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Abstract
Supply chain contracting is known to suffer from inefficiency in the presence of asymmetric
information. Full vertical integration would eliminate the informational inefficiency but can
be strategically undesirable. Yet today’s supply chain partnerships exhibit a certain degree of
partial vertical integration via equity ties between the firms. Such governance forms received
limited attention in supply chain research.Management literature suggests that partial vertical
integration may help the firms to ease contracting problems by aligning their incentives,
and thus improve the total surplus. We address this proposition by studying a model of a
partially integrated supply chain in which the buyer holds an equity stake in the supplier.
We adopt an operational perspective and investigate contracting between the firms within
the joint economic lot size framework. We demonstrate that in this classical setting, partial
integration can in fact be sufficient for eliminating informational inefficiency and achieving
coordination. However, contrary to what one may expect, a tighter integration may harm
supply chain performance and defeat coordination. We explain the underlying mechanism
and investigate it analytically and numerically. Our results characterize sensitivity of supply
chain performance to the degree of integration and stress the importance of the operational
planning perspective for strategic decision making.
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1 Introduction

Most supply chain coordinationmodels assume either independent firms engaging in a supply
chain relationship or a vertically integrated supply chain structure with a common ownership
(Cachon, 2003;Choi&Cheng, 2011).Nonetheless, today’s economyprovides a large number
of examples where firms are neither fully integrated nor entirely independent, being, to
a certain degree, integrated partially—by owning equity in one another (Fee et al., 2006;
Hunold & Stahl, 2016), cross-shareholding, or having joint ownership of another firm. The
prominent examples are the Japanese keiretsu (Lincoln et al., 1992; Ahmadjian & Lincoln,
2001), international joint ventures (Desai et al., 2004), or, more generally, business groups
and alliances (Granovetter, 1995; Gulati & Singh, 1998).

Such hybrid forms of governance in the supplier–buyer relationships emerge for a variety
of reasons. Globalization of production and trade and competition on the global scale are
often cited as themajor driving forces behind partnerships with shared ownership (Al-Saadon
&Das, 1996; Buckley &Ghauri, 2004; Lee, 2004). Firms entering local markets may, in fact,
be restricted by the regulation in choosing the size of the foreign ownership; however, even
in the absence of such legal requirements, they may still prefer a partial equity stake as entry
mode—e.g., for the purpose of retaining control over intangible assets (Gulati & Singh, 1998;
Nakamura, 2005), monitoring and access to information (Mjoen&Tallman, 1997; Nakamura
& Xie, 1998), overcoming institutional complications (Gatignon & Anderson, 1988; Yamin
& Golesorkhi, 2010; Bowe et al., 2014), or retaining flexibility in continuing or leaving
the business (Powell, 1990; Buckley & Ghauri, 2004). It happens, therefore, that firms are
negotiating and contracting ”with companies that they partly own” (Powell, 1990; Fee et al.,
2006; Krishnaswami et al., 2013; Sasaki et al., 2010).

While partial vertical integration has been extensively studied in the economics literature
(see Sect. 2), it received limited attention in supply-chain research. The recent work by Li
et al. (2020b) and Chen et al. (2017) are notable exceptions. In these studies, the authors
investigated the impact of partial integration on supply-chain coordination and competition
while assuming complete information. They have shown that partial integration benefits
supply chains and represents an equilibrium outcome under certain conditions. Our work
extends this line of research by studying a setting with asymmetric information, which takes
into account the uncertainty pertinent to supply-chain contracting. It iswell known that private
information, while being ”a key feature of real supply chain relationships” (Liu & Cetinkaya,
2009), makes contracting between the parties problematic and can lead to inefficiency and
coordination failure (Cachon, 2003). At the same time, extant literature suggests that partial
integration may help the partners to ease contracting problems by aligning their incentives,
and so improve the total surplus (Pisano, 1989; Gulati, 1995; Allen & Phillips, 2000; Fee
et al., 2006). The purpose of this paper is to investigate this proposition in a supply chain
study setting. To this end, we adopt the joint economic lot size framework as a conventional
tool for studying supply chain coordination (Corbett & de Groote, 2000; Voigt & Inderfurth,
2011; Zissis et al., 2015; Kerkkamp et al., 2018; Sucky, 2006; Pishchulov & Richter, 2016).

In an earlier pilot study, Pishchulov et al. (2016) have demonstrated that dependence
between the level of partial integration and supply-chain performance may be counterintu-
itive. Specifically, partial integration can indeed remove informational inefficiency and enable
coordination, yet a tighter integrationmay defeat it. However, Pishchulov et al. (2016) did not
provide further insights into the drivers and properties of this dependence. This study closes
this gap, first, by explaining the mechanism giving rise to such a counterintuitive dependence
between the level of integration and supply-chain performance. Second,we obtain conditions,
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under which (i) supply-chain performance consistently improveswith the level of integration,
and (ii) supply-chain coordination, once achieved, persists with tighter integration. Third, our
analysis establishes favourable properties of partial integration. Specifically, we show that a
minor variation in the level of integration is likely to yield a substantial performance improve-
ment in the absence of coordination, but it would not significantly detract from performance
in the presence of coordination. Overall, the present work stresses the importance of taking
operational-level planning into account when making strategic business decisions, and offers
an analytical framework to this end.

The rest of the paper is organized as follows. Section 2 reviews the related literature.
Section 3 presents the analytical model of coordination under partial vertical integration.
Section 4 provides illustrative examples of dependence between the level of integration
and supply-chain performance. Section 5 offers interpretation of that dependence. It further
obtains conditions for achieving supply-chain coordination and its persistence with tighter
integration. Section 6 establishes favourable properties of partial vertical integration via
sensitivity analysis. Section 7 wraps up with a discussion and an outlook for future research.

2 Literature review

To date, partial vertical integration has been subject of substantial formal analysis in the
economics literature and, to a smaller extent, in the supply chain literature.

Regarding the economics research, we divide the literature into cooperative and non-
cooperative settings. Much of the work on non-cooperative settings has analyzed partial
vertical integration as partial mergers without control rights. Flath (1989) studied a vertical
channel with two tiers and Cournot competition between multiple identical firms in each
tier. His analysis demonstrates that shareholdings by the suppliers in the buyers reduce the
consumer price, while shareholdings in the opposite direction would countervail this effect.
Greenlee and Raskovich (2006) considered a Cournot setting with a single supplier and
multiple buyers, who can acquire non-controlling partial ownership in the supplier. Their
results show that the consumer surplus does not depend on ownership, whereas the total
surplus does. However, in the Bertrand setting with differentiated substitute products, the
consumer surplus depends on the ownership structure. Hunold and Stahl (2016) found that
when competition is sufficiently intense, the downstream buyers opt for non-controlling
partial ownership in the most efficient supplier, which increases the consumer prices. Reiffen
(1998) and Gilo and Spiegel (2011) discussed the effect of partial vertical integration on the
economic mechanisms of foreclosure and analysed examples from industry practice.

Research on cooperative settings has a particular focus on incomplete contracting. Riordan
(1991) studied a principal–agent setting in which a downstream firm (the principal) can
ex ante acquire non-controlling partial ownership in an upstream supplier (the agent). His
analysis reveals that partial integration effectively leads the principal to cost sharing with the
agent and, therefore, reduces the principal’s incentive to exercise his monopsony power, thus
increasing the agent’s incentive to expend an effort. On the other hand, with more integration,
the agent’s incentive is diminishing as she receives a smaller share of the residual profit
while still bearing the full costs of the unobservable effort. The interplay of these two effects
ultimately determines an optimal degree of vertical integration. In the model by Aghion
and Tirole (1994), an upstream R&D firm is to deliver an innovation whose value for the
downstream buyer is non-contractible. Their analysis determines the optimal allocation of
property rights on the innovation and shows that the buyer’s upstream ownership does not
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help to mitigate the effort and allocation inefficiencies. Dasgupta and Tao (2000) showed,
however, that, in the presence of other potential downstream buyers, equity stake in the
upstream partner does matter, as it decreases the attractiveness of the outside option to
her and increases the likelihood of her relationship-specific investment. The analysis by
Harbaugh (2001) further demonstrated that with ex post bargaining, a partial equity stake
can be effective at overcoming the classical holdup problem. Van den Steen (2002) extended
these insights to bilateral dependency, cross-shareholding and vertical joint ventures. Güth
et al. (2007) studied a bilateral trade with one-sided asymmetric information and showed
that non-controlling cross-shareholding with minority stakes allows the parties to achieve
the first-best solution despite information asymmetry, whereas one-sided shareholding may
not allow that.

In the supply chain literature, Chen et al. (2017) have been the first to study partial
integration via cross-shareholding in a non-cooperative newsvendor setting with Stackelberg
power structure. They found that supply-chain performance does not depend on the equity
share held by the follower in the leader, while it improves with an equity share held in the
opposite direction. Li et al. (2020b) have recently studied a settingwith two competing supply
chains that sell substitutable products. They found that partial vertical integration represents
an equilibrium outcome as long as the degree of product substitutability is below a threshold.
Nevertheless, Chen et al. (2017) and Li et al. (2020b) assume symmetric information, while
pointing to information asymmetry as a further research direction—which we aim to address
in this study.

It is known that asymmetric information can potentially worsen supply-chain perfor-
mance, squeezing the pie that the parties share. A large body of supply-chain research studied
coordination under asymmetric information in a variety of different settings, e.g. with the
supplier being privately informed of capacity cost (Bolandifar et al., 2018), manufacturing
cost (Cachon & Zhang, 2006; Liu & Cetinkaya, 2009; Çakanyıldırım et al., 2012; Shao et al.,
2020; Davis & Hyndman, 2021), cost and quality (Chen & Hu, 2015), and supply reliability
(Yang et al., 2009; Li et al., 2020a); or the buyer being privately informed of holding cost
(Corbett & de Groote, 2000; Voigt & Inderfurth, 2011; Zissis et al., 2015; Kerkkamp et al.,
2018), ordering and holding costs (Sucky, 2006; Pishchulov&Richter, 2016), manufacturing
cost (Ha, 2001; Liu & Cetinkaya, 2009), demand (Burnetas et al., 2007), or shortage cost and
service level (Lutze &Özer, 2008). Notably, study settings in Zissis et al. (2020) and Schoen-
meyr and Graves (2021) involve bilateral information asymmetry between a supplier and a
buyer. Recent reviews (Shen et al., 2019; Vosooghidizaji et al., 2020) offer a taxonomy of
this body of work based on the underlying supply-chain structure, nature of demand, contract
type and other features. However, this literature does not consider the possibility of partial
vertical integration via equity participation. Our work differs in this regard.We study a setting
involving both, information asymmetry and partial vertical integration. The latter potentially
allows supply-chain partners to better align their interests by increasing the size of the pie
they share. In contrast to Chen et al. (2017), we find that equity holding by the less powerful
party (the buyer) in the more powerful party (the supplier) can help to improve supply-chain
performance and achieve coordination. Furthermore, we find that supply-chain performance
in our setting can deteriorate with tighter integration—due to changing incentives of the
privately informed party.

For the purposes of this analysis,we employ the conventional joint economic lot sizemodel
under asymmetric information following related work (Corbett & de Groote, 2000; Sucky,
2006; Voigt & Inderfurth, 2011; Zissis et al., 2015; Pishchulov & Richter, 2016; Pishchulov
et al., 2016; Kerkkamp et al., 2018; Zissis et al., 2020), as it allows us to study the problem on
hand using a simple yet meaningful model of supply-chain coordination (Kohli & Park, 1989;

123



Annals of Operations Research (2023) 329:1315–1356 1319

Reyniers, 2001; Pibernik et al., 2011) and allows for closed-form solutions, which facilitates
the subsequent analysis. To this end, we shall use the framework of Pishchulov et al. (2016)
which extends the conventional model to the case of partial vertical integration. We adopt the
operational planning perspective for two reasons. First, it is known that supply chains require
coordination at the operational level (Banerjee, 1986; Sucky, 2006; Kerkkamp et al., 2018).
Second, the analysis by Reyniers (2001) demonstrates that disregarding the operational-level
aspects, such as lot-sizing and inventory-related costs, when making a strategic decision
about vertical integration in a supply chain, may lead to outcomes not predicted by classical
economics models. In this way, the operational setting can support strategic decision making.

3 Themodel

3.1 Basic assumptions and notation

Consider a supply chain consisting of a single supplier (she) and a single buyer (he), as
depicted in Fig. 1 (in the following, we explain the notation used in the figure). The supplier
and the buyer are labelled with literals P and A for principal and agent, respectively. The
buyer serves a deterministic constant demand for a particular product and satisfies the demand
from stock. Since the demand is deterministic, stock shortages are not permitted, which is
a standard assumption in the literature (Banerjee, 1986; Corbett & de Groote, 2000; Sucky,
2006; Kerkkamp et al., 2018). The buyer replenishes his stock by re-ordering the product
from the supplier. The supplier follows the lot-for-lot policy: upon receiving the buyer’s
order, she sets up a production batch, manufactures the order, and ships it to the buyer. The
lot-for-lot policy is commonly assumed in the literature (Corbett & de Groote, 2000; Sucky,
2006; Voigt & Inderfurth, 2011; Zissis et al., 2015; Kerkkamp et al., 2018), and we maintain
this assumption too. Note that while manufacturing, the supplier accumulates the finished
product until the order is completed and shipped, which leads to stock holding at the supplier
side. Figure 2 illustrates evolution of the inventory levels at both firms. Note also that the
buyer has to place the order ahead of the lead time, which is assumed constant. Problem data
is comprised at the supplier side of:

p production rate, in units per time unit,
R fixed setup cost per production batch,

hP unit inventory holding cost per time unit.

At the buyer side, the problem data is comprised of

d deterministic constant demand for the product, in units per time unit (d < p),

which is known and verifiable to the supplier, and inventory-related cost parameters whose
values represent the buyer’s private information and are not known to the supplier with
certainty.We assume a discrete set of possible values for these parameters, as this assumption
is realistic in practical applications (Zissis et al., 2020). Specifically, we assume that there
are two possible cost structures that the buyer can possess, each respectively comprising the
following two parameters (Sucky, 2006):

Bi fixed ordering cost assumed for the buyer’s cost structure no. i ,
hA,i unit holding cost per time unit assumed for his cost structure no. i (i = 1, 2).

For brevity, we shall refer to the buyerwith cost structure no. i as buyer type i (Harsanyi, 1967;
Myerson, 1979; Burnetas et al., 2007; Kerkkamp et al., 2018). We assume that the supplier
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Fig. 1 The single-supplier–single-buyer supply chain under consideration (Pishchulov & Richter, 2016;
Pishchulov et al., 2016). Note see Table 1 for description of notation

Fig. 2 Evolution of the inventory level over time at the buyer (above) and the supplier (below) (Banerjee,
1986)

knows the probability distribution over the buyer types—e.g., as the relative frequency of
their occurrence in the entire population of buyers (Harsanyi, 1967; Myerson, 1979). This
probability distribution is represented by

ωi probability for the buyer to be of type i (ωi > 0, i = 1, 2, and ω1 + ω2 = 1).

We express the inventory-related costs of the supplier and the buyer per time unit as the
following functions of the order size x (Banerjee, 1986; Sucky, 2006), where the superscript
indicates the supply-chain member, and the subscript—the buyer type:

K P (x) = R · d
x

+ x

2
· d
p
hP , (1)

K A
i (x) = Bi · d

x
+ x

2
· hA,i (i = 1, 2). (2)

The above cost functions are known to be strictly convex and unimodal—provided that all
cost parameters are positive, which we assume to hold. Note that transportation time t3 in
Fig. 2 has been assumed negligibly small and excluded from consideration to simplify the
exposition. For tractability, and in line with the literature (Corbett & de Groote, 2000; Sucky,
2006; Zissis et al., 2015; Kerkkamp et al., 2018), we assume that (1) and (2) are the only
decision-relevant costs.
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3.2 Partial vertical integration

We shall address a setting in which the supplier and the buyer are partially integrated via a
direct equity stake. To examine how the supply-chain contracting becomes affected by this,
we shall assume that the buyer holds an ownership share in the supplier. The magnitude of
this share will be denoted by α, where 0 < α < 1. This entitles the buyer to appropriate
the fraction α of the supplier’s profit. Note that the extreme case of α = 0 corresponds to
the setting with fully independent firms (Sucky, 2006; Pishchulov & Richter, 2016), while
the extreme case of α = 1 represents a vertically integrated supply chain. As in most of the
literature reviewed in Sect. 2, we will focus our analysis on the pure financial interest of the
investing firm and exclude the control rights aspect from consideration. Thus, we assume
that the supplier acts in her own interest—which is the maximization of her own profit. To
proceed, we additionally introduce the following notation:

c supplier’s unit production cost,
v supplier’s wholesale price.

As the parties’ optimal lot sizes in (1) and (2) may differ, the supplier may find it beneficial
to offer a side payment y to the buyer for adopting a particular order size x . The supplier’s
net profit per time unit can accordingly be expressed as a function of the order size x and the
side payment y as follows:

N P (x, y) = (v − c)d − K P (x) − y. (3)

Note that such a contract between the parties translates into a unit price v− y/d charged to the
buyer, which gives him a discount off the regular price v (Banerjee, 1986). The total relevant
costs of the buyer are reduced by the side payment y and the fraction α of the supplier’s net
profit (3), and equal for the buyer type i to

K A
i (x) − y − αN P (x, y) = K A

i (x) + αK P (x) − (1 − α)y − α(v − c)d. (4)

Let

K α
i (x) := K A

i (x) + αK P (x) (5)

respectively represent the buyer’s own inventory-related costs plus those of the supplierwhich
become partially internalized by the buyer (as indicated by the superscript α). The order size
that minimizes (5) is

x∗
α,i =

√
2d · Bi + αR

hA,i + α · d
p hP

. (6)

Note that with α = 0, it represents the classical economic order quantity (EOQ) of the buyer
type i (Silver et al., 1998), and with α = 1, it represents the joint economic lot size (JELS)
of the supplier and that buyer type (Banerjee, 1986). In the latter case, we will denote the
order size x∗

α,i by

JELSi ≡ x∗
1,i (i = 1, 2). (7)

For α ∈ (0, 1), we will refer to x∗
α,i as the partially joint economic lot size (PJELS) because

in this case, the buyer holds a partial stake in the supplier. Since x∗
α,i minimizes the cost

expression in (5) and, ultimately, in (4), this order size will be preferred by the respective
buyer type i . On the other hand, the supplier’s preferred order size is the one that minimizes
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her cost function K P (x) defined in (1), being thus represented by her economic lot size
(ELS):

x∗
P =

√
2pR

hP
. (8)

We assume the supplier to have the initiative of offering contracts to the buyer, which is a
common assumption in the related literature (Corbett & de Groote, 2000; Sucky, 2006; Voigt
& Inderfurth, 2011; Zissis et al., 2015; Kerkkamp et al., 2018); we maintain this assumption
for allα ∈ [0, 1) in linewith the studies reviewed inSect. 2 (Dasgupta&Tao, 2000;Harbaugh,
2001;Van den Steen, 2002). Knowing the two possible buyer types i ∈ {1, 2}, the supplier can
anticipate the respective order sizes x∗

α,i . When an order size x∗
α,i for some i ∈ {1, 2} happens

to be unfavorable to her, she can offer the buyer a side payment for adopting a different
order size instead—preferably, the joint economic lot size x∗

1,i (Banerjee, 1986). Since there
are two possible buyer types, the supplier generally needs to prepare two such offers, each
tailored to the specific cost structure of the buyer and comprising the respective JELS and
the corresponding side payment. However, there is an opportunity for the buyer to pick an
offer intended for the cost structure other than his true one if it is beneficial for him to do so
(Sucky, 2006). This leads to opportunistic behavior of the buyer, raising the supplier’s costs
and negatively impacting her net profit. Thus, the supplier’s contracting problem represents
a principal–agent problem with adverse selection (Laffont & Martimort, 2002). Its solution
can accordingly be approached as follows.

In view of the uncertainty about the buyer’s cost structure, the supplier needs to design
the offers in a way that would maximize her expected net profit. According to the revelation
principle, this can be achieved by means of a truth-inducing direct revelation mechanism
(Myerson, 1979, 1982) that requests the buyer to reveal his type while ensuring that he does
so truthfully. Such a mechanism can be implemented by designing a menu of take-it-or-
leave-it offers:

(x1, y1) and (x2, y2),

each consisting of an order size xi and a side payment yi , such that the buyer type i would
prefer the i-th offer. This procedure is known as screening, which leads to self-selection by
the buyer (Kreps, 1990). By virtue of (3)–(6), the supplier solves the following non-linear
optimization problem:

min ω1 · (K P (x1) + y1) + ω2 · (K P (x2) + y2) (9)

s.t. K α
1 (x1) − (1 − α)y1 ≤ K α

1 (x∗
α,1) (10)

K α
2 (x2) − (1 − α)y2 ≤ K α

2 (x∗
α,2) (11)

K α
1 (x1) − (1 − α)y1 ≤ K α

1 (x2) − (1 − α)y2 (12)

K α
2 (x2) − (1 − α)y2 ≤ K α

2 (x1) − (1 − α)y1 (13)

where x1, x2, y1, y2 are decision variables and x1, x2 > 0 (note that y1, y2 ≥ 0 by virtue of
(10) and (11)). Objective (9) minimizes the supplier’s expected costs, which is equivalent to
maximizing her expected net profit as per (3).1 Constraints (10)–(11) represent the individual
rationality constraints. They require that accepting the respective offer does not increase the
buyer’s costs (5) beyond the level guaranteed by his optimal lot-sizing (6). These constraints

1 In shared ownership the supplier minimizes the fraction 1− α of her expected costs, which is equivalent to
(9) (Fiocco, 2016).
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hence ensure that the buyer of either type accepts the respective offer. Constraints (12)–(13)
represent the incentive-compatibility constraints, which require the offers to be designed in
a way that the buyer type 1 weakly prefers the 1st offer to the 2nd, and vice versa—which
ensures truthful revelation of the buyer type.We collate themodel notation in Table 1. Table 2
summarizes the model assumptions. To facilitate the model solution, we apply the following
transformation to problem (9)–(13):

zi := (1 − α) · yi (i = 1, 2), (14)

β := 1/(1 − α) (0 ≤ α < 1). (15)

Note that zi represents the effective side payment received by the buyer type i , due to the
buyer’s ownership share α in the supplier. By virtue of (14)–(15), we can rewrite problem
(9)–(13) as follows:

min ω1 · (K P (x1) + βz1) + ω2 · (K P (x2) + βz2) (16)

s.t. K α
1 (x1) − z1 ≤ K α

1 (x∗
α,1) (17)

K α
2 (x2) − z2 ≤ K α

2 (x∗
α,2) (18)

K α
1 (x1) − z1 ≤ K α

1 (x2) − z2 (19)

K α
2 (x2) − z2 ≤ K α

2 (x1) − z1 (20)

We solve problem (16)–(20) in closed form, which facilitates the analysis of optimal con-
tracting in dependence from the ownership share α. A closed-form solution to (16)–(20) is
derived using Karush–Kuhn–Tucker (KKT) conditions (Bazaraa et al., 2006, Chapter 4). The
solution approach consists of (i) determining all KKT solutions of problem (16)–(20), and
(ii) choosing from the KKT solutions one with the smallest objective value.

With regard to (i), we collate the results in Table 3 (detailed derivations are available
from the authors). Specifically, Table 3 comprises 15 candidate solutions, each representing
a menu of offers. The menus are divided into eight genericmenu types, each corresponding to
one possible combination of non-binding constraints in the problem (16)–(20) (Sucky, 2006;
Pishchulov et al., 2016). Menu types 1–3 each comprise a single menu, called menus 1–3.
Menu types 4, 5 and 7, 8 each comprise twomenus, to which we shall refer as 4a–b, 5a–b, 7a–
b and 8a–b, respectively. Menu type 6 comprises four menus, to which we shall refer as 6a–d.
Sub-indexing of menus of the types 4 to 6 with literals a, b, c, d follows the lexicographic
order of lot sizes xi1,2 in the respective menu type in Table 3 (i = 1, 2): e.g., in the menu 4a,
the order size x2 is set equal to x21 , while in the menu 4b, to x22 . Sub-indexing of menus of
types 7 and 8 follows the order of their appearance in Table 3 (Pishchulov & Richter, 2016).
If a candidate menu of offers satisfies the respective feasibility and necessary optimality
conditions (Table 3), it qualifies as a KKT solution. There may exist multiple KKT solutions,
hence in step (ii) we choose a KKT solution with the smallest objective value. Finally, by
substituting yi = βzi (i = 1, 2), we obtain a menu of offers that solves the original problem
(9)–(13). In the following, we shall elaborate properties of optimal solutions that will allow
us to simplify steps (i) and (ii). For ease of exposition, we postpone this analysis to Sect. 6.
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Table 1 Notation summary

Model data

α Buyer’s ownership share in the supplier

Bi Fixed ordering cost of the buyer with cost structure no. i (buyer type i)

c Supplier’s unit production cost

d Buyer’s demand for the product, in units per time unit

hA,i Unit holding cost per time unit of the buyer with cost structure no. i (buyer type i)

hP Supplier’s unit inventory holding cost per time unit

ωi Probability for the buyer to have cost structure {Bi , hA,i }

p Supplier’s production rate, in units per time unit (p > d)

R Supplier’s fixed setup cost per production lot

v Supplier’s wholesale price

Decision variables

x Order and production lot size

y Supplier’s side payment to the buyer

(xi , yi ) Supplier’s offer to the buyer type i

zi Supplier’s effective side payment to the buyer type i

Functions

K P (x) Supplier’s relevant costs

K A
i (x) Own relevant costs of the buyer type i

Kα
i (x) Effective (own and internalized) relevant costs of the buyer type i given ownership share α

Ki (x) Total relevant supply-chain costs when the buyer is of type i

K (x) Difference between the total relevant supply-chain costs given buyer types 1 and 2

K̃ (α) Difference between the effective relevant costs of buyer types 1 and 2 acting individually

N P (x, y) Supplier’s net profit

Order sizes and menus of offers

M ={1, 2, 3, 4a–b, 5a–b, 6a–d, 7a–b, 8a–b} — index set of candidate menus of offers

M∗ ={1, 2, 3, 4a–b, 5a–b, 7a, 8a} — index set of potentially optimal candidate menus of offers

M ={1, 2, 3, 7a, 8a}— index set ofmenus of offers that yield a constant supply-chain performance

M̃ ={4a–b, 5a–b} — index set of menus of offers that yield a variable supply-chain performance

νm (α) Candidate menu of offers with index m ∈ M given ownership share α

x∗
α,i Partially joint economic lot size given ownership share α and buyer type i (PJELSi )

x∗
0,i Economic order quantity of the buyer type i (EOQi )

x∗
1,i Joint economic lot size when the buyer is of type i (JELSi )

x∗
P Supplier’s economic lot size (ELS)

(x̂α,i , ŷα,i ) Offer for the buyer type i in the optimal menus of offers given ownership share α

Supply-chain performance

K ∗ Optimal (first-best) supply-chain performance

K̂ (α) Supply-chain performance resulting from optimal contracting given ownership share α

Aggregate and derived parameters

α̌, α̂ Potential local extrema of function K̃ (α)

α̃0 Extremum of K̃ (α) on the interval (α0, 1), if any
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Table 1 continued

β = 1/(1 − α)

B = B1 − B2

hA = hA,1 − hA,2

Hi = d
p hP + hA,i

HP = d
p hP

Si = R + Bi

Table 2 Summary of model assumptions

Assumption 1. The supply chain comprises a single supplier and a single buyer

Assumption 2. The buyer serves a deterministic constant demand for a single product

Assumption 3. Lot-for-lot policy: upon receiving the buyer’s order, the supplier manufactures the quantity
ordered and ships it to the buyer

Assumption 4. Stock shortages are not permitted

Assumption 5. The supplier’s cost structure comprises a fixed setup cost and a unit holding cost per time
unit

Assumption 6. The buyer’s cost structure comprises a fixed ordering cost and a unit holding cost per time
unit

Assumption 7. The buyer’s cost structure represents his private information and defines the buyer type

Assumption 8. There are two possible buyer types with a probability distribution over them that is known
to the supplier

Assumption 9. The supplier has the initiative of offering contracts to the buyer

Assumption 10. The buyer may own a partial equity stake in the supplier

Assumption 11. The parties are acting in their own interest and seek to maximise their own profit

4 Effects of partial vertical integration on supply-chain coordination
and performance

The optimal contracting solution presented in the previous section allows us to study the effect
that the degree of partial integration between the supplier and the buyer takes on the level
of coordination achieved in the supply chain. A supply chain is said to be coordinated if the
actions taken by its members in their own interest happen to be optimal for the supply chain
as a whole. If a particular form of the contract between supply-chain members is capable of
inducing such behavior—by providing proper incentives to each party—then such contract
form is said to coordinate the supply chain (Cachon, 2003).

Several studies have, however, demonstrated that coordinating contracts may lose their
coordinating capability in the presence of asymmetric information (see e.g. Cachon, 2003;
Corbett & de Groote, 2000; Corbett et al., 2004; Ha, 2001). This holds also true in our setting.
To see this, consider first the case of fully independent firms—by assuming α = 0. We know
from Sect. 3 that order size JELSi minimizes the supply-chain costs when the buyer is of
type i . Hence, the supply chain is coordinated if the order size adopted by the supply-chain
members happens to be JELSi , given that the buyer’s true cost structure is {Bi , hA,i }. In the
case of symmetric information—i.e., when the buyer’s true type ı̂ is known to both parties,
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they can contract on the order size and size payment (x, y) defined as

x = JELSı̂ and y = K A
ı̂ (x) − K A

ı̂ (x∗
0,ı̂ )

where x∗
0,ı̂ represents the buyer’s economic order quantity as per equation (6). This uniquely

determined contract minimizes the supplier’s costs without making the buyer worse off,
and, at the same time, it coordinates the supply chain by leading the parties to adopt the
respective joint economic lot size (Banerjee, 1986; Sucky, 2006). The situation is, however,
different in the presence of asymmetric information. The opportunity for the buyer to abuse his
private information leads the supplier to solving the contracting problem (9)–(13). Obviously,
the supply chain will become coordinated—regardless of the buyer’s true cost structure—
whenever the optimal solution is represented by amenu of offers with order sizes x1 = JELS1
and x2 = JELS2.We can infer from Table 3 that these are, in particular: (i) the menu of offers
of type 1 (menu 1), (ii) the first of the two menus of type 7 (menu 7a), and (iii) the first of the
two menus of type 8 (menu 8a). We elaborate in Propositions 1 and 2 below the conditions
under which these menus of offers represent an optimal solution to the supplier’s problem.
This can indeed be the case for certain problem instances (see Example 4 in Table 4 below).
In that event, the resulting supply-chain costs will, with certainty, be at their minimum due
to coordination. When, however, optimal contracting leads to a menu of offers other than 1,
7a, 8a, supply-chain coordination will not be achieved with some non-zero probability. The
loss of efficiency (in the expectation) occurs in such situations particularly due to the ability
of the buyer to extract information rent from his private information, which is in line with
the existing studies (Laffont & Martimort, 2002; Zissis et al., 2015; Kerkkamp et al., 2018).

A proposition made in the literature is that partial vertical integration via equity partici-
pation may facilitate contracting between supply-chain partners by aligning their incentives,
thus improving the total surplus (Pisano, 1989; Gulati, 1995; Allen & Phillips, 2000; Fee
et al., 2006). ’Common sense’ may suggest that the firms’ incentives become progressively
aligned with the increase of partial integration (manifested in parameter α), so that the total
surplus increases in α, approaching its maximum as α approaches unity. We below demon-
strate that this intuition does not, in general, hold true.Wefirst introduce additional definitions
and notation based on Pishchulov et al. (2016).

Given the constancy of demand d met by the supply chain under study, as well as the
constancy of unit costs and revenues assumed for our setting, a reduction of total supply-
chain costs represents accordingly an improvement of total surplus, which is thus maximized
when the supply chain becomes coordinated. Therefore, we will use the minimum total costs
of the vertically integrated supply chain as a benchmark for the performance of that supply
chain when it lacks full vertical integration and is controlled by the participating firms in a
decentralized fashion. We denote the total relevant supply-chain costs when the buyer is of
type i and x is the order size adopted by the parties by

Ki (x) = K P (x) + K A
i (x). (21)

From both the supplier’s and the supply-chain perspective, there is uncertainty about the
buyer’s true cost structure—embodied in probabilities ωi—which leads us to considering the
expected value of (21) as the performance indicator of the supply chain (see also Corbett
et al., 2004).Wewill be interested in the supply-chain performance under optimal contracting
as determined by an optimal solution of problem (9)–(13). Let such solution be represented,
for the given α, by the menu of offers

(x̂α,1, ŷα,1) and (x̂α,2, ŷα,2). (22)
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Table 4 Data for problem instances in Examples 1–7

No. Supplier Buyer (Cost structure no. 1) (Cost structure no. 2)

p R hP d B1 hA,1 ω1 B2 hA,2 ω2

1. 100,000 700 390 14,500 300 200 0.55 25 785 0.45

2. 31,851 2175 3 10,617 1305 9 0.5 145 11.5 0.5

3. 15,000 100 20 10,000 60 100 0.5 20 60 0.5

4. 100,000 1000 40 60,000 400 840 0.33 10 280 0.67

5. 15,000 100 10 5000 100 30 0.75 40 20 0.25

6. 100,000 230 760 47,000 250 630 0.5 16 12 0.5

7. 100,000 900 950 75,000 40 160 0.5 940 140 0.5

Data in Example 2 is based on empirical estimates from Lal and Staelin (1984)

We then define the following expected costs under optimal contracting:

K̂ (α) = ω1K1(x̂α,1) + ω2K2(x̂α,2) (23)

as the performance level realized by the supply chain, withα representing the degree of partial
integration. We assume that, if there are several menus of offers (22) that solve (9)–(13) and,
thus, happen to be optimal to the supplier, then she chooses from them one for which the
expected supply-chain costs in (23) are minimal. The resulting performance level K̂ (α) is
then to be compared with the benchmark

K ∗ = ω1K1(x
∗
1,1) + ω2K2(x

∗
1,2) (24)

which represents the minimum expected supply-chain costs under full integration, and where
x∗
1,i ≡ JELSi , as defined in (6). The difference K̂ (α)−K ∗ is called coordination deficit, which

is obviously a non-negative value that captures the informational inefficiency of contracting.
In accordance with the definition of coordination given at the beginning of this section, the
supply chain is coordinated when the coordination deficit equals zero. Indeed, in this case,
actions taken by the supply-chain members in their own interest yield a supply-chain perfor-
mance matching the optimal level K ∗. Otherwise, when the coordination deficit is positive,
supply-chain performance is suboptimal, and hence the supply chain lacks coordination.

We next consider a number of examples that illustrate possible effects of partial integration
on supply-chain coordination and performance. Table 4 presents seven problem instances, of
which we refer here to Examples 1 to 5. Figure 3a–e depict supply-chain performance K̂ (α)

in the respective examples.
In each graph, the degree α of partial integration varies from 0 to 1. The respective

performance benchmark K ∗ is indicated in each figure as well. Each plot also highlights the
menu type (cf. Table 3) that proves to be optimal in the respective range of α; the numbers
in circles indicate that menu type. Note that we employ closed-form solutions derived in
Sect. 3 to produce Fig. 3a–e. Specifically, K̂ (α) and K ∗ are defined by Eqs. (23)–(24).
Equation (23), in turn, uses an optimal menu of contracts which we obtain in Sect. 3 as a
solution to contracting problem (16)–(20) and present in closed form inTable 3. Equation (24)
uses optimal lot sizes presented in closed form in equation (7). Figure 3a–e confirm the
observations below (Pishchulov et al., 2016).

Observation 1 In certain problem instances, a partial vertical integration via a minority
equity holding can be sufficient for achieving supply-chain coordination under optimal con-
tracting, thus obviating the need for the full vertical integration (Fig. 3a, c).
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(a) (b)

(c) (d)

(e)

Fig. 3 Supply-chain performance realized at various degrees of partial vertical integration in Examples 1–5.
K ∗ represents the performance benchmark in each example. Graph colouring highlights the ranges of α over
which a specific menu type is optimal (see Table 3). The numbers in circles indicate menu type

Observation 2 Supply-chain performance needs not to be strictly monotonic in the degree of
partial vertical integration (Fig. 3b), nor does it need to be weakly monotonic (Fig. 3c,d).

Observation 3 Coordination can be lost with increasing degree of partial integration
(Fig. 3c), even if it persisted from the outset (Fig. 3d)—whereas in other cases, coordination
may not be achievable at any degree of partial vertical integration (Fig. 3e).

Observation 1 highlights the cases in which partial vertical integration takes a positive
effect on supply-chain performance and coordination. It comes about because equity par-
ticipation creates a bond between the partners, helping them to align their incentives and
overcome contractual complications, as discussed in Sect. 1. In such situations, tighter inte-
gration strengthens this bond by making the investing firm ”partially internalize the effect
of its actions on a trading partner” (Fee et al., 2006). Observation 2 indicates, however,
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that supply-chain performance does not need to always improve with tightening integration
because the partners’ incentives may remain insensitive to equity participation within certain
bounds or may even become distorted so that supply-chain performance deteriorates. Indeed,
Observation 3 stresses that increasing integration beyond a certain point may become detri-
mental for supply-chain coordination when this creates incentives for the investing firm to
act opportunistically. In such situations, there are limits to which firms can usefully internal-
ize the effect of their actions. In practice, limits to partial integration may also exist due to
reluctance of the investee to be exposed to too much influence by the investing partner (Allen
& Phillips, 2000; Fee et al., 2006).

Observation 1 further indicates that coordination can be achieved in our setting with
a minority stake of the less powerful party (the buyer) in the more powerful party (the
supplier), which is in contrast to findings by Chen et al. (2017) for their non-cooperative
setting. Furthermore, Observation 2 is in marked contrast with the monotonic dependence of
supply-chain performance on the degree of integration in their setting. Observations similar
to ours have been made by Illing (1992) in a bargaining setting with shared property rights.
It becomes of interest to derive more general conclusions about the relationship between the
degree of partial integration and supply-chain performance and coordination. In the following
section, we establish its key properties and make them subject to interpretation.

5 Emergence and persistence of coordination

In this sectionwe investigate conditions, under which supply-chain coordination emerges and
persists with varying degrees of partial integration. We divide this analysis into two cases:
when the system-optimal JELS does not depend on the buyer’s cost structure, and when it
does. To simplify the subsequent exposition, we employ the following notation:

Si = R + Bi and Hi = d

p
hP + hA,i (i = 1, 2). (25)

Furthermore, let ELS ≡ x∗
P represent the supplier’s economic lot size and EOQi ≡ x∗

0,i—the
economic order quantity of the buyer type i as per (6), (8).

5.1 When JELS does not depend on the buyer’s cost structure

Consider first the class of problem instances in which the buyer’s specific cost structure does
not affect the system-optimal lot sizing—so that JELS1 = JELS2. We obtain the following
result, which is a generalisation of Pishchulov and Richter (2016, Proposition 3).

Proposition 1 Let JELS1 = JELS2 hold. Then the buyer’s possible cost structures either
coincide or strictly dominate one another in Pareto sense. Without loss of generality, assume
that B1 ≥ B2 and hA,1 ≥ hA,2. Then the following is true:

i) If EOQ1 = EOQ2 = ELS then the supply chain happens to be coordinated at every
degree of partial vertical integration α ∈ [0, 1) without contracting on the lot size.

ii) Otherwise, if ω1 ≤ H2/H1 holds, then optimal contracting leads to supply-chain coor-
dination at every degree of partial vertical integration α ∈ [0, 1).

iii) Otherwise, optimal contracting does not lead to supply-chain coordination at any α ∈
[0, 1).
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Proof The proof follows that of Pishchulov and Richter (2016, Prop. 3) and is available on
request. �	
Assertion i) of the proposition concerns cases when contracting on the lot size is unnecessary,
and is in accordance with intuition. For all other cases, assertions ii)–iii) state that optimal
contracting either yields coordination irrespective of the degree of partial vertical integration,
or is otherwise unable to do so at any degree α ∈ [0, 1)—despite the identity JELS1 = JELS2
(see Fig. 3e). Specifically, the proof of Proposition 1 shows that in ii), it is optimal for the
supplier to offer a menu 1, 7a, or 8a to the buyer, which yields coordination, whereas in iii),
the supplier will offer a menu of type 4 or 5, so that coordination fails. Pishchulov and Richter
(2016, p. 717) provide interpretation of this result for the case of α = 0, which carries over to
α > 0 in a straightforward way (we therefore omit this exposition here for reasons of space).

To summarize, by applying Proposition 1 to a problem instance with JELS1 = JELS2,
we can easily determine once and for all α ∈ [0, 1) whether coordination is achievable.
The implication of the proposition is that managerial decision-making with regard to the
choice of α becomes significantly simplified when the system-optimal policy is insensitive
to the buyer’s cost structure. Especially when assertions i) or ii) of the proposition hold,
the decision-makers are assured that the supply chain can be coordinated under any specific
choice of α. Otherwise, when assertion iii) holds, the supply chain is expected to operate
inefficiently at any degree of partial integration. In the latter case, the expected amount of
inefficiency still depends on α. We will investigate this dependence in Sect. 6 below.

5.2 When JELS depends on the buyer’s cost structure

We next refer to the class of instances with JELS1 
= JELS2—i.e., when the buyer’s cost
structure affects the system-optimal lot sizing. For brevity, let

HP = d

p
hP B = B1 − B2 hA = hA,1 − hA,2. (26)

Further, for an order size x , let

K (x) = K1(x) − K2(x) (27)

represent the difference in the supply-chain costs under the buyer’s cost structures no. 1 and
2. Let further

K̃ (α) = K α
1 (x∗

α,1) − K α
2 (x∗

α,2)

represent the difference in the effective inventory-related costs incurred by the buyer types 1
and 2 when adopting the respectively optimal partially joint economic lot sizes. We then
obtain the following result.

Proposition 2 Let JELS1 
= JELS2 hold, and let α ∈ [0, 1) be given. Optimal contracting
yields supply-chain coordination if and only if the following holds:

K (JELS1) ≤ K̃ (α) ≤ K (JELS2). (28)

Proof The proof is straightforward and based on the feasibility conditions of the menu of
offers of type 1 (see Table 3). We present the proof in Sect. A.1 of Appendix A in full detail.

�	
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Fig. 4 Achieving supply-chain coordination by virtue of condition (28) in Examples 1 (left) and 3 (right)

Thus, given JELS1 
= JELS2, optimal contracting yields coordination whenever K̃ (α) is
found within the bounds [K (JELS1), K (JELS2)]. Figure 4 illustrates this in Examples 1
and 3 of Sect. 4 (Fig. 3a, c). Note that given JELS1 
= JELS2, coordination can only be
achieved with the menu of offers of type 1, whereas menus 7a and 8a cannot be coordinating.
The reason of this is that the latter menus are either undefined (when the buyer’s possible
cost structures are weakly Pareto-efficient) or fail to offer the order sizes xi = JELSi to the
buyer types i = 1, 2 (see Table 3).

Using condition (28),we can easily determinewhether optimal contracting leads to supply-
chain coordination without any vertical integration. If not, then it becomes of interest to
know the minimum degree of (partial) integration at which coordination would emerge. This
question is answered by the following corollary from Proposition 2 and continuity of K̃ (α).

Corollary 1 Let JELS1 
= JELS2 hold. If optimal contracting does not lead to supply-chain
coordination in the absence of partial integration then the minimum degree of integration at
which it does is the smallest α, for which any of the two inequalities in (28) holds as equality.

Figure 4 illustrates this. Note that exactly one of the two inequalities in condition (28) is
violated when there is no coordination. When the graph of K̃ (α) enters the corridor of values
[K (JELS1), K (JELS2)] for the first time, condition (28) becomes satisfied as equality, which
enables coordination. We have not been able to derive a closed-form expression of such a
minimum ’coordinating’ degree of partial integration, but it can be easily obtained for a given
problem instance by solving the respective equation numerically. Below we gain insight into
the mechanism underlying the ’coordinating’ capability of partial integration.

Interpretation 1 (Achieving coordination via partial integration) We use Example 1 for
this purpose, see Fig. 3a. Figure 5a depicts the cost curves and the menu of offers of type 1
when α = 0. There is obviously a lack of coordination because the menu of type 1 is not
incentive-compatible, as buyer type 1 prefers to pick the 2nd offer. In turn, Fig. 5b represents
the situation with α = 0.36, where the menu of type 1 happens to be incentive-compatible
and yields coordination (note that for ease of exposition, we represent the side payments in
terms of z1, z2). Thus, increasing α from 0 to 0.36 is just sufficient to make the incentives of
the system-optimal menu of offers compatible with the buyer types.

To see the reason of this, observe that at each value of α, the (in)compatibility of the
said incentives results from interaction between three curves: K P (x), K A

1 (x) and K A
2 (x).

Specifically, a degree α of partial vertical integration makes the buyer type i act in terms
of the cost function K α

i (x) = K A
i (x) + αK P (x). Thus, with growing α, his effective cost

function becomes determined to an ever bigger extent by the supplier’s cost function K P (x).
This changes the shape and position of both buyer types’ curves K α

i (x), as illustrated by
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(a)

(b)

Fig. 5 Menu of offers of type 1 in Example 1 with α = 0 (above) and α = 0.36 (below)
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Table 5 Forces (i)–(iv) driving a
buyer type’s cost and
compensation under varying α

when he sticks to another type’s
offer

Buyer type’s own Buyer’s internalized

Cost (i) (ii)

Compensation (iii) (iv)

Fig. 5a, b. This, in turn, has two consequences: first, the order size PJELS1 moves away
from x2 = JELS2, which increases the cost of adopting x2 instead of PJELS1 for the buyer
type 1; second, the order size PJELS2 moves closer to x2 = JELS2, which decreases the side
payment z2 intended as compensation for adopting the order size x2. Both these effects—
increasing cost and decreasing compensation—jointly reduce the attractiveness of choosing
(x2, z2) for the buyer type 1, until any benefit of doing so disappears at α ≈ 0.36, as it is
presented in Fig. 5b.

We can gain a deeper insight into the magnitude of the above two effects by consid-
ering the components K A

i (x) and αK P (x) of the i-th buyer type cost function separately.
Note that in Fig. 5a, function K α

i (x) represents just K A
i (x), i = 1, 2. Let α = 0, and refer

to buyer type 1 first. We know that with increasing α, his individually optimal order size
PJELS1 shifts to the right. Looking at Fig. 5a, we can see that two forces then come into
play: (i) the component K A

1 (PJELS1) of his optimum costs will increase, so that the con-
tribution K A

1 (JELS2) − K A
1 (PJELS1) to his cost of adopting JELS2 instead of PJELS1 will

decrease; and (ii) the supplier’s cost K P (PJELS1) will decrease, so that the contribution
α · [K P (JELS2) − K P (PJELS1)] to his cost of adopting JELS2 instead of PJELS1 will
increase. Note that force (i) drives this buyer type’s own cost, whereas force (ii)—his inter-
nalized cost due to shared ownership. The second force is dominating, so that, in effect, the
cost of adopting JELS2 instead of PJELS1 by the buyer type 1 will increase.

We proceed in a similar way with the buyer type 2. We know that, with increasing α,
his individually optimal order size PJELS2 shifts to the right. We can see in Fig. 5a that
the following two forces then emerge: (iii) the cost component K A

2 (PJELS2) will increase,
so that the respective contribution K A

2 (JELS2) − K A
2 (PJELS2) to the compensation z2 will

decrease; and (iv) the supplier’s cost K P (PJELS2)will decrease, but the negative contribution
α · [K P (JELS2)− K P (PJELS2)] to the compensation z2 will decrease with α either (i.e., its
absolute value will increase)—which happens due to smallness of the multiplier α.2 Thus,
both forces jointly lessen the amount of compensation z2.

Table 5 collates the meaning of forces (i)–(iv). Summarizing, forces (ii)–(iv) act to restore
incentive-compatibility, while force (i) counteracts. The former are dominating to the extent
that incentive-compatibility becomes restored when α ≈ 0.36. In general, the strength and
direction of these forces depend on the shape and position of the cost curves K P (x), K A

1 (x),
K A
2 (x), and so does their net effect. �	
Figure 4 suggests that tightening integration may, however, defeat coordination, forcing

K̃ (α) to leave the corridor of values [K (JELS1), K (JELS2)]. Figure 3c, d in Sect. 4 illustrate
this by depicting supply-chain performance K̂ (α). We below explain this mechanism in
greater detail.

Interpretation 2 (Coordination loss due to partial integration) We use Example 4 for
this purpose. Recall that in this example, supply-chain coordination is achieved without any

2 The effect of small α can be explained as follows: consider a negative-valued, increasing function f (α).
Then the derivative (α f (α))′ = f (α)+α f ′(α) is obviously negative for sufficiently small values of α, making
α f (α) decrease.
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vertical integration (see Fig. 3d). Figure 6a shows that the system-optimal menu of offers of
type 1 is indeed incentive-compatible when α = 0: none of the buyer types would benefit
from choosing the offer intended for the other type. A slight increase of α to ≈ 0.012 leads,
however, to coordination failure as it becomes more attractive for the buyer type 2 to choose
the 1st offer. For illustrative purposes, we depict this situation in Fig. 6b with α = 0.12. Note
that, as α increases, both PJELS1 and PJELS2 move to the right.

The above Interpretation 1 has identified forces (i)–(iv) that govern the development
of incentives in the system-optimal menu of offers with varying α (Table 5). We can
similarly observe action of these forces here by referring to Fig. 6a: (i) the contribution
K A
2 (JELS1) − K A

2 (PJELS2) to the cost of adopting JELS1 instead of PJELS2 by the buyer
type 2 is decreasing; (ii) the contribution α · [K P (JELS1) − K P (PJELS2)] to that cost is
decreasing either (i.e., its absolute value is increasing)—due to smallness of the multiplier
α; (iii) the contribution K A

1 (JELS1) − K A
1 (PJELS1) to the compensation z1 is decreasing;

and (iv) the contribution α · [K P (JELS1) − K P (PJELS1)] to the compensation z1 is also
decreasing. Thus, both the costs of adopting JELS1 by the buyer type 2 and the compensa-
tion for that are decreasing. The former effect is, however, more pronounced—so that the
compensation exceeds the costs. This is determined by the position of the curves K A

1,2(x):
first, observe that the order size EOQ2 ≡ PJELS2|α=0 deviates from JELS2 more so than
EOQ1 ≡ PJELS1|α=0 deviates from JELS1 (Fig. 6a). As a result, PJELS2 moves with
increasing α faster to the right than PJELS1 does, as Fig. 6b illustrates. This leads to stronger
growth along the curve K A

2 (x) in Fig. 6a than along the curve K A
1 (x), despite the latter

growing steeper than the former. As a result, force (i) is stronger than force (iii). Secondly,
although the curve K P (x) exhibits a bigger reduction in the magnitude of decline over the
interval [PJELS2, JELS1] than it does over [PJELS1, JELS1], force (ii) is still stronger than
force (iv) due to smallness of α. In effect, the cost of adopting JELS1 by the buyer type 2
declines faster than the respective compensation, which distorts the incentives and leads to
the loss of coordination despite a higher degree of partial integration. �	

It thus becomes of interest to derive the conditions underwhich supply-chain coordination,
once attained at a particular α0, persists also for α > α0. To this end, let HP , B, hA be as
defined in (26). Consider the following two critical numbers:

α̌ = B1hA,2 − B2hA,1

RhA − HP B
α̂ = R2hA,1hA,2 − H2

P B1B2

HP (B1 + B2) − R(hA,1 + hA,2)
· 1

RHP
(29)

Note that a critical number is undefined if its expression in (29) has a zero denominator.
We will below prove that critical numbers α̂ and α̌, when defined, represent stationary points
of K̃ (α). The following intermediate result is helpful in characterizing the persistence of
coordination.

Lemma 1 At most one of the two critical numbers α̂ and α̌ is defined and positive.

Proof See Sect. A.2 of Appendix A. �	

Hence, by virtue of Lemma 1, critical numbers α̂ and α̌, when both are defined, cannot be
both positive. Let now some α0 ∈ [0, 1) be given. If there is a critical number that lies within
the open interval (α0, 1) then this number is uniquely determined by virtue of Lemma 1.
We will denote this number by α̃0, and otherwise consider α̃0 as undefined. Thus, in formal
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(a)

(b)

Fig. 6 Menu of offers of type 1 in Example 4 with α = 0 (above) and α = 0.12 (below)
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terms:

α̃0 =

⎧⎪⎨
⎪⎩

α̌, if α̌ is defined and α0 < α̌ < 1,

α̂, if α̂ is defined and α0 < α̂ < 1,

undefined, otherwise.

(30)

Then, we obtain the following

Proposition 3 Let JELS1 
= JELS2 hold, and let α0 ∈ [0, 1) be given. Optimal contracting
yields supply-chain coordination at every α ∈ [α0, 1) if and only if condition (28) holds for
α = α0 and for α = α̃0 when the latter is defined.

Proof See Sect. A.3 of Appendix A. �	
Using Proposition 3, we can easily establish whether supply-chain coordination persists

with an increasing degree of partial vertical integration in a problem instance when JELS1 
=
JELS2. If coordination is achieved with some α0 ∈ [0, 1), it requires then to verify condition
(28) for at most one additional value of α. Indeed, when condition (28) holds at α = α0, and
K̃ (α) has no local extrema on (α0, 1), then (28)will automatically hold for allα ∈ [α0, 1)—as
it can be shown that (28) is guaranteed to hold for α = 1. This is illustrated by the left-hand
graph in Fig. 4. The proof of Proposition 3 shows that, in such cases, α̃0 is undefined.
However, when K̃ (α) has a local extremum on (α0, 1), then it must occur at α̃0; for this
reason, it suffices to check condition (28) at α = α̃0 in order to establish the persistence
of coordination for all α ∈ [α0, 1). For example, the right-hand graph in Fig. 4 exhibits
an extremum beyond the corridor [K (JELS1), K (JELS2)]. As a result, there exists a range
of values around α̃0 ≈ 0.46 at which optimal contracting does not lead to supply-chain
coordination (cf. Fig. 3c). Propositions 1 and 3 further imply:

Corollary 2 If optimal contracting yields coordination at some α0 then there exists at most
one interval (α, ᾱ) ⊆ (α0, 1), maximal by inclusion, where optimal contracting will not yield
coordination.

Figures 3a–d demonstrate this for problem instances when JELS1 
= JELS2: once supply-
chain performance K̂ (α) reaches the benchmark level K ∗ at some α0, it leaves that level
with increasing α at most once. This is because function K̃ (α) has at most one extremum on
interval (0, 1), as explained by the following

Interpretation 3 (Corollary 2) We refer to Example 3 for this purpose. Figure 3c
depicts supply-chain performance K̂ (α), whereas the right-hand graph in Fig. 4 depicts
the corresponding function K̃ (α). At α = 0, K̃ (α) is found beyond the corridor
[K (JELS1), K (JELS2)], which implies incentive-incompatibility of the menu of offers of
type 1 and lack of coordination, as per Proposition 2. However, increasing α allows to grad-
ually remove incentive-incompatibility, as per Interpretation 1, so that K̃ (α) enters the said
corridor. Increasing α even further distorts the incentives again, as per Interpretation 2. The
maximum distortion obviously occurs at the extremum of K̃ (α), after which incentives begin
to restore towards compatibility, ultimately leading to coordination. This turnaround in the
development of incentives can be explained in terms of forces (i)–(iv) (see Table 5). In
fact, these forces come to balancing each other at the functions’s extremum because the latter
occurs at α = α̌, which is the degree of partial integration at which PJELS1 and PJELS2 coin-
cide. By inspecting the contributions to the cost and compensation driven by forces (i)–(iv),
as expressed in Interpretation 2, it is easy to verify that such α for which PJELS1 = PJELS2
holds indeed makes the marginal cost (a combined effect of forces (i)–(ii)) equal to the
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marginal compensation (a combined effect of forces (iii)–(iv)). Thus the process of incen-
tives distortion, manifested in the stronger increase of compensation received by the buyer
type 2 when picking the 1st offer, as compared to his cost of doing so, stops at this point and
begins to move in the opposite direction towards restoration of incentive-compatibility. By
inspecting the motion of PJELS1 and PJELS2 in Fig. 6a, b, it is easy to see that they may
cross only once. Furthermore, the proof of Proposition 3 reveals that the extremum of K̃ (α)

may also occur at α = α̂, which is the degree at which the supplier’s ELS is equal to the
geometric mean of PJELS1 and PJELS2. Again, by inspecting Fig. 6a, b, it easy to see that
this is not possible to happen in the given example. This explains the uniqueness of extremum
of K̃ (α) and the assertion of Corollary 2 that coordination can be lost ’at most once’. �	

The key outcomes and implications of the analysis in this section are three-fold. First,
when the system-optimal policy does not depend on the buyer’s cost structure (so that
JELS1 = JELS2), Proposition 1 states that coordination will either persist at all degrees of
partial integration or cannot be achieved at any. In contrast, when the system-optimal policy
depends on the buyer’s cost structure (so that JELS1 
= JELS2), dependence of supply-chain
coordination on the degree of partial integration is more intricate: an ownership share of the
buyer in the supplier can help the supply chain to remove informational inefficiency from the
operational stage and thus achieve coordination. This share can be determined by means of
Proposition 2 and Corollary 1. Yet increasing this share must not necessarily do better, as it
may distort the buyer’s incentives to the extent that inefficiency reappears and coordination
fails. Proposition 3 derives conditions for this to happen, which needs to be accordingly
checked for when choosing the level of integration.

6 Dependence of supply-chain performance on the degree of partial
integration

We now turn to investigating properties of dependence between the degree of partial vertical
integration and supply-chain performance. From Sect. 3, we know that candidate solutions
to contracting problem (9)–(13) are determined by 15 expressions of menus of offers, which
are divided into eight generic types according to the feasibility and necessary optimality
conditions. Table 3 specifies expressions of these 15 menus of offers. We can treat these
expressions as vector-valued functions

νm : α �→ (x1, y1, x2, y2), m ∈ M := {1, 2, 3, 4a–b, 5a–b, 6a–d, 7a–b, 8a–b},
where the menus of the same type are sub-indexed with literals (see Sect. 3). For the given
value of α, an optimalmenu of offers is selected from {νm(α)}m∈M as described in Sect. 4: see
eqs. (22) and (23). The following result stems directly from Pishchulov and Richter (2016,
Proposition 2) and indicates that we can restrict attention to certain menus only.

Proposition 4 In an optimal menu of offers, xi = JELSi holds for at least one i ∈ {1, 2}.
Proof The proof follows that of Pishchulov and Richter (2016, Prop. 2) and is available on
request. �	
Hence, for the givenα, wemay take only thosemenus into consideration that offer xi = JELSi
to at least one buyer type i . Further, consider the following subset of M :

M∗ = {1, 2, 3, 4a–b, 5a–b, 7a, 8a} ⊂ M .

Then, the proof of Proposition 4 implies the following
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Corollary 3 For the given α, an optimal menu of offers νo(α) with o ∈ {6a–d, 7b, 8b} must
coincide with some other menu νm(α) such that m ∈ M∗.

We can therefore disregard menus 6a–d, 7b, 8b and evaluate only those contained in M∗.
Further, based on the derivation of the 15 candidate menus of offers in Sect. 3 and their
specification in Table 3, it is straightforward to verify the following properties [see also
Pishchulov and Richter (2016, Section 4)]: (i) if JELS1 = JELS2 thenmenus 7a and 8a either
coincide with or replace menus 3 and 2, respectively; (ii) if JELS1 
= JELS2 then menus
7a and 8a cannot be optimal. Hence in either case, we can restrict the analysis to just seven
candidate menus of five types (1, 4a–b, 5a–b, 7a, 8a, and 1, 2, 3, 4a–b, 5a–b, respectively).
Further to this, we can establish that (iii) menus 7a and 8a are the only candidate menus in
M∗ that pool buyer types—that is, contain an identical offer for them both; thus, (iv) with
JELS1 
= JELS2, pooling never occurs in an optimal menu of offers, which means that in
such a case, it is always optimal for the supplier to discriminate between the buyer types.

Consider further the partition of M∗ into two subsets:

M = {1, 2, 3, 7a, 8a} and M̃ = {4a–b, 5a–b}.
Assume that for some m ∈ M , the menu of offers νm(α) is respectively optimal for each
α in an open interval (α, ᾱ). Then supply-chain performance K̂ (α) is constant on (α, ᾱ).
Indeed, Table 3 reveals that the order sizes in the menus of types 1–3 and 7–8 do not depend
on α. As a result, optimality of a menu of any of these types for α ∈ (α, ᾱ) implies that
varying α within these limits does not affect supply-chain performance K̂ (α). From the
preceding discussion, we know that optimality of a menu νm(α) with m ∈ {1, 7a, 8a} leads
to supply-chain coordination and, hence, to the best possible—and constant—supply-chain
performance on (α, ᾱ). Given optimality of a menu of offers of type 2 or 3, supply-chain
performance will remain at a constant level too, which, however, does not need to be the
best possible one. This is illustrated by Fig. 3b–d in which menus of offers of type 2 and 3
happen to be optimal over certain ranges of α, so that varying the degree of partial integration
within these ranges does not help to improve supply-chain performance. The reason for this
invariance of supply-chain performance is that one of the individual rationality constraints
(10)–(11) is not binding, so that the optimal solution of the contracting problem (9)–(13)
responds to variation of α within (α, ᾱ) by properly adjusting side payments ŷα,1, ŷα,2 while
keeping the order sizes x̂α,1, x̂α,2 unchanged (see also Illing, 1992). This is illustrated on
Example 2 in Fig. 7: offering JELS2 with the effective side payment zmin

2 to buyer type 2
is not feasible because it would lead to buyer type 1 picking this offer. Instead, (x̂α,2, ẑα,2)

is offered to buyer type 2. To prevent buyer type 1 from picking that offer, an effective side
payment ẑα,1 = ẑα,2 + K α

1 (x̂α,1) − K α
1 (x̂α,2) must be offered to buyer type 1.

We therefore conclude that supply-chain performance can vary only within those ranges
of α where a menu of offers of type 4 or 5 holds optimal. Indeed, individual rationality
constraints (10)–(11) happen to be binding at these menus of offers, so that one of the order
sizes in the optimal solution becomes subject to variation with varying α, which makes
supply-chain performance K̂ (α) vary as well (cf. Illing, 1992). To further characterize the
latter dependence, let

EOQmin = min{EOQ1,EOQ2} and EOQmax = max{EOQ1,EOQ2}.

Proposition 5 Assume that, for somem ∈ M̃, themenu of offers νm(α) is respectively optimal
for each α in an open interval (α, ᾱ). If supply-chain performance K̂ (α) is varying on (α, ᾱ),

123



Annals of Operations Research (2023) 329:1315–1356 1341

(a)

(b)

Fig. 7 Emergence of the menu of type 3 in Example 2 with α = 0 (above) and α = 0.08 (below)
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(a) (b)

Fig. 8 Supply-chain performance realized at various degrees of partial vertical integration in Examples 6 and
7

then it does so in a strictly monotone way provided that the following condition holds:

ELS ≤ EOQmin or ELS ≥ EOQmax or α̂ /∈ (α, ᾱ). (31)

Proof See Sect. A.4 of Appendix A. �	
Figure 3a–e in Sect. 4 illustrate a strictly monotone dependence of supply-chain perfor-

mance K̂ (α) on α within those ranges where menus of offers of type 4 and 5 happen to be
optimal. Note that when the supplier’s economic lot size ELS is found between the buyer’s
two possible economic order sizes EOQ1 and EOQ2, condition (31) requires that the crit-
ical number α̂, as defined in (29), does not lie within the interval (α, ᾱ) to ensure strict
monotonicity of K̂ (α) on that interval. This condition cannot be relaxed, as the following
Example 6 demonstrates. Problem data for this example are given in Table 4. It holds that
EOQ1 < ELS < EOQ2, and ˆα ≈0.026. A menu of offers of type 5 happens to be optimal
within the range of α ∈ [0, 0.11]. Figure 8a shows the dependence of supply-chain perfor-
mance on α. Since ˆα ∈ [0, 0.11], we observe that K̂ (α) is changing its behaviour at this
point, from increasing to decreasing.

In order to gain insight into the likelihood of the emergence of this effect, we have con-
ducted an extensive numerical study encompassing 100,000 randomly generated problem
instances (Pishchulov et al., 2016). Specifically, we have set p = 100 000 for all problem
instances, and sampled the values of the remaining parameters independently from a uniform
distribution. Table 6 indicates sampling ranges. Results reveal that 2,932 problem instances
(ca. 3% of their total number) satisfy conditions EOQmin < ELS < EOQmax and ˆα ∈ [0, 1].
At the same time, only 16 of these instances (ca. 0.02% of the total number) exhibit a non-
monotonic behavior of supply-chain performance K̂ (α) within an optimality interval of a
menu of type 4 or 5 (Pishchulov et al., 2016) —for the reason that only in that few instances,
α̂ falls within such an interval.3

To summarize, increasing or decreasing the degree of partial integration within certain
ranges may not have any impact on supply-chain performance. Otherwise, supply-chain
performance is likely to change monotonically with the varying degree of integration. An
important consequence of the proof of Proposition 5 is the following

Corollary 4 If supply-chain coordination is attained at some ᾱ ∈ [0, 1) then K̂ ′(ᾱ) = 0.

3 We note that the figures reported are specific to the sample used and may differ depending on the sampling
procedure.
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Table 6 Sampling ranges in the numerical study

Supplier Buyer (Cost structure no. 1) (Cost structure no. 2)

R hP d B1 hA,1 ω1 B2 hA,2

[10, 1000] [10, 1000] [104, 105] [10, 1000] [10, 1000] [0.01, 0.99] [10, 1000] [10, 1000]
Values of all parameters, except for ω1, have been rounded to the nearest integer after sampling. Values of
ω1 have been rounded to the fourth decimal place (Pishchulov et al., 2016). It holds that p = 100 000 and
ω2 = 1 − ω1

Figures 3 and 8 illustrate this: at every point where the graph of supply-chain performance
K̂ (α) attains the benchmark K ∗, the gradient of K̂ (α) vanishes. Therefore, slight variations
of the degree of integration in a supply chain that happens to be coordinated should not have
a substantial adverse impact on its performance.

Figure 3a–e in Sect. 4 illustrated dependence of supply-chain performance on the degree
of partial vertical integration under different parametrizations of the model. These figures
may further suggest that when supply-chain performance is monotonic in α, then it exhibits
convex behaviour. The following Example 7 demonstrates that this does not need to be the
case. Problem data for this example is given in Table 4. Figure 8b shows that, despite a
monotonic decrease of K̂ (α) over interval [0, 0.088], its behavior on this interval is non-
convex—in contrast to the previously considered examples. We have not been able to obtain
a closed-form characterization of convexity similar to monotonicity results of Proposition 5.
However, we found in Pishchulov et al. (2016) that only ≈ 0.03% of the problem instances
in the above numerical study exhibit monotonic but not strictly convex behavior of K̂ (α).3

This suggests that, whenever supply-chain performance can be improved by increasing or
decreasing the degree of integration, this is likely to occur in a super-linear way; thus, a
slight initial increase of α in Fig. 3a–c is capable of quickly absorbing a substantial portion
of coordination deficit.

7 Conclusion and outlook

This paper studied the effects of partial vertical integration on supply-chain coordination and
performance—a topic that has been previously understudied in the supply-chain literature.We
have employed a conventional model of supply-chain coordination and studied it in a setting
with asymmetric information, whichmay lead to coordination failure and underperformance.
Our objective was to investigate the extent to which the proposition made in the literature
with regard to the ability of partial integration to improve the total surplus, holds true for
the setting under study. From the managerial perspective, ’common sense’ suggesting that
supply-chain performance will always improve with tighter integration, proves wrong in our
setting. Specifically, a tighter integration may actually harm supply-chain performance, or
not have any effect.

Further, our results demonstrate that supply-chain coordination under asymmetric infor-
mation may be achieved with just a minority equity stake—which is able to absorb
coordination deficit and yield the efficiency of a fully integrated supply chain.We provided an
economic interpretation of this capability. A ’coordinating’ degree of partial integration turns
out to be an outcome of the interplay of four forces that drive the buyer’s cost and compensa-
tion, both own and internalized. Specifically, these forces act so that cost and compensation
come to balance each other at a ’coordinating’ degree of integration—to the extent that the
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buyer does not benefit from choosing the offer intended for another buyer type. Furthermore,
we have analytically characterized the persistence of efficiency with tighter integration and
established conditions under which supply-chain performance would consistently improve
with varying degree of partial integration. We have observed such consistent behaviour in
most simulated instances. Our analysis also revealed other favourable properties of partial
integration: its minor variation is likely to yield a substantial performance improvement
in an uncoordinated supply chain, but it would not significantly hurt the performance of a
coordinated supply chain.

It must be noted that coordination may be attained in some problem instances at a degree
of partial integration of over 50%—so that the assumption of absence of the buyer’s control
rights may not hold in practice, unless the buyer obtains his majority ownership by acquiring
non-voting shares. In fact, offering non-voting stock can be an attractive option for the supplier
when it helps to improve overall efficiency while avoiding dilution of control (Van den Steen,
2002); furthermore, using non-voting stock can help to reduce anticompetitive effects of
partial integration (Gilo & Spiegel, 2011; Gilo, 2000).

Our study refers to supply-chain coordination and performance at the operational level,
following a strategic decision about partial integration. We acknowledge that negotiating
the level of integration requires its own analysis which goes beyond the scope of this study
and represents an interesting avenue for future research. The closed-form solution derived in
our study facilitates such analysis and can be easily implemented in software. Future work
should further investigate coordination effects of partial integration in settings with more
general production and shipment policies, settings involving more than two possible cost
structures of the buyer, more than two supply-chain members, and closed-loop supply chain
settings. Furthermore, it would be of interest to study contracting between the parties when
their bargaining power depends on the level of integration.
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Appendix A. Proofs of propositions

A.1 Proof of Proposition 2

The following lemma is helpful in proving the proposition.

Lemma 2 Assume that for the given α ∈ [0, 1), the menu of offers of type 1 satisfies the
respective feasibility conditions as per Table 3. Then this menu of offers represents a unique
optimal solution of the contracting problem (9)–(13) and yields supply-chain coordination.

Proof Suppose that the supply-chain members adopt an order size x and the supplier makes
a side payment y to the buyer. Then the costs effectively borne by the supplier due to the
ownership share 1 − α in its own company can be expressed as

(1 − α) ·
[
K P (x) + y

]
≡ (1 − α)K P (x) + (1 − α)y, (A.1)

while the total costs effectively borne by the buyer type i ∈ {1, 2} due to ownership share α

in the supplier’s company amount to

K α
i (x) − (1 − α)y. (A.2)

Their joint total costs express accordingly as

(1 − α)K P (x) + K α
i (x) ≡ K P (x) + K A

i (x). (A.3)

Referring to the right-hand side above, we can immediately see that the joint economic lot
size

xi = JELSi (A.4)

uniquelyminimizes (A.3) by its definition in (7). Hence order size (A.4) and the side payment
yi such that

(1 − α)yi = K α
i (xi ) − K α

i (x∗
α,i ), (A.5)

uniquely minimize the supplier’s costs (A.1) [see also Sucky (2006, Section 4.2)]. It is then
easy to see that the tuple (x1, y1, x2, y2) defined by (A.4)–(A.5) with i = 1, 2 is the unique
globalminimumof theobjective function (9).At the same time, this tuple obviously represents
the menu of offers of type 1 as per Table 3. Under the hypothesis of the lemma, a menu of
type 1 happens to be a KKT solution of the contracting problem (9)–(13) (cf. Sect. 3). Taking
into account that it uniquely delivers the smallest possible value to the objective function, we
conclude that it indeed represents the unique optimal solution of the contracting problem. It
obviously yields coordination because it leads the buyer types 1 and 2 to adopting the order
sizes x1 = JELS1 and x2 = JELS2 respectively. �	

To prove now the proposition, refer to the menu of offers of type 1, see Table 3. Note that
the feasibility conditions for that menu can be rewritten in an obvious way as follows:

K α
1 (x1) − K α

2 (x1) ≤ K α
1 (x∗

α,1) − K α
2 (x∗

α,2) ≤ K α
1 (x2) − K α

2 (x2). (A.6)

By definition of the functions involved, the above is obviously equivalent to

K1(x1) − K2(x1) ≤ K α
1 (x∗

α,1) − K α
2 (x∗

α,2) ≤ K1(x2) − K2(x2). (A.7)
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Noting that x1 = JELS1 and x2 = JELS2 for the menu of offers in question, and taking into
account the definition of function K (x) in (27), we can thus rewrite (A.7) as

K (JELS1) ≤ K α
1 (x∗

α,1) − K α
2 (x∗

α,2) ≤ K (JELS2), (A.8)

what represents condition (28) of the proposition. Thuswhen that condition holds, themenuof
type 1 happens to be feasible and represents a KKT solution of contracting problem (9)–(13)
as per Table 3. Then, by Lemma 2, this menu is a unique optimal solution of the contracting
problem which yields supply-chain coordination. This proves the sufficient condition of the
proposition.

We now prove the necessary condition. Assume that optimal contracting leads to supply-
chain coordination. This, in turn, means that the optimal menu of offers contains

x1 = JELS1 and x2 = JELS2 (A.9)

as the respective order sizes. FollowingPishchulov andRichter (2016, proof of Proposition 1),
it is straightforward to show that an optimal solution of the transformed problem (16)–
(20) must necessarily represent its KKT solution. Therefore, we conclude that an optimal
solution of the original problem (9)–(13) must coincide with some menu of offers from
Table 3. Obviously, the menu of type 1 satisfies (A.9). Further, it is straightforward to verify
that under the hypothesis JELS1 
= JELS2 of the proposition, no other menu in Table 3,
if defined, satisfies (A.9), unless it coincides with the menu of type 1. Hence the menu of
type 1 must be an optimal solution of the contracting problem (9)–(13) and must necessarily
represent its KKT solution. This, in turn, means that the menu of offers of type 1 satisfies the
respective feasibility conditions as per Table 3, which implies that condition (A.8) holds by
construction. This completes the proof.

A.2 Proof of Lemma 1

Lemma 1 asserts that of the two critical numbers α̌, α̂, whichever are defined, at most one is
positive. Assume that α̌, α̂ are both defined, since otherwise the assertion of the proposition
is obviously true. Suppose that, contrary to the assertion of the proposition, both critical
numbers happen to be positive. By definition of α̌ in (29) and its positiveness we then have

B1hA,2 − B2hA,1

R(hA,1 − hA,2) − HP (B1 − B2)
> 0. (A.10)

Hence the numerator and the denominator in (A.10) have the same sign. We can obviously
assume without loss of generality that both are positive. By the positiveness of the numerator
we have:

B1

hA,1
>

B2

hA,2
, (A.11)

while by the positiveness of the denominator in (A.10), there holds:

R(hA,1 − hA,2) > HP (B1 − B2). (A.12)

Further, by definition of α̂ in (29) and its positiveness, there holds:

R2hA,1hA,2 − H2
P B1B2

HP (B1 + B2) − R(hA,1 + hA,2)
> 0. (A.13)
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Assume first that the denominator in (A.13) is positive. From this and (A.12) we then obtain:

B2

hA,2
>

R

HP
.

But the above inequality and (A.11) together imply that the numerator in (A.13) is negative,
and thus (A.13) does not hold true—a contradiction.

Assume now that the denominator in (A.13) is negative. From this and (A.12) we obtain:

R

HP
>

B1

hA,1
.

The above inequality and (A.11) imply, however, that the numerator in (A.13) is positive,
and thus (A.13) does not hold true—a contradiction. This proves that α̌ and α̂ cannot be both
positive.

A.3 Proof of Proposition 3

Let the hypothesis JELS1 
= JELS2 of the proposition hold. We first prove its sufficient
condition. Assume that (28) holds for α = α0 as well as for α = α̃0 if the latter is defined.
By definition of the functions involved, it is easy to verify that (28) holds for α = 1 as well.
We can thus make

Observation A.1 At the endpoints of interval [α0, 1], function K̃ (α) is foundwithin the bounds
defined by the left and right-hand sides of (28).

Obviously, K̃ (α) is continuous and differentiable in α everywhere on [0, 1]. We next
determine stationary points of K̃ (α) on the open interval (α0, 1), if there are any. To this end,
let

si = αR + Bi hi = αHP + hA,i , (A.14)

where i = 1, 2. By definition of functions K α
i (x) and due to the expression of the partially

joint economic lot sizes x∗
α,i in (6), it is then straightforward to obtain:

K̃ (α) = √
2ds1h1 − √

2ds2h2,

so that:

K̃ ′(α) = √
2d ·

[
Rh1 + s1HP

2
√
s1h1

− Rh2 + s2HP

2
√
s2h2

]
.

Setting the above equal to zero and rearranging the terms successively yields:

Rh1 + s1HP√
s1h1

= Rh2 + s2HP√
s2h2

⇔

Rh1
√
s2h2 + s1HP

√
s2h2 = Rh2

√
s1h1 + s2HP

√
s1h1 ⇔

R
√
h1h2

(√
s2h1 − √

s1h2
)

= HP
√
s1s2

(√
s2h1 − √

s1h2
)

⇔(√
s2h1 − √

s1h2
)

︸ ︷︷ ︸
=Ě

·
(
R
√
h1h2 − HP

√
s1s2

)
︸ ︷︷ ︸

=Ê

= 0. (A.15)
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Denote the two parenthetical expressions in (A.15) by Ě and Ê respectively. (A.15) obviously
holds whenever Ě = 0 or Ê = 0, or both. We accordingly distinguish between the following
two cases.
Case 1Ě = 0. This obviously holds true if and only if

s1
h1

= s2
h2

, (A.16)

or, equivalently, x∗
α,1 = x∗

α,2. By virtue of definitions in (A.14), equation (A.16) can be
rewritten after an obvious simplification in the following form:

α ·
[
R(hA,1 − hA,2) − HP (B1 − B2)

]
= B1hA,2 − B2hA,1. (A.17)

We can distinguish between the following three sub-cases.

a) If the bracketed expression and the right-hand side in (A.17) are both equal to zero
then (A.17) holds obviously true for all α. We can however exclude this sub-case from
consideration because it implies that JELS1 = JELS2, which contradicts the hypothesis
of the proposition.

b) If the bracketed expression in (A.17) is zero while the right-hand side is not, then (A.17)
does not have a solution.

c) If the right-hand side and the bracketed expression in (A.17) are both non-zero then the
solution of (A.17) is uniquely determined as

α̌ = B1hA,2 − B2hA,1

R(hA,1 − hA,2) − HP (B1 − B2)
.

This is exactly the critical number α̌ as defined by (29).

Case 2Ê = 0. This obviously holds true if and only if

R2

H2
P

= s1s2
h1h2

,

what can be rewritten after an obvious simplification in the following form:

α ·
[
RH2

P (B1 + B2) − R2HP (hA,1 + hA,2)
]

= R2hA,1hA,2 − H2
P B1B2. (A.18)

We can then distinguish between the three possible sub-cases as in the above Case 1—which
in a similar way imply that (A.18) holds uniquely for the value of α determined as

α̂ = R2hA,1hA,2 − H2
P B1B2

HP (B1 + B2) − R(hA,1 + hA,2)
· 1

RHP
,

if the latter is defined. This value represents then the critical number α̂ as per (29).
The above analysis of Cases 1 and 2 reveals that equation (A.15) holds for α = α̂ and α = α̌

only, whichever are defined. By Lemma 1, at most one of the critical numbers α̂, α̌ happens
to be defined and positive. If such critical number exists and belongs to interval (α0, 1) then
we denote it by α̃0 as per (30), otherwise α̃0 is considered undefined. Thus when α̃0 is defined
then it represents the unique stationary point of K̃ (α) on (α0, 1), and therefore, if K̃ (α) has
a local extremum on (α0, 1), it must occur at α̃0. If, on the other hand, α̃0 is undefined then
K̃ (α) has no extrema on (α0, 1). By assumption, condition (28) holds at α = α̃0 if the latter
is defined, and we thus make

Observation A.2 A strict local extremum of function K̃ (α) on (α0, 1), if there is any, is found
within the bounds defined by the left and right-hand sides of (28).
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We therefore conclude from Observations A.1 and A.2 that K̃ (α) remains within the
bounds defined by the left and right-hand sides of (28) over the entire interval [α0, 1]. As a
result, condition (28) holds for all α ∈ [α0, 1). Hence, by Proposition 2, optimal contracting
leads to supply-chain coordination at every α ∈ [α0, 1). This proves the sufficient condition
of the proposition.

We now prove the necessary condition. Assume that optimal contracting leads to supply-
chain coordination at every α ∈ [α0, 1). Then, by Proposition 2, condition (28) holds for
every α ∈ [α0, 1), and in particular for α = α0 and α = α̃0 when the latter is defined. This
completes the proof.

A.4 Proof of Proposition 5

Wewill prove that for νm(α) representing a menu of type 4, supply-chain performance K̂ (α)

is either constant or, otherwise, strictly monotone on (α, ᾱ) provided that condition (31)
holds; it is straightforward to extend the proof to menus of type 5.

Let HP , Si , Hi be as defined in (25), (26) and let further, in accordance with Table 3,

si (α) = αR + Bi hi (α) = αHP + hA,i ,

where i = 1, 2. As Table 3 indicates, a menu of offers of type 4 is characterized by the order
sizes

x1 = JELS1 x21,2(α) = √
2d ·

√
s1(α) ± √

s2(α)√
h1(α) ± √

h2(α)
(A.19)

where the same sign (plus or minus) applies in the numerator and the denominator of the
expression defining the order size x2. We below assume that the former is the case, while
the latter case can be treated in the same way as follows below. Hence the optimal menu of
offers is featuring the order sizes

(x̂α,1, x̂α,2) = (x∗
1,1, x21(α))

for each α ∈ (α, ᾱ). Then the supply-chain performance represents, by its definition in (23),
the following function of α on the interval (α, ᾱ):

K̂ (α) = ω1K1(x
∗
1,1) + ω2K2(x21(α)). (A.20)

Note that (i) the 1st term in (A.20) does not depend onα, (ii) the 2nd term is twice differentiable
in α, and (iii)ω2 > 0. Thus K̂ (α) happens to be either constant or strictly monotone on (α, ᾱ)

if and only if the derivative of the function

K̂2(α) := K2(x21(α))

remains either zero, positive, or negative on the entire interval (α, ᾱ). Consider any α ∈
(α, ᾱ). By definition of K2(x) in (21) we obviously have

K̂2(α) = S2d

x21(α)
+ H2

2
· x21(α)

and

K̂ ′
2(α) =

(
− S2d

x221(α)
+ H2

2

)
· x ′

21(α). (A.21)

123



1350 Annals of Operations Research (2023) 329:1315–1356

Assuming hA,1 
= hA,2, we obtain from (A.19):

x21(α) = √
2d ·

√
s1(α) + √

s2(α)√
h1(α) + √

h2(α)
= √

2d ·
(√

s1(α) + √
s2(α)

) (√
h1(α) − √

h2(α)
)

h1(α) − h2(α)
=

=
√
2d

hA,1 − hA,2
·
(√

s1(α) + √
s2(α)

) (√
h1(α) − √

h2(α)
)

,

so that

x ′
21(α) =

√
2d

hA,1 − hA,2
·
[ (

R

2
√
s1(α)

+ R

2
√
s2(α)

) (√
h1(α) − √

h2(α)
)

+

+
(√

s1(α) + √
s2(α)

) (
HP

2
√
h1(α)

− HP

2
√
h2(α)

)]
=

= x21(α) · 1
2

(
R√

s1(α)s2(α)
− HP√

h1(α)h2(α)

)
. (A.22)

It is easy to verify that the same result holds also in the case when hA,1 = hA,2. We can thus
rewrite equation (A.21) as follows:

K̂ ′
2(α) =

(
− S2d

x21(α)
+ H2

2
· x21(α)

)
︸ ︷︷ ︸

=I (α)

·1
2

·
(

R√
s1(α)s2(α)

− HP√
h1(α)h2(α)

)
︸ ︷︷ ︸

=J (α)

.(A.23)

To proceed, denote the expression in the first parentheses in (A.23) by I (α), and that in
the second parentheses—by J (α). Note that the menu of offers in question is optimal by
assumption and therefore represents a KKT solution of problem (9)–(13) (cf. Sect. 3). It
hence satisfies the feasibility and necessary optimality conditions for menus of offers of
type 4, as specified in Table 3. The necessary optimality conditions require, in particular, that
either

x21(α) = JELS2 and x∗
α,1 = x∗

α,2 (A.24)

or

H2x221(α) − 2dS2

(hA,1 − hA,2)x221(α) − 2d(B1 − B2)
≥ 0 (A.25)

holds. We will below distinguish between the following two cases.
Case 1 Let (A.24) hold at a particular α ∈ (α, ᾱ). We will show that (A.24) holds then at
each α ∈ (α, ᾱ). Indeed, the second equality in (A.24) obviously yields:

s1(α)

h1(α)
= s2(α)

h2(α)
. (A.26)

Thus, by definition of x21(α) in (A.19), the following holds for some c > 0:

x21(α) = √
2d ·

√
s1(α) + √

s2(α)√
h1(α) + √

h2(α)
= √

2d · c
√
s2(α) + √

s2(α)

c
√
h2(α) + √

h2(α)
= √

2d ·
√
s2(α)√
h2(α)

.(A.27)

Taking into account the first equality in (A.24) and definition of order size JELS2, we thus
obtain:

S2
H2

= s2(α)

h2(α)
.
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By definition of parameters involved, we can rewrite the above equality as follows:

R + B2

HP + hA,2
= αR + B2

HP + hA,2
,

It is then straightforward to derive from the above that

R

HP
= B2

hA,2
. (A.28)

This equality implies however that the expression on the right in (A.27) yields a constant
value for all α ∈ [0, 1]. Therefore, the first equality in (A.24) must equally hold for all
α ∈ [0, 1].

Further, we obviously have from (A.28) and (A.26):

R

HP
= B2

hA,2
= s2(α)

h2(α)
= s1(α)

h1(α)
.

From the above equality of the ratios on the left and on the right we then easily derive:

R

HP
= B1

hA,1
. (A.29)

Eqs. (A.28) and (A.29) imply then that the second equality in (A.24) holds for all α ∈ [0, 1],
too.

Hence (A.24) indeed holds for all α ∈ (α, ᾱ). This in turn means—by the definition of
the menu of offers in question—that it coincides with the menu of offers of type 1 on the
entire interval (α, ᾱ). Furthermore, I (α) = J (α) = 0 holds for all α ∈ (α, ᾱ), which yields
K̂ ′
2(α) ≡ 0 and proves supply-chain performance K̂ (α) to be constant on that interval.

Case 2 Let condition (A.25) hold at a particular α ∈ (α, ᾱ). We first prove that (A.25)
then holds at each α ∈ (α, ᾱ). Indeed, assume the opposite: that (A.25) does not hold at
some α̊ ∈ (α, ᾱ). Then condition (A.24) must necessarily hold at α̊—and therefore at each
α ∈ (α, ᾱ), as the analysis of the above Case 1 reveals. However, following the approach
of Pishchulov and Richter (2016, Appendix D.3), it can be shown that the second equality
in (A.24) is equivalent to having the denominator in the left-hand side of (A.25) equal to
zero. Therefore, condition (A.25) cannot hold at any α ∈ (α, ᾱ) because it requires the said
denominator to be non-zero. This leads to a contradiction.

We therefore conclude that the denominator in the left-hand side of (A.25) never turns
to zero for α ∈ (α, ᾱ). Since the expression in the said denominator obviously represents a
continuous function of α, we make the following

Observation A.3 The denominator in the left-hand side of condition (A.25) remains either
positive or negative on (α, ᾱ).

Wewill next prove that under condition (31) of the proposition, expression J (α) as defined
in (A.23) remains either positive or negative on (α, ᾱ). To proceed, let ELS ≡ x∗

P represent
the supplier’s economic lot size and EOQi ≡ x∗

0,i—the economic order quantity of the
buyer type i , as defined by (6), (8). Without loss of generality, let EOQ1 ≤ EOQ2. We can
distinguish between three sub-cases:

1) ELS ≤ EOQ1 ≤ EOQ2. Then, by definition of these order sizes, the following obviously
holds:

R

HP
≤ B1

hA,1
≤ B2

hA,2
,
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where HP = d
p hP , as defined in (26). Note that the above two inequalities cannot simul-

taneously hold as equalities because otherwise x∗
α,1 = x∗

α,2 must hold for any α ≥ 0;
as explained above, this is equivalent to having the denominator in the left-hand side of
(A.25) equal to zero for any α, which contradicts Observation A.3. Thus we conclude
that the following holds true:

R

HP
≤ B1

hA,1
and

R

HP
<

B2

hA,2
.

By referring to the definition of parameters s1(α) and h1(α), it is then straightforward to
verify that the ratio s1(α)/h1(α) is either constant or strictly monotone decreasing in α,
with lim

α→∞ s1(α)/h1(α) = R/HP . Similarly, it can be shown that the ratio s2(α)/h2(α)

is strictly monotone decreasing in α, with lim
α→∞ s2(α)/h2(α) = R/HP . This allows us to

conclude that the inequalities

R

HP
≤ s1(α)

h1(α)
and

R

HP
<

s2(α)

h2(α)

hold true for any α ≥ 0. This in turn implies that the inequality

R

HP
<

√
s1(α)s2(α)

h1(α)h2(α)

is satisfied at every α ≥ 0. From this and the definition of J (α) in (A.23) we obviously
have that J (α) < 0, for all α ≥ 0.

2) EOQ1 ≤ EOQ2 ≤ ELS. Taking the same approach as above, we can show that this
sub-case implies J (α) > 0, for all α ≥ 0.

3) EOQ1 < ELS < EOQ2. By referring to the expression of J (α) in (A.23), it is easy to see
that J (α) = 0 holds for any such α that solves the equation

R

HP
=

√
s1(α)s2(α)

h1(α)h2(α)
. (A.30)

It can be shown that such α can satisfy the condition J ′(α) = 0 only when Case 1
analysed above applies. Therefore J ′(α) 
= 0 must hold for any α that satisfies (A.30) in
the case under consideration. Thus J (α) changes its sign at any such α, and does not do so
anywhere else. We hence conclude that if equation (A.30) does not have a solution within
the interval (α, ᾱ) then J (α) does not change sign on this interval, and thus remains either
positive or negative on it. It is straightforward to verify that an only solution of equation
(A.30) happens to be the critical number α̂ as defined in (29) (see also the analysis of
Case 2 in the proof of Proposition 3).

The analysis of the above three sub-cases thus allows us to conclude that under condition (31),
J (α) remains either positive or negative on (α, ᾱ). Furthermore, the expression of x ′

21
(α) in

(A.22) allows us to conclude that the order size x21(α) is strictly monotone in α on (α, ᾱ).
From Observation A.3 we know that the denominator in the left-hand side of (A.25)

remains either positive or negative on (α, ᾱ). Assume the former; the opposite case can be
treated similarly. We then have from condition (A.25) that the numerator in its left-hand side
must be non-negative:

H2x
2
21(α) − 2dS2 ≥ 0,
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on the entire interval (α, ᾱ). This is obviously equivalent to having I (α) ≥ 0 hold on the
entire interval (α, ᾱ), see the expression of I (α) in (A.23). Taking into account that J (α)

remains either positive or negative on (α, ᾱ), and that

K̂ ′
2(α) = 1

2
· I (α)J (α) (A.31)

holds by virtue of (A.23), we conclude that K̂2(α) is weaklymonotone on (α, ᾱ).Wewill next
prove its strict monotonicity. Indeed, observe that I (α) = 0 holds if and only if x21(α) =
JELS2. Assume that the latter equality holds at some α̊ ∈ (α, ᾱ). But then the menu of
offers in question coincides with the menu of offers of type 1, what yields supply-chain
coordination (cf. Lemma 2) and implies that supply-chain costs K̂2(α̊) are lowest possible
and equal to K2(x∗

1,2), where x∗
1,2 ≡ JELS2, as defined in (7). By the weak monotonicity

of K̂2(α) we further have that K̂2(α) ≡ K2(x∗
1,2) must hold either on (α, α̊] or on [α̊, ᾱ),

and so must the equality x21(α) = JELS2. This is however not possible due to the strict
monotonicity of x21(α) on the interval (α, ᾱ) established above. We thus have to conclude
that x21(α) 
= JELS2 holds for all α ∈ (α, ᾱ). Hence the inequality I (α) > 0 holds for
all α ∈ (α, ᾱ) as well. Taking into account that J (α) remains either positive or negative
on (α, ᾱ), we then have by virtue of (A.31) that K2(α) is strictly monotone on (α, ᾱ). This
completes the proof.
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