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Abstract
We consider the problem to find a schedule for component replacement in a multi-component
system, whose components possess stochastic lives and economic dependencies, such that
the expected costs for maintenance during a pre-defined time period are minimized. The
problem was considered in Patriksson et al. (Ann Oper Res 224:51–75, 2015b), in which
a two-stage approximation of the problem was optimized through decomposition (denoted
the optimization policy). The current paper improves the effectiveness of the decomposition
approach by establishing a tighter bound on the value of the recourse function (i.e., the second
stage in the approximation). A general lower bound on the expected maintenance cost is
also established. Numerical experiments with 100 simulation scenarios for each of four test
instances show that the tighter bound yields a decomposition generating fewer optimality
cuts. They also illustrate the quality of the lower bound. Contrary to results presented earlier,
an age-based policy performs on par with the optimization policy, although most simple
policies perform worse than the optimization policy.

Keywords Stochastic programming · Mixed binary linear optimization · Maintenance
optimization · Stochastic opportunistic replacement problem

Mathematics Subject Classification 90C11 · 90C15 · 90B25

1 Introduction

This article studies a generalization of a multi-component maintenance scheduling problem
with deterministic component lives (the so-called opportunistic replacement problem, ORP;
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see Almgren et al. 2012), to the case when component lives are considered to be stochastic
variables. The resulting stochastic opportunistic replacement problem (SORP) was intro-
duced and analyzed in Patriksson et al. (2015a, b).

We consider a stochastic programming approach for the minimization of the expected cost
of maintenance over the remaining planning horizon, assuming that the failure risk functions
are non-decreasing with increasing component ages. Our problem formulation leads to a
two-stage approximation of a multi-stage stochastic programming problem, which can be
decomposed, akin to integer Benders’ decomposition (Benders 1962). The decomposition
requires lower bounds on the value of the recourse function, which represents the expected
future maintenance cost of a specific replacement decision at the current time, given the
current ages of the components. We present a means to compute such lower bounds; in par-
ticular, we improve upon the corresponding bounds from Patriksson et al. (2015b), resulting
in a more efficient decomposition method.

Two identical systems with identical component ages were considered in Patriksson et al.
(2015b, Prop. 2); it claims that the value of the recourse function of either system is upper
bounded by that of the other, plus a non-negative value defined by the (current) replacement
decisions for the two systems. Based on our improved bounds on the recourse function, we
state and verify a tighter bound than the one claimed.

Beside the improved efficiency of the decomposition, we establish a lower bound on the
expected cost of the solution to the SORP; it is useful since our method does not in general
provide an optimal solution to the SORP.

A review over current research is given in Sect. 2. A formal definition of the problem
studied is given in Sect. 3, and in Sect. 4 it is formalized how time is discretized. Section 5
contains a lower bound on the value of the SORP. Sections 6, 7, and 8 contain (the new)
bounds on the value of the recourse function, a brief description of theORPIL (a deterministic
optimization problem), and a description of a decomposition method, respectively. Together,
these three sections form a presentation of the optimization policy. Section 9 contains some
numerical tests comparing the newoptimization policywith the old one. Section 10 concludes
the paper.

2 Literature survey

While the literature abounds with articles on aspects of reliability and maintenance of multi-
component systems with deteriorating and/or stochastically failing components, we provide
below a summary of the most interesting and (mostly) recent related articles in the area,
sorted along a time-line.

van Noortwijk and Frangopol (2004) describe the difference between proactive and reac-
tive preventivemaintenance (PM) actions, applied before and after, respectively, an indication
of a deterioration. As the rationality behind these principles have been questioned, an optimal
PM strategy based on lifetime reliability and life-cycle costs is established. The formermodel
was applied by the Netherlands Ministry of Transport, Public Works andWater Management
(Rijkswaterstaat); the latter contributed to the further development of a bridge management
methodology set up by the UK Highways Agency.

Deloux et al. (2009) develop a predictive maintenance policy for a continuously deteri-
orating system subject to stress. The system considered possesses two failure mechanisms:
an excessive deterioration level and a shock. To optimize the maintenance policy, a com-
bined statistical process control (SPC) and condition-based maintenance (CBM) approach
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is proposed. The CBM is used to inspect and replace the system according to the deteriora-
tion level. SPC is used to monitor the stress covariate. In order to assess the performance of
the proposed policy and to minimize the long-run expected maintenance cost per time unit,
a mathematical model for the system cost is derived. An analysis of the numerical results
highlights the properties of the proposed policy w.r.t. the different maintenance parameters.

Laggoune et al. (2009) propose a PM planning approach for a multi-component series
system subjected to random failures, the cost rate being minimized under a general life
distribution. The expected total cost comprises corrective and preventive costs (w.r.t. the com-
ponents) as well as common costs (w.r.t. the production loss during system shutdown). When
the system is down (correctively or preventively) the opportunity to preventively replace non-
failed components is considered. A solution procedure combining Monte-Carlo simulations
and a heuristic search is proposed and applied to component replacement in the hydrogen
compressor in an oil refinery.

Wang (2012) recognizes that spare parts demands are difficult to predict based on historical
data of parts usages, wherefore an optimal inventory control policy may be difficult to obtain.
A joint optimisation of the inventory control of spare parts and the PM inspection interval
is proposed. Stochastic cost models for spare parts inventory and maintenance are derived
and enumeration is employed to find optimal solutions over a finite time horizon. A delay-
time concept is developed for inspection modelling and used to derive the probabilities of
numbers of failures and defective items identified at a PM epoch. The inventory model
follows a periodic review policy, the demand being governed by the need for spare parts due
to maintenance.

Carlos et al. (2013) argue that the maintenance frequency of wind farms is partly deter-
mined by wind velocity variations, which partly determine the degradation progress. Wind
measurements and Monte-Carlo sampling are used to estimate the power generated, with
a cost associated to production loss during maintenance. The bi-objective goal of the wind
farm maintenance strategy is to minimize the total cost and maximize the energy produced,
maintenance frequency being a decision variable.

Jha et al. (2013) develop a maintenance scheduling optimization model for bridge infra-
structure—utilizing a prediction model to account for stochastic aspects of deterioration—as
well as an experimental procedure for examining bridge deterioration. The importance of
regarding structural deterioration is discussed, and the work intend to imply environmentally
sustainable structures. Specifically, the use of composite materials to replace steel rebars—
which are due to corrosion—within bridge decks is presented as a sustainable alternative, to
reduce the need for repair and maintenance.

Stochastic control methods have a long history in risk management and life-cycle cost
procedures. Papakonstantinou and Shinozuka (2014) combine stochastic control methods
and Bayesian principles into partially observable Markov decision processes (POMDPs)
that expand available policy options compared to some state-of-the-art methods. POMDPs
enable optimum decisions, based on the best possible knowledge of a decision-maker at each
time. The problem of finding optimal policies for the maintenance and management of aging
structures through a POMDP framework with large state spaces is modelled and solved; the
framework is formed using stochastic, physically based models. An example of a corroded
existing structure is presented; it is based on non-stationary POMDPs, for an infinite and a
finite horizon case with 332 and 14,009 states, respectively.

Comparea et al. (2015) propose and compare maintenance optimization techniques based
on genetic algorithms (GA), the parameters of the maintenance model being affected by
uncertainty and the fitness values represented by cumulative distributions. A method to rank
the uncertain fitness values and a novel Pareto dominance concept are developed. The GA-
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based methods are applied to a practical case concerning the setting of a CBM policy on the
degrading nozzles of a gas turbine operating in an energy production plant.

Do et al. (2015) consider a proactive CBM technique, with perfect and/or imperfect main-
tenance actions, in a deteriorating system. Perfect maintenance actions restore the system to
an‘as good as new’ state—often at a high cost. A positive impact of imperfect maintenance
actions is the relatively low cost; negative impacts are that (i) the system is restored to a
state between ‘as good as new’ and ‘as bad as old’, and (ii) each action may accelerate the
system’s deterioration speed. An adaptive maintenance policy is proposed which, at each
inspection time needed, selects optimal maintenance actions, the time interval between suc-
cessive inspection times being determined w.r.t. a remaining useful life (RUL); the use of the
policy is illustrated by a numerical example.

Gunn and Diallo (2015) consider systems operating in critical environments, where oper-
ators and/or regulators often specify—for major components—replacement intervals, within
which failure cannot occur. A preventive replacement of a component yields an opportunity
to replace other components that are within their replacement intervals—to avoid repeating
the large teardown cost in short term. For a fixed time horizon, the opportunistic indirect
grouping of periodic events problem is represented by a tree of possible combinations of
replacements of major component. A depth-first shortest path algorithm is developed; for
moderate numbers of components, out of millions of nodes created only a small portion need
to be examined. For larger numbers of components and longer time horizons, the depth-first
search still rapidly finds improving solutions and serves as a good heuristic approach.

Aghezzaf et al. (2016) consider the integration of production andmaintenance planning in
a failure-pronemanufacturing system. The system’s operating state (i.e., age) is stochastically
predictable and it can receive PM during preplanned periods. PM is imperfect: the system
is restored to a state between ‘as bad as old’ and ‘as good as new’, the latter reachable
only by an overhaul. An integrated production and PM planning model—accounting for
the system’s manufacture capacity and operational reliability state—is formulated using
mixed-integer non-linear optimization, and then reformulated as an extended mixed-integer
linear program. Since the reformulation is computationally demanding, a ‘fix-and-optimize’
procedure is proposed, that utilizes some properties of the original model. The resulting
procedure is tested—with good results—on instances adapted from the literature.

Atashgar and Abdollahzadeh (2016) formulate a joint redundancy and imperfect block
opportunistic maintenance optimization model, to determine the redundancy level and a
maintenance strategy that simultaneously minimizes the wind farm loss-of-load probability
and life-cycle cost. Reliability thresholds are introduced for imperfect maintenance of failed
and working turbines, and preventive dispatch of maintenance teams. A simulation method
developed evaluates the performance measures of a wind farm system w.r.t. different types
of wind turbines, maintenance activation delays and durations, and a limited number of
maintenance teams. The influence on the performance of the wind farm, of the assumptions
and the parameters of the simulation model, is discussed based on a sensitivity analysis.
Pareto optimal solutions are derived using a multi-objective particle swarm optimization
algorithm. A comparative study with a commonly used maintenance policy shows that the
proposed strategy significantly reduces maintenance costs and loss-of-load probability.

Cherkaoui et al. (2016) assess the economic performance of CBM strategies through their
long-run expected maintenance cost rate criterion as well as robustness. A cost model is
developed to quantify the economic performance and robustness to assess CBM strategies.
Two representative strategies—periodic and quantile-based—for inspection and replacement
are compared, revealing the factors affecting their performance and robustness the most.
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Rasmekomen and Parlikad (2016) describe an approach to optimize CBM of multi-
component systems, where the state of certain components may affect the rate of degradation
of other components. A real case is presented: an industrial cold box in a petrochemical plant;
data collected on the fouling of its tubes show that the extent of fouling of one tube affects
the rate of fouling of other tubes due to overloading.

Shi and Zeng (2016) describe an opportunistic PM strategy and analyze multi-component
systems with stochastic dependence (similar to that by Rasmekomen and Parlikad 2016).
Assuming that measures are available of the RULs of components as well as of the impact of
a component’s degradation on the RULs of other components, filtering theory is used for pre-
dictions. An optimizationmodel determines timings and groupings, based on an opportunistic
maintenance principle: at failure maintenance is performed also on other components if time
lies in an “opportunity zone”. An optimal balance is sought between the cost of performing
maintenance too early on some components, and the gain from opportunistic coordination.
Tests are limited to three-component systems.

Alaswad and Xiang (2017) review CBM optimization models for stochastically dete-
riorating single- and multi-unit systems. A CBM strategy collects and assesses real-time
information, and suggests maintenance decisions based on the system’s current condi-
tion. In recent decades, research on CBM has grown rapidly due to a rapid development
of computer-based monitoring technologies. Research studies have shown that CBM—if
planned properly—can effectively improve equipment reliability at reduced costs. The review
is emphasised on mathematical modeling and optimization approaches. Focus lies on opti-
mization criteria, inspection frequency,maintenance degree, and solutionmethodology. Since
the modeling choice for the stochastic deterioration process greatly influences CBM strategy
decisions, the CBM models are classified based on the underlying deterioration processes,
namely discrete-and continuous-state deterioration, and the proportional hazard model.

3 Problem definition

Consider a system composed by a setN = {1, . . . , N } of serially connected components, so
that a component must be replaced whenever it reaches a failed state. The life of an individual
component may be stochastic, but is independent of both failures and lives of other individual
components in the system. (The case in which all individuals possess deterministic lives is
treated in Patriksson et al. 2015a.) We will assume that at least one component possesses a
stochastic life, and that the probability distributions for the lives of all the components are
known.

Let V be the set of system states, where each state (s, ξξξ, a) ∈ V is composed by the time
s ∈ R+, the vector ξξξ ∈ B

N of component states [ξn = 0 (ξn = 1) if component n ∈ N is
functioning (in a failed state)] at time s, and the vector a ∈ R

N+ of ages at time s (an denotes
the age of component n ∈ N ).

We denote the set of feasible maintenance decisions with respect to the state (s, ξξξ, a) ∈ V ,
by Xξξξ = { x ∈ B

N | x ≥ ξξξ }. A decision policy may be used to make a maintenance decision
for a system in a given state.

Definition 1 (Maintenance policies) A deterministic maintenance policy is a function p :
V → B

N such that p(s, ξξξ, a) ∈ Xξξξ . Let BN denote the set of random vectors with outcome
spaceBN . A stochasticmaintenance policy is a functionp : V → BN such that Pr(p(s, ξξξ, a) ∈
Xξξξ ) = 1.
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While, in Patriksson et al. (2015a, b), the term maintenance policy denotes a deterministic
maintenance policy (stochastic maintenance policies are not employed in Patriksson et al.
2015a, b), it is here used with either of the attributes deterministic or stochastic. Stochastic
maintenance policies are employed in the proof of Proposition 1(i), (ii).

Costs corresponding to the different decisions and/or policies must be defined.We assume
that the replacement of any component n ∈ N incurs a replacement cost cn , and that a start-
up cost d is incurred each time at least one component is replaced. The current cost of the
maintenance decision x ∈ Xξξξ is then defined as

∑

n∈N
cnxn + d max

n∈N {xn}.

Letting S > 0 denote the planning horizon, the period of time during which the system
must work is defined as the interval [0, S).

Definition 2 (Stochastic opportunistic replacement problem, SORP) Given a planning hori-
zon S, a start-up cost d , component replacement costs cn , and probability distributions of
the components’ lives, for n ∈ N , find a deterministic maintenance policy, such that the
expected sum of current costs during the planning period [0, S) is at minimum.

A deterministic maintenance policy which finds an optimal solution to the SORP is called
an optimal maintenance policy.

Definition 3 (Current problem) Given a planning horizon S, a start-up cost d , component
replacement costs cn and probability distributions of the components’ lives, for n ∈ N , the
system state (s, ξξξ, a) ∈ V , and assuming that an optimal maintenance policy will be used for
all maintenance decisions during the time span (s, S), find a maintenance decision x ∈ Xξξξ

such that the expected sum of current costs during the planning period [s, S) is at minimum.

If x∗(t, ξξξ, a) is an optimal solution to the current problem at state (t, ξξξ, a) ∈ V , and
p∗(s, ξξξ, a) = x∗(s, ξξξ, a) for all (s, ξξξ, a) ∈ V , then p∗ is an optimal maintenance policy.
Thus, to maintain a system optimally, it is sufficient to solve each current problem that
occurs.

4 Discretization of time in the current problem and the life
distributions

The current problem at state (s, ξξξ, a) ∈ V is defined w.r.t. the continuous time interval [s, S).
We define the time unit δ := S−s

T+1 and consider the set T := {0, . . . , T } representing T + 1
discrete time points. For each t ∈ T , any individual of any component which fails during
the time interval [s + tδ, s + tδ + δ) is treated as it would fail already at the time s + tδ
(or that the individual is observed to be so close to failure that a replacement is necessary
before the time s + tδ + δ).1 Hence, the discretized version of the current problem is defined
for the discrete set {s, s + δ, . . . , s + T δ} of time points—hereafter represented by the set
T . Since decisions made at time t ∈ T depend on realizations of the system’s states at the
times {1, . . . , t} and of the decisions made at the times {0, . . . , t − 1}, the discretized current
problem is a multi-stage stochastic programming problem (Birge and Louveaux 1997, Ch.
III.7).

1 Any individual with life < δ would have a zero life in the discretized model and should be discarded from
the problem. Hence, we assume that all individuals possess lives ≥ δ.
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We define the N ×N -matrix A := diag(a) and the N -vector 1 := (1, . . . , 1)�. Then,
A(1 − x) ≡ a − Ax denotes the components’ ages after the replacement decision x. We
let the function f p

t : BN × R
N → R represent the expected cost incurred by following the

stochastic maintenance policy p over the time steps {t, . . . , T }, defined as

f p
t (ξξξ, a) := Ep(t,ξξξ,a)

[
d max

n∈N { pn(t, ξξξ, a) } + c�p(t, ξξξ, a) + Qa
t (p(t, ξξξ, a), p)

]
,

(1a)

where the function Qa
t : BN × B

N → R is defined by

Qa
T (x, p) := 0, (1b)

Qa
t (x, p) := Eηηη

[
f p
t+1(ηηη , a − Ax + 1)

]
, t = T − 1, . . . , 0, (1c)

and ηηη ∈ B
N is a random vector of component states and whose distribution is given by

Pr(ηn = 1) = 1−Pr(ηn = 0) = Gn(an −anxn +1), where Gn is computed as in (3), below.
The recourse function Qa

t represents the expected future costs at time t . In the special case
of p being a deterministic maintenance policy, the right-hand-side of (1a) can be simplified
to

d max
n∈N

{
pn(t, ξξξ, a)

}+ c�p(t, ξξξ, a) + Qa
t (p(t, ξξξ, a), p).

For an optimal maintenance policy p∗, the expected sum of current costs over the times
{t, . . . , T } may be expressed as

f p∗
t (ξξξ, a) := minimumx,z dz + c�x + Qa

t (x, p∗), (2a)

subject to x ≥ ξξξ, (2b)

xn ≤ z, n ∈ N , (2c)

x ∈ {0, 1}N , (2d)

z ∈ {0, 1}. (2e)

The current problem is to find f p∗
0 (ξξξ, a) [i.e., solve the program (2) for the state (0, ξξξ, a)]

and the corresponding optimal solution, typically without explicit knowledge of the optimal
policy p∗ [i.e., without minimizing (2a) for each (t, ξξξ, a)].

The lives of the individuals i ∈ Z+ of component n ∈ N are represented by the
continuous2 and independent identically distributed (i.i.d.) stochastic variables T̂ni . Let
τn : R+ → [0, 1] denote the probability density function of T̂n1, so that its cumulative
probability function is given by

Fn(t) := Pr(T̂n1 ≤ t) =
∫ T

0
τn(s) ds, n ∈ N .

The failure risk function Gn : R+ → [0, 1], defined as Gn(a) := Pr(T̂n1 < a+1 : T̂n1 ≥
a), denotes the probability that component n fails during the next time step, provided that it
is in a non-failed state and of age a ≥ 0; it is calculated as

Gn(a) = Fn(a + 1) − Fn(a)

1 − Fn(a)
, n ∈ N . (3)

2 Analogous analyses for discrete (or mixed) random variables can be performed, although with a more
complicated notation.
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5 A lower bound on the expected costs for maintenance

We propose a lower bound on the optimal value of the SORP, as given by Definition 2.
The bound is restricted to instances of the SORP for which each component n ∈ N has a
stochastic life following the distribution Fn , such that the failure risk function Gn , defined in
(3), is non-decreasing.3 The bound is determined by minimizing the expected replacement
costs for each component individually, as well as minimizing the expected start-up costs for
replacements individually, followed by a summation of those costs.

In a one component system (i.e., for n = N = 1), component n is replaced only when it
fails; we denote by φn the expected number of failures of such a system. In a systemfor which
it holds that N > 1, the expected number of times that component n ∈ N must be replaced
is at least φn . Hence, the expected cost for replacing component n (excluding start-up costs,
d) is at least cnφn . To calculate the value of φn , let the stochastic variable Y

(m)
n :=∑m

i=1 T̂ni
denote the sum of the lives of the m first individuals of component n, and let Zn denote the
number of times that component n must be replaced, given that it is replaced only when it
fails, i.e.,

Zn := max

{
m ∈ Z

∣∣∣∣
m∑

i=1

T̂ni < S

}
= max

{
m ∈ Z

∣∣ Y (m)
n < S

}
.

The expected value of the number of replacements of component n, i.e., Zn , may be found
by determining the probability function for Zn , or as the sum over m of the probability that
the mth individual of component n must be replaced;4

φn = E[Zn] =
∞∑

m=1

Pr
(
Y (m)
n < S

)
. (4)

Finding an analytic expression for φn is possible only for special cases of the function Fn .
Unless T̂n1 lack expected value or variance, normal approximations may be used for large
enough values of m, since Y (m)

n is a sum of m i.i.d. stochastic variables. Another approach
is to simulate outcomes of Y (m)

n , and use the resulting relative frequencies to estimate the
probabilities Pr(Y (m)

n < S) for different values of m.

3 When time is treated as continuous rather than discrete, the failure risk function Gn is replaced by the
hazard rate function λn : R+ →R+; it is for our lower bound assumed to be non-decreasing and defined by
λn(a) := limh→0+

{
h−1Pr(T̂n1 < a + h : T̂n1 ≥ a)

} = F ′
n(a)(1 − Fn(a))−1.

4 The equivalences in (4) hold due to the relations

φn = E[Zn ] =
∞∑

m=1

mPr(Zn = m) =
∞∑

m=1

mPr(Y (m)
n < S ≤ Y (m+1)

n )

=
∞∑

m=1

Pr(Y (m)
n < S ≤ Y (m+1)

n ) +
∞∑

m=1

(m − 1)Pr(Y (m)
n < S ≤ Y (m+1)

n )

= Pr(Y (1)
n < S) +

∞∑

m=2

(m − 1)Pr(Y (m)
n < S ≤ Y (m+1)

n )

=
2∑

m=1

Pr(Y (m)
n < S) +

∞∑

m=3

(m − 2)Pr(Y (m)
n < S ≤ Y (m+1)

n ) =
∞∑

m=1

Pr(Y (m)
n < S).

123



Annals of Operations Research (2020) 292:711–733 719

We denote by Φ the least expected number of times when at least one component must
be replaced; it is given by the case when all components are replaced whenever any compo-
nent fails; this follows since the failure risk functions (or, hazard rates) are non-decreasing,
implying that the expected time until the next system failure may only decrease if not all
components are replaced. Hence, the expected start-up cost cannot be less than dΦ. To cal-
culate the value of Φ, let T̂i denote the time between system failures i − 1 and i , and assume
that all components are replaced at each system failure. Then, T̂i , i = 1, 2, . . ., are i.i.d.
stochastic variables with

T̂i = min
n∈N

{
T̂ni
}
.

The distribution function of T̂1 is given by

F = 1 −
∏

n∈N
(1 − Fn) .

Analogously to the derivations for individual components, let Y (m) := ∑m
i=1 T̂i denote the

time for the mth system failure, and Z := max {m ∈ Z | Y (m) < S } the number of times
replacements must be made. It then holds that [cf. (4)]

Φ = E[Z ] =
∞∑

m=1

Pr(Y (m) < S).

Weconclude that the sumof the least possible expected start-up costs and the least possible
expected replacement costs for all components forms a lower bound on the optimal value of
the SORP, namely

dΦ +
∑

n∈N
cnφn .

The bound is based on theminimization of the replacement costs for each component, without
regards for the start-up costs then incurred, and on minimization of the start-up costs without
regards for the replacement costs for the components then incurred. It is only in special cases
that both component replacement costs and start-up costs can be minimized simultaneously,
so the bound is not tight in the general case.

6 Bounds on the value of the recourse function

Consider the expected minimum total cost resulting from the employment of an optimal
maintenance policy as expressed in (2), along with the definition (1b)–(1c) of the recourse
function. We will in this section establish bounds on the value of the recourse function
which will prove useful in a decomposition method used for solving the current problem.
In particular, we reconsider (Patriksson et al. 2015b, Prop. 1), for which we present a new
and clearer proof of part (a) [i.e., Proposition 1(i)], and an improved version of part (b) [i.e.,
Proposition 1(ii)].5

5 Patriksson et al. (2015b, Conjecture 1) proposes a possible improvement of Patriksson et al. (2015b,
Prop. 1(b)); our improvement [i.e., Proposition 1(ii)] provides an upper bound on the recourse function which
is at least as tight as the one conjectured.
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We letG(a) denote the probability that a functioning systemwith component ages a ∈ R
N+

fails within the next time step, i.e.,

G(a) := 1 −
∏

n∈N
[
1 − Gn(an)

]
.

For failure distributions with non-decreasing failure risk functions (see Sect. 4), the next
proposition states that the expected future cost is non-decreasing with (non-decreasing)
component age and provides an upper bound on the increase of the expected future cost
with increasing age.

For any two vectors a, â ∈ R
N+ we define the set N̄ (â, a) := { n ∈ N | ân > an }. Then,

for each t ∈ T , we define the function Kt : RN+ × R
N+ → R as6

Kt (â, a) :=
T−t∑

k=1

⎡

⎣

⎛

⎝
k−1∏

j=1

[
1 − G(â + j1)

]
⎞

⎠

·
⎛

⎝
∑

n∈N̄ (â,a)

cn
[
G(â + k1) − Gn(an + k)

]
+ d
[
G(â + k1) − G(a + k1)

]
⎞

⎠

⎤

⎦ .

(5)

Proposition 1 Assume that each component n ∈ N has a failure distribution with a non-
decreasing failure risk function Gn, let p∗ be an optimal maintenance policy, let the age
vectors a, â ∈ R

N+ be such that a ≤ â, let the functions Qa
t and Kt , t ∈ T , be defined

by (1b)–(1c) and (5), respectively. Then, for all t ∈ T the following hold:

(i) Qa
t (0, p∗) ≤ Qâ

t (0, p∗), and
(ii) Qâ

t (0, p∗) ≤ Qa
t (0, p∗) + Kt (â, a).

Proof (i) The inequality Qa
t (0, p∗) ≤ Qa

t (0, p) holds for all policies p, since by definition,
an optimal policy p∗ provides the lowest possible expected future cost. Our idea is to find a
stochastic policy p which, as applied to a system with component ages â at time t , simulates
an optimal policy p∗ applied to a system with component ages a at time t , i.e., such that
Qa

t (0, p) = Qâ
t (0, p∗) holds. This means that in the policy p, each component n ∈ N̄ (â, a)

fails artificially with some probability, at each time step until it is replaced. The probability
that such a component n fails artificially at time t + k should equal the probability that
component n—for component ages â—fails at time t +k, even though—for component ages
a—it does not fail at time t + k, conditioned on that it is not replaced at any of the times
t + 1, . . . , t + k − 1. The sought probability is given by

Hn(an, ân, k)

{
:= Gn(ân+k)−Gn(an+k)

1−Gn(an+k) , if Gn(an + k) < 1,

∈ [0, 1], if Gn(an + k) = 1.
(6)

Since the failure risk functions are non-decreasing, i.e., for any 0 ≤ a ≤ â, the inequalities
0 ≤ Gn(a) ≤ Gn(â) ≤ 1 hold, the relations in (6) imply that

Gn(ân + k) = Gn(an + k) + [1 − Gn(an + k)
]
Hn(an, ân, k).

6 Whenever u > r , a product over indices ranging from u to r is assumed to equal 1, while a sum ranging
from u to r , as well as over an empty set, is assumed to equal 0.
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It follows that the inequalities 0 ≤ Hn(an, ân, k) ≤ 1 hold. Therefore, Hn(an, ân, k) is
indeed a probability whenever k ≥ 0 and 0 ≤ an ≤ ân .

To construct the stochastic policy p needed, let t , a, and â be fixed, and define the mutually
independent stochastic variables X (k)

n ∈ Bin(1, Hn(an, ân, k)) for n ∈ N and k ∈ Z>0.
Further, let ααα ∈ Z

N
>0 and define, for all n ∈ N and k ∈ Z>0,

ξ̃ (k)
n :=

{
max

{
ξn, X (k)

n
}
, if αn = an + k and an < ân,

ξn, otherwise,

and

α̃(k)
n :=

{
ân + k, if αn = an + k and an < ân,

αn, otherwise.

The stochastic policy p is then defined as

p(t + k, ξξξ,ααα ) :=
{

p∗(t + k, ξ̃ξξ
(k)

, α̃αα (k)), k ∈ {1, 2, . . . },
p∗(t + k, ξξξ,ααα ), k ∈ {0,−1,−2, . . . }.

Consider two systems which, at time t , function and possess component ages a and â,
respectively. The policy p applied to the system with ages a, acts as the policy p∗ applied to
the system with ages â.7 Each component n is treated according to its actual age and state,
unless it was too young at the start (i.e., if an < ân) and has not been replaced since then
(i.e., if αn = an + k). It follows from the construction of p that the correct artificial ages and
failure probabilities are given otherwise.

Hence, the equality Qa
t (0, p) = Qâ

t (0, p∗) holds and the proposition follows.
(ii) To construct the stochastic policy p needed, let t , a, and â be fixed and define the

mutually independent stochastic variables8

Y (k)
n ∈

{
Bin

(
1, 1 − 1−Gn(ân+k)

1−Gn(an+k)

)
, if G(â + k1) > 0,

Bin (1, 0) , if G(â + k1) = 0,

k ∈ {1, 2, . . . },
n ∈ N̄ (â, a),

(7)

and define

X (k) := max
n∈N̄ (â,a)

{
Y (k)
n

}
, k ∈ {1, 2, . . . }. (8)

Let

pn(t + k, ξξξ,ααα ) := max
{
p∗
n(t + k, ξ̃ξξ

(k)
, α̃αα (k)), u(k)

n

}
, k ∈ {1, 2, . . . }, n ∈ N ,

where pn and p∗
n denotes the nth component of the policy p and p∗, respectively,

α̃αα (k) :=
{

â + k1, if ααα = a + k1,

ααα , otherwise,
k ∈ {1, 2, . . . }, (9)

ξ̃ (k)
n :=

{
max

{
Y (k)
n , ξn

}
, if ααα = a + k1 and n ∈ N̄ (â, a),

ξn, otherwise,
k ∈ {1, 2, . . . },
n ∈ N ,

7 No restriction is imposed by assuming that the system functions at time t , as components may possess age
0, which causes identical future costs to having older—and possibly broken—components replaced.
8 That all failure risk functions considered are non-decreasing guarantees that the involved probabilities are
well-defined.
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and

u(k)
n :=

⎧
⎪⎪⎨

⎪⎪⎩

max
{
X (k), maxm∈N { ξm }

}
, if ααα =a+k1 and n∈N̄ (â, a),

maxm∈N { ξm }, if ααα = â+k1 and n∈N̄ (â, a),

0, otherwise,

k ∈ {1, 2, . . . },
n ∈ N .

For k ≤ 0, without loss of generality we let p(t + k, ξξξ,ααα ) = p∗(t + k, ξξξ,ααα ).9

Let t + K be the first replacement time after time t , where K ≥ 1 is a stochastic variable,
and let “case a” and “case â” denote the cases with component ages at time t being a and â,
respectively. Due to the definition (8), the distributions of K are equivalent in “case a” and
in “case â”. In particular, it holds that

Pr(K = k : case â) = G(â + k1)

k−1∏

j=1

[
1 − G(â + j1)

]
= Pr(K = k : case a),

where the second equality can be established by induction over k. The independence between
failure times of different components means that given K = k, at time t + k the distributions
of component states for components n /∈ N̄ (â, a) are equivalent for the two cases. Further,
given K = k and { ξn }n∈N\N̄ (â,a), due to the definitions (7) and (9), the probabilities of
the possible maintenance decisions—and hence also the corresponding expected costs—at
time t + k are equivalent in the two cases. Combined with the fact that all components in
N̄ (â, a) are replaced at the first replacement time after t , the distribution of component states
after the first replacement after time t will be equivalent in the two cases. It follows that
Qâ

t (0, p) = Qa
t (0, p). We now have that Qâ

t (0, p∗) ≤ Qâ
t (0, p) = Qa

t (0, p).
The time for the first replacement after time t is t + K , whence, in case a, policy p

may perform replacements not performed by policy p∗, causing extra costs. After these
extra replacements, the policy p leaves a system in which no component individual is older
than its equivalent in the system left by the policy p∗. Hence, according to Proposition 1(i),
Qa

t (0, p) ≤ Qa
t (0, p∗) + Rt (a, N̄ (â, a)) holds, where Rt (a, N̄ (â, a)) denotes the extra cost

incurred by replacing the components n ∈ N̄ (â, a) at time t + K given case a. To calculate
the extra costs in case a, we partition the event “K = k” in case a into the two events
“maxn∈N { ξn } = 1” (i.e., the system fails at time t + k) and “maxn∈N { ξn } = 0 and
X (k) = 1” (i.e. the system does not fail at time t + k):

Pr
(
K = k, max

n∈N { ξn } = 1
)

= G(a + k1)·
k−1∏

j=1

[
1 − G(â + j1)

]
;

Pr
(
K = k, max

n∈N { ξn } = 0, X (k) = 1
)

=
[
G(â + k1) − G(a + k1)

]
·
k−1∏

j=1

[
1 − G(â + j1)

]
.

If the system fails at time t + k, no extra start-up cost must be paid, but for each component
n ∈ N̄ (â, a) an extra cost cn must be paid, unless it is to be replaced according to policy
p∗.10 The probability that component n has failed at time t + k, given a system failure at
time t + k, is Gn(an + k)/G(a + k1) (the event of system failure is implied by the failure of

9 It does not matter how p(t + k, ξξξ,ααα ) is defined when k ≤ 0.
10 In policy p∗, component n must be replaced if it has failed; it may be replaced if it has not failed.
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component n). The extra cost incurred by the event “K = k” due to system failure at time
t + k, multiplied by its probability, is at least

⎛

⎝
k−1∏

j=1

[
1 − G(â + j1)

]
⎞

⎠ ·
⎛

⎝
∑

n∈N̄ (â,a)

cn
[
G(a + k1) − Gn(an + k)

]
⎞

⎠ . (10)

If K = k even though there is no system failure at time t + k, then an extra cost of d must
be paid, as well as the cost cn for each n ∈ N̄ (â, a). The extra cost incurred for K = k and
a system failure at time t + k, multiplied by the probability of this event, is

⎛

⎝
k−1∏

j=1

[
1 − G(â + j1)

]
⎞

⎠ ·
[
G(â + k1) − G(a + k1)

]
·
⎛

⎝d +
∑

n∈N̄ (â,a)

cn

⎞

⎠ . (11)

Hence, the expected value of the extra cost (from the component ages being â instead of
a) incurred by system failures over the times t + 1, . . . , T , is not less than the sum, over
k = 1, . . . , T − t , of (10) and (11), which equals Kt (â, a), defined in (5). The proposition
follows since the inequality Kt (â, a) ≥ Rt (a, N̄ (â, a)) holds. ��

The result in Patriksson et al. (2015b, Prop. 2) relates the values of the recourse function
for two systems without restrictions on component ages; its proof contains, however, an error
(a missing superscript). Based on our improvement of the bounds in Proposition 1, we next
present a (corrected and) stronger version of Patriksson et al. (2015b, Prop. 2).

We define the component-wise maximum as max { x, y } := [max { xn, yn }]n∈N .

Proposition 2 Assume that each component n ∈ N possesses a failure distribution with non-
decreasing failure risk function Gn, let p∗ be an optimal maintenance policy, and let Kt be
defined as in (5). Then, for all x, y ∈ B

N and all t ∈ T it holds that

Qa
t (x, p∗) ≥ Qa

t (y, p∗) − Kt (a − Ay, a − Amax { x, y }).
Proof Since the equivalence Gn(an − an max { xn, yn } + k) = Gn(k) holds for any k ≥ 0
and all n ∈ N̄ (a − Ay, a − Amax { x, y }), it follows that

Qa
t (y, p∗) = Qa−Ay

t (0, p∗)

≤ Qa−Amax { x,y }
t (0, p∗) + Kt (a − Ay, a − Amax { x, y })

≤ Qa−Ax
t (0, p∗) + Kt (a − Ay, a − Amax { x, y })

= Qa
t (x, p∗) + Kt (a − Ay, a − Amax { x, y }),

where the first and second inequalities are obtained by application of Proposition 1(ii) and
(i), respectively. The proposition follows. ��

7 The ORPIL

Themodel of the opportunistic replacement problemwith individual lives (ORPIL; Patriksson
et al. 2015a) will be of interest. The ORPIL, which generalizes the opportunistic replacement
problem (ORP; Almgren et al. 2012), will be used in Sect. 8.1 to form a two-stage sample
average approximation of the SORP. The basic structure of theORP, theORPIL, as well as the
SORP, consists of a setN of serially connected components n ∈ N , each with a replacement
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cost cn , and a start-up cost d to be paid each time—during the (discrete) planning period
T = {0, . . . , T }—at least one component is replaced. The differences lie in the lives of the
components, which in the case of the

ORP are constant, and for each component are identical for all individuals;
ORPIL are constant, but may differ between individuals;
SORP are stochastic.

As shown in Patriksson et al. (2015a, Prop. 1), the ORPIL is NP-hard. To control its
complexity, for each component n ∈ N only the first qn ∈ {1, . . . , T + 1}, so-called non-
identical life individuals, may be assigned individual lives;11 these are indexed by the set
In := {1, . . . , qn}. The remaining individuals (whenever qn ≤ T ) are assigned identical lives
and are indexed by the set Ĩn := {qn + 1, . . . , T + 1}.12

Definition 4 (Opportunistic replacement problem with individual lives; ORPIL) Given is a
discrete planning period T = {0, . . . , T } and the start-up cost d . For component n ∈ N , the
replacement cost is cn , Tni ∈ Z>0 denotes the life of individual i ∈ In , and Tn ∈ Z>0 denotes
the life of the individuals i ∈ Ĩn . Find a feasible maintenance schedule13 which minimizes
the sum of all replacement and start-up costs during the planning period.

For full details of the ORPIL, see Patriksson et al. (2015a).

8 Solving the discretized current problem

Two approaches to solve a two-stage approximation of the discretized current problem were
presented in Patriksson et al. (2015b): (i) a two-stage deterministic equivalent, and (ii) a two-
stage decomposition method, the latter of which was shown to be the computationally most
efficient. Hence, we use approach (ii), as presented in Sect. 8.2. Both approaches require, in
each iteration, the calculation of an approximate value of the recourse function, as presented
in Sect. 8.1.

8.1 The two-stage sample average approximation

Let Ω denote the set of all possible scenarios ω for the discretized current problem (2). A
scenario ω ∈ Ω is defined by a life Tni (ω) ∈ Z>0 for each individual i ∈ In ∪ Ĩn of each
component n ∈ N , and is realized with probability Pr(ω).

Each scenario, ω, defines an instance of ORPIL (see Sect. 7) with qn = |In | = T + 1,
n ∈ N ; its solution is a maintenance schedule, which is optimal provided that scenario ω

is realized (see Def. 4). Such large values of qn make ORPIL computationally demanding,
which is problematic when a large number of scenarios are to be realized. Since it is unlikely
that T + 1 non-identical life individuals are needed for all components, it may suffice to let

11 In Patriksson et al. (2015a), all components were given the same number of non-identical life individuals,
i.e., qn = qm for all n,m ∈ N . Such a restriction is not necessary, and may be computationally unfavorable
when the ORPIL is used in a solution scheme for the SORP.
12 Since the life of each individual is at least δ, corresponding to one time step, at most T + 1 individuals of
each component are needed.
13 A maintenance schedule is defined as a set of decisions regarding which components to replace at what
time steps. The schedule is feasible if and only if each individual i ∈ In (i ∈ Ĩn ) of each component n ∈ N
spends no more than Tni (Tn ) time units in the system.
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qn equal the number of individuals of component n ∈ N that are likely to be used prior to
the planning horizon; we anticipate a computational advantage from this construction.

Let q = (q1, . . . , qN ), and let the sampled multiset Ω̂q approximate the set Ω , with

Ω̂q ⊆ {ω ∈ Ω
∣∣ Tni (ω) = E[Tn], i ∈ Ĩn, n ∈ N

}
,

where E[Tn] denotes a discretization of the expected life (calculated based on continuous life)
of an individual of component n. A scenario ω ∈ Ω̂q is sampled by sampling Tn1(ω) from
the life distribution of component n, given Tn1(ω) ≥ an +1; sampling Tni (ω) for i ∈ In \{1}
from the life distribution of component n, given Tni (ω) ≥ 1; and letting Tni (ω) := E[Tn] for
i ∈ Ĩn . We let Pr(ω) = |Ω̂q|−1 for all ω ∈ Ω̂q.

For a first-stage decision x̄n ≡ v̄0n1, n ∈ N , define the constraints

v0n1 = x̄n, n ∈ N . (12)

Further, define the function FORPIL : B
N × Ω̂q → R such that FORPIL(x, ω) equals the

optimal objective value of theORPIL for scenarioω, with the constraints (12) added to ensure
that the first-stage decision is x. A two-stage sample average approximation of Qa

0(x̄, p∗) is
given by

Q̂a
s (x̄) := ∣∣Ω̂q

∣∣−1 ∑

ω∈Ω̂q

FORPIL(x̄, ω) −
(

c�x̄ + d max
n∈N {x̄n}

)
. (13)

Given a decision x̄, the expected sum of current costs during the planning period14 [s, S) is
approximated by computing the values FORPIL(x̄, ω), ω ∈ Ω̂q. For the optimization in (13)
to be tractable, the number |Ω̂q| of scenarios must be sufficiently small, but too few scenarios
would make the two-stage sample average approximation unstable. Effects of varying |Ω̂q|
was studied by Patriksson et al. (2015b, Section 7.2), who concluded that |Ω̂q| = 100 is
sufficiently large for the instances studied.

8.2 The decompositionmethod

We employ integer L-shaped decomposition; see Laporte and Louveaux (1993), to which
our description below refers. The so-called deterministic equivalent optimization problem of
our two-stage stochastic optimization problem is to

minimizex∈Xξξξ , z0∈{0,1}
{

c�x + dz0 + Q(x, z0)
∣∣∣ xn ≤ z0, n ∈ N

}
, (14)

where the recourse function Q : BN+1 → R is defined by [cf. (13)]

Q(x, z0) := Eω

[
FORPIL(x, ω)

]−
(

c�x + dz0
)

, (x, z0) ∈ {0, 1}N+1.

The recourse function is iteratively approximated using a set of optimality cuts; for our
problem setting, the L-shaped decomposition consists of solving a sequence, for � = 0, 1, . . .,
of current problems to

14 The time s in the left-hand side of (13) is part of the state of the current problem (see Def. 3); it appears
in ORPIL in the sense that S − s = (T + 1)δ and is to be interpreted as “t = 0”. In our implementation, as
s increases, T decreases while δ is kept approximately constant. Altering δ would affect the number of time
steps in ORPIL that are spanned by a (individual or identical) life.
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minimizex,z0,θ c�x + dz0 + θ, (15a)

subject to x ≥ ξξξ, (15b)

xn ≤ z0, n ∈ N , (15c)

K0(a−Ayl , a−Amax { x, yl }) + θ ≥ Qa
0(y

l , p∗), l = 1, . . . , �, (15d)

θ ≥ 0, (15e)

(x, z0) ∈ {0, 1}N+1. (15f)

For � = 0 all the optimality cuts (15d) are relaxed. Let (x̄, z̄0, θ̄ ) denote the solution to (15);
if it holds that θ̄ ≥ Q(x̄, z̄0), then (x̄, z̄0, θ̄ ) is optimal in (14); otherwise let � := � + 1 and
add an optimality cut to next current problem.

Feasible maintenance at time s corresponds to the constraints (15b)–(15c); if
feasible replacements are made at time s, the set of feasible future replacements is non-empty
(e.g., replace all non-functional components at times s + 1, s + 2, . . .). The optimal-
ity cuts provide lower bounds (at least one of which is tight) on the recourse function
Q(·), and the bounds from Prop. 2 are defined by highly non-linear functions. Further,
for computational efficiency the exact evaluation ofQa

t (x, p∗) is replaced by the approxima-
tion (13).

We assume that ξn = 1 for at least one n ∈ N (i.e., at least one component is not
functioning; recall Sect. 3), since otherwise no maintenance would be performed; hence, the
start-up cost d will always be included in the current problem (Definition 3). Let L denote
an index set corresponding to the optimality cuts generated so far, let y� ∈ Xξξξ denote a
maintenance decision, � ∈ L (i.e., the optimal value for x in (15) when � − 1 optimality cuts
(15d) have been generated), let the function K0 be defined as in (5). The current problem is
then iteratively approximated as

f p∗
0,L(ξξξ, a) := min

x∈Xξξξ

{
c�x + d

+ max

{
0, max

�∈L

{
Qa

0(y
�, p∗) − K0(a − Ay�, a − Amax { x, y� })

}}}
.

(16)

Proposition 3 Define the recourse functionQa
t as in (1), assume that the failure risk functions

Gn, n ∈ N , are non-decreasing, and let the function f p∗
0,L be defined as in (16). Then, it holds

that

f p∗
0,L(ξξξ, a) ≤ c�x + d + Qa

0(x, p∗), x ∈ Xξξξ .

Proof Let �x ∈ argmax�∈L
{
Qa

0(y
�, p∗) − K0(a − Ay�, a − Amax { x, y� }) } for x ∈ Xξξξ .

By Prop. 2 then follows that

Qa
0(x, p∗) ≥ Qa

0(y
�x , p∗) − K0(a − Ay�x , a − Amax { x, y�x }), x ∈ Xξξξ .

Since the recourse function is non-negative, i.e., Qa
0(x, p∗) ≥ 0, it then follows that

Qa
0(x, p∗) ≥ max

{
0, Qa

0(y
�x , p∗) − K0(a − Ay�x , a − Amax { x, y�x })

}
, x ∈ Xξξξ .
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Let x̄ ∈ Xξξξ be optimal in (16). The inequality

c�x + d + max
{
0, Qa

0(y
�x , p∗) − K0(a − Ay�x , a − Amax { x, y�x })

}

≥ c�x̄ + d + max
{
0, Qa

0(y
�x̄ , p∗) − K0(a − Ay�x̄ , a − Amax { x̄, y�x̄ })

}

then holds for all x ∈ Xξξξ and the proposition follows. ��

If f p∗
0,L(ξξξ, a) = c�y� + d + Qa

0(y
�, p∗) holds for some � ∈ L, then y� is optimal in (2).

Otherwise, f p∗
0,L(ξξξ, a) ≤ f p∗

0 (ξξξ, a) holds, i.e., (16) yields a lower bound on the optimal value
of (2), and the recourse function for the best lower bound found is evaluated. The method is
formalized in Algoritm 1, in which Q̂a

s (y
�) approximates Qa

0(y
�, p∗).

Algorithm 1: Integer L-shaped decomposition

input : A system state (t, ξξξ, a) ∈ V
output: A maintenance decision x∗
� ← 1; L ← { � }; x∗ ← y1 ∈ Xξξξ ; ψ

∗ ← Q̂a
s (y

1); x̄ ← optimum in (16); �x̄ ← 1;

while c�x̄ + d + max
{
0, Q̂a

s (y
�x̄ ) − K0(a − Ay�x̄ , a − Amax { x̄, y�x̄ })

}
< c�x∗ + d + ψ∗ do

� ← � + 1; L ← L ∪ { � }; y� ← x̄;

if c�y� + Q̂a
s (y

�) < c�x∗ + ψ∗ then
x∗ ← y�; ψ∗ ← Q̂a

s (y
�);

end

x̄ ← optimum in (16); �x̄ ∈ argmaxl∈L
{
Q̂a

s (y
l ) − K0(a − Ayl , a − Amax { x̄, yl })

}
;

end
return x∗;

9 Numerical experiments

Wehave performed numerical experiments to show the relevance and effects of the theoretical
results developed. The test instances and the policies employed are presented in Sects. 9.1
and 9.2, respectively. Section 9.3 reports on the goodness (i.e., tightness) of the lower bound
developed in Sect. 5, while Sect. 9.4 presents the effect of the improved bound on the recourse
function [Proposition 1(ii)] on the optimization process.

For more elaborate numerical tests of the optimization policy, including computation
times, see Patriksson et al. (2015b), which investigates the effect of the number of non-
identical life individuals as well as of the number of scenarios used.

9.1 The test instances

For each of the four test instances, T1–T4, each component n has a Weibull-distributed life
with scale parameter αn and shape parameter βn . The discrete time points for maintenance
decisions are given by T := {0, . . . ,max { �(S− s)/δ�, 3 }}. The data are shown in Table 1.
• Instance T1 (Patriksson et al. 2015b) was constructed to illustrate a poor performance

of (general) age-based policies (see Sect. 9.2). (Our use of a different age-based policy
than that in Patriksson et al. (2015b) does, however, not verify this observation; see
Sect. 9.3.)
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Table 1 Data for the test instances

Instance T1 T2 T3 T4

{ T , N , d, δ } {50, 3, 50, 1} {50, 4, 5, 1} {100, 7, 5, 2} {60, 7, 5, 1}
n cn αn βn cn αn βn cn αn βn cn αn βn

1 1 20 3 2 5 6 1 10 2 1 15 2

2 1 20 3 4 10 6 2 20 3 5 82 3

3 100 20 3 6 15 6 3 30 2 5 81 2

4 8 20 6 4 40 3 3 33 2

5 5 50 2 5 74 6

6 6 60 3 1 7 6

7 7 70 2 3 47 3

• Instance T2 (Patriksson et al. 2015b) was constructed to illustrate the performance of
algorithms when the spread of the components’ lives is small (i.e., high values of the
shape parameter). Then the SORP tends to be more deterministic (like the ORP; see
Almgren et al. 2012) and optimization methods are expected to outperform heuristics.

• Instance T3 contains more components and time steps than T1 and T2. The ratio between
a component’s replacement cost cn and its expected life αnΓ (1+ 1/βn) is similar for all
n. The start-up cost d is within the range of the component replacement costs, cn , n ∈ N ,
so that each component will cause a significant portion of the total replacement costs.15

T3 is intended to force the optimization policy to create many optimality cuts; hence, our
improved lower bound on the recourse function yields a more efficient implementation
of the optimization policy.16

• In instance T4 the costs and expected lives of components are related as in T3, albeit
the “regularity” is avoided according to the following: After deciding upon T , N ,
and d , for each n ∈ N , cn and βn are sampled from a uniform distribution on
{1, . . . , 5} and {2, . . . , 7}, respectively. Then αn is sampled from a uniform distribution
on {5cn, . . . , 20cn}. The values of qn are chosen such that the total life of the non-identical
life individuals for each component exceeds 40.

For each test instance, 100 different scenarios were generated and used for performance
testing. These scenarios are called simulation scenarios to be distinguished from the scenarios
used within the optimization policy (see Sect. 9.2).

9.2 The policies

For testing and illustration we have implemented and used the following four policies.

• A run-to-failure policy, in which only failed components are replaced. As per previous
assumptions, when at least one component has failed, the time is discretized, and other

15 For extreme values of the cost parameters good solutions are found by simple heuristics: (a) If d �
maxn∈N {cn}: replace either all or none of the components. (b) If d � minn∈N {cn}: replace only failed
components. (c) If cm � minn∈N \{m} {cn} for some m ∈ N : replace component m if any other component
is replaced. (d) If cm � maxn∈N \{m} {cn} for some m ∈ N : replace component m only when it is failed.
16 For a discretized current problemwith N components in state ξξξ ∈ B

N , at most |Xξξξ | = 2N−1Tξξξ optimality

cuts can be generated, 1Tξξξ being the number of failed components. Hence, for small values of N (such as in
T1 and T2), differences in numbers of generated optimality cuts may seem insignificant.
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Algorithm 2: Simulated annealing

input : A setN of components with life distributions Fn : R+ → [0, 1] and initial guesses σ̂n for soft
life thresholds, n ∈ N . A planning horizon S > 0, a number 0 < ε � S, and set S of
simulation scenarios. An upper limit rmax on # iterations with no improvement.

output: Soft life thresholds σn , n ∈ N
Cbest ← ∞; r ← 0;
while r < rmax do

C ← average maintenance cost over all scenarios in S, given soft life thresholds σ̂n ;

if C < Cbest then
Cbest ← C ; σn ← σ̂n , n ∈ N ; r ← 0;

end
σ̂n ← min

{
max {N(σn , σn/(r + 1)), ε }, S + ε

}
, n ∈ N , where N(·, ·) is a random number

from the normal distribution; r ← r + 1;
end
return σn, n ∈ N ;

components which will fail within the next time step are also considered to be failed.
Hence, several components may “fail” simultaneously.

• The optimization policy (the two-stage decompositionmethod; see Sect. 8). It occurs in an
old implementation, based on the lower bound on the recourse function from Patriksson
et al. (2015b), and a new implementation, based on the (tighter) lower bound on the
recourse function given inProposition 1(ii).Hence, the new implementation is expected to
run faster than the old one. The optimization policy requires an arbitrary feasible starting
solution. Both implementations are initialized at the solution provided by the run-to-
failure policy, which is reasonablewhen the planning horizon is near. In general, however,
the optimization policy may be improved through better starting solutions (obtained by
some fast policy).

• The expected value (EV) optimization policy, which is used by Almgren et al. (2012)
to solve the SORP. It approximates the current problem by—for each component—
assigning to the current individual its expected life, conditioned on its age, and by
assigning to all future individuals the component’s expected life.17

• An age-based policy: at failure of any component, maintenance is performed and each
component whose age surpasses its assigned soft life threshold is also replaced. This
policy is akin to that of Crocker and Kumar (2000), in which maintenance is enforced
whenever the age of any component reaches its assigned hard life threshold. Hard life
thresholds are not needed in our set-up, in which failures are assumed either to be
detectable only very shortly before occurring, or to cause no extra costs. The soft life
thresholds are variables in an optimization problem to minimize the expected mainte-
nance cost over the planning period; in our numerical experiments (see Sect. 9.3) it was
solved using simulated annealing (Algorithm 2), with the components’ expected lives
used as initial guesses for the soft life thresholds. To prevent from getting stuck in poor
local optima, the best solution from 100 separate runs of Algorithm 2 was used.

9.3 The optimization policy versus the lower bound

Table 2 presents, for the instances T1–T4, lower bounds on the optimal maintenance costs
and the maintenance costs resulting from the four policies described in Sect. 9.2. It also

17 The EV optimization policy equals the special case of the optimization policy with qn = 0, n ∈ N ,
resulting in identical scenarios, so that one scenario is sufficient for the estimation of the recourse function.
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Table 2 Lower bounds on the expected value of costs (cx, x = lower bound) and average costs (100 sim-
ulation scenarios/instance) resulting from the four policies (cx, x = policy). The gaps are computed as
(cpolicy/clower bound − 1) · 100%. In the optimization policy, we used qn = 2, n ∈ N , for T1–T3, and
q = (4, 2, 2, 3, 2, 6, 2) for T4

Instance T1 T2 T3 T4

cx Gap (%) cx Gap (%) cx Gap (%) cx Gap (%)

Lower bound 422 128 130 74

Optimization policy 466 10.4 145 13.3 171 31.5 76 2.7

EV optimization policy 528 25.1 151 18.0 182 40.0 81 9.5

Run-to-failure policy 566 34.1 169 32.0 183 40.8 83 12.2

Age-based policy 460 9.0 146 14.1 172 32.3 77 4.1

presents the relative differences in maintenance costs (so-called gaps) between each policy
and the lower bound. For each instance, there is a significant gap between the costs resulting
from the optimization policy and the respective lower bound, but as concluded in Sect. 5,
the bound is not expected to be tight, so it is not likely that any policy will produce solutions
with costs close to the lower bound.

In our experiments, the age-based policy and the optimization policy resulted in approxi-
mately the sameaverage cost for all four instances.Adifferent age-basedpolicywas employed
by Patriksson et al. (2015b), and that age-based policy performed significantlyworse for some
instances, in particular instance T1.

9.4 The number of generated optimality cuts

While applying the old and the new implementation of the optimization policy on 100 sim-
ulation scenarios of each test instance, a vast number of discretized current problems was
solved and for each of which a number of optimality cuts were generated; the corresponding
frequencies are shown in Fig. 1a–d. Although the same simulation scenarios were used for
both implementations of the optimization policy, they occasionally result in different mainte-
nance decisions. One reason is that optimality cuts are typically generated in different orders,
resulting in different scenarios being used for ORPIL, which leads to different approxima-
tions of the recourse functions. Another reason is that—in either implementation—the first
optimal maintenance decision found is selected; hence, in case of multiple optima, the order
in which the optimality cuts are generated has an impact on the optimal solution selected.
Once the selected maintenance decisions within a scenario differ between the implemen-
tations, the subsequent current problems will also differ. In Fig. 1 only current problems
encountered by both implementations are counted: a higher frequency of the scenarios are
solved by fewer optimality cuts with the new optimization policy than with the old one, e.g.
in instance T1 the new policy will most frequently require 2 optimality cuts (and slightly
above 2 cuts on average), whereas the old policy will most frequently require 4 optimality
cuts (and above 2.5 cuts on average). Each generated optimality cut results in one instance of
ORPIL to be solved; with ORPIL being the computationally heaviest part of the algorithm,
the computation time is approximately proportional to the number of generated optimality
cuts.

The histograms in Fig. 1 represent tilted distributions of the numbers of optimality cuts
generated: Current problems (occuring during the solution of the simulation scenarios) being
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(c) Test instance T3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

# optimality cuts

0

20

40

60

80

100

120

140

160

Fr
eq

ue
nc

y

old
new

(d) Test instance T4

Fig. 1 Frequencies of numbers of optimality cuts generated by the old and new, respectively, implementation
of the optimization policy

excluded (due to the implementations proposing different maintenance decisions at earlier
stages) are more prevalent when close to than far from the planning horizon. Hence, very
few optimality cuts are generated when near to the horizon—often then an obvious decision
is to replace only failed components (i.e., the starting solution in Algorithm 1).

10 Conclusions and future research

This article deals with a stochastic opportunistic replacement problem for a system of com-
ponents with economic dependencies. In particular, we attempt to solve the so-called current
problem, i.e., decide “which components to replace now”, at a time when at least one com-
ponent must be replaced.

A simple but non-trivial lower bound on the expected maintenance cost is presented; it
is based on the cost that would result from a perfect coordination of replacements (using a
minimal number of expected replacement occasions) with no loss of component life (due to
early replacements). The lower bound cannot be expected to be tight (i.e., equal the optimal
value), except in some extreme cases. It provides, however, a restriction on the gain reachable
by any optimization policy.

We improve—in terms of computing efficiency—a previously developed decomposition
method for a two-stage approximation of the current problem: the improved lower bound
on the recourse function value results in fewer optimality cuts being generated. Also the
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two-stage approximation is generalized, allowing for different numbers of non-identical life
individuals for different components.

Experiments showing that the optimization policy usually outperforms simpler policies
was presented by Patriksson et al. (2015b). In contrast, our experiments indicate that a fairly
simple age-based policy performs on par with the optimization policy.
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