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Abstract
In this article we introduce robustness measures in the context of multi-objective integer
linear programming problems. The proposedmeasures are in linewith the concept of decision
robustness, which considers the uncertainty with respect to the implementation of a specific
solution. An efficient solution is considered to be decision robust if many solutions in its
neighborhood are efficient as well. This rather new area of research differs from robustness
concepts dealing with imperfect knowledge of data parameters. Our approach implies a two-
phase procedure, where in the first phase the set of all efficient solutions is computed, and in
the second phase the neighborhood of each one of the solutions is determined. The indicators
we propose are based on the knowledge of these neighborhoods. We discuss consistency
properties for the indicators, present some numerical evaluations for specific problem classes
and show potential fields of application.
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1 Introduction

In industrial or economical applications, a computed optimal or efficient solution may be
subject to small changes or deviations during its implementation. These deviations may be
due to technical, political, and/or strategic reasons,which are generally not known beforehand
and which are thus not included in the optimization model. As a consequence, a solution
obtained with an optimization method may, in practice, not be implementable, or may be
affected with severe drawbacks.

In this paper, we focus on multi-objective integer programming problems that have a
discrete solution set. Implementation uncertainties then relate to specific variables or, for
example, items that were selected for a knapsack solution, but that become unavailable when
the solution is to be implemented. In this situation, we can try to anticipate the potential failure
of (parts of) solutions and incorporate appropriate robustness measures into the optimization
process.

Dealing with uncertainty or, more general, with the imperfect knowledge of data in single
and multi-objective optimization is not new. Imperfect knowledge about data and models in
general is mainly due to four aspects: the arbitrariness when, for example, we opted for a
specific objective function or constraint among several others that would be also adequate; the
uncertainty since we are using methods, tools, and approaches for modeling and anticipating
an unknown future; the imprecision related with the tools we are using to measure objects;
and, the ill-determination related with the fact that we are modeling some aspects that are
possibly not well determined and defined (for more details see, for example, Roy et al., 2014).

Dealingwith the imperfect knowledge about thewholemodel in single andmulti-objective
optimization is rather a Herculean task. Researchers have been concentrating their attention
mainly on the imperfect knowledge of some type of data, i.e., the model parameters. For
single-objective optimization we can mention three fundamental references: Ben-Tal et al.
(2009), Kouvelis and Yu (1997), and Birge and Louveaux (1997).

In multi-objective optimization there is a long tradition for dealing with the imperfect
knowledge of data and several approaches have been proposed in the literature. For a survey
about different concepts of robustness in multi-objective optimization see, for example, Ide
andSchöbel (2016). The following is a brief and non-exhaustive summary ofmain approaches
found in the literature: stochastic programming (Inuiguchi et al., 2016; Słowiński et al.,
1990); fuzzy/possibilistic programming (Adeyefa and Luhandjula, 2011; Inuiguchi et al.,
2016; Słowiński et al., 1990); interval programming (Oliveira andHenggeler-Antunes, 2007);
parametric programming (Dellnitz and Witting, 2009; Witting et al., 2013); minimax like
programming (Aissi et al., 2009; Ehrgott et al., 2014); set valued optimization (Ide and
Köbis, 2014); and, Monte Carlo simulation (Mavrotas et al., 2015). The different approaches
have in common to find solutions which are more or less robust with respect to changes in
some parameters which occur in the constraints and/or objectives of an optimization problem.
We refer to this as parameter robustness in the following. In this context, a solution that is
more or less immune to parameter changes is a robust solution.

If, however, the uncertainty is an intrinsic property of the variables, we talk about decision
space robustness, also denoted as implementation or variable robustness (see, for example,
Beyer et al., 2007). Very recently, Eichfelder et al. (2015, 2017, 2019) introduced and made
some studies about the concept of uncertainty with respect to the implementation of variable
values in continuousmulti-objective optimization. This problem is, however, not limited to the
continuous case. In project selection a project might be canceled during the implementation
and the corresponding investment is free to be spent on an other project. In a routing problem
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an edge or a node along the shortest path might be blocked requiring a local detour. In a job
assignment problem, a certain assignment is not implementable and has to be substituted.

All these applications have in common that one is not willing to completely discard a once
chosen optimal solution only because one single component of it is not available/blocked/fails
or would be affected with severe drawbacks. The repair of a solution can be considered as
replacing the chosen solution by a neighboring one. The robustness measures that we discuss
in this paper are motivated by the following questions:

– Are there enough feasible neighbors around the selected efficient solution that may be
used to replace it in case an impossibility occurs at the moment of its implementation?

– Are there enough efficient neighbors around the selected efficient solution?
– Are there enough high quality neighbors around the selected efficient solution? This

leads to a second question: How good should be the quality of the neighbors in the worst
case or the average case?

The purpose of this paper is to answer the questions by presenting ways of measuring
the robustness in multi-objective discrete optimization problems. In this attempt, the paper
covers a variety of MOILP problems with a combinatorial structure with applications in a
vast range of areas.

This paper is organized as follows. Section 2 summarizes the fundamental concepts,
their definitions, and the adopted notation. Section 3 presents several robustness indicators
for MOILP problems, some numerical results, theoretical properties of the indicators and
a fundamental distinction between robustness and representation. In Sect. 4 the proposed
robustness concepts are applied in the context of representation problems anddecisionmaking
using Electre Tri- C. Finally, some concluding remarks and avenues for future research
are provided.

2 Concepts, definitions, and notation

This section is devoted to the presentation of the problem, the main concepts of dominance
and efficiency, as well as the concepts of neighborhood and adjacency. It ends with the
introduction of an illustrative example.

2.1 Problem formulation

A general multi-objective optimization problem can be stated as follows.

max
x∈X f (x) (1)

where f (x) = (
f1(x), . . . , f p(x)

)� is a vector-valued function such that f : X −→ Rp with
X ⊆ Rn . In this formulation Rn is called the decision space, while its subset X represents
the feasible region. Each function fk , for k = 1, . . . , p, is a real-valued function such that
fk : X −→ R, and Rp is referred to as the objective space.
Inwhat followswewill restrict ourselves to discretemulti-objective optimization problems

where the feasible region X can be defined as X = P ∩ Zn , with P = {x ∈ Rn : A x �
b, x � 0} being a polyhedron, i.e., the intersection of finitely many halfspaces.

The functions fk , for k = 1, . . . , p, are linear. They can be defined as follows: fk(x) =
ck� x , where ck = (ck1, . . . , c

k
n)

� ∈ Rn is the vector of coefficients of the objective function
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fk for k = 1, . . . , p. Within such a framework we are placed in the context of multi-objective
integer linear programming.This problemcanbepresented in amore compactway, as follows.

max
x∈X C x, (2)

where C = (c1, . . . , cp)� ∈ R
p×n is a p × n matrix in which each row corresponds to a

vector of coefficients ck�, for k = 1, . . . , p.
The outcome vector of a feasible solution x ∈ X is the image of x under the vector-valued

function, i.e., f (x). The set Z := { f (x) : x ∈ X} = f (X) ⊆ Rp is the set of feasible
outcome vectors in the objective or outcome spaceRp .

It is well-known that whenever p ≥ 2 there is no canonical order in the objective space.
For z′, z′′ ∈ Rp the following vector componentwise order can thus be used.

z′ � z′′ ⇐⇒ z′k ≥ z′′k , k = 1, . . . , p,

z′ ≥ z′′ ⇐⇒ z′k ≥ z′′k , k = 1, . . . , p, with z′ �= z′′,
z′ > z′′ ⇐⇒ z′k > z′′k , k = 1, . . . , p.

In multi-objective optimization dominance relations replace the canonical ordering struc-
ture of real numbers. Based on the componentwise order the concept of dominance allows
to define a partial order in the objective space of a multi-objective problem and make a dis-
tinction between dominated and non-dominated vectors or points as it will be shown in the
next section. For a general introduction to multiobjective optimization see (Ehrgott, 2005;
Steuer, 1986).

2.2 Dominance and efficiency

Let z′, z′′ ∈ R
p denote two outcome vectors. Then, z′ dominates z′′ if z′ ≥ z′′.

Let z̄ ∈ Z denote a feasible outcome vector. Then, z̄ is called a non-dominated vector if
there does not exist another z ∈ Z such that z ≥ z̄. Otherwise, z̄ is a dominated outcome
vector. Let ZN denote the set of all non-dominated outcome vectors or points.

A feasible solution x̄ ∈ X is called efficient if there does not exist another x ∈ X such
that f (x) = Cx ≥ f (x̄) = Cx̄ . Otherwise, x̄ is called inefficient. Let XE denote the set of
all efficient solutions. In the following we assume that all problems we are looking at have a
nonempty and bounded efficient set, i. e., they fulfill XE �= ∅ and |XE| < a for some a ∈ Z.

A non-dominated outcome vector z̄ ∈ ZN is said to be supported non-dominated if
there is a real vector λ ∈ Rp with λ ≥ 0 such that λ� z̄ ≥ λ� z for all other feasible
outcome vectors z ∈ Z . Otherwise, the non-dominated outcome vector is called unsupported
non-dominated. Analogously, the preimage of a supported non-dominated vector is called
supported efficient solution, while the preimage of an unsupported non-dominated vector
is called unsupported efficient solution. Let the sets of supported non-dominated vectors,
unsupported non-dominated vectors, supported efficient solutions, and unsupported efficient
solutions be denoted, respectively by ZsN, ZuN, XsE, and XuE.

2.3 Adjacency and neighborhood

In order to investigate the relations and distances between feasible solutions in the decision
space, we need to introduce three concepts: adjacency, adjacency graph, and neighborhood
structure. We adopt two concepts of adjacency as suggested in Gorski et al. (2011): An LP-
based definition of adjacency and a combinatorial definition of adjacency. For the first, we
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have to assume that all feasible solutions in X correspond to extreme points of the linear
programming relaxation of the problem, i.e., X = ext{x ∈ Rn : Ax ≤ b} with some integer
constraint matrix A and right-hand-side b. This is, for example, satisfied for the standard ILP
formulations of shortest path and assignment problems and, more generally, for all problems
with binary variables and a totally unimodular constraint matrix. Then two feasible solutions
x ′, x ′′ ∈ X are called adjacent if x ′′ can be obtained from x ′ by applying a single pivot
operation. The motivation for this adjacency concept is that in the continuous case, i.e., when
considering a multi-objective linear programming problem, the set of all efficient extreme
points of the polyhedral feasible set is a connected set, see Isermann (1977). This means that
for every pair of efficient extreme points there exists a sequence of pivot operations such
that all intermediate extreme points are also efficient. Note that every problem with a finite
feasible set allows for such a formulation and that the resulting concept of adjacency depends
on the given ILP formulation of the problem and is in general not unique.

A combinatorial definition of adjacency, on the other hand, operates directly on the com-
binatorial structure of the considered problem. It is thus formulated for multi-objective
combinatorial optimization problems (MOCO), i.e., for MOIP problems that possess a com-
binatorial structure. Examples are knapsack and assignment problems as well as shortest
path, spanning tree, and network flow problems. Adjacency in this sense is always problem
specific. For example, in an instance of the knapsack problem two binary solutions x ′, x ′′
can be considered adjacent if they differ in at most two variable entries, where at most one
of these entries is equal to 1 in each of the two adjacent solutions. Similarly, two spanning
trees x ′, x ′′ of a minimum spanning tree problem are usually called adjacent if x ′′ can be
obtained from x ′ by adding an edge and removing another edge from the obtained cycle.
In some of these cases, a combinatorial definition of adjacency may in fact be equivalent to
an appropriate LP-based definition of adjacency. We refer to Gorski et al. (2011) for more
details. In both cases, we refer to the operation of moving from one feasible solution x ′ to an
adjacent feasible solution x ′′ as an elementary move.

The notion of adjacency imposes an interrelation between the feasible solutions in X
which can be represented in terms of a so-called adjacency graph. The adjacency graph for
a set of solutions X is a graph G = (V , E) where each node in V represents one solution in
X and vice versa. Two vertices vx ′ and vx ′′ are connected by an edge [vx ′ , vx ′′ ] ∈ E if and
only if the corresponding solutions x ′ and x ′′ are adjacent.

The neighborhood of a feasible solution x , denoted byN (x), is a subset of X containing all
feasible solutions x ′ that are adjacent to x . The solutions x ′ ∈ N (x) are also called neighbors
of x . In the following neighboring solutions will be considered as substitutes for a failing
or blocked solution. Thereby, we distinguish two modelling approaches for the underlying
uncertainty set: On one hand we may be required to exchange one item, where it does not
matter which item. On the other hand we consider that individual items may fail and may be
replaced by chosing an appropriate substitute fromN (x) that does not contain this particular
item. Both concepts are related to recoverable robustness, see, e.g., Kasperski and Zieliński
(2017). The second can be considered as a special case of an interdiction problem where the
interdiction sets contain subsets of cardinality one (see, e.g., Adjiashvili et al., 2014 for the
more general approach of bulk robustness).

2.4 Illustrative example

To illustrate the neighborhood structure of a combinatorial optimization problem we use a
bi-objective cardinality constrained optimization problem (CCP), which is also denoted as
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selection problem, c.f. Kasperski and Zieliński (2017):

max f1(x) = ∑n
j=1 c

1
j x j

max f2(x) = ∑n
j=1 c

2
j x j

s. t.
∑n

j=1 x j = �

x j ∈ {0, 1}, j = 1, . . . , n

(CCP)

The feasible set of problem (CCP) is denoted by X := {x ∈ {0, 1}n : ∑n
j=1 x j = �}. We

define one elementary move as swapping two variables, i.e., two feasible solutions x and x ′
are adjacent if there exist p, q ∈ {1, . . . , n} such that

⎧
⎪⎨

⎪⎩

xp = 0 and x ′
p = 1 for p ∈ {1, . . . , n},

xq = 1 and x ′
q = 0 for q ∈ {1, . . . , n} \ {p}, and

x j = x ′
j for all j ∈ {1, . . . , n} \ {p, q}

Note that every vertex vx in G has the same degree |N (x)| = �(n − �), i.e., the same
number of neighbors.

Consider the following numerical example of a bi-objective cardinality constrained prob-
lem with 10 items:

max f1(x) = (9, 5, 3, 5, 10, 5, 9, 9, 8, 4) x
max f2(x) = (6, 10, 10, 3, 8, 5, 3, 2, 4, 4) x

s.t.
10∑

i=1

xi = 5

xi ∈ {0, 1} ∀i ∈ {1, . . . , 10}.

(3)

The set of non-dominated solutions for the previous problem is the following. The out-
come vectors are given in descending lexicographical order with respect to the first objective
function value.

ZN = {
(45, 23), (42, 29), (41, 31), (38, 32), (37, 33), (36, 37), (35, 38), (32, 39)

}

The sets of supported non-dominated and unsupported non-dominated outcome vectors
are ZsN = {z1, z3, z6, z7, z8} and ZuN = {z2, z4, z5}, respectively (see Fig. 1).

The set of corresponding efficient solutions is as follows.

XE = {
(1000101110), (1100101100), (1100101010), (1100111000),
(1100110010), (1110101000), (1110100010), (1110110000)

}

Analogously, the sets of supported efficient and unsupported efficient solutions are, respec-
tively, the following, XsE = {x1, x3, x6, x7, x8} and XuE = {x2, x4, x5}.

Let us now consider an efficient solution, say x3 ∈ XE and determine its neighbor-
hood N (x3), which consists of �(n − �) = 25 solutions. The image of its neighborhood
z
(N (x3)

)
is illustrated in the objective space in Fig. 2.

3 Robustness indicators for MOILP problems

In this section we introduce two main classes of robustness indicators for MOILP problems.
The first subsection is devoted to a feasibility based robustness indicator, while the second
subsection presents some efficiency based indicators. The section ends with a continuation
of the example (3) introduced in Sect. 2.4.
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Fig. 1 The set of feasible, supported non-dominated (squares) and unsupported non-dominated (circles) out-
come vectors for the illustrative example in Sect. 2.4

Fig. 2 The neighborhood of solution x3 in the objective space (illustrative example in Sect. 2.4)

3.1 Feasibility based indicators

In case of failure of an efficient solution, the feasibility based robustness indicator answers
the question on the number of alternative neighboring solutions, which could be used to
substitute. The motivation for our indicator comes from the fact that if, for some reason,
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we cannot implement exactly the solution x , we should be able to implement a neighboring
solution x ′ ∈ N (x). Thus, the higher the cardinality of the neighborhood of a solution the
more robust the solution (the larger the number of alternatives available for replacing it). In
that sense, counting the number of feasible neighbors is a measure of robustness for a given
efficient solution.

Definition 1 (Feasibility robustness indicator) Let x ∈ X denote a feasible solution. Then
the number of feasible neighbors of x

I c f (x) = |N (x)|,

is called feasibility robustness indicator of x w.r.t. N (x).

Large values of I c f correspond to more robust solutions having large numbers of feasible
neighboring substitute solutions. Note that all solutions in the neighborhood of x are consid-
ered as substitutes regardless of the containing elements. Alternative concepts taking failure
of individual items into account are considered in Definitions 5 and 6, below.

In the case of problem (CCP) we have that I c f (x) = |N (x)| = � (n − �) is constant, for
all x ∈ X . Thus, feasibility robustness yields no meaningful result for (CCP). However, in
problems with more complex combinatorial structure the number of feasible neighbors can
vary significantly over the efficient set (cf. bi-objective shortest path example in Sect. 3.3).

3.2 Efficiency based indicators

Efficiency based indicators go beyond feasibility based robustness indicators and take into
account not only the number of feasible solutions in the neighborhood but also their quality.
Counting the number of efficient neighbors is a measure of robustness for a given efficient
solution and allows to define a class of indicators. Another general class of indicators is
defined by taking into account the relative distance of neighboring solutions from the Pareto-
front.

3.2.1 Cardinality based efficiency indicator

Let x ∈ X denote a feasible solution, and letN (x) denote the set of neighbors of x . The num-
ber of neighbors that are efficient is an indicator of howwell the solutions in the neighborhood
of x perform with respect to the dominance ordering.

Definition 2 (Efficiency robustness indicator) Let x ∈ X . Then the number of efficient
neighbors of x

I ce(x) = |N (x) ∩ XE|,

is called efficiency robustness indicator of x w.r.t. N (x) and XE.

Large values of I ce correspond to more robust solutions having large numbers of efficient
neighboring substitute solutions. Thereby all neighboring efficient solutions are considered
as potential substitute solutions.
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3.2.2 "-robustness indicator

Let x ∈ X and let N (x) denote the set of the neighbors of x . The I ε(x) indicator measures
the highest outcome criterion-wise degradation with respect to ZN over the complete set of
neighbors of x . The smaller the value of I ε(x) is the more robust x is with respect to this
indicator. Since this degradation is measured as a stretching factor with the origin as reference
point we will assume from now on that f (x) > 0 for all x ∈ X .

Definition 3 (ε-robustness indicators) Let x ∈ X . Then

I ε(x) = max
x̂∈N (x)

{
min
z∈ZN

{
max

k∈{1,...,p}

{
zk
fk(x̂)

}}}
,

is called ε-robustness indicator of x w.r.t. N (x) and ZN.

The value of the ε-robustness indicator of an efficient solution x is the smallest scalar such
that each image of a neighboring solution which is stretched by this scalar dominates at least
one non-dominated point (the smaller I ε(x) the more robust x is). One might wonder why
we are not considering the stretching factor to make any neighboring point non-dominated,
which would be reasonable from an application point of view. However, the determination of
this factor is difficult since it would involve a disjunctive formulation (better in at least one
objective function). Note the ε-robustness indicator takes the worst case into account, i.e., it
measures the quality of the worst neighboring solution. This is particularly meaningful if no
second stage optimization problem is solved to determine the best substitute solution.

The ε-robustness indicator is defined in analogy to the ε-indicator as used in representation
and approximation algorithms (see, e.g., Zitzler et al., 2003). However, ε-indicator of a
representative subset R ⊆ Zn follows a different paradigm:

max
z∈ZN

{
min
x̂∈R

{
max

k∈{1,...,p}

{
zk
fk(x̂)

}}}

The value of the ε-indicator is the scalar stretching factor such that each point in the
non-dominated set is dominated by at least one stretched non-dominated point in the repre-
sentation. For a graphical comparison of ε-robustness indicator and ε-indicator see Fig. 3.

Note that in the ε-robustness indicator the worst substitute solution within the neighbor-
hood is considered. This relates to the situation, where an broken optimal solution is replaced
by an arbitrary substitute solution within its neighborhood. This is in contrast to the concept
of recoverable robustness where a second-stage problem is solved to optimality to find a
substitute, see e.g. Kasperski and Zieliński (2017).

Another approach using an additive ε-indicator within robust two-stage optimization is
presented in Hollermann et al. (2020). Thereby, in each scenario the distance between the
ideal Pareto-front for this scenario and the Pareto-front obtained by extending the first stage
decision is minimized.

Instead of considering the worst case, i.e., the maximal stretching factor required for a
solution in the neighborhood, the ε-average-robustness indicator takes the average stretching
factor into account. This can compensate neighboring solutions quite far away from the Pareto
front if the majority of neighbors is efficient or close to the Pareto front.
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(a) (b)ε-robustness indicator ε-indicator

Fig. 3 Comparison of ε-robustness indicator ε and ε-indicator εrep. In both cases the same two points z′ and
z′′ are selected as an illustrative example for images of neighboring solutions or for a representative subset,
respectively. In the illustration both points z′ and z′′ are streched by the same factor such that at least one point
is dominated by each or all points are dominated by at least one, respectively

Definition 4 (ε-average-robustness indicator) Let x ∈ X . Then

I�ε(x) = 1

|N (x)|
∑

x̂∈N (x)

min
z∈ZN

{
max

k∈{1,...,p}

{
zk
fk(x̂)

}}
,

is called ε-average-robustness indicator of x w.r.t. N (x) and ZN.

In some applications, it may be meaningful to assume that, whenever an item becomes
unavailable in an efficient solution x , it is replaced by the best possible alternative. In this
case, we can consider an item-wise ε-robustness indicator as follows. Let j ∈ {1, . . . , n}
such that x j = 1, then N j (x) denotes the set of neighbors of x , in which the j-th variable
has value 0, i.e., N j (x) := {x̂ ∈ N (x) : x̂ j = 0}. The I ε

D(x) indicator measures the highest
outcome criterion-wise degradation with respect to ZN, assuming that whenever a variable
should be replaced, the best possible replacement will be used.

Definition 5 (Interdiction ε-robustness indicator) Let x ∈ X . Then

I ε
D(x) = max

j∈{1,...,n}

{
min

x̂∈N j (x)

{
min
z∈ZN

{
max

k∈{1,...,p}

{
zk
fk(x̂)

}}}}
,

is called interdiction ε-robustness indicator of x w.r.t. N (x) and ZN.

Also in the case of interdiction robustness indicators we take an average case analysis into
account by defining the interdiction ε-average-robustness indicator.

Definition 6 (Interdiction ε-average-robustness indicator) Let x ∈ X \ {0}, let J := { j ∈
{1, . . . , n} : x j = 1} and let ϕ j ∈ (0, 1] denote a multiplier that reflects the probability or
cost of replacing an item j , j ∈ {1, . . . , n} selected in x when it gets unavailable. Then

I�ε
D (x) = 1

∑

j∈J
ϕ j

∑

j∈J

ϕ j

(
min

x̂∈N j (x)

{
min
z∈ZN

{
max

k∈{1,...,p}

{
zk
fk(x̂)

}}})

is called interdiction ε-average-robustness indicator of x w.r.t. N (x) and ZN.

123



Annals of Operations Research (2022) 319:1769–1791 1779

Table 1 Robustness indicators for the example (3) introduced in Sect. 2.4. The best value of the respective
robustness indicator is highlighted in bold

x I c f (x) I ce(x) I ε(x) I�ε(x) I εD(x) I�ε
D (x)

x1 25 2 1.277778 1.099418 1.125000 1.022346

x2 25 4 1.208333 1.071064 1.064516 1.011668

x3 25 6 1.171429 1.065554 1.088235 1.014538

x4 25 5 1.185185 1.083877 1.129032 1.022695

x5 25 4 1.193548 1.085609 1.114286 1.022548

x6 25 5 1.166667 1.058705 1.064516 1.012354

x7 25 4 1.166667 1.058705 1.088235 1.017455

x8 25 4 1.230769 1.087099 1.114286 1.019959

Note that the multiplier ϕ j may reflect a probability, a weight, or in the case of our
cardinality constrained knapsack problem we may choose ϕ j = 1/�, for j = 1, . . . , n.

3.2.3 "-robustness indicators for minimization problems

For minimization problems the ε-robustness indicators introduced in Sect. 3.2.2 above have
to be defined with respect to a prespecified reference point zr that is strictly dominated by
images of feasible points (zr > z for all z ∈ Z ), or that is strictly dominated by all points that
relevant for the problem at hand. We exemplarily state the formulation for the ε-robustness
indicator introduced in Definition 3:

I ε(x) = max
x̂∈N (x)

{
min
z∈ZN

{
max

k∈{1,...,p}

{
zrk − zk

zrk − fk(x̂)

}}}
.

All other indicators introduced in Sect. 3.2.2 can be reformulated analogously.

3.3 Illustration at bi-objective CCP and shortest path problems

Before we investigate the properties of the robustness indicators introduced above we eval-
uate all of them on the example introduced in Sect. 2.4. The computation of the robustness
indicators is straight forward based on the determination of the neighborhood of the respective
solution. The results are presented in Table 1.

In order to show the effect of decision space robustness indicators for different combinato-
rial structures we additionally investigate a small real-life bi-objective shortest path problem,
see Fig. 4. This graph represents the street map of the western hillside of the center of the city
of Coimbra, connecting the old downtown (left side) to the campus Pólo I of the University
of Coimbra (right side). This data was retrieved from Open Street Map with a python script
using OSMnx API (Boeing, 2017), and corresponds to a rectangular area with coordinates
(40.20642,−8.42944) and (40.20923,−8.42540) and network of type walk. The leftmost
circle corresponds to the source, a crossing betweenFerreira Borges street andArcoAlmedina
street at (40.208897,−8.4290758), and the rightmost circle corresponds to the destination,
the Paãßo Real at the University of Coimbra at (40.2078443,−8.4260833). The length of
each street segment was taken from Open Street Map with OSMnx API and the elevation
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Fig. 4 Real-life shortest path example

of each location corresponding to a blue circle in Fig. 4 was retrieved with Open Topo Data
API (https://api.opentopodata.org). There is a total of 77 locations and 186 street segments.

The walking paths between these two locations are a well-known tourist attraction in old
town of Coimbra. The streets are not only narrow but also very steep. Although the length of a
typical walking path between source and destination is less than 1km, it implies a difference
of 60m in elevation.

In our example, we consider the problem of finding a path from source to destination that
minimizes both the total length and the sum of the positive slopes. For the computation of
the solpe of an arc we take the ascent quadratically into account. A total of 10280 feasible
(simple) paths between source and destination were computed, from which only four were
efficient, as shown in the four plots in Fig. 5. The resulting total lengths (in meters) and
total slopes as well as the decision space robustness indicator values are given in Table 2.
The reference point z was computed as the total length of the longest feasible path plus one
meter (2206.93m) and the total slope of the steepest feasible path plus one (50.06). The
neighborhood definition used to compute the decision space robustness indicators is given
in Ehrgott and Klamroth (1997) and Gorski et al. (2011), that is, two paths are neighbors if
their symmetric difference of their arc set in the residual graph corresponds to a single cycle.
For the I�ε

D indicator, we used the same value of φ j for every street segment, equals to the
reciprocal of the total number of street segments.

Figure 5 indicates that p1 and p2 are neighboring paths, as well as p3 and p4, the former
being shorter but steeper than the latter (see columns length and slope in Table 2). The
difference of 4m between p1 and p2 and between p3 and p4 is only due to a small detour
that can be observed in the top-right corner of each plot in Fig. 5.

Table 2 suggests that paths p1 and p2 are more robust than p3 and p4 with respect to I c f .
Therefore, p1 and p2 contain more alternative detours in case some road segment becomes
blocked. However, paths p3 and p4 are more robust with respect to I ε(p) and I�ε(p), that
is, they are better with respect to the worst case quality of their neighboring paths.
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Fig. 5 Four efficient paths for the shortest path example

Table 2 Total length, slope and decision space robustness indicators of the four efficient paths in Fig. 5

Path p Length Slope I c f (p) I ce(p) I ε(p) I�ε(p) I εD(p) I�ε
D (p)

p1 484.9 11.03 1674 2 5.987 1.984 1.120 0.997

p2 480.9 11.04 1614 2 5.896 1.981 1.120 0.997

p3 650.3 9.51 365 2 3.644 1.665 1.120 0.997

p4 646.3 9.52 332 2 3.610 1.649 1.120 0.997

3.4 Comparison to decision robustness in the continuous case

In Eichfelder et al. (2017) decision robustness is considered for continuous multi-objective
optimizationproblems. Since our robustness indicators significantly differ from the set-valued
optimization approach suggested therein, we will show the differences and highlight why
our indicators are better suited for the discrete structure of MOILPs. In the continuous case
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the set of realizations of a solution x is assumed to be a compact set containing x , which we
can identify with an appropriately chosen neighborhood U(x).

According to Eichfelder et al. (2017), a solution x is called decision robust feasible if
all of its realizations are feasible, i.e., U(x) ⊂ X . Furthermore, a solution x∗ ∈ X̂ = {x ∈
X : U(x) ⊂ X} is called decision robust efficient if there is no x ′ ∈ X̂ \ {x∗} such that

f
(U(x ′)

) ⊂ f
(U(x∗)

) + R
p
+.

In other words, a solution x∗ is denoted as decision robust efficient, if there is no other
solution x ′ ∈ X̂ \ {x∗} such that for all x ′′ ∈ U(x ′) there exists an x ∈ U(x∗) such that
f (x) ≤ f (x ′′).
Applying this definition to discrete optimization problems is problematic, since discrete

neighborhoods are not local like in the continuous case. Depending on the definition of
neighborhood and the problem structure all neighborhoods of feasible solutions might con-
tain infeasible solutions. Moreover, the discrete neighborhood of a solution often covers a
significantly large part of the feasible region. In the assignment problem, for example, the
distance between any pair of solutions is at most two elementary swaps, i.e., changes along
alternating paths (Gorski et al., 2011). Thus, the images of the solutions in the neighborhood
might be spread considerably in objective space. Consequently, the majority of solutions
would be decision robust w.r.t. to the set-valued definition, because not all realizations are
dominated by realizations of another solution. However, in the discrete case it is not possible
to consider smaller neighborhoods than the ones defined by basic swaps. Consequently, we
relaxed both concepts decision feasibility robustness and decision efficiency robustness to
gradual indicators.

3.5 Properties of robustness indicators

This section provides some theoretical properties of the proposed indicators and the rela-
tionship between the three types of indicators. The most well-known unary requirements an
indicator must fulfill are quite natural and easy to check. Despite these two aspects, it is
important to consider them as properties of our indicators in this paper.

Proposition 1 (Existence) All the proposed indicators always exist and are well-defined, but
they are not unique with respect to the feasible solutions x ∈ X (i.e., two or more solutions
can have the same indicator value).

Proof It is easy to see from the definitions that all the indicators are well-defined formulas.
Particularly, the denominator in the ε-robustness indicators (I ε(x), I�ε(x), I ε

D(x), I�ε
D (x))

is larger than zero, as fk(x) > 0 for all x ∈ X by assumption. In general, the indicators are
not unique, i.e., they are non-injective, since several solutions can have the same indicator
value as can be seen in Table 1.

Proposition 2 (Symmetry) All the proposed indicators are symmetric with respect to any
permutation of the components and/or elements of their input.

Proof Let us take for example indicator I ε
D(x), which has as input the solution x =

(x1, . . . , x j , . . . , xn), the neighborhoods N j (x), for j = 1, . . . , n, and the set of
non-dominated points ZN. It is easy to see that for any x re-ordered as xπ =
(xπ(1), . . . , xπ( j), . . . , xπ(n)), where π : {1, . . . , n} → {1, . . . , n} is an arbitrary permu-
tation of the indices, the value of the indicator does not change. The same applies to any
permutation of the elements of the sets N j (x), for j = 1, . . . , n, and ZN.
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Proposition 3 (Scale invariance) Indicators I ε(x), I�ε(x), I ε
D(x), and I�ε

D (x) are positively
homogeneous with respect to the coefficients of the matrix C, i.e., any multiplication with a
positive scalar of the coefficients of the matrix, α C, does not have impact on the values of
any of these indicators. However, these indicators are not stable with respect to translations
of the coefficients of C (i.e., linear affine transformations).

Proof Positive homogeneity is only related with the aggregation operator:

max

{
zk
fk(x̂)

}

It is very easy to see that multiplying both zk and ck� by α > 0 does not change the
aggregation value since the operator is still the same:

α zk
α fk(x̂)

= zk
fk(x̂)

.

The indicators are not stable with respect to linear affine transformations, which can be
easily seen from the definition.

Proposition 4 If I ε(x) = 1 then |N (x)| = |N (x) ∩ XE|.
Proposition 5 The relations between the following pairs of indicators hold.

I ce(x) ≤ I c f (x), I ε
D(x) ≤ I ε(x),

I�ε(x) ≤ I ε(x), I�ε
D (x) ≤ I ε

D(x).

4 Fields of applications for the robustness indicators

The proposed robustness indicators can be considered as a tool to evaluate the quality of
efficient solutions in an a-posteriori analysis. This additional quality measure can be utilized
in different ways. Two possible approaches will be covered in this section.

Due to the possibly large number of non-dominated points (and efficient solutions) deci-
sion makers are confronted with huge amount of mathematically incomparable alternatives.
The burden of the decision maker can be significantly reduced by the selection of a repre-
sentative subset of non-dominated points/efficient solutions (see e.g., Sayın, 2000; Vaz et al.,
2015). In an a-posteriori algorithm to determine a representation, decision space robustness
can be integrated as an additional quality criterion, ensuring robustness of the representation.

Instead of leaving the decision to a human decision maker it is also possible to use
automatic tools, so called decision support systems, to select the most preferred efficient
solutions. Since the robustness of a solution can be considered as a quality criterion, it should
be integrated in the process of decision making.

4.1 Decision space robust representations

Weaim at the computation of a representative subset R ⊆ XE of efficient solutions, which has
a fixed cardinality of |R| = k, optimizes some representation qualitymeasure and is “decision
space robust”.However, the decision space robustness indicators proposed inSect. 3 gradually
measure the robustness of a single solution.We thus extend this solution-wise definition to sets
of solutions. Since every single solution in a representative subset should be a valuable choice
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for the decision maker, each one should satisfy a certain robustness level. This consideration
leads us to a worst case analysis:

Definition 7 Let R ⊆ XE be a subset of efficient solutions and let
I (x) ∈ {−I c f (x),−I ce(x), I ε(x), I�ε(x), I ε

D(x)} denote a decision space robustness
indicator. Then the respective decision space robustness of R is

I (R) = max
x∈R

I (x)

Since I c f and I ce are to minimized (while the other indicators are to be maximized), we
use here their negative values.

Most representation quality measures are based on points in the objective space. Since
we are considering representative sets of the efficient set R ⊆ XE in the decision space,
we adapt the definitions of uniformity, coverage, and ε-indicator (Sayın, 2000; Zitzler et al.,
2003) to our notation. Note that the representation quality is increasingwith increasing values
of uniformity, thus we will use (contrary to the original definition) its negative value to obtain
three minimization quality measures QU , QC , and Qε.

Uniformity QU (R) = − min
r i ,r j∈R,r i �=r j

‖ f (r i ) − f (r j )‖

Coverage QC (R) = max
z∈ZN

min
r∈R

‖ f (r) − z‖

ε − Indicator Qε(R) = max
z∈ZN

min
r∈R

max
k∈{1,...,p}

zk
fk(r)

Definition 8 (Bi-objective robust representation problem)
Let Q ∈ {QU , QC , Qε} denote one of the representation quality measures uniformity,

coverage, or ε-indicator, and let I (x) ∈ {−I c f (x),−I ce(x), I ε(x), I�ε(x), I ε
D(x)} denote

a decision space robustness indicator. Then, the bi-objective robust representation problem
is defined as

min I (R)

min Q(R)

s. t. |R| = k
R ⊆ XE

(RRP)

Since the worst case robustness value I (R) = maxx∈R I (x) is attained by (at least) one
efficient solution in the representation, it is possible to solve (RRP) by a sequence of |XE|
ε-constraint scalarizations, which can be rewritten by considering only sufficiently robust
solutions:

min Q(R)

s. t. |R| = k
R ⊆ {x ∈ XE : I (x) ≤ ε}

(RRP-ε)

In case of bi-objective integer programming problems (RRP-ε) can be solved in poly-
nomial time in the number of efficient solutions. Efficient algorithms based on dynamic
programming to solve such representation problems for bi-objective discrete optimization
problems are suggested in Vaz et al. (2015). The approaches make use of the 1D strucuture
of the nondominated set of bi-objective problems.

We use the numerical example (3) introduced in Sect. 2.4 to evaluate the bi-objective
representation problem (RRP) with respect to coverage and ε-robustness.
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(a) (b) (c)

Fig. 6 Three nondominated representations w.r.t. coverage and ε-robustness indicator. The supported non-
dominated points are depicted as squares, unsupported non-dominated as circles, which are filled black if the
respective is in the robust representative subset. The grey circles indicate the coverage radii

min
R⊆XE|R|=3

(
I ε(R), QC (R)

)
(4)

The bi-objective representation problem (4) has eleven efficient representations mapping
to three nondominated points (w.r.t. coverage and ε-robustness), see Fig. 6. Since solution z1

which is important to yield a small coverage radius (c.f. Fig. 6), has a rather high ε-robustness
indicator value, the two quality measures are conflicting. On the other hand, the three most
robust solutions (z3, z6, z7) do not cover the non-dominated set well (c.f. Fig. 6).

4.2 A composite qualitative robustness index

This section is devoted to composite qualitative robustness indices that can be used for
assessing the robustness of each efficient solution, x ∈ XE, with respect to (most of) the
indicators presented in this paper. We will exemplify this by applying a simplified version
of Electre Tri- C (Almeida-Dias et al., 2010). In this simplified version we consider one
criterion per indicator and we do not make use of discriminating and veto thresholds. The
method can be illustrated through the data in Table 1, by removing index I c f (·) since its
value is the same for all the solutions. The remaining indices are thus our criteria. The
notation g1, . . . , g5 will be used to represent them in this context, where g j (x) denotes the
performance of an efficient solution x ∈ XE on criterion g j , for j = 1, . . . , 5 (we will use
the subscript j to avoid confusion with components of the vector of variables x). For the sake
of simplicity we assume without loss of generality that all the criteria are to be minimized.
In the context of our illustrative problem (3), we thus multiply the data of the first column
by −1. The performance table can be presented in the following Table 3 (see also Table 1).

TheElectre Tri- Cmethod (Almeida-Dias et al., 2010) is a pairwise comparisonmethod
with the objective to form an outranking relation for all ordered pairs of efficient solutions
(hereafter we use the term actions instead of solutions), and then explore this relation by
assigning the actions to categories. In the following, we will discuss the two main steps of
the Electre Tri- Cmethod, i.e., outranking and classification, in more detail and illustrate
them using the data of Table 3.
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Table 3 Performance for the
example problem (3) introduced
in Sect. 2.4

x g1(x) g2(x) g3(x) g4(x) g5(x)

min − 6 1.166667 1.017986 1.064516 1.023337

max − 2 1.277778 1.057133 1.129032 1.045390

x1 − 2 1.277778 1.057133 1.125000 1.044693

x2 − 4 1.208333 1.029872 1.064516 1.023337

x3 − 6 1.171429 1.024572 1.088235 1.029076

x4 − 5 1.185185 1.042190 1.129032 1.045390

x5 − 4 1.193548 1.043855 1.114286 1.045097

x6 − 5 1.166667 1.017986 1.064516 1.024709

x7 − 4 1.166667 1.017918 1.088235 1.034909

x8 − 4 1.230769 1.045288 1.114286 1.039918

4.2.1 Pairwise comparison and outranking

In the simplified version of Electre Tri- C, there are only three possibilities when com-
paring an ordered pair of actions (x, x̂) ∈ XE × XE on each criterion g j , for j = 1, . . . , n
(recall that all the criteria are to be minimized):

– x is at least as good as (outranks) x̂ (x � j x̂), iff g j (x) ≤ g j (x̂);
– x is strictly preferred to x̂ (x � j x̂), iff g j (x) < g j (x̂);
– x is indifferent to x̂ (x ∼ j x̂), iff g j (x) = g j (x̂).

The weight or relative importance (weights can also be interpreted as the voting power
of the criterion) of each criterion g j , denoted by w j ∈ [0, 1], with ∑n

j=1 w j = 1 is a
fundamental preference parameter that impacts the outranking relation. In what follows,
we consider the same normalized weight for each criterion, i.e., w j = 1/5 = 0.2, for
j = 1, . . . , 5 in the example problem.

4.2.2 Categorization

In our example, we consider only three categories: “low robustness (C1)”, “medium robust-
ness (C2)”, and “high robustness (C3)” in order to qualitatively classify the eight efficient
actions by taking into account all the criteria (indices) in a composite (aggregated) way.

Each category is represented by a representative/central element, say x̂1 for the category
C1 of the lowest robustness level; x̂2 for the category C2 with the medium robustness level;
and x̂3 for the category C3 of the highest robustness level. In the example problem, we can
consider the following data for each one of these central actions (let us assume that the actions
are “well” separated according to the separability properties of the method). These values
are obtained by taking into account the range of each criterion in Table 3, but possibly also
some additional information on the quality of the given actions in the respective criterion.
For example, the range of the values of g1 are given by g1(x) ∈ [−6,−2] for x ∈ XE, where
actually the worst attained value of −2 might still be quite good as compared to other non-
listed actions. This information is used for defining the first components of the representative
actions of each category. Since we are minimizing, the value −1 is a rather bad value for an
action, −3 is a medium value, and −5 is a good value for g1. We proceed in the same way
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Table 4 Credibility degrees
σ(x, x̂) and σ(x̂, x)

x̂1 x̂2 x̂3 x̂1 x̂2 x̂3

x1 0.2 0.0 0.0 0.8 1.0 1.0

x2 1.0 1.0 0.4 0.0 0.0 0.6

x3 1.0 1.0 0.6 0.0 0.0 0.4

x4 0.6 0.4 0.4 0.4 0.6 0.8

x5 0.8 0.4 0.2 0.2 0.6 0.8

x6 1.0 1.0 1.0 0.0 0.0 0.2

x7 1.0 0.8 0.4 0.0 0.2 0.6

x8 1.0 0.2 0.0 0.0 0.8 1.0

for the other components and set

g(x̂1) = (−1, 1.260, 1.047, 1.120, 1.041)

g(x̂2) = (−3, 1.230, 1.037, 1.100, 1.033)

g(x̂3) = (−5, 1.200, 1.027, 1.080, 1.028).

4.2.3 Implementation

The first step in the method is to construct a comprehensive outranking relation by taking
into account all the criteria at the same time (i.e, by aggregating them). For such a purpose
a degree of credibility between an ordered pair of actions, (x, x̂), denoted by σ(x, x̂), is
computed. In the simplified version of the method, this degree of credibility is computed
only by the power of the coalition of criteria for which x outranks x̂ , i.e,

σ(x, x̂) =
∑

{ j : g j (x)≤g j (x̂)}
w j .

This is a fuzzy number since σ(x, x̂) ∈ [0, 1], which represents the degree to which x
outranks x̂ . In other words, it specifies the fraction of votes favorable to x over x̂ . The degrees
of credibility between the solutions of our example are shown in Table 4.

For example, we compare the performance lists of x4 and x̂2, taking into account
their performances g(x4) = (−5, 1.185185, 1.042190, 1.129032, 1.045390) and g(x̂2) =
(−3, 1.230, 1.037, 1.100, 1.033), respectively. Action x4 is better in the first two criteria and
worse in the other three. Thus, σ(x4, x̂2) = 0.2 + 0.2 = 0.4 (the fraction of votes favorable
to x4 against x̂2 is 0.4) and σ(x̂2, x4) = 0.2+ 0.2+ 0.2 = 0.6 (with similar interpretation).

In order to transform the fuzzy numbers into crispy ones, we can use a kind of cutting
or majority level, denoted by λ, which may be interpreted as a majority level like in voting
theory. For example, if λ ≥ 0.55 we only accept an outranking where the coalition of criteria
has a majority over 55% (in our example, x4 does not outrank x̂2 since σ(x4, x̂2) < 0.55, but
x̂2 outranks x4 since σ(x̂2, x4) ≥ 0.55). After the application of such a λ cutting level we
can devise the following comprehensive relations for an ordered pair of alternatives (these
relations will further be used to compare the solutions against the characteristic central action
and in the assignment procedures in order to assign them to the most adequate category(ies)):

– x outranks x̂ (x �λ x̂) iff σ(x, x̂) ≥ λ;
– x is preferred to x̂ (x �λ x̂) iff σ(x, x̂) ≥ λ and σ(x̂, x) < λ;
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Table 5 Preference relations with
central actions x̂1 x̂2 x̂3

x1 ≺0.55 ≺0.55 ≺0.55

x2 �0.55 �0.55 ≺0.55

x3 �0.55 �0.55 �0.55

x4 �0.55 ≺0.55 ≺0.55

x5 �0.55 ≺0.55 ≺0.55

x6 �0.55 �0.55 �0.55

x7 �0.55 �0.55 ≺0.55

x8 �0.55 ≺0.55 ≺0.55

Table 6 The values of ρ(x, x̂)
x̂1 x̂2 x̂3

x1 0.2 0.0 0.0

x2 0.0 0.0 0.4

x3 0.0 0.0 0.4

x4 0.4 0.4 0.4

x5 0.2 0.4 0.2

x6 0.0 0.0 0.2

x7 0.0 0.2 0.4

x8 0.0 0.2 0.0

– x̂ is preferred to x (x̂ �λ x) iff σ(x̂, x) ≥ λ and σ(x, x̂) < λ;
– x̂ is indifferent to x (x̂ ∼λ x) iff σ(x, x̂) ≥ λ and σ(x̂, x) ≥ λ;
– x̂ is incomparable to x (x̂‖λx) iff σ(x, x̂) < λ and σ(x̂, x) < λ.

Back to our example, since the central action x̂2 is preferred to x4, we use the (reverse strict
preference) notation x4 ≺λ x̂2. Table 5 presents the preference relations between solutions
and central actions and it will be useful to understand the mechanism of the assignment
procedures (the relations depend on the chosen λ; in this case we choose λ = 0.55).

From these relations Electre Tri- C (Almeida-Dias et al., 2010) makes use of two
assignment procedures conjointly to assign the actions to an interval of categories (the best
situation occurs when the two procedures produce the same assignment). The categories
are, in our case, C1 ≺ C2 ≺ C3: they are ordered from the worst to the best and they are
characterized by x̂1, x̂2, and x̂3, respectively. The two procedures need the definition of a
selection function of the form

ρ(x, x̂) = min{σ(x, x̂), σ (x̂, x)}.
In our example, ρ(x4, x̂2) = min{σ(x4, x̂2), σ (x̂2, x4)} = {0.4, 0.6} = 0.4. Table 6

below presents the computations for all the solutions.
The two procedures can be presented as follows.

Algorithm 1 (Descending procedure) Choose λ ∈ [0.5, 1]. Decrease k from 3 to the first
value k such that σ(x, x̂ k) ≥ λ (i.e, x �λ x̂ k ), or set k to 0 if such a value does not exist.

1 For k = 3, select C3 as a possible category to assign action x.
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2 For 0 < k < 3, if ρ(x, x̂ k) > ρ(x, x̂ k+1), then select Ck as a possible category to assign
x; otherwise, select Ck+1.

3 For k = 0, select C1 as a possible category to assign x.

If we continue with our example for λ = 0.55, the first k for which σ(x4, x̂ k) ≥ 0.55 is
for k = 1. We are in Case 2 of Algorithm 1, but since we do not have ρ(x4, x̂1) = 0.4 >

ρ(x, x̂2) = 0.4, then x4 will be assigned to C2.

Algorithm 2 (Ascending procedure) Choose λ ∈ [0.5, 1]. Increase k from 1 to the first value
k such that σ(x̂ k, x) ≥ λ (i.e, x̂k �λ x), or set k to 4 if such a value does not exist.

1 For k = 1, select C1 as a possible category to assign action x.
2 For 1 < k < 4, if ρ(x, x̂ k) > ρ(x, x̂ k−1), then select Ck as a possible category to assign

x; otherwise, select Ck−1.
3 For k = 4, select C3 as a possible category to assign x.

If we follow the procedure for our example for λ = 0.55, the first k for which σ(x̂ k, x4) ≥
0.5 is for k = 2.We are in Step 2, but sincewe do not haveρ(x4, x̂2) = 0.4 > ρ(x, x̂1) = 0.4,
then x4 will be assigned to C1.

The results are as follows (note that the previous tables change when changing the values
of λ), when using the two procedures conjointly:

– Assignments with λ = 0.55:

C1 = {x1, x4}, C2 = {x4, x5, x8}, C3 = {x2, x3, x6, x7}.
All the actions are precisely assigned, except x4 which can be of low and medium
robustness.

– Assignments with λ = 0.65:

C1 = {x1, x4}, C2 = {x4, x5, x8}, C3 = {x2, x3, x6, x7}.
The assignments are the same, even with a higher cutting level.

– To show the impact of the cutting level, we also computed the assignments for λ = 0.85
(even though very high cutting levels are of little practical relevance):

C1 = {x1, x4, x5}, C2 = {x7, x8}, C3 = {x2, x3, x4, x5, x6, x7}.
Note that at this very high cutting level, the actions x4 and x5 can not be clearly assigned,
i.e., themethod provides uncertainty about the robustness of these solutions at this cutting
level.

If we look at the indicator values for the actions, the assignments for λ = 0.55 (and also
for λ = 0.65) make sense. We can say, that x2, x3, x6, and x7 are quite robust actions, while
x1 is an action with low robustness.

5 Concluding remarks

In this paper we adopt the concept of decision space robustness to multiobjective integer lin-
ear programming problems. In many practical applications, the computed optimal solutions
can not be exactly implemented in reality. By identifying possible sets of alternative realiza-
tions in appropriately chosen neighborhoods, we propose robustness indicators that assess
the quality of the considered solution under slight deviations. This can be applied to support
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decisionmaking and the selection of amost preferred and simultaneously robust solution.We
exemplify such an approach using theElectre Tri- Cmethod.Moreover, robustness indica-
tors can be extended to sets of solutions, such that the robustness of different representations
of the efficient set can be evaluated and optimized.

From a computational perspective, the computation of neighborhoods of solutions usually
requires the a priori computation of the complete efficient set or feasible set, respectively,
which is usually very costly. However, depending on the problem structure, this neighborhood
information can be obtained already during the solution process, for example, in dynamic
programming type algorithms (see, e.g., Correia et al., 2018). In this paper we made use of
the neighbors of the investigated solution to define the robustness indicators. Analogously,
it is possible to define a k-order neighborhood, where the neighbors of x are at most k
elementary moves away from x and define the indicators accordingly. Future research could
also address possible advantages of using neighborhood search techniques, despite the fact
that the efficient set of multiobjective integer linear programming problems is not connected
in general (Gorski et al., 2011).
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