ xig ∀i, j ∈ I : i < j, g ∈ G (7)

zi jg ≤ x jg ∀i, j ∈ I : i < j, g ∈ G (8)

zi jg ≥ xig + x jg − 1 ∀i, j ∈ I : i < j, g ∈ G (9)

zi jg ∈ [0, 1] ∀i, j ∈ I : i < j, g ∈ G (10)

Objective function (6) replaces the product of variables in (1) by the new variable zi jg .
This variable has to be one if items i and j are assigned to group g and zero else. Since
0 ≤ zi jg ≤ 1 (10), Constraints (7) and (8) set zi jg = 0 if item i or item j is not assigned to
group g. Constraints (9) set zi jg = 1 if items i and j are assigned to group g.

Model (1)–(4) contains symmetric solutions. Given a solution, swapping the group assign-
ments of all items assigned to two different groups g1 and g2 with

∑
i∈I xig1 = ∑

i∈I xig2
leads to a different solutions which is structurally identical because the two groups have the
same size. In the case with equal-sized groups, this symmetry results in |G|! structurally
identical solutions. The following set of inequalities avoids symmetric solutions by sorting
homogeneous groups in increasing order of the smallest index of their assigned items (Salem
and Kieffer (2020)): x11 = 1 and

xig ≤
i−1∑

j=1

x j,g−1 ∀i ∈ {2, ..., |I |}, g ∈ {2, ..., |G|} (11)

In objective function (1) as well as in (6), di j is only counted if both items i and j are
assigned to the same group. This means that at the moment when an item i is assigned to
a group—for example in a branch-and-bound procedure—, we are not (fully) aware of the
consequences. If i is the first item assigned to the group, this has even no immediate influence
on the objective value. If i is not the first but also not the last item assigned to the group, we
know that certain dai j values are realized but it is still possible that we have to add a large
dai j value later if the corresponding item j is added to the same group. This might lead to
unprofitable decisions at early stages in the branch-and-bound tree. Thus, although objective
function (6) is linearized, its quadratic character still influences the search process.We reduce
this drawback by a reformulation of the model in Sect. 4.

3.2 Formulation by Papenberg and Klau (2021)

The model formulation by Papenberg and Klau (2021) is based on a work by Grötschel and
Wakabayashi (1989). We adapt it here for the multi-attribute case. It uses binary variables
x̄i j , i, j ∈ I , i < j , which are one if items i and j are assigned to the same group and zero
else. The model formulations is:

max
∑

a∈A

∑

i∈I

∑

j∈I : j>i

dai j x̄i j (12)

with the constraints

− x̄i j + x̄ik + x̄ jk ≤ 1 ∀i, j, k ∈ I : i < j < k (13)

x̄i j − x̄ik + x̄ jk ≤ 1 ∀i, j, k ∈ I : i < j < k (14)

x̄i j + x̄ik − x̄ jk ≤ 1 ∀i, j, k ∈ I : i < j < k (15)
∑

j∈I :i< j

x̄i j +
∑

j∈I : j<i

x̄ j i = |I |
|G| − 1 ∀i ∈ I (16)

x̄i j ∈ {0, 1} ∀i, j ∈ I : i < j (17)
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Constraints (13)–(15) are transitivity constraints which ensure that two items are in the same
group if both of them are in the same group with a third item. Constraints (16) form equal-
sized groups with |I |

|G| items each. Given an item i , it has to be in the same group with
|I |
|G| − 1 further items to ensure that the group size is |I |

|G| . Finally, Constraints (17) are the
binary constraints. Note that this model formulation does not contain symmetric solutions,
as variables do not have a group index. Note further that |I | · |G| < |I |(|I |−1)

2 is equivalent
to 2|G| < |I | − 1. This means that the model formulation by Papenberg and Klau (2021)
has more binary variables than the standard formulation if at least three items are assigned to
the same group. Moreover, the model is restricted to equal-sized groups. Varying group sizes
could be implemented by bounding the left side of (16) to both sides, but then all groups
have the same lower and upper bound. If lower and upper bounds for group sizes vary, we
would need a set of variables which indicate the assignment of items to groups.

4 Newmixed-integer programming formulation

First, we investigate the case with equal-sized groups (Sect. 4.1), i.e. model (1)–(4) to intro-
duce the ideas and get familiar with the notation. Afterwards, we generalize the findings and
consider varying group sizes, i.e. model (1)–(2) and (4)–(5), in Sect. 4.2.

4.1 Equal-sized groups

As mentioned above a disadvantage of the problem formulation (1)–(4) is that the share of
an item i in the objective function, for example expressed by

∑

a∈A

∑

g∈G:xig=1

∑

j∈I

dai j · x jg
2

,

depends on the decision which of the other items are assigned to the same group.
To overcome this drawback, Schulz (2021b) introduced an assignment of the items to

blocks k ∈ K with |K | = |I |/|G| (|K | is the number of items per group) for each attribute
according to

Assumption 1 Let |G| be the number of groups. Then, the |G| items with the largest attribute
values according to the considered attribute are assigned to the first block, the |G| items
with the next largest attribute values according to the considered attribute are assigned to
the second block, and so on.

Moreover, a binary parameter baki is introduced which is 1 if item i is according to attribute
a assigned to block k and 0 else. Schulz (2021b) (Theorem 1 in that paper) proved that the
set of optimal solutions for (1)–(4) equals the set of feasible solutions for (2), (4), and

∑

i∈I :baki=1

xig = 1 ∀a ∈ A, g ∈ G, k ∈ K (18)

if blocks are determined according to Assumption 1 and one of the following two criteria is
fulfilled:

1. |A| = 1,
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Fig. 1 c̄k values (left) and ck values (right)

2. |A| > 1 and the assignment according to Assumption 1 is unique (no two items with
identical attribute values are assigned to different blocks regarding the corresponding
attribute).

Schulz (2021b) proved also that the set of feasible solutions for (2), (4), and (18) might be
empty if |A| > 2 (Theorem 3 in that paper).

With the help of the block notation (parameter baki ), the optimal objective value for (1)–(4)
can be calculated, if the set of feasible solutions for (2), (4), and (18) is not empty (a proof
can be found in Schulz (2021b)), as

∑

a∈A

∑

g∈G

∑

i∈I

∑

j∈I :i< j

dai j xigx jg =
∑

a∈A

∑

k∈K

∑

i∈I
baki ckav

a
i (19)

with

ck =
{
c̄k if k ≤

⌈ |K |
2

⌉

−c̄k else,
(20)

where

c̄k = 2 · max

( |K |
2

− k, k − |K |
2

− 1

)
+ 1 (21)

if |K | is even and

c̄k = 2 ·
∣∣∣∣k −

⌈ |K |
2

⌉∣∣∣∣ (22)

if |K | is odd.
Figure 1 illustrates c̄k (left side of the figure) and ck (right side of the figure) values for

small numbers of blocks. The first row states the number of blocks. The numbers below are
the c̄k and ck values, respectively, in increasing order of the block number. If |K | = 2, (21)
leads to c̄1 = c̄2 = 1. If |K | = 3, (22) leads to c̄1 = 2, c̄2 = 0, and c̄3 = 2. It can easily be
seen that c̄k values are symmetric. The same is true for ck values but with a different algebraic
sign.

Let us consider an example for (19). Let |K | = 4, |A| = 1. Four items with attribute
values av11 = 8, av12 = 5, av13 = 4, and av14 = 1 are assigned to the one considered group.
Then,

∑

a∈A

∑

g∈G

∑

i∈I

∑

j∈I :i< j

dai j xigx jg

=
∑

i∈I

∑

j∈I :i< j

|av1i − av1j |

=|8 − 5| + |8 − 4| + |8 − 1| + |5 − 4| + |5 − 1| + |4 − 1|
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=(8 − 5) + (8 − 4) + (8 − 1) + (5 − 4) + (5 − 1) + (4 − 1)

= (8 − 5) + (5 − 1)︸ ︷︷ ︸
=(8−1)

+ (8 − 4) + (4 − 1)︸ ︷︷ ︸
=(8−1)

+(8 − 1) + (5 − 4)

=3 · (8 − 1) + 1 · (5 − 4)

=3 · 8 − 3 · 1 + 1 · 5 − 1 · 4
(21)= c̄1 · 8 + c̄2 · 5 − c̄3 · 4 − c̄4 · 1
(20)= c1 · 8 + c2 · 5 + c3 · 4 + c4 · 1

=
∑

k∈K

∑

i∈I
b1ki ckav

1
i

=
∑

a∈A

∑

k∈K

∑

i∈I
baki ckav

a
i (23)

with b1ki according toAssumption 1, i.e. b111 = 1, b122 = 1, b133 = 1, b144 = 1, and b1ki = 0 else.
Equation (23) shows us why we should assign items to blocks according to Assumption 1.

Each ck value with k ≤
⌈ |K |

2

⌉
is multiplied with exactly one dai j such that each item i is

considered exactly once (daii = |avai − avai | = 0). Because of our definition of dai j and the
fact that c1 > c2 > ... > c⌈ |K |

2

⌉, it is optimal to multiply the largest ck value, i.e. c1, with the

largest dai j value, i.e. the difference of the largest and the smallest attribute value assigned to
the group. This means, we assign the itemwith the largest attribute value to the first block and
the item with the smallest attribute value to the last block. If we repeat this with all remaining
items until all items are assigned, we get the assignment according to Assumption 1.

Note that the right side of (19) is independent of xig . Because of (2), item i is assigned to
exactly one group such that

∑

a∈A

∑

k∈K

∑

i∈I

∑

g∈G
baki ckav

a
i xig =

∑

a∈A

∑

k∈K

∑

i∈I
baki ckav

a
i .

In (19), the objective value is independent of the assignment of items to groups, which
underlines that the set of optimal solutions for (1)–(4) equals the set of feasible solutions for
(2), (4), and (18). However, we are only sure that (19) is valid if |A| = 1 or |A| = 2. For
|A| > 2, in contrast, we are not sure that (19) is valid (Schulz (2021b), Theorems 2 and 3);
there might be no feasible solution for (2), (4), and (18)).

The right side of (19) has in comparison to the left side the advantage that the share of
item i in the objective value, i.e.

∑
a∈A

∑
k∈K baki ckav

a
i , is independent of the assignment of

all other items. The idea of this paper is to replace baki by a variable, i.e. make the assignment
of items to blocks to an endogenous decision. By this, we overcome the drawback that we
do not know whether there is a solution fulfilling (19) if |A| > 2.

So, we replace baki (in combination with xig) by a new variable yakig which is 1 if item
i is assigned to group g and according to attribute a to block k and 0 else. This makes
the assignment of items to blocks to an endogenous decision, which is only allowed if the
assignment is feasible regarding to (2) and (4). This does not only ensure feasibility, the
resulting model formulation is, moreover, equivalent to the standard MDGP formulation
((1)–(4); compare Theorem 1).
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The new model formulation is

max
∑

a∈A

∑

i∈I

∑

g∈G

∑

k∈K
ckav

a
i y

a
kig (24)

with the constraints

(2), (4)
∑

i∈I
yakig = 1 ∀a ∈ A, g ∈ G, k ∈ K (25)

∑

k∈K
yakig = xig ∀a ∈ A, i ∈ I , g ∈ G (26)

0 ≤ yakig ∀a ∈ A, i ∈ I , g ∈ G, k ∈ K (27)

Objective function (24) adds up the shares of all items for all attributes. Although the items
are evaluated independently from each other (no dai j values), they are only at the first glance
independent because the assignment of items to blocks depends on the other items assigned
to the same group. Constraints (25) ensure that each group and each block gets for each
attribute exactly one item assigned according to which the share in the objective value is
determined. Moreover, each item is assigned to exactly one block for each attribute (Con-
straints (26)). Therefore, |K | = |I |/|G| items are assigned to each group. Constraints (26)
set in combination with Constraints (27) also the range of the yakig variables. Their value can
be between zero and one if item i is assigned to group g. Otherwise they must be zero. The
proof of Theorem 1 shows that there is an optimal solution in which all y variables are zero
or one.

Theorem 1 proves that the model formulation (2), (4), and (24)–(27) is equivalent to the
standard MDGP formulation with attribute values (1)–(4).

Theorem 1 Let |K | = |I |/|G|. Then, the model formulation (2), (4), and (24)–(27) is equiv-
alent to the formulation (1)–(4) in the sense that both model formulations lead to the same
objective value for any feasible assignment of the xig variables.

Proof Let any feasible solution of (1)–(4) be given. Due to (3) exactly |K | = |I |/|G| items
are assigned to each group. In the following, we decompose the instance into one instance
per combination of attributes and groups, i.e. given a ∈ A and g ∈ G. This reduced instance
consists of all items assigned to the fixed group g, i.e. the items with xig = 1 in the solution
of (1)–(4). Since we consider only a single attribute, we know from Schulz (2021b) that (19)
holds with baki according to Assumption 1. Set yakig = baki with the fixed a ∈ A and g ∈ G.
Then, (19) implies

∑

i∈I

∑

j∈I :i< j

dai j xigx jg =
∑

k∈K

∑

i∈I
ckav

a
i y

a
kig.

As baki is binary, 0 ≤ yakig for all i ∈ I with xig = 1 and k ∈ K (compare (27)). Since
the number of blocks equals the number of items in our reduced instance, exactly one item
is assigned to each block. Thus,

∑
i∈I :xig=1 y

a
kig = 1 for all k ∈ K (compare (25)) and∑

k∈K yakig = xig = 1 for all i ∈ I with xig = 1 holds (compare (26)).
We can repeat the procedure for every pair (a, g) with a ∈ A and g ∈ G. Together,

∑

a∈A

∑

g∈G

∑

i∈I

∑

j∈I :i< j

dai j xigx jg =
∑

a∈A

∑

i∈I

∑

g∈G

∑

k∈K
ckav

a
i y

a
kig,
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Table 1 Attribute values for the
example i av1i av2i av3i

1 1 1 0.01

2 1 0 0

3 0 1 0

4 0 0 0.01

and (25), (26), and (27) are fulfilled. Moreover, (25) leads to
∑

k∈K

∑

i∈I
yakig = |K |

(26)�⇒
∑

i∈I
xig = |K | = |I |/|G|,

as |K | = |I |/|G|, for all g ∈ G in every feasible solution of (2), (4), and (24)–(27). Thus,
every assignment of xig variables which is feasible for (2), (4), and (24)–(27) is also feasible
for (1)–(4). Together the theorem follows. �	

The idea of the proof is that it is still optimal to assign the items assigned to a group
in decreasing order of their attribute values to the blocks (compare (23) and the following
explanations). This means that, given fixed xig variables, (1)–(4) and (2), (4), and (24)–(27)
are solved optimally if we assign for each attribute and each group g the items assigned to
that group, i.e. with xig = 1, in decreasing order of their attribute values to the blocks (set
yakig accordingly). If (2), (4), and (18) has a feasible solution, yakig = baki · xig holds in an
optimal solution for all i ∈ I , a ∈ A, k ∈ K , and g ∈ G (baki according to Assumption 1). If
not, a pair of items i and j with baki = bak j = 1 for an a ∈ A and a k ∈ K exists which are
assigned to the same group (xig = x jg = 1 for a g ∈ G). Thus, (18) is not fulfilled for all
a ∈ A, g ∈ G, and k ∈ K . In other words, our model (2), (4), and (24)–(27) decides in the
assignment of the y variables which block constraints (18) should be violated, if necessary,
such that (1) is maximized. Thereby, we avoid the drawback of the block constraints that
there might be no feasible solution but still benefit from the formulation on the right side of
(19).

Let us consider an example. Let |A| = 3, |I | = 4, and |G| = 2. Let the attribute values
be like in Table 1. If we assign the items according to Assumption 1 to blocks, items 1
and 2 are assigned to the first block according to the first attribute, i.e. b111 = b112 = 1 and
b123 = b124 = 1. For the second attribute we get b211 = b213 = 1 and b222 = b224 = 1. For the
third attribute items 1 and 4 are in the first block, i.e. b311 = b314 = 1 and b322 = b323 = 1. This
means that item 1 is for the first attribute with item 2 in one block, for the second attribute
with item 3 and for the third attribute with item 4. Thus, there is no feasible solution fulfilling
(2), (4), and (18).

There are three possibilities to assign four items to two groups with two items each. They
are

x11 = x21 = 1 : |1 − 1| + |1 − 0| + |0.01 − 0| = 1.01

x32 = x42 = 1 : |0 − 0| + |1 − 0| + |0 − 0.01| = 1.01,

x11 = x31 = 1 : |1 − 0| + |1 − 1| + |0.01 − 0| = 1.01

x22 = x42 = 1 : |1 − 0| + |0 − 0| + |0 − 0.01| = 1.01,
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and

x11 = x41 = 1 : |1 − 0| + |1 − 0| + |0.01 − 0.01| = 2

x22 = x32 = 1 : |1 − 0| + |0 − 1| + |0 − 0| = 2, (28)

where the right side equals the sum of pairwise differences over all attributes of the two
items assigned to the group (

∑3
a=1

∑4
i=1

∑
j : j>i d

a
i j xigxig). Hence, the third solution has

the largest objective value such that the model sets x11 = x41 = x22 = x32 = 1 (beside
symmetry) which fulfills (2) and (4).

As we assign two items to each group, c1 = 1 and c2 = −1 (compare (20) and (21)).
Thus, (24) is maximized if we set yakig variables such that the item with the larger attribute
value of the group is in block one and the item with the smaller attribute value of the group
is in block two. Hence, the model sets y1111 = y2111 = y3111 = y1122 = y2222 = y3122 = y1232 =
y2132 = y3232 = y1241 = y2241 = y3241 = 1 and all remaining yakig variables to zero. Then,
(25)–(27) are fulfilled and (24) equals

c1 · (av11 + av12 + av21 + av23 + av31 + av32)

+ c2 · (av13 + av14 + av22 + av24 + av33 + av34)

= 1 · (1 + 1 + 1 + 1 + 0.01 + 0) − 1 · (0 + 0 + 0 + 0 + 0 + 0.01)

= 4.01 − 0.01 = 4,

which equals the sum in (28). If we compare baki and yakig , y
a
kig 
= baki · xig for items 2 and

4 and attribute 3. While item 4 is assigned to block 1 according to Assumption 1, the model
assigns item 2 to block 1 (can also be item 3). Thus, the model selects the block constraints
(18) which should be violated if necessary (here both block constraints of attribute 3).

4.2 Varying group sizes

We adapt the approach of the previous subsection in this subsection to investigate the relax-
ation of (3) to (5) and obtain our reformulation of (1)–(2) and (4)–(5).

We replace ck and c̄k in the following by ckk̄ and c̄kk̄ , respectively, because individual
groups may contain a different number of items. This means that c̄kk̄ = c̄k for |K | = k̄ in
(21) and (22), respectively, and all k ∈ K . Correspondingly, ckk̄ = ck for |K | = k̄ in (20)
and all k ∈ K . Note that k̄ ≤ maxg ug .

Moreover, we introduce the binary variablewgk̄ which is one if group g has k̄ blocks, i.e. g

has k̄ assigned items. Variable yakig is replaced by variable ȳ
a
kigk̄

which is defined continuously

between zero and one but is one if item i is assigned to block k in group g and group g has
k̄ assigned items. Both variables, w and ȳ, are for all g ∈ G only defined for lg ≤ k̄ ≤ ug .
Moreover, we fix ȳa

kigk̄
= 0 for k > k̄.

By this, we get the following model formulation:

max
∑

a∈A

∑

i∈I

∑

g∈G

∑

lg≤k̄≤ug

k̄∑

k=1

ckk̄av
a
i ȳ

a
kigk̄

(29)
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(2), (4)
∑

i∈I

∑

lg≤k̄≤ug

ȳa
kigk̄

≤ 1 ∀a ∈ A, g ∈ G, k ∈ K : k ≤ ug (30)

∑

lg≤k̄≤ug

∑

k∈K :k≤k̄

ȳa
kigk̄

= xig ∀a ∈ A, i ∈ I , g ∈ G (31)

0 ≤ ya
kigk̄

≤ wgk̄ ∀a ∈ A, i ∈ I , g ∈ G,

k̄ ∈ {lg, ..., ug}, k ∈ K : k ≤ k̄ (32)
∑

lg≤k̄≤ug

k̄ · wgk̄ =
∑

i∈I
xig ∀g ∈ G (33)

∑

lg≤k̄≤ug

wgk̄ = 1 ∀g ∈ G (34)

wgk̄ ∈ {0, 1} ∀g ∈ G, lg ≤ k̄ ≤ ug (35)

The model sets xig variables to assign items to groups. Thereby, it ensures that at least lg and
at most ug items are assigned to group g ∈ G (33). Because of (33)–(35), wgk̄ indicates the

number of items in group g. Given wgk̄ , (32) fixes ȳ
a
kigk̄

for all but one k̄ (dependent on g)

to zero. So,
∑

lg≤k̄≤ug (·) includes only one non-zero addend in (29)–(31) such that they set
ȳa
kigk̄

in line with (24)–(26) and the argumentation in the proof of Theorem 1.—Note that we

fix ȳa
kigk̄

= 0 for k > k̄. Thus, (30) is an equality for k ≤ k̄ and the left side of (30) is zero for

k > k̄.—Hence, the largest attribute values within each group are multiplied with the largest
ckk̄ values in (29). By this, we are able to prove the following theorem which is an analogon
to Theorem 1.

Theorem 2 The model formulation (2), (4), and (29)–(35) is equivalent to the formulation
(1)–(2) and (4)–(5) in the sense that both model formulations lead to the same objective value
for any feasible assignment of the xig variables.

Proof Let any feasible solution of (1)–(2) and (4)–(5) be given. In the following, we decom-
pose the instance into one instance per combination of attributes and groups, i.e. given a ∈ A
and g ∈ G. This reduced instance consists of all items assigned to the fixed group g, i.e. the
items with xig = 1 in the solution of (1)–(2) and (4)–(5). Since xig variables are fixed, we
can set wgk̄ = 1 for k̄ = ∑

i∈I xig and zero for all other k̄s. Thus, (33)–(35) are fulfilled.

Furthermore, (32) fixes ya
kigk̄

to zero for all but one k̄ and all a ∈ A, i ∈ I , g ∈ G, and

k ∈ K . Thus, k̄ is fixed in (29)–(31). Given the fixed k̄, it follows by the same argumentation
as in the proof of Theorem 1 that both model formulations, (1)–(2) and (4)–(5) as well as (2),
(4), and (29)–(35), have the same objective value for the given solution.

It remains to show that each feasible solution of (2), (4), and (29)–(35) is also feasible
for (1)–(2) and (4)–(5). As wgk̄ is binary (35), wgk̄ = 1 for exactly one lg ≤ k̄ ≤ ug for all
g ∈ G due to (34). By this, (33) implies that lg ≤ ∑

i∈I xig ≤ ug for all g ∈ G. Thus, (5)
is fulfilled. Since (2) and (4) are part of both model formulations, a feasible solution of (2),
(4), and (29)–(35) is also feasible for (1)–(2) and (4)–(5). �	

Themodel formulation (2), (4), and (29)–(35) is clearly a generalization of the setting with
equal-sized groups ((2), (4), and (24)–(27)).However,we need a further set of binary variables
wgk̄ for the number of items within each group. Thus, there is a further generalization of
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(2), (4), and (24)–(27) but a special case of (2), (4), and (29)–(35) where we do not need
wgk̄ variables. If we set lg = ng = ug , i.e. fix the number of items assigned to each group
(not necessarily with ng = ng′ for all g, g′ ∈ G),

∑
lg≤k̄≤ug (·) contains only one addend

such that wg,ng = 1 due to (34). So wgk̄ is already determined such that the model can be

reformulated to omit wgk̄ variables. Together with wgk̄ , k̄ is known for each g. Thus, k̄ can
be omitted in the definition of ya

kigk̄
(compare (32)).

5 Computational study

This section describes our computational study which is divied into two parts. In the first
part, we consider equal-sized groups and compare the model formulations (1)–(4), called
standard, (12)–(17), called Papenberg and Klau, and (2), (4), and (24)–(27), called blocks.
In the second part, we consider the case with varying group sizes and the most general
formulations of standard ((1)–(2) and (4)–(5)) and blocks ((2), (4), and (29)–(35)). The
models were implemented inGAMS (version 32.0) and solved byCPLEX (version 12.10).
The standard model was implemented in the linearized version, i.e. we used the formulations
(2)–(4) and (6)–(10) and (2) and (4)–(10), respectively. The symmetry breaking constraints
(11) were added to the standard model as well as to the blocks model when equal-sized
groups are considered. The computational study was executed on a single AMD EPYC 7302
core with 2.99GHz. Section 5.1 describes the composition, Sect. 5.2 the results for the case
with equal-sized groups, and Sect. 5.3 the results for the case with varying group sizes.

5.1 Composition

We tested the models with instances with 10, 20, 30, 40, 50, 60, 70, and 80 items. All of
them were distributed into 2 and 5 groups. Starting with 20 items they were also distributed
in 10 groups. 60, 70, and 80 items were further distributed into 15 groups and 80 items
into 20 groups. For the case with equal-sized groups we used only those settings where the
number of items divided by the number of groups is integer. All settings were tested in 30
runs each for 3, 5, and 10 attributes. Attribute values were determined according to a [0,1]
uniform distribution. Considering [0,1] values is no restriction, as we are only interested
in their absolute differences and each other interval can be normalized to [0,1] without
changing the relation of two attribute values. Before we determined the range for the group
sizes (lg and ug) for the second part of the computational study, we distributed the items
randomly to the groups according to the following procedure to ensure that there is a feasible
assignment: First, we draw |G| − 1 uniform integers between 1 and |I | − |G|. They were
sorted in increasing order and we computed the differences between 0 and the first, the first
and the second, and so on and added 1 to all of them. Moreover, we computed the difference
between the sum of them and |I |. Thereby, we ensured that each difference is positive. In
total, this leads to |G| numbers which sum up to |I |. Finally, we set n1 equal to the first
of them, n2 equal to the second, and so on. Afterwards, we determined lg and ug . We set
lg = max(1, ng − U {

0, �ng · 0.05}) and ug = ng + U {
0, �ng · 0.05}, i.e. the group size

interval is determined uniformly and bounded by about 10% around ng . We interrupted the
search after 30 minutes (1800 seconds) if no solution was proved to be optimal like it was
done by Gallego et al. (2013).
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5.2 Results (equal-sized groups)

Tables 2–4 present the results with equal-sized groups split according to the number of
attributes. The tables are structured as follows: The first two columns indicate the parameter
setting. The next six columns show the results for the blocksmodel (average objective value,
average computation time in seconds, average gap in percent, average objective value of the
relaxed model, number of feasible solutions found, and number of optimal solutions found).
The next six columns present the same classifications numbers for the standard model, the
last six for the model byPapenberg and Klau. Note that average objective values contain only
instanceswhere the correspondingmodel found a feasible solution.Average gaps contain only
instances where the corresponding model found a feasible but no proven optimal solution.

Table 2 presents the results for three attributes. The model formulations blocks and stan-
dard found for all instances a feasible solution. The formulation by Papenberg and Klau
found also for all settings beside the one with 70 items and 5 groups a feasible solution.
However, for the setting with 70 items and 5 groups no feasible solution was found. Having a
closer look on the problem setting, finding a feasible solution is easy because any assignment
with exactly |I |/|G| items in each group is feasible. The reason why we have not found a
feasible solution for the model formulation by Papenberg and Klau seems to be that CPLEX
used the whole 1800s in the root node such that no solution was detected (also for five and
ten attributes).

blocks terminated for almost all instances up to 60 items with a proven optimal solution
within 1800s and terminated also for larger instances often with a proven optimal solution
before the time limit was reached. The two other formulations, however, found only optimal
solutions for small instance sizes up to 20 (standard) and 30 items (Papenberg and Klau),
respectively. Both models reached comparable results regarding the number of optimally
solved instances.

Considering the solution gap for the instances for which we found feasible solutions
but could not prove optimality, the model formulation by Papenberg and Klau clearly out-
performed the standard formulation. For the blocks model the gap was almost zero for all
instances which could not be solved to proven optimality. The required computation times
confirm the results for the three model formulations.

In total, we can conclude that the blocks model leads for instances with three attributes to
the best results in comparison with the standard model and the formulation by Papenberg
and Klau. If we solve the blocks model but relax (4), i.e. with 0 ≤ xig ≤ 1 for all i ∈ I and
g ∈ G instead of (4), we find a reason for it. Column 6 shows the average objective values
for the relaxed model of blocks, column 12 the corresponding average objective values for
the standard model and column 18 for the formulation by Papenberg and Klau (relaxing
(17)). Relaxing blocks leads to substantially better upper bounds for the objective value than
relaxing standard. Relaxing the formulation by Papenberg and Klau leads to slightly worse
upper bounds than the blocks formulation. However, the difference between the average
optimal objective value and the average optimal objective value of the relaxed model is still
large. Thus, we can assume that we have to fix a large number of xig variables to zero or one
before we get tight upper bounds by relaxing the remaining binary constraints in a branch-
and-bound procedure. Thismay also explainwhy larger instances could not be solved reliably
to optimality.

Tables 3 and 4 show the results for five and ten attributes, respectively. For the standard
model the results are similar for all three numbers of attributes. The performance of the
blocks model decreases. The larger the number of attributes is the lower is the number of
solutions where we proved optimality within 1800s. However, the gap is still comparably
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small with under 5% on average. In contrast, the formulation by Papenberg and Klau leads
to better results regarding the number of proven optimal solutions found and the gap the
larger the number of attributes is. Interestingly, the model by Papenberg and Klau requires
less computation time if the number of attributes increases. For both of the other models
computation times increase if the number of attributes increases. Because of this the model
byPapenberg andKlau is faster than blocks for some settings with up to 30 items—especially
if the number of attributes increases.

5.3 Results (varying group sizes)

Tables 5–7 present the results regarding the setting with varying group sizes. Analogous to
Sect. 5.2 the tables are split according to the number of attributes. The tables are structured
as in Sect. 5.2. As the formulation by Papenberg and Klau works only for equal-sized groups,
we consider only the blocks and the standard formulation in this subsection.

Table 5 presents the results for three attributes. Both model formulations found for almost
all instances a feasible solution but the blocks model found clearly more proven optimal
solutions. For up to 50 items even all instances could be solved to optimality while standard
could only solve instances with two groups or 10 items to optimality. This results also in
smaller computation times for the blocks model in comparison with the standard model.
Moreover, the blocks formulation reached small gaps after 1800s for up to 70 items and gaps
up to 8.1% on average for instances with up to 80 items.

Table 6 examines the performance of the models for five attributes. For five attributes
blocks still managed to find feasible solutions for almost all instances but had trouble in
proving optimality for larger numbers of groups (at least 5) in combination with larger
numbers of items (at least 40). From 60 items on the model further struggled with instances
with two groups. Nevertheless, there is again a transition where the model found less optimal
solutions but reached small gaps (40 or 50 items and 5 or 10 groups, and 60, 70 or 80 items
and 2 or 5 groups).

The trend confirms for ten attributes (Table 7). Although blocks still found in at least 75%
of the instances a feasible solution in each setting (23 out of 30 for 80 items and 2 groups), it
found only for small instances up to 20 items always a proven optimal solution. Accordingly,
the gaps increased for larger instances. However, there is again a transition where the model
did not manage to find proven optimal solutions for all instances but reached small gaps
(25 items and 10 groups, 30 or 40 items and 5 groups, and 50 items and 2 groups). The
development of the solution quality for standard is similar as in the setting with equal-sized
groups although the model is able to prove some solutions to be optimal for larger instances
with two groups. A reason could be that lg and ug and therefore the group size is determined
randomly such that some instances might be particularly easy to solve if one of the groups
has only a small number of items assigned while the other one has a large number of assigned
items. In comparison with the setting with equal-sized groups, the blocks model had more
difficulties with the setting with varying group sizes which results in less instances which
could be solved to proven optimality within 1800s and larger gaps for those which could not
be solved to proven optimality.
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6 Conclusion

We introduced a new mixed-integer programming formulation for the MDGP with attribute
values. As common applications like the assignment of students to groups (grades, gender,
international or not) or surgery scheduling (surgery duration) use attribute values, this is an
interesting special case of theMDGP.Nevertheless, using theManhattanmetric is a limitation
of our study. OurMIP clearly outperforms comparable approaches for instanceswith attribute
values. Moreover, it is able to solve instances of realistic size, for example in the assignment
of students to seminars—e.g. 40 students assigned to two seminar groups or 20 students
within a seminar assigned to working groups with two or four students each—in reasonable
time to (near) optimality.

As ourmodel formulation is able to solve larger instances to near optimality, themodel can
help to evaluate heuristic approaches for the general MDGP by testing them on the version
with attribute values even for a larger number of attributes.

This paper shows that it is worth to have a closer look on the data structure of the MDGP.
Thus, a direction for future research may also be to investigate how instances with binary
or integer attributes or other special data structures and their combinations over several
attributes, which occur in practical applications, can be tackled by made-to-measure solution
approaches.

Funding Open Access funding enabled and organized by Projekt DEAL. This research did not receive any
specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Availability of data andmaterial The test instances were generated by the author in GAMS.

Declaration

Conflicts of interest/Competing interests There are no interests to declare.

Code availability The GAMS implementation is saved on a server of the University of Hamburg.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References
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