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Abstract Clinical pathways (CPs) are standardized, typically evidence-based health care
processes. They define the set and sequence of procedures such as diagnostics, surgical
and therapy activities applied to patients. This study examines the value of data-driven CP
mining for strategic healthcare management. When assigning specialties to locations within
hospitals—for new hospital buildings or reconstruction works—the future CPs should be
known to effectively minimize distances traveled by patients. The challenge is to dovetail the
prediction of uncertain CPs with hospital layout planning. We approach this problem in three
stages: In the first stage, we extend a machine learning algorithm based on probabilistic finite
state automata (PFSA) to learn significant CPs from data captured in hospital information
systems. In that stage, each significant CP is associated with a transition probability. A unique
feature of our approach is thatwe can generalize the data and include thoseCPswhich have not
been observed in the data but which are likely to be followed by future patients according to
the pathway probabilities obtained from the PFSA. At the same time, rare and non-significant
CPs are filtered out. In the second stage, we present a mathematical model that allows us to
perform hospital layout planning decisions based on the CPs, their probabilities and expert
knowledge. In the third stage, we evaluate our approach based on different performance
measures. Our case study results based on real-world hospital data reveal that using our CP
mining approach, distances traveled by patients can be reduced substantially as compared to
using a baseline method. In a second case study, when using our approach for reconstructing
a hospital and incorporating expert knowledge into the planning, existing layouts can be
improved.
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1 Introduction

Planning the layout of a new hospital or reconfiguring existing ones is a complex task and the
development of quantitative planning approaches has gained attention since the late 1970s
(Elshafei 1977).Confusing layouts can add to patients’ anxiety (Landro 2014) and uncertainty
in patient flows challenges strategic decision making in healthcare (Blumenthal 2009). Also,
new treatment methods, length of stay reduction and shifting from inpatient to outpatient
care can lead to variation and uncertainty in hospital-wide patient flows. Therefore, learning
significant clinical pathways (CPs) from data and dovetailing them with strategic hospital
decision making in the context of hospital layout planning is the focus of this study.

We approach the problem in three stages: In the first stage, we choose an algorithm to
learn significant CPs from large transactional data. In that stage, we address the problem to
determine CP probabilities including those which have not been observed in the data but are
likely to occur in the future. In the second stage, we present a mathematical model that allows
us to perform hospital layout planning decisions based on the CPs and their probabilities as
learned in the first stage. In the third stage, we evaluate our approach based on a real-world
setting using different performance measures.

The remainder of this paper is structured as follows. In the next section,we review literature
on CP mining and the use of CPs for hospital operations management. In this section, we
also differentiate our work from other hospital layout planning approaches and highlight
similarities and differences with the estimation of rare event probabilities. In Sect. 3, we
provide a description of the sequential pattern mining approach employed in our study. In
this section, we also present a mathematical model for hospital layout planning and define
performancemetrics that will be evaluated in our study. In Sect. 4, a brief computational study
is provided in order to demonstrate the effectiveness of our approach based on hypothetical
data. In Sect. 5, we give a presentation of our results using real data. We finally provide a
conclusion and outline streams for further research.

2 Related work

We break down related work into the following four streams: In the first stream, we delimit
our work from evidence-based use of CPs since our work follows paradigms from data-driven
CP and process mining. In the second stream, we review the use of CPs driven by healthcare
operations management. We then highlight similarities and differences to related work on
hospital layout planning problems and delimit our work from the estimation of rare event
probabilities and sequential pattern mining approaches. We finally provide a summary of
similarities and differences with existing work.

2.1 Medical-, data-driven clinical pathway and process mining

CPs support a consistent application of evidence-based medicine for the best patient out-
comes. Often this has the effect of placing an emphasis on the reduction of unwarranted
variation in clinical practice (Wennberg et al. 1977). Similarly, van de Klundert et al. (2010)
define CPs as standardized, typically evidence-based health care processes. Instead of build-
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ing our research on the paradigm of CPs as a sub-discipline of evidence-based medicine, we
follow a data-driven approach to infer CPs from data which has been studied by Zhang et al.
(2015a), among others. The novelty of our approach is, however, that expert opinions can
be incorporated into the learning process as Sect. 3 will reveal and that we bridge the gap
between CP mining and operational decision making.

Mining healthcare processes has been the focus of previous literature and a review of
approaches is provided by Rojas et al. (2016). Mans et al. (2015) conclude that data mining
techniques cannot be used for process discovery, conformance checking, and other forms of
process analysis. Some research exists that analyzes process variation in healthcare based on
similarity measures between CPs (e.g. Huang et al. 2013; Combi et al. 2009). This is different
to our work since we will allow for variations in CPs while filtering out non-significant ones.
Adherence in CPs is investigated by van de Klundert et al. (2010). Zhang et al. (2015b) and
Zhang et al. (2014) apply a hierarchical clustering approach to determine the most likely CP.
The authors study the patients’ health conditions and treatment approaches. Iwata et al. (2013)
use a clustering and temporal analysis approach in order to identify missing information in
existing CPs.

2.2 Healthcare operations-driven use of clinical pathways

UsingCPs as an input of theirmodel, Cardoen andDemeulemeester (2008) provide a strategic
instrument for evaluating future changes to the hospital setting. Their simulation can be used
to evaluate extreme or unrealistic conditions which can provide insights in the system. On
an operational decision level, CPs are used in a variety of patient scheduling applications
(Gartner and Padman 2017). For example, Gartner and Kolisch (2014) use CPs to schedule
elective patients hospital-wide on scarce resources. Their work uses elective patients’ CPs
as an input parameter in their models and assume that once an elective patient contacts
the hospital, the pathways are fixed. However, our work bridges strategic decisions with
sequential pattern mining for both, elective and non-elective patients.

2.3 Hospital layout planning

In general, layout planning aims at arranging organizational units inside a building such that
the available area is used optimally and total distances are minimized. Most layout planning
applications arise in industrial environments. When optimizing manufacturing facilities, the
most common objective is to minimize traffic areas and traveled distances for produced
goods. Thus, reliable information about movements of goods during the production process
is needed. Hospital layout planning is typically located on a strategic decision level. Problems
are reviewed, among others, in Arnolds and Nickel (2015) where Elshafei (1977) is most
relevant for our work because of their travel distance minimization objective and model
formulation as a quadratic assignment problem. However, we not only consider the planning
of new hospitals but also the reconstruction and improvement of existing ones. We allow for
an existing hospital to fix facilities at their location by fixing variables. Furthermore, we add
constraints which bound the maximum travel distances between specialties.

2.4 Estimation of rare event probabilities and sequential pattern mining

Estimating the probability of rare CPs has similarities to estimating rare event probabilities.
Bachoc et al. (2015) approached the latter problem by adapting the Hastings–Metropolis
algorithmonMarkov chains.Guyader et al. (2011) estimate the tail probability given quantiles
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or the other way around to predict quantiles using a tail probability. Similarly to Guyader
et al. (2011), they extend the Hastings–Metropolis algorithm. Both approaches are different
to our study because, based on the similarity of patient flows, we merge states and rare events
that occurred in our data can be filtered out. Also, rare events which have not been observed
yet but might occur in the future can be assigned a probability.

Sequential pattern mining discovers frequent sub-sequences as patterns in a sequence
database and a taxonomy of different algorithms is provided by Mabroukeh and Ezeife
(2010). Carrasco and Oncina (1994) described an algorithm which is based on generating
a prefix tree and then state-merging is carried out using a similarity measure. Jacquemont
et al. (2009) extended this algorithm. Similarly,Herbst andKaragiannis (1998) use aBayesian
modelmerging approach for the induction ofHiddenMarkovModels. The difference between
(Herbst and Karagiannis 1998; Carrasco and Oncina 1994; Jacquemont et al. 2009) lies in
particular in the state merging process where Jacquemont et al. (2009) employ a statistical
view of it which we follow in our work. Moreover, we incorporate blacklisting into the
merging which is not addressed in any of the discussed works.

In conclusion, the approaches proposed in this paper can be categorized into and differ-
entiated from the literature as follows: First, we select and implement a machine learning
approach in which clinical activities and their relations between each other are learned from
data. Second, we provide a mathematical model that incorporates this information. Finally,
we present evaluation criteria based on cross-validation in order to evaluate the machine
learning approach in combination with layout planning. The sequential pattern mining can
cope with forbidden state merges so that e.g. expert knowledge can be taken into account by
introducing a blacklist. Thus, we are able to incorporate a decision maker’s opinion into the
layout planning procedure which is especially important when reconfiguring a layout as our
study will reveal in Sect. 5.

3 Methods

In order to detect significant CPs, we evaluate a sequential pattern mining algorithm devised
by Carrasco and Oncina (1994) which is extended by Jacquemont et al. (2009). The rationale
to select this algorithm from the literature on sequential patternmining is because the learning
approach has only a weak representational bias (van der Aalst 2011) on the process model
(Weber 2014). One explanation is that we focus on the hospital-wide specialty flow and
therefore, we can neglect parallel bookings on different specialties. The algorithm learns a
probabilistic deterministic finite state automaton (PDFA) which is, under certain conditions,
equivalent to learning a hiddenMarkovmodel (seeDupont et al. 2005). For standard textbooks
covering automata theory we refer to Hopcroft et al. (2007).

3.1 Learning a probabilistic deterministic finite state automaton (PDFA)

The algorithmfirst learns a probabilistic prefix-tree acceptor and afterwards, states aremerged
recursively by using a similarity measure.

Probabilistic Prefix Tree Acceptor (PPTA) In a PPTA which can be drawn as a graph, states
are represented by a circle. In each circle, we write the index of the state and, after a colon,
the probability to be final. States which have a probability greater than zero to be final are
double-circled. The initial state is labeled by a “start” arc pointing it. Each transition between
the predecessor and the successor state is represented by an arc. The label on each transition
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consists of the transition symbol and the corresponding transition probability in parentheses.
The transition symbol is, in our healthcare application, the clinical procedure which leads
from one state to another. The proportion of sequences coming from the previous state to
the following state is the probability of this transition. Using training sequences e.g. from
Table 1a in Sect. 4, a PPTA can be constructed which is shown in Fig. 1 in Sect. 4.

Probabilistic Deterministic Finite State Automaton(PDFA) PDFAs are a generalization of
PPTAs and we can formally describe them as follows: Let Q denote a finite set of states
with state qi ∈ Q ∀i ∈ N≥0. Let q0 ∈ Q denote the initial state. Let Σ be an alphabet in
which letters are denoted by z ∈ Σ and z = # denotes the termination letter of a sequence.
In our study, a letter corresponds to a ‘clinical activity’. The term is used as a synonym with
‘clinical procedure’. A clinical activity is performed on a facility (such as an operating room,
imaging device or ward). Let q(qi , z) → q j be an injective transition function leading to
state q j from state qi with letter z. Specifically, qi is equal to q j when we have a loop on
state qi and letter z. Let π(qi , z) ∈ [0, 1] be a probability function on the transitions and
let πF (qi ) ∈ [0, 1] be a function that assigns to each state a probability to be final. Then,
A:= (Q,Σ, q (qi , z) , q0, π (qi , z) , πF (qi )) is a tuple that defines our PDFA.

3.2 State merging

In order to avoid an overfitting phenomenon, the algorithm to build a PDFA based on a
PPTA merges states. This means that states are chosen in a lexicographical order and if they
are sufficiently similar, according to a compatibility function, they are merged. This function
recursively tests if the frequencies of each letter outgoing from the two considered states
are not statistically different. Based on Hoeffding’s bound (see Hoeffding 1963), this test
decides that two states q1 and q2 can be merged if the condition described by Eq. (1) holds
true. Here, αaut represents a generalization parameter while n(q1) and n(q2) are the number
of sequences entering in q1 and q2, respectively.

|π(q1, z) − π(q2, z)| <

√
1

2
ln

2

αaut ·
(

1√
n(q1)

+ 1√
n(q2)

)
(1)

Blacklisting-enhanced state merging In order to avoid sequences to be generated that are
from a medical point of view irrelevant, we check each time when we merge two states
whether the incoming letter to and the outgoing letter from that new state are reasonable.
To avoid that two letters forbiddingly follow each other, we introduce a set B (blacklist) of
forbidden tuples of letters, denoted by (zi , z j ) ∈ B.

3.3 Improving hospital layout planning through clinical pathway mining

In addition to material transportation costs that arise in industrial applications the most
significant characteristic in a service environment of a hospital are the distances traveled by
patients: Long travel distances do neither support the healing process nor patient satisfaction.
To minimize total distances, accurate movement probabilities have to be determined which
we will evaluate by combining the PDFA with a layout planning problem which will be
introduced next.

3.3.1 Problem description

We extend the well-known quadratic assignment problem by the possibility to fix specialties
to locations aswell as taking into accountmaximumdistances between specialties. The formal
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description of our hospital layout problem reads as follows: Let S denote the set of specialties
and let L denote possible locations in a hospital in which specialties can be located. Let fi,k
be the transition frequency between specialty i ∈ S and specialty k ∈ S. Here, a specialty
does not only refer to specialty departments such as the radiology department but also to
facilities such as the operating theater. Furthermore, let d j,l denote the distance between
location j ∈ L and location l ∈ L. Let C denote a set of specialty tuples and let Di,k be
the maximum distance allowed between two specialties (i, k) ∈ C, for example, between the
surgery room and the ICU. Let W denote a whitelist which is a set of tuples (i, j) ∈ W
representing specialty i ∈ S and location j ∈ L. Especially, when specialties such as the
emergency department must be located in a defined area as for example near the entrance or
when a hospital evaluates reorganization this is an important feature as we will learn in our
experimental study.

3.3.2 Model formulation

Using the binary variables

xi, j =
{
1,
0,

if specialty i ∈ S is assigned to location j ∈ L
otherwise

we model the hospital layout problem as follows:

minimize
∑
i∈S

∑
j∈L

∑
k∈S

∑
l∈L

fi,k · d j,l · xi, j · xk,l (2)

subject to∑
j∈L

xi, j = 1 ∀i ∈ S (3)

∑
i∈S

xi, j = 1 ∀ j ∈ L (4)

xi, j = 1 ∀(i, j) ∈ W (5)∑
j∈L

∑
l∈L

d j,l · xi, j · xk,l ≤ Di,k ∀(i, k) ∈ C (6)

xi, j ∈ {0, 1} ∀i ∈ S, j ∈ L (7)

Objective function (2) minimizes the traveling distances and Constraints (3) ensure that
each specialty is assigned to exactly one location. Constraints (4) ensure that each location
contains exactly one specialty. Constraints (5) ensure that a specialty is fixed at its desired
location while Constraints (6) ensure that maximum distances between two specialties are
not exceeded. Variable definitions and the domains are provided by (7). The presented model
is non-linear but can be linearized by introducing additional continuous variables (Xia and
Yuan 2006).

3.4 Evaluation methods and metrics

The clinical pathways and the layouts can be evaluated using different methods and metrics
which are introduced in the following.
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3.4.1 Mean absolute deviation (MAD) between clinical pathway probabilities

A trivial baseline approach is to split the transactional data into a training and testing set. For
each pathway, the relative frequency is computed. The absolute differences in probabilities
between the pathway from the training set and the testing set are then calculated and averaged.
Appendix refapp:corssval provides implementation details of this method in Java.

Another approach to calculate the MAD between pathway probabilities is to calculate
the pathway probabilities by using the PDFA obtained from the learning set. The absolute
differences in probabilities between the PDFA approach and the testing set are then calculated
and averaged.

3.4.2 Significant clinical pathways

Given a maximum length l, we can enumerate pathways having length 1, 2, . . . , l. For exam-
ple, using the alphabet Σ = {A, B,C} and maximum length l = 5, we can enumerate
pathways from A, AA, AAA, . . . ,CCCCB,CCCCC . However, only a fraction of these
pathways are actually significant. To check whether a pathway is significant, we introduce
the percentile αsig, the z-value from the standard normal distribution zα and the sample size
N in the training sample. Given CPw, its probability p(w), the sample size from the training
set N and the z-value from the standard normal distribution zα , we obtain a threshold k using
the following equation (see Jacquemont et al. 2009):

k = zα ·
√

p(w) · (1 − p(w))

N
. (8)

If the probability p(w) of pathway w is larger than its threshold k, the pathway can be
considered significant.

3.4.3 Error of the layout planning problem (ELPP)

In order to demonstrate the effectiveness of the automaton approach for layout planning, we
can incorporate significant clinical pathways into the layout planning problem as formulated
in models (2)–(7). Based on the assignment of specialties to locations determined by the
mathematical program, we calculate the walking distances using the test data. We finally
compare them with the distances obtained using perfect information. In doing so, we assume
that both the training and test data are known. We denote this measure as ELPP.

3.4.4 Cross-validation

Rather than using one training and one test set of CPs, we can carry out cross-validation
experiments (Bishop 2006; Witten and Frank 2011). Suppose, we have a set of folds F with
consecutive integer numbers running from 1, 2, . . . , |F |, for example, |F | = 10 in the case
of 10-fold cross-validation. In this case, the set of folds comes up toF :={1, 2, . . . , 10}where
each fold f ∈ F contains disjoint subsets of the observed transactional data.We index unique
CPs by indices p ∈ P . Let π train

p, f be the probability of each unique pathway p ∈ P for the

training fold f ∈ F and let π test
p, f be the probability of pathway p ∈ P for the test fold f ∈ F .

Then, using Algorithm 1 we determine the MAD across the |F | folds.
Similarly, we determine the ELPP across folds F using Algorithm 2.
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Algorithm 1: Pseudocode for calculating the MAD in the cross-validation experiments
based on folds F and unique pathways P
1 for f ∈ F do
2 for p ∈ P do
3 Determine π train

p, f and π test
p, f

4 MAD =
∑
f ∈F

∑
p∈P

|π train
p, f −π test

p, f |
|F |·|P |

Algorithm 2: Pseudocode for calculating the ELPP in the cross-validation experiments
based on folds F and unique pathways P
1 for f ∈ F do
2 for p ∈ P do
3 Determine π train

p, f and π test
p, f

4 Calculate layout X f and ELPP f

5 ELPP =

∑
f ∈F

ELPPf

|F |

Once we have learned the probability of each significant pathway p ∈ P , we split them into
a set of tuples (i, j) ∈ E which we denote as edges where i and j represent letters i.e. clinical
activities in the pathways or facilities to be visited. Based on the layout X f learned in fold
f ∈ F , we can now compute the walking distances based on the distribution of pathways in
the test set of pathways.

Based on the MAD and ELPP measures, we can determine confidence intervals. In our
experimental study, we use the paired corrected t-test (Nadeau and Bengio 2001) imple-
mented in the Java-based WEKA machine learning library from Witten and Frank (2011).

4 Hospital-wide layout planning under uncertain clinical pathways: an
example

The following example illustrates the approach for learning significant CPs. We will demon-
strate the effectiveness of the automaton approach by using two different values for the
generalization parameter αaut. Furthermore, we show how we feed the result into the layout
planning problem.

Assume, we have an alphabet Σ = {A, B,C} which represents the clinical procedures
“radiotherapy procedure”, “diagnostic procedure”, and “surgical procedure” encoded by the
letters A, B and C , respectively. Table 1a shows a sample set of 10 training sequences which
will be used to learn the trivial and the automaton approach. The 10 testing sequences shown
in Table 1b will later be used to evaluate the approaches.

4.1 Learning a probabilistic deterministic finite state automaton (PDFA)

To construct the PDFA, we first have to build a PPTA as explained in Sect. 3.1. In our
example dataset shown in Table 1, we observe 10 sequences, of which 6 and 4 sequences
start with letter A and B, respectively. Hence, we branch after the root state 0 to states 1 and
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Table 1 Sample of 20 sequences
broken down by a training (a)
and a testing (b) subsample

(a)

AB ABA ABB ABCA AC

ACC BA BAA BC BCA

(b)

BC A BCA ABCA ABCA AAC

BAAC CBAA CB CBA BCAA

0 : 0
10start

1 : 0
6

2 : 0
4

3 : 1
4

4 : 1
2

5 : 1
1

6 : 1
1

7 : 0
1

9 : 1
1

10 : 1
2

11 : 1
2

12 : 1
1

8 : 1
1

13 : 1
1

A( 6
10 )

B( 4
10 )

B(46 )

C(26 )

A(14 )

B(14 )

C(14 )

C(12 )

A(24 )

C(24 )

A(12 )

A(11 )

A(12 )

Fig. 1 PPTA corresponding to the sequences of Table 1(a)

2. Branching after these states is similar. For example, of the 4 sequences which start with a
B, 2 sequences have an A as second letter leading to state 10 with probability π(2, A) = 2

4 .
Then, sequence BA terminates at state 10 with a 50% chance. The final PPTA is shown in
Fig. 1.

Now, if we evaluate the probability of, for example, pathway ABB, we start at state 0
and reach state 1 by the first letter A. The state is reached by 6 of 10 sequences and as
a consequence the transition probability is π(0, A) = 6

10 . Using the second letter B as
transition symbol, we reach state 3 with transition probability π(1, B) = 4

6 . Now, the third
letter B of the sample pathway leads to state 6 with transition probability π(3, B) = 1

4 .
Since our pathway has no more letters, we terminate at this state by probability πF = 1.
We can now compute the probability of the pathway ABB by the product of the transition
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probabilities times the acceptance probability of the state reached after the last transition.
π ABB = 6

10 · 4
6 · 1

4 · 1
1 = 24

240 = 1
10 .

4.2 State merging with αaut = 0.2

We first test whether states 0 and 1 can be merged. Plugging the αaut parameter and the
frequencies into the Hoeffding’s bound (see Inequality (1)) yields the following expression:√

1
2 ln

( 2
αaut

) ·
(

1√
n(0)

+ 1√
n(2)

)
=

√
1
2 ln

( 2
0.2

) ·
(

1√
10

+ 1√
6

)
= 0.777. For each letter z

outgoing from states 0 and 1, we now calculate the absolute difference of probabilities

|π(0, z)−π(1, z)|. For z = A, the difference comes up to

∣∣∣∣π(0, A)−π(1, A)

∣∣∣∣ =
∣∣∣∣ 6
10 −0

∣∣∣∣ =

0.600 < 0.777, for z = B it is |π(0, B) − π(1, B)| =
∣∣∣∣ 4
10 − 4

6

∣∣∣∣ = 0.267 < 0.777,

for z = C it is |π(0,C) − π(1,C)| =
∣∣∣∣0 − 2

6

∣∣∣∣ = 0.333 < 0.777 and for z = # it is

|π(0, #) − π(1, #)| = |0 − 0| = 0 < 0.777. Accordingly, states 0 and 1 can be merged
which is shown in Fig. 2a. One can observe, this automaton is non-deterministic because the
letter B leaves the initial state twice. As a consequence, we have to check whether states 2

and 3 can be merged. Thus, we calculate the Hoeffding’s bound as follows:
√

1
2 ln

( 2
αaut

) ·(
1√
n(2)

+ 1√
n(3)

)
=

√
1
2 ln

( 2
0.2

) ·
(

1√
4

+ 1√
4

)
= 1.07. This bound is greater than 1 and since

the differences of probabilities (left-hand side of Inequality (1)) can never be greater than 1,
we canmerge these two states. Now,merging states 2 and 3 again yields to a non-deterministic
automaton because the newly merged state now has an A transition to states 5 and 10 as well
as a C transition to states 7 and 11. Again, we check whether we can merge those states and
after further tests and merging procedures to make the automaton deterministic, we obtain
the PDFA shown in Fig. 2b. If in any of those succeeding tests the Hoeffding’s bound wasn’t
fulfilled, then the original two states 0 and 1 could not be merged.
Now, the probabilities for the new states and transitions have to be calculated. The transition
probabilities after the merge of states 0 and 1 are:

π(0, A)= n(0,A)+ n(1,A)∑
z′∈Σ∪{#} n(0,z′)+∑

z′∈Σ∪{#} n(1,z′) = 6+ 0
10+ 6 = 6

16 ,

π(0, B)= n(0,B)+ n(1,B)∑
z′∈Σ∪{#} n(0,z′)+∑

z′∈Σ∪{#} n(1,z′) = 4+ 4
10+ 6 = 8

16 and

π(0,C)= n(0,C)+ n(1,C)∑
z′∈Σ∪{#} n(0,z′)+∑

z′∈Σ∪{#} n(1,z′) = 0+ 2
10+ 6 = 2

16 .

The new probability of state 0 to be final is:

πF (0) = π(q(0, #)) = n(0,#)+ n(1,#)∑
z′∈Σ∪{#} n(0,z′)+∑

z′∈Σ∪{#} n(1,z′) = 0+ 0
10+ 6 = 0.

For simplicity, we recalculate only those transition probabilities which have changed as
follows: π(2, A) = 2+1

4+4 = 3
8 , π(2, B) = 0+1

4+4 = 1
8 , π(2,C) = 2+1

4+4 = 3
8 , π(2, #) = 0+1

4+4 =
1
8 , π(10, A) = 0+1

1+2 = 1
3 , π(10, #) = 1+1

1+2 = 2
3 , π(11, A) = 1+1

1+2 = 2
3 , π(11, #) = 0+1

1+2 = 1
3

and π(13, #) = 1+1
1+1 = 2

2 . The result is the PDFA as shown in Fig. 3a.
We now check whether we can merge states 0 and 2. Accordingly, the Hoeffding’s bound

is calculated as follows:
√

1
2 ln

( 2
0.2

) ·
(

1√
16

+ 1√
8

)
= 0.916. Again, for each letter we

calculate the difference of frequencies which are for z = A :
∣∣∣∣π(q(0, A)) − π(q(2, A))

∣∣∣∣ =
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0, 1start

3

4

2

5

6

7

9

10

11

12

8

13

B

B

C

A B

C A

C

A

C

A

A

A

(a)

0, 1start

2, 3

4

5, 10
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Fig. 2 First (a) and second (b) part of the merge of states 0 and 1 without updating numbers and probabilities

∣∣∣∣ 6
16 − 3

8

∣∣∣∣ = 0 < 0.916, for z = B :
∣∣∣∣π(q(0, B)) − π(q(2, B))

∣∣∣∣ =
∣∣∣∣ 8
16 − 1

8

∣∣∣∣ = 0.375 <

0.916, for z = C :
∣∣∣∣π(q(0,C)) − π(q(2,C))

∣∣∣∣ =
∣∣∣∣ 2
16 − 3

8

∣∣∣∣ = 0.250 < 0.916 and for

z = # : |π(0, #) − π(2, #)| =
∣∣∣∣0 − 1

8

∣∣∣∣ = 0.125 < 0.916. Now having this precondition that

states 0 and 2 can be merged, we check whether nodes 0 and 10, 0 and 12 and 0 and 6 are
compatible and can be merged, too. Moreover, we check whether or not states 4 and 11 can
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Fig. 3 PDFA with updated probabilities after first merge (a) and without updated probabilities after merging
states 0 and 2 (b)

be merged. Observe that merging states 0 and 2 yields into a non-deterministic automaton
because then, the letter A goes from the new state 0 to state 10 while the letter A also remains
at state 0. Therefore, we not only have to pull state 2 but also states 6, 10 and 12 into the
newly merged state 0 which is shown in Fig. 2b. For simplicity we skip the explanation of the
remaining merging steps, the result is the final PDFA as shown in Fig. 4a. The state merging
with α = 0.9 is shown in Appendix 1 and the final PDFA is shown in Fig. 4b.

4.3 Improving layout planning through clinical pathway mining

Now, assume we have the following distance matrix between the locations di, j =
((0, 50, 200), (50, 0, 50), (200, 50, 0)). We solve the hospital layout planning problem with
the probability distributions from the trivial and the automaton approach using the training
sample of pathways. The results are shown in Sect. 4.4.3.

123



Ann Oper Res (2018) 263:453–477 465

0 : 10
37 = 0.27start

A(1237 = 0.32)

B( 9
37 = 0.24)

C( 6
37 = 0.16)

(a)

0 : 1
17start 1 : 6

17 12 : 3
3

A( 9
17 )

C( 3
17 )

A( 3
17 )C( 3

17 )

B( 4
17 ) B( 5

17 )

(b)

Fig. 4 Final PDFAs with αaut = 0.2 (a) and αaut = 0.9 (b)

4.4 Evaluation results

Comparing the two PDFAs that were generated above underlines that αaut has a substantial
influence on the merging process and thus on the generalization of the original data. Using
αaut = 0.2, a very generalized PDFA with only node 0 is left while using αaut = 0.9 leads to
a less generalized automaton with 3 from the original set of 14 states. Another observation is
that all sequences from Table 1(a) are represented by both PDFAs. In addition, the automaton
for αaut = 0.2 can represent the sequence CBAA which is not included in the learning data,
see Table 1(a). However, that sequence is not represented by the automaton’s language for
αaut = 0.9, see Fig. 4b. The reason for this difference in the generalization of the original
data is that αaut appears in the denominator of the Hoeffding’s bound calculation. The bigger
the value of αaut the lower the threshold and, as a consequence, the lower the generalization.
On the contrary, a small value of αaut leads to a more general automaton.

4.4.1 Mean absolute deviation (MAD) between clinical pathway probabilities

From theCPs ofTable 1,we observe in total 16 unique pathways. The probability distributions
of these pathways using the trivial and the automaton approach aswell as theMADs are shown
in Table 2.
The figures reveal that the trivial approach fails to estimate probabilities of pathways which
are not in the training set. Using the automaton approach, however, the pathwayCB which is
not in the training set receives a probability of 0.011 and 0.018 for αaut = 0.2 and αaut = 0.9,
respectively. The pathwayCBAAwhich is failed to be discovered by the automaton approach

123



466 Ann Oper Res (2018) 263:453–477

Table 2 Pathway probability distribution for the three approaches for the training and test data

i AB ABA ABB ABCA AC ACC BA BAA

(a) Pathways 1 to 8

π trivial
i 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

πPDFA
i,0.2 0.021∗ 0.007 0.005 0.001 0.014 0.002 0.021∗ 0.007

πPDFA
i,0.9 0.055∗ 0.027∗ 0.016 0.005 0.005 0.006 0.044∗ 0.022∗

π test
i 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0

BC BCA AAC BAAC CBAA CB CBA BCAA MAD

(b) Pathways 9 to 16 and mean absolute deviations of probabilities

0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1

0.011 0.003 0.005 0.001 0.001 0.011 0.003 0.001 0.066

0.015 0.007 0.000 0.000 0.000 0.018 0.009 0.000 0.072

0.0 0.2 0.1 0.1 0.1 0.1 0.1 0.1

The automaton approach with the best performance figure is in bold, significant CPs (αsig = 0.33) are marked
with an asterisk(∗)

with αaut = 0.9, receives a probability of 0.001 for αaut = 0.2, similar to the ones of BAAC
and AAC .

4.4.2 Significant clinical pathways

To compute significant pathways, we decide to use a large αsig = 0.33 because using a small
one would give us no significant CP at all. We get zα = 0.440 while we observed N = 10
pathways from the training data (see Table 1(a)). For example in the case of w = ABA
and the automaton with αaut = 0.9, p(ABA) = 0.027, the threshold comes up to k =
0.440 ·

√
0.027·(1−0.027)

10 = 0.0226. Since this is smaller than the probability of the pathway
(which was 0.027), the pathway is significant. Significant CPs are flagged by an asterisk in
Table 2.

4.4.3 Error of the layout planning problem (ELPP)

We compute the walking distances in the optimal solution which means that we determine
the hospital layout using the testing sample of pathways. The ELPP is then the difference
between the walking distance from the perfect information problem and the one obtained
with the trivial or automaton approach. The layouts and the ELPP are shown in Table 3.

5 Experimental investigation

In the following, we provide an experimental investigation of the presented methods. We first
give a description how we generated the sequences (CPs) followed by an overview of the
hospital and its distances between different locations. Afterwards, our evaluation metrics are
introduced followed by a presentation of the results.
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Table 3 Layouts obtained with
the trivial, the automata and the
perfect information approaches

Approach Location ELPP

1 2 3

(a)

Trivial B C A 450

PDFA αaut = 0.9 B C A 450

PDFA αaut = 0.2 A B C 300

Perfect information C A B 0The best performance figure is in
bold

Table 4 Overview of the
alphabet that corresponds to the
different specialties, functional
units as well as entrance and exit

A Internal medicine

B Surgery department

C Urology department

D Gynecology department

E ENT department

F Orthopedics department

G Intensive-care

H Ophthalmology department

I Radiology department

J Operating theater

N Functional diagnostics

X Entrance and exit

5.1 Data and sequence generation

We tested the sequential pattern mining and layout planning approach experimentally on
data from a 350-bed sized hospital in Germany. Similarities between the U.S. healthcare
system and other developed-world countries are that the data was collected for the billing
of diagnosis-related groups (DRGs). As a consequence, we expect a similar data quality in
other DRG systems such as U.S. and developed-world countries that employ DRG systems.
We extracted 15,858 CPs from the hospital information system which corresponds to the
same number of patients observed in the year 2011.

We generated sequences using a Java routine which accesses a MySQL database that
contains three tables: A master table with DRG and demographic patient information, a table
containing timestamps and clinical procedures coded by the International Classification of
Procedures in Medicine (ICPM) and a table which contains timestamps when the patient
was admitted and discharged from each specialty. We joined the three tables by patient IDs,
sorted the result by patient ID and timestamp and relabeled the ICPM code or specialty code
with a unique letter. We finally concatenated the letters of each patient to get the sequences.
Table 4 provides an overview of our alphabet. For example, the sequence XBN BJGBX
represents a patient who enters the hospital and is admitted to the surgical ward. Afterwards,
he receives a cardiovascular check in the functional diagnostics unit before he gets back to
the surgical ward. Next, he receives a surgery and is admitted to the ICU. Then, he recovers
at the surgical ward and leaves the hospital at its exit.
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Fig. 5 Entrance and Exit (1), Radiology (2) and Functional Diagnostics (3)

Fig. 6 Current layout of the collaborating hospital a ICU (4) and operating theaters (5). b Ward layouts of
the second to fifth floor

5.2 Layout of the collaborating hospital

Figures 5 and 6 provide a ground plot of the collaborating hospital’s current layout.
The entrance, exit, functional and radiology diagnostic units shown in Fig. 5 are located

on the lower level where the offices of the administrative staff are shown on the lower part
of the picture. The ICU and the operating rooms are located on the first floor of the building
and shown in Fig. 6a. Wards are located on the second to fifth floor and are shown in Fig. 6b.
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5.3 Distance matrix generation

To run our experiments, we set up transfer time matrix (9). The order of the columns/rows
represent the order of the letters, see Table 4. For example, the first column/row represents the
current position of the internal medicine department while the second column/row represents
the current position of the surgery department and so on. The fifth floor has three positions
in which the urology, ear, nose, throat (ENT) and ophthalmology deparment are located. As
a consequence, distances are zero between these locations, see column/row 3.

The rationale behind using transfer times instead of distances is because elevators exist
in the hospital which are typically used when patients are transported. The data reflects an
average working day. Each entry represents the time required in seconds from location j to
location l.

d j,l =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 18.79 23.93 26.51 23.93 18.79 18.79 23.93 72.48 67.34 86.28 109.28
18.79 0 18.79 23.93 18.79 0 23.93 18.79 75.06 72.48 88.86 111.86
23.93 18.79 0 18.79 0 18.79 26.51 0 78.08 75.06 91.88 114.88
26.51 23.93 18.79 0 18.79 23.93 29.53 18.79 83.24 78.08 97.04 120.04
23.93 18.79 0 18.79 0 18.79 26.51 0 78.08 75.06 91.88 114.88
18.79 0 18.79 23.93 18.79 0 23.93 18.79 75.06 72.48 88.86 111.86
18.79 23.93 26.51 29.53 26.51 23.93 0 26.51 67.34 48.55 81.14 104.14
23.93 18.79 0 18.79 0 18.79 26.51 0 78.08 75.06 91.88 114.88
72.48 75.06 78.08 83.24 78.08 75.06 67.34 78.08 0 115.89 13.8 36.8
67.43 72.48 75.06 78.08 75.06 72.48 48.55 75.06 115.89 0 129.69 152.69
86.28 88.86 91.88 97.04 91.88 88.86 81.14 91.88 13.8 129.69 0 50.6
109.28 111.86 114.88 120.04 114.88 111.86 104.14 114.88 36.8 152.69 50.6 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9)

5.4 Evaluation metrics

The sequential patternmining approach is assessed using two evaluationmetrics:Mean abso-
lute deviation (MAD) and the error based on the layout planning problem (ELPP). TheMAD
is assessed by calculating the mean absolute difference between the probability distribution
of significant CPs using the automaton approach and the actual probability distribution. We
also assess a trivial baseline approach which uses the prior probability distribution of CPs.

5.5 Results

All computations were performed on a 2.4 GHz PC (Intel Core i7 4700MQ) with 32 GB
RAM running a Windows 7 operating system. The mathematical model was coded in Java
in an ILOG Concert environment. The solver used was ILOG CPLEX 12.6 (64 bit). We
implemented the sequential pattern mining approach in Java, too.

We now compare the performance of the approaches broken down by MAD and ELPP
and provide a comparison of the layout of our collaborating hospital with the layout that
minimizes the ELPP based on the optimal parameter combination found by varying αsig and
αaut. Finally, we show the results of our discussion of the solution with the hospital.

5.5.1 Cross-validation results

Table 5 shows our 2-fold cross-validation experiments in which we varied the generalization
parameter αaut.
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Table 5 Overview of the results
of the cross-validation with
different α

αaut MAD ELPP

0.001 0.083∗ 147.222∗
0.005 0.083∗ 147.222∗
0.01 0.083∗ 147.222∗
0.05 0.083∗ 147.222∗
0.1 0.083∗ 147.222∗
0.2 0.083∗ 147.222∗
0.3 0.083∗ 147.222∗
0.4 0.083∗ 147.222∗
0.5 0.088∗ 235.722

0.6 0.088∗ 235.722

0.7 0.091∗ 203.833

0.8 0.097∗ 183.722∗
0.9 0.086∗ 148.722∗
1.0 0.111∗ 229.833

Trivial approach 0.120 200.970

Significant improvements as
compared to the trivial approach
are highlighted with an ∗ (at 5%
confidence level)

The table reveals that for the cross-validation experiments the lowest MAD is 0.083 and
the lowest ELPP is 147.222. The figures also show that the MAD increases with increasing
αaut which leads to the hypothesis that an over-generalized automaton overestimates some
pathway probabilities.

5.5.2 Results of the MAD and ELPP metrics

Figure 7a, b show the MAD and ELPP results, respectively. We varied αaut while we fixed
αsig = 0.001. In addition, we restricted the maximum length of each CP to 5.

The results using MAD as metric show that using a small αaut value outperforms the
trivial approach. More precisely, at a level of αaut = 0.001 theMAD becomes approximately
1.65E−4 which is lower than the MAD of the trivial approach which is 1.69E−4. Another
observation is that the slope remains negative but it becomes more and more flat until αaut =
0.8 is reached.

Similarly, the ELPP results show a descent of the error for small αaut. A more detailed
analysis reveals that at αaut = 0.1 the trivial approach which has an ELPP=17,500 is out-
performed. However, with αaut > 0.4, the ELPP of the automaton approach again becomes
worse than the trivial approach.

5.5.3 Evaluation of the hospital layouts

In order to see how the specialties would optimally be located we will use the whole sample
data and evaluate the trivial as well as the automaton approach to calculate the probabilities
and solve the layout planning problem. The sample data is now perfect information, since
it represents the actual CPs observed at the collaborating hospital. Furthermore, we fix the
entrance and exit at their original location. Table 6 shows the current hospital layout as well
as the layouts obtained by the trivial and the automaton approach under perfect information.
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Fig. 7 MAD (a) and ELPP (b) for the trivial and the automaton approaches

Table 6 Comparison of the
allocation results for the
collaborating hospital

Department Location
Original Trivial Automaton

A-Internal medicine 6.2 2 2

B-Surgery 6.3 6.3 6.3

C-Urology 6.4 6.4 6.4

D-Gynecology 6.5 3 3

E-ENT department 6.4 6.5 6.5

F-Orthopedics 6.3 6.4 6.2

G-Intensive-care 4 6.4 6.4

H-Ophthalmology 6.4 5 5

I-Radiology 2 6.2 6.4

J-Operating theater 5 6.3 6.3

N-Functional diagnostics 3 4 4

X-Entrance and exit 1 1 1

5.5.4 Fixing hospital specialties based on recommendations from the hospital

Once again, the entrance and exit have been fixed on their current location. The only spe-
cialties that remain on their original position according to both approaches are the surgery
department and urology. Both approaches locate the operating theater next to the surgery
department which is reasonable. In most cases the trivial and the automaton approach give
the same recommendations. Only the radiology department and orthopedic department are
interchanged.

Although both approaches provide similar results we have to reconsider the allocation
with regard to practicability when changing the current layout. Departments as the operating
theater and radiology department can hardly be moved to another location as there are lots of
special machines that cannot easily bemoved to another location. That is whywe additionally
fixed the intensive-care, radiology department, operating theater and functional diagnostics.
The resulting allocations for the different approaches can be seen in Table 7.
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Table 7 Optimal allocation of
specialties at the collaborating
hospital with some fixed
assignments

Department Location
Original Trivial Automaton

A-Internal medicine 6.2 6.3 6.2

B-Surgery 6.3 6.2 6.3

C-Urology 6.4 6.4 6.4

D-Gynecology 6.5 6.3 6.3

E-ENT department 6.4 6.4 6.4

F-Orthopedics 6.3 6.4 6.4

G-Intensive-care 4 4 4

H-Ophthalmology 6.4 6.5 6.5

I-Radiology 2 2 2

J-Operating theater 5 5 5

N-Functional diagnostics 3 3 3

X-Entrance and exit 1 1 1

Having fixed some specialties, both approaches deliver the same result except for the
internal medicine and the surgery department which are interchanged. They stay on their
current position with the automaton approach. The urology department and ENT specialty
are recommended to stay at floor 4. Departments that should be located in upper floors than
before are the ophthalmology department from floor 4 to 5, the orthopedics department from
floor 3 to 4 and internal-medicine, following the trivial approach, from floor 2 to 3. It is
recommended that the gynecology department moves down from floor 5 to 3 and the surgery
department regarding to the trivial approach from floor 3 to 2. A possible explanation for
this setup may be that the gynecology department and surgery department should be located
closer to the functional areas in the ground and first floor.

5.6 Discussion and generalizability of the results

5.6.1 Limitation of using transfer times

When setting up the transfer time matrix, we argue that patients use elevators to get from
one specialty to another. This is true for patients that have to be transported, for example,
from a ward to the operating theater. However, some patients may simply use the stairs for
getting from one floor to another. Also, waiting times for an elevator may vary considerably
during a working day. For example, there may be high traffic during breakfast, lunch and
dinner times when food has to be transported to the specialties and back. Furthermore, times
are depending on walking speeds which might be very different for different patient types or
their transportation mode (walking, wheelchair and bed).

5.6.2 Generalizability of the results

The approaches presented in this paper enhance the current state of the art in literature on the
strategic decision level in healthcare operations management. It links the work of Cardoen
and Demeulemeester (2008) on the strategic decision level with clinical medical work on
CP mining. From an operations management point of view, the sequential pattern mining
approach presented could be used in a patient scheduling problem which is located on an
operational decision level, see Gartner and Kolisch (2014).
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5.6.3 Calibration of αaut

As could be seen in the example and the computational results, the automaton-based approach
is sensitive to the αaut parameter which controls the state merging process. A parameter
optimization of αaut should be carried out before applying the approach in practice. Other-
wise, it can happen that a trivial approach outperforms the automaton-based pathway mining
approach.

5.6.4 Applicability for existing and new hospitals

Our approach can be used for both applications: reorganization of existing and building of
new hospitals. The difference is that for reorganizing a hospital, specialties would be fixed to
locations (see Constraints (5)). This might also be necessary when planning a new hospital
where for example the emergency room should be near to the entrance area on the ground
floor. Fixing any specialty in advance leaves enough room for any other improvement (total
travel distances or transfer times) that might be achieved by changing the location of the
remaining specialties. However, the improvement potential may be reduced if some facilities
are fixed to their locations rather than reorganizing or building the hospital without fixing
variables.

6 Conclusion

In this paper, we have dovetailed clinical pathway (CP) mining with hospital-wide layout
planning: First, we have selected and extended amachine learning approach to learnCPs from
data. Then, we have presented amathematical model for hospital layout planningwhich takes
into account clinical pathways. It features not only the planning of new hospitals but also the
reconfiguration of existing ones by partially fixing specialties to locations. We evaluated the
approach in a cross-validation setting and have shown results based on different evaluation
measures and level of detail.Dependingon its generalization parameter, the chosen automaton
approach outperformed a baseline approach significantly.

Future work will focus on parameter optimization. For example, a full factorial test design
will be run to determine a (near optimal) generalization parameter αaut , paired with αsig

which can filter out non-significant CPs. Alternatively, a heuristic search approach may be
beneficial to determine both parameters.

Further extensions will be to evaluate patient types and transportation modes and trading
off walking distances and transportation costs. Finally, we will test the applicability of our
approach towards operational decisions such as hospital-wide patient scheduling.
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Appendix 1: Abbreviations, sets, indices and decision variables

See Table 8.
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Table 8 Abbreviations, sets, parameters, indices and decision variables

Abbreviations

CP Clinical pathway

ELPP Error of the layout planning problem

ENT Ear nose and throat department

ICU Intensive Care Unit

MAD Mean absolute deviation

OECD Organisation for Economic Co-operation and Development

PDFA Probabilistic deterministic finite state automaton

PFSA Probabilistic finite state automaton

PPTA Probabilistic prefix tree acceptor

Sets and indices

B Set of blacklisted tuples (zi , z j ) ∈ B which refer to letters zi and z j
C Set of tuples (i, j) ∈ C which refer to specialties i, j ∈ S
F Set of folds in the cross-validation experiments

L Set of locations

P Set of unique CPs

X f Layout solution for fold f ∈ F
αaut Generalization parameter

αsig Significance level to for CPs

(zi , z j ) ∈ B Set of blacklisted tuples containing letters zi and z j
π(qi , z) Probability function on the transition of qi given z ∈ Σ

πF (qi ) Probability for state qi to be final

fi,k Transition frequency between specialty i ∈ S and specialty k ∈ S
d j,l Distance between location j ∈ L and location l ∈ L
Di,k Maximum distance allowed between two specialties (i, k) ∈ C
(i, j)C Set of tuples containing specialties i, j ∈ S
q0 ∈ Q Initial state

q(qi , z) Transition function leading to a state given state qi and letter z ∈ Σ

Q Finite set of states

Σ Set of letters (alphabet)

S Set of specialties

W Whitelist of tuples (i, j) ∈ W which refer to specialty i ∈ S which is fixed
on location j ∈ L

Parameters and indices

αaut Generalization parameter

αsig Significance level to for CPs

d j,l Distance between location j ∈ L and location l ∈ L
Di,k Maximum distance allowed between two specialties (i, k) ∈ C
fi,k Transition frequency between specialty i ∈ S and specialty k ∈ S
π(qi , z) Probability function on the transition of qi given z ∈ Σ

πF (qi ) Probability for state qi to be final
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Table 8 continued

q0 ∈ Q Initial state

q(qi , z) Transition function leading to a state given state qi and letter z ∈ Σ

(i, j) ∈ W Whitelist of tuples where specialty i ∈ S must be fixed on location j ∈ L
Σ Alphabet

Decision variables

xi, j 1, if specialty i ∈ S is assigned to location l ∈ L, 0 otherwise

Appendix 2: State merging with αaut = 0.9

In order to demonstrate the influence of a different αaut on the merging process, we now
employ αaut = 0.9 as parameter to calculate whether the PPTA’s states from Fig. 1
can be merged. Using this αaut, we already see at the beginning that the states 0 and 1
cannot be merged because plugging αaut = 0.9 and the frequencies into Eq. (1) yields√

1
2 ln

( 2
αaut

) ·
(

1√
n(0)

+ 1√
n(1)

)
=

√
1
2 ln

( 2
0.9

) ·
(

1√
10

+ 1√
6

)
= 0.458. For z = A :

|π(q(0, A)) − π(q(1, A))| =
∣∣∣∣ 6
10 − 0

∣∣∣∣ = 0.600 > 0.458. Consequently, states 0 and 1

cannot be merged with αaut = 0.9. However, states 0 and 2 can be merged. Again, we skip
the explanation of the remaining merging steps and show the final PDFA in Fig. 4b.

Appendix 3: Cross-validation using the WEKA Java API

The following code gives an overview of how we computed the MAD using cross-validation
and the the WEKA Java API (Witten and Frank 2011). Let ‘data’ be an object of the WEKA
class Instances.java and let nFolds be the number of crossvalidation folds, for example 10 in
the case of 10-fold cross-validation.

double calcMADPathways() {

for ( int n=0;n<nFolds ;n++)
{

Instances train = data . trainCV(nFolds , n) ;
Instances test = data . testCV(nFolds , n) ;

for ( int inst=0;inst<train .numInstances ( ) ; inst++)
probDistributionTrain [n][( int ) train . instance ( inst ) . value(0)]
+= (double) 1/ train .numInstances ( ) ;

for ( int inst=0;inst<test .numInstances ( ) ; inst++)
probDistributionTest [n][( int ) test . instance ( inst ) . value(0)]
+= (double) 1/ test .numInstances ( ) ;

for ( int pathway = 0;pathway<data . instance (0). attribute (0).numValues( ) ;pathway++)
error [n] += Math. abs(probDistributionTrain [n][pathway]
− probDistributionTest [n][pathway] ) ;

MADperFold[n] = error [n] / data .numInstances ( ) ;
SumMADs += MADperFold[n] ;

}
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MAD= SumMADs/nFolds ;

returnError =MAD;

return returnError ;
}
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