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Abstract
Interaction effect across complementary products plays an important role in characterizing
the optimal inventory policy. The inventory levels of complementary products are interrelated
due to interaction between demand streams. In this paper, we consider a periodic review base-
stock policy in the presence of two complementary products with interrelated demands and
joint replenishment. Demands are modeled by a Poisson process and any unmet demand is
lost. Demands can be in sets of one unit of each or jointly. If an arrival demand requests two
products jointly and one of the products is not in stock, then the whole demand is lost. We
aim to investigate how this interrelated demand phenomenon influences the optimal base-
stock levels and the period length of a periodic review policy. We utilize the renewal reward
theorem to derive the explicit expression of the expected profit rate in the system. The goal
is to determine the optimal period length and the base-stock levels such that the expected
profit rate is maximized. Enumeration and approximation algorithms are employed to find
the optimal and near-optimal solutions, respectively. The approximation algorithm is based
on a scenario with independent demand processes which results in an explicit expression for
the long-run profit per time unit and leads to analytical solutions for optimal policies. Our
numerical results reveal that the solutions obtained by the approximation algorithm are close
to optimal solutions. Numerical experiences show that the maximum profit in the system
is achieved if the proportion of customers with jointly demand increases. Moreover, the
interaction effect between demand processes has a significant impact on the control policy
performance when the units lost sales and unit holding costs are high, and the demand rare
is low.
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1 Introduction

Analyzing multi-product inventory systems is an easy task as long as there exists no inter-
action between products’ demands. In case of independent demand processes for products,
the inventory system can be studied by each product separately, and it becomes challenging
when the demand processes are interlinked. Complementary products are a certain category
of products whose demand processes are correlated, such that lack of one product can result
in a full lost sales situation. By definition, two products are complementary when a change
in one product’s demand has a direct impact on the other product’s demand. If products are
complementary, then a positive correlation exists between the demands of these complemen-
tary products. Buying one of the complementary products requires or persuades the buying
of the other to achieve the full utility of the products (Yue et al. 2006). The demand model
for complementary products can be either in sets of one unit of each or jointly. The group
of customers demanding complementary products jointly would leave the system if one of
the complementary products is not available on the shelves. Therefore, ignoring correla-
tion between products’ demands may result in unrealistic conclusions and misestimating the
inventory cost of associated items.

Flashlights and batteries, mobile phone and memory card, tires and cars, milk and cereal,
computer and software, camera and film are few examples of complementary products.
It is important to inform customers about the existence of complementary products. For
example, Amazon.com increases the joint demands by placing complementary products
next to each other in product lists. This shopping advice stimulates customers to demand
complementary products jointly and results in correlations among products’ demands. We
can increase the joint demand not only in the online channels but also in brick-and-mortar
retailers. For example, a strategy that increases joint demands in retail sectors is a side-by-
side assortment, where the complementary products are located next to each other on the
shelves. The correlation in demands of related products can also be found in Make-to-Order
assembly-disassembly systems and Make-to-Stock assemble-to-order systems (Xu 1999).

In practice, managing the inventories of complementary products is a major concern. The
interrelated demand phenomenon makes the track of stock levels complicated because the
inventory levels of products are interlinked due to correlated demands. Therefore, developing
an efficient control policy taking this interaction effect across complementary products into
consideration is a challenge. The distinguishing feature of themulti-product inventory system
under our consideration is the existence of correlated demands and joint replenishment costs
across two complementary products.

Holding costs, stock-out costs, and set up costs (fixed ordering costs) are the main cost
components in an inventory system. The inventory manager is posed with the problem of
striking a balance between these cost components. Replenishment coordination is an effective
practice in many inventory systems with multiple products (Liu and Yuan 2000). A joint
replenishment occurs when a retailer orders a group of products from the same supplier.
In case of high fixed ordering costs, using joint replenishment may lead to substantial cost
savings in the system. Although several papers have analyzed the coordinated replenishment
policies, the optimal coordinated replenishment policy class for multi-product inventory
systems is still an open question (see, e.g., Silver (1965), Atkins and Iyogun (1988), Pirayesh
and Poormoaied (2015), and Chen et al. (2019)).

We analyze, in this study, a periodic review policy with joint replenishment and lost
sales. Orders with zero lead time arrive instantly and can be used in the following period.
Customer demands are driven by a unit Poisson process. When demand occurs and the
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inventory system is out of stock, often the customer will not wait for the stock replenishment
and thereby the demand is treated as a lost sale (Kang and Gershwin 2005; Thomopoulos
2004). By joint replenishment, the inventory system renews itself at replenishment instances
which are regarded as regenerative points. It makes the analysis of the system easier. Having
regenerative points in our stochastic inventory model, we can utilize the renewal reward
theorem to derive the system characteristics. On top of that, we consider the joint ordering to
exploit the advantage of the fixed joint replenishment costs across complementary products,
which leads to significant cost savings in fixed replenishment costs. By contrast, relying on
continuous review policies makes the analysis strictly complicated so that the renewal reward
theorem is not applicable (Poormoaied and Atan 2020a). Besides, a huge amount of fixed
ordering costs are incurred to the inventory system under a continuous replenishment policy.
In view of this fact, we develop a periodic review policy that appears to be economically
worthwhile.We also use awell-known continuous review can-order policy under a simulation
study to assess the efficiency of our proposed periodic review policy.

In this article, a base-stock periodic review policy in the presence of correlated demand
across two complementary products is considered. Products are jointly replenished at the
beginning of the periods with length T up-to-level Si (i = 1, 2) by a single supplier with a
fixed ordering cost. This policy is proposed for the first time by Atkins and Iyogun (1988).
Products are demanded in the sets of one unit of each or jointly. We consider this interac-
tion effect phenomenon in deriving operating characteristics of the inventory system, and
aim to determine the optimal base-stock levels Si and period length T . Since the track of
inventory levels over time due to the interaction effect is difficult, by estimating the demand
rate we derive the operating characteristics of the system. Then, we develop an approxi-
mation algorithm based on ignoring the existing correlated demand across complementary
products, which can be employed in models with more than two complementary products.
By doing so, the system works with two independent demand processes so that we are able
to derive the explicit expressions of the operating characteristics and find the near-optimal
solution analytically. Finally, computational experiences are provided to capture the impact
of demand correlation and to compare our proposed policy with existing policies proposed in
the literature. The main finding is that ignoring the effect of demand correlation significantly
affects the base-stock policy performance when the unit lost sales and unit holding costs are
high, and the demand rate is low.

The main contributions of our paper are summarized as follows. We provide insight into
how demand correlation affects the structure of the periodic review base-stock policy for
inventory systems with two complementary products under joint replenishment. Different
from the classical models, we charge time-dependent inventory holding costs. This cost is
affected by the timing of depletion, we therefore need to take the time-dependent holding cost
into account instead of accounting for them only at the end of the periods (Poormoaied et al.
2020a, b). We also construct an approximation algorithm based on neglecting the correlation
between products’ demands. The approximation algorithm can be applied for systems with a
large number of products. Estimating the demand rates by conditioning on the depletion time
of complementary products, we derive the explicit expressions for operating characteristics
of the inventory system. We analytically find the optimal policy parameters for the model
with estimated demand and show that in some conditions, the approximation solutions are
close to the optimal solutions.

The remainder of this paper is organized as follows. In Sect. 2, we provide a brief review
of the related literature. We introduce the model description and the optimization problem in
Sect. 3. In Sect. 4,we address an estimation approach for deriving the operating characteristics
of the inventory system, and propose an approximation algorithm which solves our problem
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analytically.Our observations on behavior of the profit rate function and the solution approach
are provided in Sect. 5. We evaluate the effect of demand correlation on performance of the
base-stock policy and illustrate its efficiency compared to the other existing policies in Sect. 6.
Finally, we provide concluding remarks and directions for future researches in Sect. 7.

2 Literature review

Joint replenishment and complementary products are the related research areas to this study.
The joint replenishment problem has been considerably researched since the early work of
Starr and Miller (1962) and Shu (1971). Goyal and Satir (1989) review inventory systems
with various economic operating policies for jointly replenished items under deterministic
and stochastic demands. Moreover, Khouja and Goyal (2008) review studies on the joint
replenishment policies for multi-product inventory systems and proposed algorithms for this
problem. The main insight of these papers is that the joint replenishment policy reduces the
ordering costs substantially and as a whole can result in significant cost savings in a supply
chain. Furthermore, the can-order policy, so-called the (si , ci , Si ) policy, has been widely
used in these studies as an efficient policy for multi-product inventory systems. The can-order
policy was proposed by Balintfy (1964) and works as follows: whenever the inventory level
of item i drops the reorder point si , a new order is placed to bring the inventory position
to the level Si , and all items which hit their can-order level ci are ordered jointly, where
si ≤ ci < Si . In all inventory systems considered in review papers of Goyal and Satir (1989)
and Khouja and Goyal (2008), the demand processes are assumed to be independent, and the
inventory control policy works based on that. In what follows, we review the literature on
multi-product inventory systems with correlated demands.

Coughlan (1987) surveyed the model of pricing and marketing of the complementary
products, where distribution costs exhibit economies of scale and scope, and customers value
one-stop shopping. He developed an economics-based model with incorporating incentives
for integration or non-integration of the distribution function. Hausman et al. (1998) analyzed
amulti-product base-stock inventory systemwith correlated demandunder budget and service
level constraints, and obtained bounds for the response time distribution. Song (1998) studied
a multi-item base-stock inventory model in which there are several types of customer orders
with correlated demands. She used the order fill rate as a performance measure and derive an
explicit expression for the order fill rate based on a series of convolutions of one-dimensional
compound Poisson distributions. Cheung (1998) considered the (Q, S) policy for a two-item
inventory system with dependent demands. The author obtained exact formulas for fill rates
andproposed algorithms for single-itemand joint-itemsoptimization problems subject to afill
rate constraint. Liu andYuan (2000) proposed aMarkovianmodel for a two-product inventory
system with correlated demands and joint replenishment under a can-order replenishment
policy, and proposed a heuristic method for obtaining can-order replenishment policies.
Gnanendran et al. (2003) addressed the problem of selecting a subset of items among a large
set of potential complementary and substitutable items for rationalizing stock choice. They
proposed a nonlinear integer programming model for maximizing the net revenue subject
to the budget constraint. Agrawal and Smith (2003) studied a similar problem in which
assortment selection decision in a multi-item retail inventory system with complementary
products is considered.

Lee and Chew (2005) proposed a dynamic periodic review policy for the joint replenish-
ment problemwith auto-correlated demands. In their policy, the forecast of the future demand

123



Annals of Operations Research (2022) 315:1937–1970 1941

at every review point is updated by using an appropriate forecasting model by which the next
review point, as well as the target inventory level of each product, are determined. Urban
(2005) considered a periodic-review base-stock inventory model, where demand rates are
dependent on the amount of inventory displayed to the customer and the amount of demand
in the previous period (serially correlated demands).

Cross-selling implies that “a customer who has purchased a particular product may also
be willing to purchase a related product” (Shen and Su 2007). Cross-selling can be seen as
a type of complementary pattern. Zhang et al. (2011) developed a deterministic two-item
EOQ model with partial back-ordering in the presence of correlated demands arising from
cross-selling. The proposed inventory system is comprised of major and minor items so that
the demand of the minor item is partially correlated with that of the major item. Taleizadeh
et al. (2020) considered both inventory and pricing decisions under bundle and mixed-bundle
selling strategies in an EOQ model with two complementary items. They analyzed three
different pricing-inventory models to determine optimal order quantities and selling prices of
complementary products. McCardle et al. (2007) and Ferrer et al. (2010) are other researches
surveyed the effects of bundling item on optimal order quantities and the system profit. They
pointed out that product bundling is more beneficial than selling individually.

Another stream of researches on complementary products deals with the pricing decision
for products. The demand of each complementary product depends on its own price and the
prices of the other complementary products. Therefore, pricing strategy is an important fac-
tor influencing customer purchasing behavior. Wang (2006) considered the production and
pricing decisions of multiple manufacturers who produce and sell a set of complementary
products to a market. Each manufacturer faces the problem of determining the production
quantity and the selling price for their individual products, where demand for sets of prod-
ucts is price sensitive and subject to uncertainty. Mukhopadhyay et al. (2011) proposed a
Stackelberg model of pricing of complementary products in a leader-follower type move.
They showed that sharing the private forecast information would benefit the leader firm but
hurt the follower firm as well as the entire system. Wei et al. (2013) surveyed a supply chain
problem with two manufacturers and one common retailer and explored the pricing problem
for two complementary products. They employed five pricing models including the MS-
Bertrand, MS-Stackelberg, RS-Bertrand, RS-Stackelberg, and NG models under different
market power structures among channel members. Wang et al. (2017) addressed the pricing
and service decisions of complementary products in a dual-channel supply chain, online
channel, and the traditional retail channel. For more researches on pricing decision of com-
plementary products see Edalatpour, M. A., & Al-e-Hashem, S. M. (2019) and references
therein for details.

There exist a few number of studies in the literaturewhich takes the control policy structure
into account for complementary products in the presence of interrelated demands. Most
studies concentrate on multi-item products without correlated and stochastic demands, and a
few works studied multi-item inventory systems with correlated and deterministic demands.
The work of Feng et al. (2015) is the only study which considers a can-order type policy,
namely the (s, c, d, S) policy, which captures the interaction effect across complementary
products under stochastic demand. This study is similar to ours in the sense that they aim to
capture the effect of demand correlation on control policy performance. While this differs
from our study in several aspects. First, they employ a continuous review type policy, whilst
our proposed policy is a base-stock periodic review policy. Second, their goal is to minimize
the expected discounted cost over time, whereas we utilize the renewal reward approach to
elicit the profit rate function in the inventory system. Third, we rely on a time-dependent
holding cost, while they consider the holding cost calculation only at some specific time
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epochs. We use the same demand model, similar to Feng et al. (2015), for representing the
correlated demand across complementary products. Another research works dealing with the
demand correlation effect are Mokhtari (2018) and Zhang et al. (2012), where they assumed
a deterministic demand process and proposed a deterministic EOQ-based model with two
complementary products, while we analyze an inventory system under stochastic demand.

3 Problem statement

We consider a periodic review stochastic inventory problem with two complementary prod-
ucts indexed by i = 1, 2. The inventory system is comprised of a single retailer replenishing
two complementary products from the same supplier. Time periods are indexed by n, where
n = 1, 2, . . . with period length of T over an infinite planning horizon. We apply an order-
up-to-level policy, where the inventory level of product i at the beginning of each period
raises to Si with zero lead time. We call this policy as the (Si , T ) policy. The demand follows
a unit Poisson process with rate λ. Products 1 and 2 are complementary. We have three types
of customers (demand arrivals): A group of customers would buy only product 1 (is called
a type-1 demand). Similarly, the second group of customers would buy only product 2 (is
called a type-2 demand). The third group of customers would buy both products (is called
a type-12 demand). Moreover, α1, α2, and α12 represent, respectively, the fraction of cus-
tomers of type-1, type-2, and type-12, where α1 + α2 + α12 = 1. It is worth mentioning that
since the demand follows the Poisson process, it is not possible that two types of demands
appear simultaneously. Let X j be the arrival time of j-th customer, which is measured from
the beginning of each period. Since demand follows the Poisson process, X j is an Erlang
random variable with scale parameter λ and shape parameter j . Let fX j (x) and FX j (x)
denote, respectively, the probability and cumulative density function of this random variable
at point x . Particularly, XSi indicates a time period during which all Si products are depleted
by demand. That is, XSi is the arrival time of Si -th demand, which is called the depletion
time of product i . At the beginning of period n, Ri units of product i is replenished which is
equal to Si minus the inventory level of product i at the end of period n − 1. Products are
ordered at the unit cost pi and a fixed ordering cost K at the beginning of each period for
both items, and are sold at price ri . The inventory carrying cost rate per unit of product i per
unit time is hi . Demands are immediately satisfied if the warehouse has at least one item in
stock, i.e., the inventory level is strictly positive, otherwise they are lost. The lost sales cost
associated with demands of type-1, type-2, and type-12 are interpreted as cost of goodwill
and are denoted by π1, π2, and π12, respectively. For ease of exposition, we denote each pair
of parameters with a single notation as follows: α = (α1, α2), p = (p1, p2), r = (r1, r2),
h = (h1, h2), and π = (π1, π2, π12). We use the terms period and cycle interchangeably
throughout the text.

Before proceeding with definition of state variables, we describe the order of events. At
the beginning of the period, the retailer’s inventory position is Si . Demands occur throughout
the period. At the end of the period, a replenishment order is placed such that the inventory
position becomes Si . Finally, the profit is calculated at the end of the period. The state of
the inventory system is defined as the inventory position (stock level + outstanding orders)
of product 1 and product 2 at time t , denoted by I P(t) = (I P1(t), I P2(t)), where I Pi (t)
represents the inventory position of product i at time t . For abbreviation, let’s denote XS1
and XS2 by T1 and T2, respectively. To analyze the inventory system under consideration, we
need to address three realizations (cases) in the inventory system based on the state of the
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t

IP (t)

T1 T2 T1

S1 S1 S1

S2 S2 S2

(Cycle 1)
T

(Cycle 2)
T

(Cycle 3)
T

Fig. 1 Different cycle realizations of the inventory system for S1 = 4, S2 = 5, and specific T

system over time as follows. Case A: product 1 is depleted before the end of the period, i.e.,
T1 < T , and product 1 is completely depleted before product 2, i.e., T1 < T2. In this case,
either some units of product 2 are left over at the end of the period, i.e., T2 > T (Case AI),
or product 2 is completely depleted during the period, i.e., T2 < T (Case AII). Case B: The
contrary of Case A happens, i.e., T2 < T and T2 < T1. Similarly, we have Case BI where
T1 > T and Case BII where T1 < T . Case C: Some units of product 1 and some units of
product 2 are left over at the end of the period, i.e., T1 > T and T2 > T . Figure 1 represents a
sample path of the inventory system under consideration, where Cycles 1, 2, and 3 illustrate
Case A, Case B, and Case C, respectively. In this figure, the solid plot (the black one) and
the dashed plot (the blue one) are the inventory positions of products 1 and 2, respectively.

To demonstrate the demand processes, we describe dynamics of three cases depicted in
Fig. 1. Cycle 1 represents Case AI, where product 1 is completely depleted before product
2, and product 2 is not completely depleted during the period. Thus, the demand rates for
product 1 and product 2, respectively, are λ1 = (α1 + α12)λ and λ2 = (α2 + α12)λ in the
interval [0, T1], and the demand rates for product 1 and product 2, respectively, are λ1 = 0 and
λ2 = α2λ in the interval [T1, T ]. Cycle 2 illustrates Case BII, where product 2 is completely
depleted before product 1, and product 1 is also completely depleted during the period.
Thus, the demand rates for product 1 and product 2, respectively, are λ1 = (α1 + α12)λ and
λ2 = (α2 + α12)λ in the interval [0, T2], λ1 = α1λ and λ2 = 0 in the interval [T2, T1],
and both demand rates are zero in the interval [T1, T ]. Throughout the third period (Cycle
3), representing Case C, the demand rates of product 1 and 2 are λ1 = (α1 + α12)λ and
λ2 = (α2 + α12)λ, respectively.

In Fig. 1, in Cycle 1, during the interval [T1, T ], demands of type-1 and type-12 are lost
incurring lost sale costs π1 and π12 per unit lost, respectively. In Cycle 2, during the interval
[T2, T1] demands of type-2 and type-12, and during the interval [T1, T ] all demand types
are lost. During Cycle 3 no demand is lost. At the beginning of each period, we need to pay
off the fixed ordering cost for both products. At the end of Cycle 1, we purchase 4 units of
product 1 and also 4 units of product 2. At the end of Cycle 2, 4 units of product 1 and 5
units of product 2 are purchased; and at the end of Cycle 3, 3 units of product 1 and 4 units
of product 2 are purchased. Note that the holding cost is incurred to the system over time.
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That is, we assume a time-dependent holding cost. To calculate holding costs in case of time-
dependent holding costs, we need to find the time-weighted average inventory on hand. This
calculation due to stochastic demand is quite complicated. That is the reason why we rely
on demand estimation. By estimating the demand we can easily compute the time-weighted
average inventory on hand as detailed in the next section.

4 Analysis

In this section, we first estimate demand rates of type-1, type-2, and type-12 in different
cases. Second, given the estimated demand rates, the operating characteristics of the system
are derived. Then, we use simulation analysis to capture the accuracy of the proposed model
and validate our results. Finally, we consider special cases of the inventory system under
consideration,where products are not complementary and demandprocesses are independent.

4.1 Expected demand rate estimation

We use the approach proposed by Moinzadeh and Nahmias (1988) to estimate the average
profit rate in the system. In this approach, by conditioning on cycle realizations, we estimate
the stock level over time. In what follows, we deal with how we exploit the estimated stock
level in the inventory system under consideration. Recall that the period of time during which
all Si products are depleted by demand, XSi , is a random variable with an Erlang density
function:

fXSi
(x) ≡ fTi (x) = λi e

−λi x (λi x)Si−1

(Si − 1)! ; x ≥ 0, for i = 1, 2.

Next, we determine the probability that a particular case occurs. The probability that
product 1 is depleted before product 2 during a cycle (Case A), Pa , the probability that
product 2 is depleted before product 1 during a cycle (Case B), Pb, and the probability that
neither product 1 nor product 2 are depleted during a cycle (Case C), Pc, are given by

Pa =
∫ T

0

∫ x2

0
fT1(x1) fT2(x2)dx1dx2 +

∫ ∞

T

∫ T

0
fT1(x1) fT2(x2)dx1dx2,

Pb =
∫ T

0

∫ x1

0
fT2(x2) fT1(x1)dx2dx1 +

∫ ∞

T

∫ T

0
fT2(x2) fT1(x1)dx2dx1,

Pc =
∫ ∞

T

∫ ∞

T
fT1(x1) fT2(x2)dx1dx2.

(1)

Let denote the number of demands for product i during t units of time by Di
t which follows

a Poisson process with rate λi t (i.e., Di
t ∼ Poiss(λi t)). If both products 1 and 2 are in stock,

then according to the decomposition property of the Poisson process (Ross et al. 1996) we
have λ1 = (α1 +α12)λ and λ2 = (α2 +α12)λ. Moreover, if product 1 is in stock but product
2 is out of stock, thenμ1 = α1λ, and if product 2 is in stock but product 1 is out of stock, then
μ2 = α2λ. Moreover, two random variables XS1 and XS2 are independent. Considering the
notations above and cycle realizations for the system, we find an estimation for the demand
rate in different cases as follows.

(i) Case A: Product 1 is completely depleted during a period, i.e., XS1 < T ; and product
1 is depleted before complete depletion of product 2, i.e., XS1 < XS2 . Thus, the estimated
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expected depletion time of product 1, T1, is obtained as follows:

T1 = E[XS1 |XS1 < XS2 , XS1 < T ]

=
∫ T

0
E[XS1 |XS1 < t2] fT2(t2)dt2 +

∫ ∞

T
E[XS1 |XS1 < T ] fT2(t2)dt2

=
∫ T

0

∫ t2
0 t1 fT1(t1)dt1∫ t2
0 fT1(t1)dt1

fT2(t2)dt2 +
∫ ∞

T

∫ T
0 t1 fT1(t1)dt1∫ T
0 fT1(t1)dt1

fT2(t2)dt2.

(2)

Obtaining T1 from expression above and given S1, we have λa1 = S1/T1. Furthermore, in
this case, product 2 is not completely depleted before the complete consumption of product
1 (i.e., some units of product 2 are left before the depletion time of product 1, D2

T1
≤ S2 −1).

Thus, the estimated expected demand rate for product 2 during T1 units of time, λa2, is given
by

λa2 = 1

T1
× E[D2

T1 |D2
T1 ≤ S2 − 1] = 1

T1
×

∑S2−1
j=0 je−λ2T1(λ2T1) j/ j !∑S2−1
j=0 e−λ2T1(λ2T1) j/ j !

. (3)

After T1, product 2 is the only product in stock depleted by the demand rate of μ2 = α2λ.
(ii) Case B: In this case, similar to Case A, we can easily verify that XS2 < T and

XS2 < XS1 . Thus, the estimated expected depletion time of product 2, T2, is obtained as
follows:

T2 = E[XS2 |XS2 < XS1 , XS2 < T ]

=
∫ T

0
E[XS2 |XS2 < t1] fT1(t1)dt1 +

∫ ∞

T
E[XS2 |XS2 < T ] fT1(t1)dt1

=
∫ T

0

∫ t1
0 t2 fT2(t2)dt2∫ t1
0 fT2(t2)dt2

fT1(t1)dt1 +
∫ ∞

T

∫ T
0 t2 fT2(t2)dt2∫ T
0 fT2(t2)dt2

fT1(t1)dt1.

(4)

Similar to Case A, we have λb2 = S2/T2. Besides, the estimated expected demand rate for
product 1 during T2 units of time, λb1, is given by

λb1 = 1

T2
× E[D1

T2 |D1
T2 ≤ S1 − 1] = 1

T2
×

∑S1−1
j=0 je−λ1T2(λ1T2) j/ j !∑S1−1
j=0 e−λ1T2(λ1T2) j/ j !

. (5)

After T2, product 1 is the only product in stock depleted by the demand rate of μ1 = α1λ.
(iii) Case C: In this case, both product 1 and product 2 are left over at the end of a period,

i.e., XS1 > T (or equivalently D1
T ≤ S1 − 1) and XS2 > T (or equivalently D2

T ≤ S2 − 1).
Thus, the estimated expected demand rates of product 1, λc1, and product 2, λ

c
2, are obtained

as follows:

λc1 = 1

T
× E[D1

T |D1
T ≤ S1 − 1] = 1

T
×

∑S1−1
j=0 je−λ1T (λ1T ) j/ j !∑S1−1
j=0 e−λ1T (λ1T ) j/ j ! .

λc2 = 1

T
× E[D2

T |D2
T ≤ S2 − 1] = 1

T
×

∑S2−1
j=0 je−λ2T (λ2T ) j/ j !∑S2−1
j=0 e−λ2T (λ2T ) j/ j ! .

(6)

We establish the estimated sample path of our inventory system as depicted in Figure 2. This
figure illustrates the estimated inventory position presented in Figure 1. In Figure 2, one can
see Cases A, B, and C with estimated demand rates in Cycles 1, 2, and 3, respectively.
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Fig. 3 Two different situations in Case A

It should be noted that depending on the values of μ1 and μ2 two different cases may
occur for the system. In Case A, if S2 − λa2T1 > μ2(T − T1), then some units of product
2 are left at the end of the period (is called as Case AI); otherwise, any unmet demand for
product 2 is lost (is called as Case AII). Similarly, in Case B, if S1 − λb1T2 > μ1(T − T2),
then some units of product 1 are left at the end of the period (is called as Case BI); otherwise,
any unmet demand for product 1 is lost (is called as Case BII). Figure 3 demonstrates Case
AI and Case AII; Case BI and Case BII can be depicted similarly.

It is worth mentioning that our model formulation does not violate the stochastic prop-
erties of the problem. By conditioning on the depletion time of two products, we estimate
the demand rate which is not the same as the expectation of the Poisson process. Hence, the
problem is not treated as a deterministic model and both interaction effect and stochastic
properties are taken into account. Furthermore, Pa , Pb, and Pc (the probability that Cases A,
B, and C occur, respectively) are three key parameters affecting the operating characteristics
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of the system, which reflect the stochasticity of our model. In the following section, we derive
explicit expressions of the operating characteristics based on the estimated inventory position
described above. Moreover, we need to mention that in inventory systems including multiple
complementary products, finding the depletion times, T1 or T2, would have technical difficul-
ties. Therefore, we develop an approximation approach to analyze multi-product inventory
systems as described in Sect. 4.5.

4.2 Operating characteristics

The expected revenue E[R], expected inventory holding cost E[I ], expected lost sales cost
E[L], and expected cycle length E[C], are operating characteristics of the inventory system
under consideration. To elicit explicit expressions of the operating characteristics, we utilize
the renewal reward theorem. To do so, we first define the regenerative points, which are
instances at which the system is replenished to levels S1 and S2. We also define the cycle
as the time interval between two consecutive regenerative points. Hence, the expected cycle
length is equal to the period length, i.e., E[C] = T . According to the renewal theorem, the
expected profit per unit time (reward rate), E[Π1(S1, S2, T )], is calculated as follows:

E[Π1(S1, S2, T )] = E[R] − E[I ] − E[L] − K

E[C] . (7)

The goal is tomaximize the expected profit rate,where S1, S2, and T are the decision variables.
That is, we have the following optimization problem:

(Model 1) : max
S1,S2,T

E[Π1(S1, S2, T )]
subject to: S1, S2 ∈ I

T ∈ D,

where I andD denote the set of non-negative integers and discrete numbers, respectively. We
suppose that the order up-to-levels S1 and S2 take integer values since demand follows the
Poisson process, and the period length T is a discrete parameter with increment size Δ. We
refer to the results obtained by Model 1 as analytical results.

Denting the operating characteristics of the system in Cases A, B, and C with indexes a,
b, and c, respectively, we can compute them as follows:

(i) Case A:
If S2 − λa2T1 > μ2(T − T1) (Case AI):

E[Ra] = (r1 − p1)S1 + (r2 − p2)[λa2T1 + μ2(T − T1)].
E[Ia] = h1

2
S1T1 + h2

2

[
(2S2 − λa2T1)T1 + [2S2 − 2λa2T1 − μ2(T − T1)](T − T1)

]
.

E[La] = π1α1λ(T − T1) + π12α12λ(T − T1).

(8)

If S2 − λa2T1 ≤ μ2(T − T1) (Case AII):

E[Ra] = (r1 − p1)S1 + (r2 − p2)S2.

E[Ia] = h1
2
S1T1 + h2

2

[
(2S2 − λa2T1)T1 + (S2 − λa2T1)

2

μ2

]
.

E[La] = π1α1λ(T − T1) + π12α12λ(T − T1) + π2α2λ(T − T1 − S2 − λa2T1
μ2

).

(9)
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(ii) Case B:
If S1 − λb1T2 > μ1(T − T2) (Case BI):

E[Rb] = (r1 − p1)
[
λb1T2 + μ1(T − T2)

] + (r2 − p2)S2.

E[Ib] = h1
2

[
(2S1 − λb1T2)T2 + [2S1 − 2λb1T2 − μ1(T − T2)](T − T2)

] + h2
2
S2T2.

E[Lb] = π2α2λ(T − T2) + π12α12λ(T − T2).

(10)

If S1 − λb1T2 ≤ μ1(T − T2) (Case BII):

E[Rb] = (r1 − p1)S1 + (r2 − p2)S2.

E[Ib] = h1
2

[
(2S1 − λb1T2)T2 + (S1 − λb1T2)

2

μ1

] + h2
2
S2T2.

E[Lb] = π2α2λ(T − T2) + π12α12λ(T − T2) + π1α1λ(T − T2 − S1 − λb1T2
μ1

).

(11)

(iii) Case C:
E[Rc] = (r1 − p1)λ

c
1T + (r2 − p2)λ

c
2T .

E[Ic] = h1
2

[
T (2S1 − λc1T )

] + h2
2

[
T (2S2 − λc2T )

]
.

E[Lc] = 0.

(12)

Then, we can compute the operating characteristics as follows:

E[R] = E[Ra] × Pa + E[Rb] × Pb + E[Rc] × Pc,

E[I ] = E[Ia] × Pa + E[Ib] × Pb + E[Ic] × Pc,

E[L] = E[La] × Pa + E[Lb] × Pb + E[Lc] × Pc,

(13)

where Pa , Pb, and Pc are provided in Equation (1), representing the probability that Cases
A, B, and C occur, respectively.

4.3 Validation

In this subsection, we utilize a simulation model to validate the analytical results in Model
1. Validation has been conducted by simulation using Arena 14.5 with a replication length
of one million cycles, a warm-up period of 1000 cycles and 10 replications. A set of given
solutions are generated with various α values and demand rates λ, as shown in Table 1. In
this setting, we provide high and low levels of complementarity (i.e., high and low α12),
and low and high demand rates to capture the accuracy of Model 1 under different settings.
Gap% represents the percentage deviation between the expected cost rates obtained by the
simulation and analytical models, and E[Π] is the expected profit rate. Our numerical results
in Table 1 show low Gap% values (generally less than 0.5%), implying that the proposed
analyticalmodelworks extremely efficiently.Note that inmost instances, the analyticalmodel
underestimates the simulation results, which is due to the estimated demand.

4.4 Special cases,˛12 = 0 and˛12 = 1

In this subsection, we address two special cases in our inventory system:
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(i) The system does not observe any joint demand, i.e., α12 = 0. In this case, λ1 = α1λ

and λ2 = α2λ and we are able to analyze the inventory system with two independent demand
streams. Given that the inventory manager uses the base-stock policy of (Si , T ) for product
i , the operating characteristics of the system for product i are explicitly obtained as follows.
E[Rs

i ], E[I si ], and E[Ls
i ] denote, respectively, the expected order quantity at the end of each

period, the expected inventory level, and the expected number of lost sales of product i ,
i = 1, 2.

E[Rs
i ] =

Si∑
n=1

ne−λi T (λi T )n

n! + Si ×
∞∑

n=Si+1

e−λi T (λi T )n

n! . (14)

E[I si ] =
Si−1∑
n=0

(Si − n

2
)T × e−λi T (λi T )n

n! + Si (Si + 1)

2λi
FSi+1(T ). (15)

E[Ls
i ] = [

λi T −
Si∑

n=1

ne−λi T (λi T )n

n!
] − Si

[
1 −

Si∑
n=0

e−λi T (λi T )n

n!
]
. (16)

The derivations of Equations (14)-(16) are provided in Appendix A. Moreover, the expected
cycle length is equal to the period length, i.e., E[C] = T . Then, the expected profit rate is
defined by

E[Π2(S1, S2, T )] =
∑2

i=1

[
(ri − pi )E[Rs

i ] − hiE[I si ] − πiE[Ls
i ]

] − K

E[C] . (17)

(ii) All demand arrivals are of type-12 with joint demand, i.e., α12 = 1. In this case,
we can integrate the cost components of two products and regard the system as a single-
item inventory system with the following system parameters p = p1 + p2, r = r1 + r2,
h = h1 + h2, and π = π12 with a single order-up-to-level S and T as decision variables.
That is, at the end of each period with length of T , the inventory positions of two products
are raised to level S. The expected profit rate is defined by

E[Π(S, T )] = (r − p)E[Rs] − hE[I s] − πE[Ls] − K

E[C] , (18)

where E[C] = T and E[Rs], E[I s], E[Ls] are found by Equations (14), (15), (16), respec-
tively, with λi = λ and Si = S.

In the next section, we propose an approximation algorithm and derive some analytical
results which can be used for finding the optimal solution in the aforementioned special cases.

4.5 Approximation algorithm

In this subsection, we propose an approximation algorithm for finding a near-optimal solution
based on ignoring the interaction effect existing between two complementary products. If we
ignore the interaction effect, the system works with two independent demand processes with
rates λ1 = (α1+α12)λ and λ2 = (α2+α12)λ for product 1 and product 2, respectively. If this
is the case, we can apply the following optimization problem to determine the near-optimal
values of S1, S2, and T :
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Fig. 4 The expected profit rate function w.r.t T with S1 = 9, S2 = 7, λ = 10, α = (0.5, 0.5), p = (10, 15),
r = (20, 30), h = (1, 1), π = (10, 10, 15), and K = 10

(Model 2) : max E[Π2(S1, S2, T )] =
∑2

i=1

[
(ri − pi )E[Re

i ] − hiE[I ei ] − πiE[Le
i ]

] − K

E[C]
subject to: S1, S2 ∈ I

T ∈ D,

where E[Re
i ], E[I ei ], and E[Le

i ] are obtained by Equations (14), (15), and (16), respectively,
with λ1 = (α1 + α12)λ, λ2 = (α2 + α12)λ. We refer to the results obtained by Model
2 as approximation results. In Model 2, we have E[Π2(S1, S2, T )] = E[Π2(S1, T )] +
E[Π2(S2, T )], where E[Π2(Si , T )] are the long-run expected profit attained by selling prod-
uct i , for i = 1, 2. As demand processes of products 1 and 2 are assumed to be independent,
the expected profit function can be separated to two independent profit functions. It is worth
mentioning that when α12 = 0, both Models 1 and 2 return the same optimal solution.

In what follows, we analyze the structure of the expected profit rate function in Model 2
and derive analytical results pertaining to the existence of the optimal solution. All proofs
are provided in Appendix B.

Proposition 1 The expected profit rate function in Model 2, E[Π2(S1, S2, T )], is concave in
Si and T .

Figure 4 depicts the profit rate function for a particular data set when α12 = 0.
We have the following corollaries as immediate consequences of Proposition 1, which

construct the idea of the solution algorithm for finding the global optimal solution in Model
2; and also establish the idea of finding bounds for Model 1.

Corollary 1 In Model 2,

(i) For a given period length T , the optimal base-stock level, S∗
i , is the smallest Si satisfying

the following inequality

(ri − pi −hi
Si + 1

λi
+πi +hi T )

[
1−

Si∑
n=0

e−λi T (λi T )n

n!
]
−hi T

[
1−e−λi T (λi T )Si

Si !
]

≤ 0.

(19)
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Fig. 5 E[Π2(S1, S2, T )] w.r.t S1 (S2 = 12, λ = 5, α1 = 0.25, p1 = 20, r1 = 30, h1 = 1, π1 = 20, and
K = 10)

(ii) For a given stock level Si , the optimal period length, T ∗, is obtained by solving the
following equality

2∑
i=0

(ri − pi )
[
λi T

Si−1∑
n=0

e−λi T (λi T )n

n! − E[Re
i ]

]
− πi

[
λi T (1 −

Si−1∑
n=0

e−λi T (λi T )n

n! ) − E[Le
i ]

]

− hi T
[ Si−2∑

n=0

(Si − n

2
− λi T

2
) e−λi T (λi T )n

n! + (
Si + 1

2
) e−λi T (λi T )Si−1

(Si − 1)! − 1

T
E[I ei ]

]
= 0.

(20)

From the corollary above, one can infer that the expected profit function is a unimodal
function in T . To find the optimal cycle length by Equation (20), we apply the successive
parabolic interpolation algorithm (Jarratt 1967), which is an efficient algorithm for finding
the global optimal solution in unimodal functions. In this algorithm, we do not need to take
derivatives and only function values are used.

Corollary 2 In both Models 1 and 2, an upper bound for Si , Si , is the smallest Si satisfying
the following inequality

(ri−pi−hi
Si + 1

λi
+πi+hi T )

[
1−

Si∑
n=0

e−λi T (λi T )n

n!
]
−hi T

[
1−e−λi T (λi T )Si

Si !
]

≤ 0, (21)

where T is an upper bound for the cycle length, and λi = (αi + α12)λ for i = 1, 2.

Conjecture 1 In Model 2, the smallest Si that satisfies the following inequality determines
optimal Si together with optimal T

E[Π2(Si + 1, T ∗(Si + 1))] − E[Π2(Si , T
∗(Si ))] ≤ 0,

where T ∗(Si ) is the optimal T obtained by Equation (20) as a function of the base-stock level
Si .

Figure 5 illustrates the concavity of the optimal expected profit with respect to S1, where
according to Conjecture 1 the optimal base-stock level is S1 = 9.

It should be noted that we can use the results of Proposition 1 for special cases α12 = 0
and α12 = 1 as well.
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5 Solution approach

The optimization problems provided in Models 1 and 2 are mixed-integer non-linear pro-
grams. The structures of the profit rate functions provided in these models appear to be
complicated w.r.t decision variables S1, S2, and T . However, due to independent processes
that exist in Model 2, the analysis of this model seems to be simpler than Model 1. In what
follows, we first prove the existence of the optimal solution in both Models 1 and 2 through
the following proposition. Then, we evolve the solution approach for Model 1 and then for
Model 2.

Proposition 2 As long as the cycle length is finite, there exists an optimal solution for both
Models 1 and 2.

Suppose that the period length is bounded above and can take a maximum value of T , which
can be imposed by the inventory manager. A lower bound for the period length, T , can be
determined exogenously by inventory manager as well; however, we can set a small value as
a lower bound. As proved in Proposition 2, for a given cycle length, the optimal base-stock
levels are bounded above. Moreover, we provide upper bounds for the base-stock levels in
Corollary 2 assuming that T is predetermined.

Given an upper bound for the cycle length, T , we can specify the upper bounds for S1
and S2 by Corollary 2. Next, using the upper bounds for decision variables, we propose the
following exhaustive search algorithm (Algorithm 1) to find the optimal solution of Model
1, where all possible solutions in the search space [1, S1] × [1, S2] × [T , T ] are evaluated.
Recall that Si ’s are assumed to be non-negative integers. We consider all discrete points in
the interval [T , T ] with an increment size Δ. Therefore, for a particular data set, we need to
evaluate S1 × S2 × T /Δ solutions in total.

Algorithm 1 The pseudo code of the exhaustive search algorithm for Model 1.

Initialization: Set λ, αi , pi , ri , hi , πi , K , Δ, S1, S2, T , T , E[Π∗
1 ] ← −∞;

for S1 = 1 : S1 do
for S2 = 1 : S2 do

for T = T : Δ : T do
Find E[R], E[I ], E[L], and E[C];
E[Π1] ← Calculate the expected profit, E[Π1(S1, S2, T )], at point (S1, S2, T );
if E[Π1] > E[Π∗

1 ] then
S∗
1 ← S1;
S∗
2 ← S2;

T ∗ ← T ;
E[Π∗

1 ] ← E[Π1];
end if

end for
end for

end for
Return S∗

1 , S
∗
2 , T

∗, and E[Π∗
1 ];

To verify the exhaustive search algorithm results and check the accuracy of our analytical
results, we utilize the simulation-optimization approach. Our numerical results confirm that
both the exhaustive search algorithm and simulation-optimization provide the same optimal
solutions. It demonstrates the validity of our analytical results and shows that the estimation
approach employed for estimating the products’ depletion time is extremely accurate.
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Next, we develop a solution approach forModel 2 which has a simpler structure compared
to Model 1. In Model 2, we are not able to provide explicit expressions for optimal solutions
of base-stock levels and the cycle length. However, we can find the global optimal cycle
length with given base-stock levels by Corollary 1 part (ii). Hence, we can implement an
exhaustive search over variables S1 and S2, by which for particular S1 and S2 the optimal
cycle length is attained.We propose the following exhaustive search algorithm (Algorithm 2)
for finding the global optimal solution of Model 2, where all possible solutions in the search
space [1, S1]× [1, S2] are evaluated. Therefore, for a particular data set, we need to evaluate
S1 × S2 solutions in total.

Algorithm 2 The pseudo code of the exhaustive search algorithm for Model 2.

Initialization: Set λ, αi , pi , ri , hi , πi , K , Δ, S1, S2, E[Π∗
2 ] ← −∞;

for S1 = 1 : S1 do
for S2 = 1 : S2 do

Find E[Re
i ], E[I ei ], E[Lei ], i = 1, 2, and E[C];

Find the optimal T by Corollary 1 part (ii);
E[Π2] ← Calculate the expected profit, E[Π2(S1, S2, T )], at point (S1, S2, T );
if E[Π2] > E[Π∗

2 ] then
S∗
1 ← S1;
S∗
2 ← S2;

T ∗ ← T ;
E[Π∗

2 ] ← E[Π2];
end if

end for
end for
Return S∗

1 , S
∗
2 , T

∗, and E[Π∗
2 ];

To verify the validity of Conjecture 1, we select some randomly selected instances in our
numerical studies and see that the optimal solution obtained by Conjecture 1 is the same as
that of Algorithm 2. It certifies the validity of Conjecture 1, i.e., the optimal profit values
construct a concave function w.r.t Si , i = 1, 2.

In the following, we address the structure of the expected profit rate function based on our
observations from numerical experiences. Our numerical experiences show that the expected
profit rate function is concave in T for given S1 and S2. We are not able to prove this property
analytically, but we can verify it intuitively. As T gets small values, Case C happens with
high probability (Pc is high). In this case, no sale is lost but ordering cost is incurred to the
system frequently. Therefore, the expected profit per unit time tends to a small value as T
approaches zero. On the other hand, if T takes a large value, Case A and Case B happen with
high probabilities (Pa and Pb are high). In this case, the holding costs are almost identical in
each period but the lost sales cost gets a large value because the system is out of stock for a
long time. Therefore, the expected profit per unit time tends to a small value as T becomes
large. Considering two extreme situations stated above, we deduce that optimal T should be
at some point in between (Weierstrass theorem; see, e.g., Clarke (1990)). Hence, we have the
following result.

Conjecture 2 The expected profit rate function in Model 1, E[Π1(S1, S2, T )], is unimodal in
T for given S1 and S2.

Figure 6 illustrates the expected profit rate function with respect to T with given order-up-
to-levels for a particular set of data.
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Fig. 6 Expected profit rate function w.r.t T for Δ = 0.01, S1 = 9, S2 = 7, λ = 10, α = (0.25, 0.5),
p = (10, 15), r = (20, 30), h = (1, 1), π = (10, 10, 15), and K = 10
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(a) Concave in S2 with S1 = 4
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(b) Concave in S1 with S2 = 8

Fig. 7 Expected profit rate function w.r.t S1 and S2 for λ = 10, α = (0.4, 0.4), p = (10, 15), r = (20, 30),
h = (10, 10), π = (10, 10, 15), and K = 10

We can investigate the profit rate function behavior w.r.t order up-to-levels as well. Intu-
itively, when S1 and S2 get small values the system observes low holding and large lost sales,
and when S1 and S2 are large, a high holding and small lost sales costs are incurred to the
system. So, we deduce that the optimal S1 and S2 should be at some point in between. Hence,
we have the following result.

Conjecture 3 The expected profit rate function in Model 1, E[Π1(S1, S2, T )], is concave in
both S1 and S2 for given T .

Figure 7 illustrates the expected profit rate function with respect to S1 and S2 with T = 1 for
a particular data set.

Form Conjectures 2 and 3, we can deduce that the structure of the expected rate function
in Model 1 is identical to that of Model 2. That is, E[Π1(S1, S2, T )] is concave in Si and
it is unimodal in T . Hence, we can develop an algorithm similar to Algorithm 2 to find
the optimal solution of Model 1. That is, for given S1 and S2, we find the optimal cycle
length by equalizing the first derivative of the expected profit rate function in Equation (7)
to zero. Since deriving the explicit expression for the first derivative of the expected profit
rate function is not easy, we again apply the successive parabolic interpolation algorithm for
finding the global optimal solution inModel 1. We examined this approach and observed that
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the optimal solution obtained by this approach is the same as that of Algorithm 1. It implies
that the results of Conjectures 2 and 3 are valid.

6 Numerical analysis

The goal of this section is to capture the effect of demand correlation on performance of a
periodic review base-stock policy. We also show how unit lost sale costs and demand rate
influence this interaction effect.Moreover,we demonstrate performance of the approximation
algorithm through various settings.

In our numerical analysis, we use Algorithm 1 to find the optimal solution of Model 1,
and Algorithm 2 to find the optimal solution of Model 2. We set Δ = 0.1 in Algorithm 1.
We set 0.1 as a lower bound and 7 as an upper bound for the cycle length in our numerical
analysis (i.e., T = 0.1 and T = 7). To verify the optimization results of Algorithm 1, we
found the optimal solution by simulation optimization in some randomly selected instances.
The results indicate that the optimal solutions obtained by both methods are the same. Hence,
we can conclude that our proposed model is accurate and it guarantees global optimality.

We base our analysis on the following base data set: λ is fixed at 10, p = (20, 10),
r = (30, 15), h = (1, 1), π = (10, 10, 15), K = 10, and α1 and α2 are varied. Numerical
results are provided in Tables 2 to 5 in Appendix C. In all tables, “Deg. Compl” in the first
column represents degree of complementarity existing between two products. We compute
the optimal policy parameters including the base stock levels S1, S2, and period length T , and
the corresponding expected profit per unit time. (S1, S2, T )1 and E[Π∗

1 ] show the optimal
policy parameters and the profit per unit time obtained from analytical results (Model 1),
respectively. Similarly, (S1, S2, T )2 and E[Π∗

2 ] show the optimal policy parameters and the
profit per unit time obtained from the approximation algorithm (Model 2), respectively. We
also compute E[Π3] which is obtained by substituting (S1, S2, T )2 into E[Π1(S1, S2, T )]
defined in Equation (7). Gap2% is the percentage deviation between analytical and approxi-

mation results, which is defined as
E[Π∗

2 ]−E[Π∗
1 ]

E[Π∗
1 ] ×100, andGap3% is the percentage deviation

between the expected profits yielded by applying solutions of Model 1 and Model 2, which

is defined as
E[Π3]−E[Π∗

1 ]
E[Π∗

1 ] × 100. Recall that when α12 = 0 or 1, we use the analytical results

provided in subsection 4.4, where the results of the analytical and approximation approaches
are the same.

Regarding the execution time, Algorithm 2 is much faster than Algorithm 1 because in
the former case we implement exhaustive search over variables S1 and S2, whereas in the
latter case the exhaustive search is done over all decision variables S1, S2, and T . We can
save time for finding the optimal solution of analytical results (Model 1) by using the results
of the approximation model (Model 2). Our numerical experiences indicate that in some
conditions, the approximated solution obtained by the approximation algorithm (Algorithm
2) is very close to that of the real optimal solution obtained by Algorithm 1. Therefore, we
can select the solution of the approximation algorithm as an initial solution and implement
a local search around that solution. To do so, we execute an exhaustive search in ranges
Si ∈ [Sei − 5, Sei + 5] for i = 1, 2 and T ∈ [T e − 1, T e + 1], where (Se1, S

e
2, T

e) is the
optimal solution of the approximation algorithm. We examined this method for finding the
optimal solution of Model 1 and observed that we obtain the same optimal solution as that
of Algorithm 1. Note that whenever we hit the boundaries in ranges above, we extend those
bounds till no boundary is hit.
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In what follows, we investigate the effect of demand correlation and capture when neglect-
ing the interaction effect may cause substantial losses in the inventory system. Moreover, we
compare our proposed policy with the can-order policy which is widely used in the literature.

6.1 Degree of complementarity

To quantify the effect of degree of complementarity on the expected profit, a comparison is
done for various values of α1 and α2 as shown in Table 2. For each degree of complemen-
tarity, we also provide the approximation algorithm results, that accounts for capturing the
correlation effect between demand processes. We observe that, as the proportion of type-12
demand increases, the profit yielded becomes larger. For a fixed degree of complementarity
(i.e., for a fixed α12) as the proportion of demand type with higher marginal profit increases,
the total expected profit per unit time increases. For instance, in Table 2, where the marginal
profit of product 1 is 10 and the marginal profit of product 2 is 5, when α12 = 0.5, for α1 = 0
and α2 = 0.5 the expected profit is 69.6879, for α1 = 0.25 and α2 = 0.25 the expected
profit is 82.0216, and for α1 = 0.5 and α2 = 0 the expected profit is 94.5780. Furthermore,
the higher degree of complementarity requires a higher stock level in the system on average.
It should be also noted that, as the proportion of one demand-type increases, the base-stock
level increases. An increase in base-stock levels raises inventory levels of two products and
also increases holding costs. To compensate surplus holding costs incurred to the system
due to higher base-stock levels, the inventory manager decides to increase the period length
to reduce the holding costs per period. That is the reason why we observe the longer cycle
length for the higher α12 (see Table 2).

Therefore, we deduce that the increase in only one demand-type does not increase the
profit in the system. For instance, let us consider numerical results of the base data set
(Table 2). For α1 = 0.25, the expected profits for α2 = 0, 0.25, 0.5, and 0.75 are 104.7428,
82.0216, 59.8357, and 38.3326, respectively. Similarly, for α2 = 0.25, the expected profits
for α1 = 0, 0.25, 0.5, and 0.75 are 92.2974, 82.0216, 72.1880, and 63.1262, respectively.
The higher profit is obtained if we can stimulate the potential customers to purchase products
jointly instead of one unit of each. Bundling, mixed bundling, and tying are some policies
that persuade customers for complementary purchasing. Retailers can focus on interlinking
demands of different products, by which they can achieve substantial benefits. Our results
suggest that in the marketing of different products, our focus should be the development of
ingenious strategies for establishing joint demands among customers. For instance, in online
retailing systems, customers can be convinced to buy items together by seeing information
such as “frequently bought together”, “more items to explore”, and “customers who bought
this item also bought”.

Regarding the purchasing behavior of customers, we should point out that not all type-12
customers are so picky. Among them, some might purchase only when both products are
in stock and others might end up buying the only available product. In this case, we cannot
estimate the fraction of customer types α1, α2, and α12 solely from sales because a fraction of
type-12 customers are counted as type-1 or type-2 customers. Hence, we suggest a demand
estimation method taking unobservable lost sales into account. Providing an accurate estima-
tion for fraction of customer types, the inventory manager would be able to reap considerable
profits. For instance, let us consider the base data set (Table 2) and suppose that the fraction of
customer types are estimated asα1 = 0.25 andα2 = 0.25,where (S1, S2, T )1 = (12, 12, 0.9)
and the expected profit is 82.0216. If further investigation reveals that the actual α1 and α2 are
0.25 and 0, respectively (i.e., 25% of type-12 customers changed their decisions and bought
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only product 2 when both products are not available), then (S1, S2, T )1 = (15, 12, 0.9) and
the expected profit would be 104.7428. Thus, an accurate estimation of demand types will
result in 22.7212 surplus profits.

6.2 Demand correlation effect

The approximation algorithm is established based on ignoring the interaction effect between
demand processes. Therefore, comparing the results obtained by analytical and approxima-
tion models one can capture the impact of demand correlation. ComparingE[Π∗

1 ] andE[Π∗
2 ]

values in Table 2 we conclude that Model 1 and Model 2 provide different optimal solutions,
and the control policy under Model 2 yields the higher profit for the system due to its struc-
ture (i.e., Gap2% is always non-negative). Moreover, comparing E[Π∗

1 ] and E[Π3] values
in Table 2 one can see that the solution obtained by approximation algorithm is not optimal;
however, it is close enough to the real optimal solution. The profits yielded by the approxima-
tion algorithm is also less than that gained from analytical results since the interaction effect
between demands is ignored (i.e., Gap3% is always non-positive). Therefore, by ignoring the
interaction effect between demand processes we will lose a proportion of market sales due
to the non-optimal base-stock levels and replenishment period.

To emphasize the impact of demand correlation, we increase the unit lost sales cost of
type-12 demands. In this regard, we increase π12 from 15 to 45 and report the results in Table
3. The results reveal that, as the unit lost sales cost of type-12 demands increases, neglecting
the interrelated demand between demands processes results in a higher loss in profits due
to exercising a non-optimal policy, especially when degree of complementarity is high (see
Gap3% in Table 3). This is an expected result because neglecting the interaction effect leads to
non-optimal base-stock levels. That is, we have either over-stocking or under-stocking which
both result in losses (high holding costs and high lost sales, respectively) in the inventory
system. Hence, our model suggests the retailers to focus more on the replenishment sizes and
replenishment cycle when they have a high loss of goodwill in the market. For instance, in
pharmaceutical and surgery industries where products are generally complementary, a lack of
inventories may cause irrecoverable effects and deteriorate system performance (Poormoaied
andAtan 2020b). In these circumstances, employing a smart control policy taking the demand
correlation into account is a requirement.

It isworth noting that in caseswith high loss of goodwill costs, the approximation algorithm
may provide a solution which is not too close to the one obtained by analytical results. For
instance, in Table 3, when α1 = 0 and α2 = 0.25, the optimal solutions of analytical and
approximation models are (13, 16, 0.9) and (11, 14, 0.9), respectively; and when α1 = 0.75
and α2 = 0, those are (16, 6, 1.0) and (17, 5, 1.1), respectively. In these cases, the solution
of the approximation algorithm cannot be considered as a good starting point for a local
search in order to find the optimal solution of the analytical model. Hence, a wide search
space should be explored to find it.

We also investigate the effect of the demand rate by reducing it from 10 to 5 units per
unit time. The results are summarized in Table 4. Obviously, by a lower demand rate, the
expected profit yielded and base-stock levels decrease. Our numerical experiences show that
when the demand rate is low, ignoring the interaction effect causes a higher loss in profits
(higher Gap3%). This is due to the fact that with a lower demand rate the base-stock levels are
smaller and hence the inventory system experiences stock-out periods with higher probability
in case of stochastic demands. Stock-out periods are time intervals during which we need
to monitor the impact of demand correlation. If this effect is ignored, a large deviation in
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real demand rates may be observed. Therefore, frequent long stock-out periods will result
in a reduction in the long-run expected profit because the system is optimized by inaccurate
demand rates.

An interesting result is that as demand rate increases the period length decreases. This
is due to the higher uncertainty in inventory systems with higher demand. Since demand
follows the Poisson process, a higher demand rate results in higher uncertainty. Hence, the
retailer decides to reduce the cycle length in order to prevent imminent shortages at the end
of periods that arise from demand uncertainty.

We investigate the effect of the unit holding cost on our policy performance in Table 5,
where we increase h from (1, 1) to (5, 5). As expected, the base-stock levels and the cycle
length decrease, which implies that we hold a fewer amount of inventories as the unit holding
cost increases. Although a fewer amount of products are stocked in cases with higher holding
costs, the interaction effect influences policy performance significantly. For instance, consider
the case with α1 = 0 and α2 = 0.5, where we observe 8.48% cost savings by taking the
interaction effect into account. We believe that this cost saving is due to the time-dependent
holding cost. Neglecting the interaction effect influences the depletion times of products
in our analysis (T1 or T2 in Figure 1). Since a time-weighted holding cost calculation is
taken into account, the small deviation in base-stock levels arising from ignoring demand
correlation may result in a high deviation in holding costs. Therefore, any inaccuracy in
estimation of depletion times may significantly influence cost savings. Therefore, pay no
attention to interaction effect between demand processes can result in substantial losses in
profits, especially when unit lost sale costs and unit holding costs are large and the products
are slow-moving.

Higher demand rates, higher unit lost sale costs, and lower unit holding costs generally lead
to more inventories on hand, which can result in shorter stock-out periods and consequently
slight interaction effects between demand processes. In this case, the approximated demand
rates λ1 = (α1 + α12)λ and λ2 = (α2 + α12)λ become very close to the real demand rates
with interaction effect consideration. It is worth mentioning that if complementary products
are perishable, the stock on hand may drop dangerously to zero and hance the inventory
system experiences stock-out periods more frequently (Poormoaied et al. 2020c; Berk et al.
2020). In such systems, interaction effect between demand processes plays an important role
in characterizing the control policy structure.

6.3 Comparison to other policies

In this subsection, we compare the proposed (Si , T ) policy with other policies analyzed in
the literature. We consider the can-order policy proposed by Balintfy (1964). Silver (1974)
and Federgruen et al. (1984) proposed some heuristic algorithms for finding the sub-optimal
can-order policies. The can-order policy, so-called the (si , ci , Si ) policy, works as follows:
whenever the inventory level of item i drops the reorder point si a new order is placed to
bring the inventory position to level Si , and all items which hit their can-order level ci are
ordered jointly, where si ≤ ci < Si . This policy is different from our policy, in the sense
that it is a continuous review policy, whilst our policy is a periodic review policy. Since we
have multiple products, the can-order level ci is reserved to join replenishments, if needed,
to combine some orders and reduce the fixed replenishment costs in the (si , ci , Si ) policy.

We use the same base data set presented at the beginning of this section to compare the
proposed (Si , T ) policy with the (si , ci , Si ) policy in the presence of demand correlation. The

numerical results are summarized in Table 6, where Gap4% is defined as
E[Π∗

1 ]−E[Π∗
4 ]

E[Π∗
4 ] ×100.
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A simulation optimization is used to find the optimal solution of the can-order policy, and
analytical results (Model 1) is used to report the optimal solution of the (Si , T ) policy.
Simulation is conducted based on replication length of 10 million time units, a warm-up
period of 10,000 units and 10 replications.Moreover, in simulation optimization, all solutions
in a large search space are evaluated by an exhaustive search algorithm.

The results show that the proposed (Si , T ) policy dominates the can-order policy. It is
expected that as the fixed ordering cost decreases, the can-order policy would be able to
dominate the proposed (Si , T ) policy. By doing so, we observed that these two policies
provide almost the sameprofit values, implying that the (Si , T )policy performsverywell even
if the fixed ordering cost is low, and as the fixed replenishment cost increases, the proposed
(Si , T ) policy significantly outperforms the can-order policy. Our numerical experiences
reveal that the average stock level in the can-order policy is higher than that of the (Si , T )

policy. It implies that as the unit holding cost increases, (Si , T ) policy dominates the can-
order policy significantly. Our numerical analysis confirms this fact (results are not reported
here).

7 Concluding remarks

In this paper, we consider the impact of demand correlation across two complementary prod-
ucts in a periodic review base-stock policy, namely (Si , T ) policy, with joint replenishment.
In this policy, the inventory position of product i is raised to level Si at the beginning of each
period with length T . The demands are in sets of one unit of each or jointly. In case of joint
demand, the whole demand is lost if one of the complementary products is not available in
stock. The aim is to determine the base-stock levels and period length such that the expected
total profit per unit time is maximized.

Different from the other studies on multi-product inventory systems with periodic review
policies, we analyze a periodic review base-stock policy under demand correlation considera-
tion and capture its effect. Since tracking the inventory levels of two complementary products
due to interrelated demand is difficult, we estimate demand rates of two complementary prod-
ucts by conditioning on their depletion times. Then, the explicit expressions of the operating
characteristics of the inventory system are derived by the renewal reward theorem (Model 1).
We also proposed an approximation algorithm which is based on neglecting the interaction
effect between demand processes. Using the approximation algorithm we derive operating
characteristic expressions and solve the problem with a large number of complementary
products (Model 2). Using the approximation algorithm, we derive upper bounds for deci-
sion variables in Model 1, and then through an exhaustive search over decision variables the
global optimal solution is attained.

We capture the impact of demand correlation and compare the proposed policy to other
policies through numerical analysis. Our results show that as degree of complementarity
increases the expected profit raises. Furthermore, correlation in demand can result in sub-
stantial losses, especially when the unit lost sales and unit holding costs are large and the
demand rate is low. Moreover, given a fixed degree of complementarity, we would prefer
to increase the demand rate of products whose marginal profit is high. We also showed the
efficiency of the proposed base-stock policy by comparing this policy with the can-order
type policy. The results reveal that the (Si , T ) policy dominates the can-order policy in all
instances. As the fixed replenishment cost decreases, these two policies perform almost the
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same; and as the unit fixed replenishment cost and unit holding cost increase, the base-stock
policy outperforms the can-order policy significantly.

Our derivations are based on the assumption of zero lead-time. Extending this work to pos-
itive lead-times would be challenging, yet interesting. Due to the interaction effect between
demand processes, deriving analytical results for an inventory system with more than two
complementary products is complicated. Developing a heuristic algorithm for a system with
more than two complementary products would be interesting. Analyzing our model under
compound Poisson process would be a further challenging setting for extension.
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Appendix A: The Derivations of Expressions (14)–(16)

Since the derivations of operating characteristics for both products 1 and 2 are identical, we
provide the operating characteristic derivations for an inventory system with order-up-to-
level S and demand rate λ. Then, substituting S with Si and λ with λi , one can obtain the
operating characteristics of product i .
(i)The expected replenishment cost

Let denote the number of demand arrivals during a period by n. Then, if n is less than
or equal to S, the number of products replenished at the end of the period is n. And, if n is
greater or equal to S + 1, the number of products replenished at the end of the period is S.
Taking the expectation of these two events, we get the results.
(ii)The expected on-hand inventory

The expected on-hand inventory includes two parts. The first one is when the number of
demand arrivals during a period is less than S. In this case, using the uniformity property of
Poisson process, the area below the inventory level is (1 + 2 + · · · + n) T

n+1 + (S − n)T .
Then, taking the expectation of this event, we have

E[I1] =
S−1∑
n=0

[
(1 + 2 + · · · + n)

T

n + 1
+ (S − n)T

] × e−λT (λT )n

n!

=
S−1∑
n=0

(S − n

2
)T × e−λT (λT )n

n! .

The second one is when the number of demand arrivals during a period is greater than S.
In this case, we first need to find the joint distribution function of demand arrivals using the
following lemma.

Lemma 1 The sequence of (X1, X2, . . . , XS) = (x1, x2, . . . , xS) can be represented equiv-
alently by (x1, x2 − x1, . . . , xS − xS−1). Then, we have

f (x1, x2, . . . , xS) = λe−λx1 · λe−λ(x2−x1) . . . λe−λ(xS−xS−1) = λSe−λxS . (22)
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In this case, the area below the inventory level is (x1 + x2 + · · · + xS). Then, taking the
expectation of this event, we have

E[I2] = E

[ S∑
i=1

Xi × 1{XS<T }
]

=
∫ T

xS=0

∫ xS

xS−1=0
. . .

∫ x2

x1=0
(x1 + x2 + · · · + xS)λ

Se−λxS dx1dx2 . . . dxS

=
S∑

i=1

∫ T

xS=0

∫ xS

xS−1=0
. . .

∫ xi+1

xi=0
. . .

∫ x2

x1=0
xiλ

Se−λxS dx1dx2 . . . dxS

=
S∑

i=1

i

λ
FS+1(T ) = S(S + 1)

2λ
FS+1(T ),

where 1{.} is the indicator function and FS+1(T ) is the cumulative distribution function of
an Erlang distribution with scale parameter λ and shape parameter S + 1 at point T . Then,
combining E[I1] and E[I2] concludes Equation (15).
(iii)The expected lost sale

If the number of demand arrivals during a period, n, is greater than S, then n− S demands
are lost.

E[L] =
∞∑

n=S+1

(n − S)e−λT (λT )n

n! . (23)

Extending the expression above we reach the results.

Appendix B: Proofs

Proof of Proposition 1

Taking the first and second derivatives of operating characteristics with respect to T , we have

∂E[Re
i ]

∂T
= λi

Si−1∑
n=0

e−λi T (λi T )n

n! ≥ 0, (24)

∂2E[Re
i ]

∂T 2 = −λ2i e
−λi T (λi T )Si−1

(Si − 1)! ≤ 0, (25)

∂E[Le
i ]

∂T
= λi

[
1 −

Si−1∑
n=0

e−λi T (λi T )n

n!
]

≥ 0, (26)

∂2E[Le
i ]

∂T 2 = λ2i e
−λi T (λi T )Si−1

(Si − 1)! ≥ 0, (27)

∂E[I ei ]
∂T

=
Si−2∑
n=0

(Si − n

2
− λi T

2
) e−λi T (λi T )n

n! + (
Si + 1

2
) e−λi T (λi T )Si−1

(Si − 1)! , (28)

∂2E[I ei ]
∂T 2 = −λi

Si−3∑
n=0

e−λi T (λi T )n

n! + (−1 − λ2i T

Si − 1
)e−λi T (λi T )Si−2

(Si − 2)! ≤ 0. (29)
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Then,

∂2E[Π2(Si , T )]
∂T 2 = − 1

T 3

[
2Ke−λi T (λi T )n

n!

+(hi + πi ) × Si (Si + 1)

λi T

[
1 −

Si+1∑
n=0

e−λi T (λi T )n

n!
]

+(ri − pi )
[
1 −

Si−2∑
n=0

e−λi T (λi T )n

n!
]]

≤ 0, (30)

which implies the concavity of E[Π2(Si , T )] w.r.t T .
We define the first and second order finite difference of the expected profit, E[Π2(Si , T )],

in Model 2 as

ΔSE[Π2(Si , T )] .= E[Π2(Si + 1, T )] − E[Π2(Si , T )],
Δ2

SE[Π2(Si , T )] .= E[Π2(Si + 2, T )] − 2E[Π2(Si + 1, T )] + E[Π2(Si , T )].
Then, taking the first and second derivatives of operating characteristics with respect to Si ,
we have

ΔSE[Re
i ] = 1 −

Si∑
n=0

e−λi T (λi T )n

n! , (31)

Δ2
SE[Re

i ] = −e−λi T (λi T )Si+1

(Si + 1)! , (32)

ΔSE[Le
i ] =

Si∑
n=0

e−λi T (λi T )n

n! − 1, (33)

Δ2
SE[Le

i ] = e−λi T (λi T )Si+1

(Si + 1)! , (34)

ΔSE[I ei ] = T
Si−1∑
n=0

e−λi T (λi T )n

n! + Si + 1

λi

[
1 −

Si∑
n=0

e−λi T (λi T )n

n!
]
, (35)

Δ2
SE[I ei ] = 1

λi

[
1 −

Si+1∑
n=0

e−λi T (λi T )n

n!
]
. (36)

Then,

Δ2
SE[Π2(Si , T )] = −(ri − pi )e

−λi T (λi T )Si+1

(Si + 1)! − hi
λi

[
1 −

Si+1∑
n=0

e−λi T (λi T )n

n!
]

− πi e
−λi T (λi T )Si+1

(Si + 1)! ≤ 0, (37)

which implies the concavity of E[Π2(Si , T )] w.r.t Si .

Proof of Corollary 1

(i) As shown in Proposition 1, the expected profit rate function is concave in Si and T .
Hence, equalizing the first derivative of E[Π2(Si , T )] w.r.t T to zero, the optimal cycle
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length is attained. Moreover, the smallest Si at which the E[Π2(Si , T )] starts to decrease
represents the optimal base-stock level for product i .
(ii) Since the expected profit function is concave in T , the optimal cycle length is obtained
by equalizing the first derivative of E[Π2(S1, S2, T )] to zero.

Proof of Corollary 2

It is easy to infer that the optimal base-stock level increases in T because a trade-off between
holding and shortage costs should be made. Therefore, in Model 2, the optimal base-stock
level obtained by setting T = T can be considered as an upper bound for Si , i = 1, 2. On
the other hand, for a given cycle length, the base-stock levels increase as the demand rate
increases. Therefore, the optimal Si obtained from Equation (21) is an upper bound for the
global optimal Si since the demand rates are set to λi = (αi + α12) for i = 1, 2, which are
greater than the realistic demand rate under correlated demands.

Proof of Proposition 2

As S1 and S2 tend to infinity, the expected profit rate function for both Models 1 and 2
becomes

E[Π1(S1, S2, T )] = E[R] − E[I ] − E[L] − K

E[C] ,

where for Model 1,

E[R] = (r1 − p1)λ1T + (r2 − p2)λ2T ,

E[I ] =
2∑

i=1

∞∑
n=0

hi
[
Si T e

−λi T (λi T )n

n! − λi

2
T 2

]
,

E[L] = 0,

(38)

and for Model 2,

E[R] = (r1 − p1)λ1T + (r2 − p2)λ2T ,

E[I ] = h1
2

[
T (2S1 − λc1T )

] + h2
2

[
T (2S2 − λc1T )

]
,

E[L] = 0.

(39)

As expected in both models the expected revenue and expected lost sales converge to a
fixed value when S1 and S2 get large values; however, the expected holding cost tends to
infinity as S1 and S2 tend to infinity. Therefore, the expected profit tends to a very small
value. On the other hand, S1 and S2 are bounded below by 0, where we have complete lost
sales and no holding costs in the inventory system. Therefore, as long as T is bounded, Si ’s
are also bounded above and below, implying that there exists an optimal solution for S1 and
S2.

Appendix C: Numerical Results
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Table 4 Comparison of analytical and approximation results with a low demand rate (λ = 5, p = (20, 10),
r = (30, 15), h = (1, 1), π = (10, 10, 15), and K = 10)

Deg. Compl Analytical (Model 1) Approximation (Model 2) Gap2% Gap3%

α1 α2 α12 (S1, S2, T )1 E[Π∗
1 ] (S1, S2, T )2 E[Π∗

2 ] E[Π3]
0 0 1 (10, 10, 1.3) 50.8061 (10, 10, 1.3) 50.8061 50.8061 0.00 0.00

0.25 0.75 (9, 11, 1.3) 38.2249 (8, 10, 1.3) 39.3445 37.5199 2.93 −1.84

0.5 0.5 (7, 11, 1.4) 27.6192 (6, 10, 1.3) 28.5156 27.2972 3.25 −1.17

0.75 0.25 (4, 11, 1.4) 17.4521 (4, 11, 1.5) 18.0910 17.4019 3.66 −0.29

1 0 (0, 13, 1.9) 9.6462 (0, 13, 1.9) 9.6462 9.6462 0.00 0.00

0.25 0 0.75 (11, 9, 1.3) 44.4204 (11, 8, 1.3) 45.5463 44.0546 2.53 −0.82

0.25 0.5 (9, 9, 1.4) 33.7193 (9, 9, 1.5) 34.5899 33.4774 2.58 −0.72

0.5 0.25 (7, 9, 1.5) 23.3693 (7, 9, 1.6) 23.8931 23.2715 2.24 −0.42

0.75 0 (4, 9, 1.6) 13.5112 (4, 9, 1.6) 13.5112 13.5112 0.00 0.00

0.5 0 0.5 (11, 7, 1.4) 39.9500 (11, 6, 1.4) 40.9657 39.5980 2.54 −0.88

0.25 0.25 (10, 7, 1.6) 29.5188 (9, 6, 1.5) 30.0367 29.2579 1.75 −0.88

0.5 0 (7, 7, 1.7) 19.4470 (7, 7, 1.7) 19.4470 19.4470 0.00 0.00

0.75 0 0.25 (11, 4, 1.4) 35.9696 (12, 4, 1.6) 36.6423 35.9013 1.87 −0.19

0.25 0 (10, 4, 1.7) 25.9099 (10, 4, 1.7) 25.9099 25.9099 0.00 0.00

1 0 0 (13, 0, 1.8) 34.1709 (13, 0, 1.8) 34.1709 34.1709 0.00 0.00

Table 5 Comparison of analytical and approximation results with high holding costs (λ = 10, p = (20, 10),
r = (30, 15), h = (5, 5), π = (10, 10, 15), and K = 10)

Deg. Compl Analytical (Model 1) Approximation (Model 2) Gap2% Gap3%

α1 α2 α12 (S1, S2, T )1 E[Π∗
1 ] (S1, S2, T )2 E[Π∗

2 ] E[Π3]
0 0 1 (6, 6, 0.4) 70.0009 (6, 6, 0.4) 70.0009 70.0009 0.00 0.00

0.25 0.75 (6, 7, 0.4) 43.4194 (5, 6, 0.4) 48.1442 40.2601 9.81 −7.28

0.5 0.5 (4, 7, 0.4) 24.9643 (4, 7, 0.5) 28.8643 22.8474 13.51 −8.48

0.75 0.25 (3, 7, 0.5) 8.6130 (3, 8, 0.6) 10.8882 8.4755 20.90 −1.60

1 0 (0, 8, 0.6) 0.2353 (0, 8, 0.6) 0.2353 0.2353 0.00 0.00

0.25 0 0.75 (7, 6, 0.4) 55.6749 (7, 5, 0.4) 60.5236 54.5818 8.01 −1.96

0.25 0.5 (6, 6, 0.5) 36.7468 (6, 6, 0.5) 40.7447 36.7468 9.81 0.00

0.5 0.25 (5, 6, 0.5) 19.6699 (5, 6, 0.6) 21.5989 19.1757 8.93 −2.51

0.75 0 (3, 6, 0.6) 4.3644 (3, 6, 0.6) 4.3644 4.3644 0.00 0.00

0.5 0 0.5 (7, 4, 0.4) 49.5489 (8, 4, 0.5) 53.4741 48.1566 7.34 −2.81

0.25 0.25 (6, 4, 0.5) 32.0803 (6, 4, 0.5) 34.3376 32.0803 6.57 0.00

0.5 0 (5, 4, 0.6) 15.3871 (5, 4, 0.6) 15.3871 15.3871 0.00 0.00

0.75 0 0.25 (8, 3, 0.5) 45.2067 (8, 2, 0.5) 47.4628 42.9407 4.75 −5.01

0.25 0 (6, 2, 0.5) 28.3262 (6, 2, 0.5) 28.3262 28.3262 0.00 0.00

1 0 0 (9, 0, 0.6) 47.8449 (9, 0, 0.6) 47.8449 47.8449 0.00 0.00
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Table 6 Comparison of the (Si , T ) and (si , ci , Si ) policies with the base data set (λ = 10, p = (20, 10),
r = (30, 15), h = (1, 1), π = (10, 10, 15), and K = 10)

Deg. Compl (Si , T ) Policy Can-order Policy Gap4%

α1 α2 α12 (S1, S2, T )1 E[Π∗
1 ] (s1, c1, S1, s2, c2, S2) E[Π∗

4 ]
0 0 1 (14, 14, 0.9) 117.0668 (6, 13, 13, 6, 13, 13) 115.1428 1.67

0.25 0.75 (12, 15, 0.9) 92.2974 (5, 10, 15, 4, 10, 17) 91.7723 0.57

0.5 0.5 (9, 15, 0.9) 69.6879 (4, 10, 13, 5, 9, 16) 68.4402 1.82

0.75 0.25 (6, 16, 1.1) 47.8231 (4, 10, 11, 5, 13, 18) 46.9811 1.79

1 0 (0, 18, 1.3) 28.8650 (0, 0, 0, 10, 21, 21) 28.8655 0.00

0.25 0 0.75 (15, 12, 0.9) 104.7428 (7, 10, 17, 6, 7, 15) 103.0374 1.66

0.25 0.5 (12, 12, 0.9) 82.0216 (6, 9, 13, 5, 7, 14) 81.0122 1.25

0.5 0.25 (10, 13, 1.1) 59.8357 (5, 10, 11, 7, 7, 15) 58.5478 2.20

0.75 0 (6, 14, 1.3) 38.3326 (6, 8, 9, 5, 7, 16) 37.9215 1.08

0.5 0 0.5 (15, 9, 0.9) 94.5780 (5, 9, 16, 6, 11, 12) 93.1576 1.52

0.25 0.25 (12, 9, 1.0) 72.1880 (4, 7, 12, 7, 7, 11) 71.0944 1.53

0.5 0 (10, 10, 1.2) 50.3916 (3, 8, 13, 4, 8, 12) 49.2546 2.31

0.75 0 0.25 (17, 6, 1.1) 85.0614 (7, 10, 17, 4, 5, 9) 84.0813 1.16

0.25 0 (15, 6, 1.3) 63.1262 (3, 6, 16, 4, 6, 8) 62.1346 1.59

1 0 0 (19, 0, 1.3) 78.3047 (11, 21, 22, 0, 0, 0) 78.3105 0.00
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