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Abstract This research formulates a multi-objective problem (MOP) for supply chain net-
work (SCN) design by incorporating the issues of social relationship, carbon emissions, and
supply chain risks such as disruption and opportunism. The proposed MOP includes three
conflicting objectives: maximization of total profit, minimization of supply disruption and
opportunism risks, and minimization of carbon emission considering a number of supply
chain constraints. Furthermore, this research analyses the effect of social relationship lev-
els between different tiers of SCN on the profitability, risk, and emission over the time. In
this regard, we focus on responding to the following questions. (1) How does the evolving
social relationship affect the objectives of the supply chain (SC)? (2) How do the upstream
firms’ relationships affect the relationships of downstream firms, and how these relationships
influence the objectives of the SC? (3) How does the supply disruption risk interact with the
opportunism risk through supply chain relationships, and how these risks affect the objectives
of the SC? (4) How do these three conflicting objectives trade-off? A Pareto-based multi-
objective evolutionary algorithm–non-dominated sorting genetic algorithm-II (NSGA-II) has
been employed to solve the presented problem. In order to improve the quality of solutions,
tuning parameters of the NSGA-II are modulated using Taguchi approach. An illustrative
example is presented to manifest the capability of the model and the algorithm. The results
obtained evince the robust performance of the proposed MOP.
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1 Introduction

Owing to tremendous development in technology, globalization of markets, and heightened
customers’ expectations, today’s market competition has shifted from competitive inde-
pendent firms to competitive SCs. E-business is another prominent factor that encourages
different firms to compete as an integral part of SCs (Zhang 2006). Rice and Hoppe (2001)
and Xiao and Yang (2008) highlighted that now the competition is SC versus SC instead of
traditional company versus company. There are several instances of SC versus SC competi-
tion in different industries such as Microsoft-HTC and Nokia-Symbian SCs in the electronic
industries (Xiao and Yang 2008), Amazon.com and barnesandonoble.com in the book mar-
ket (Bernstein and Federgruen 2004), Dell’s competition against Apple in personal computer
market (Rice and Hoppe 2001) etc.

Supply chain network (SCN) is a strategic level decision making problem that deals with
various issues such as determination of size, number and location of facilities in a supply
chain, tactical decision making such as distribution, transportation and inventory manage-
ment policies, and also involves operational decisions such as fulfilment of customer demand,
pricing and customer service level (Farahani et al. 2014). In today’s global competitive era,
companies strive to minimize the relevant costs and maximize their opportunities in the
market, and thereby they consistently focus on the improving partnerships and alliance rela-
tionships. According to Croom et al. (2000), any endeavour in managing the information
and/or material flow is likely to be ineffective in absent of effective supply chain organi-
zational relationship. Moreover, there is an increasing concern over environmental, health
and safety regulations issues of workers involved in the production processes. For example,
leading corporations like Apple, Liz Claiborne, Disney, Nike andWal-Mart have faced dam-
aging media reports, external pressure from activists, and internal pressure from investors
demanding that companies acknowledge responsibility for labour rights’ abuses in factories
(Cruz and Wakolbinger 2008, and references therein). Consequently, companies show their
interest in tackling of social and environmental issues.

Motivated by these factors, we model a multi-objective multi-period (MOMP) integrated
supply chain model that considers the effects of social relationship levels in presence of
disruption risk and opportunism risk in a multi-tier SCN. The environmental issue is also
incorporated in developing the proposed mathematical model of SCN. In this manner, this
research primarily focuses on responding the following questions:

(1) What are the effects of the evolving social relationships on price and demands, and
finally on the objectives (profitability, risk and emission) of supply chain?

(2) How do the upstream firms’ relationships affect the relationships of downstream firms,
and how these relationships influence the objectives of the SC?

(3) How does the supply disruption risk interact with the opportunism risk through supply
chain relationships, and how these risks affect the objectives of the SC?

(4) How do three conflicting objectives interact and trade-off with each other?

This research formulates a multi-objective problem (MOP) for supply chain network
(SCN) design by incorporating the issues of social relationship, carbon emissions, and supply
chain risks such as disruption and opportunism. The proposedMOP includes three conflicting
objectives: maximization of total profit, minimization of supply disruption and opportunism
risks, andminimization of carbon emission considering a number of supply chain constraints.
Furthermore, this research analyses the effect of social relationship levels between different
tiers of SCN on the profitability, risk, and emission over the time.
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NSGA-II is an efficient algorithm to solve a MOP particularly when the number of objec-
tives is more (Deb et al. 2002). It is a population based random search algorithm, in which
solution quality is improved over iterations. The proposed MOMP integrated SCN has three
conflicting objectives and therefore in order to obtain good near optimal solution, we employ
NSGA-II to our mathematical model. Moreover, one of the main motivations to choose this
approach is its successful and proven application in various other domains of multi-objective
optimization (MOO). In order to find the better solution, this research chooses the algorith-
mic parameters of NSGA-II by using Taguchi method. It is well known that Taguchi method
is based upon statistical experimental design that evaluate and implement improvement in
products, process and equipment (Tiwari et al. 2010).

The rest of the paper is organized as follows: Sect. 2 provides brief literature review.
Section 3 discusses the mathematical model followed by description of solution methodolo-
gies: MOEA and NSGA-II in Sect. 4. Section 5 presents computational studies. Section 6
discusses tuning of parameters of NSGA-II using Taguchi method. Results of numerical
experiment and discussion are presented in Sect. 6 followed by conclusion and direction for
future research in Sect. 8.

2 Literature review

This section reviews the relevant literature in specific domains of modelling of supply chain
relationships, modelling of supply chain risks including opportunism and disruption and
models which included carbon emission as an objective in supply chains. In addition, we
also reviewed several multi-objective models used to solve these problems to make a case
for the application of NSGA II.

Supply chain relationship issues in SCs have received a great research attention in the
area of operations management, economics and marketing (Cruz and Liu 2011). A competi-
tive advantage and efficiencies flexibility could be achieved by promoting the collaborative
relationships amongst supply chain partners. Moreover, long-term collaborative relationship
may result in creating unique value, which could only be possible when the partners make
cooperative efforts rather than independent. Its an on-going process to lower acquisition and
operating costs (Nyaga et al. 2010). Daugherty et al. (2006), suggested that the firms build
multiple collaborative relationship to accomplish higher service level, increased flexibility,
increased customers’ satisfaction, reduced cycle times and lower risks. Moreover, strong
multiple relationships encourage firms to change the marketplaces and to create customer
value and loyalty, finally leading to maximum profit margin (Cruz and Liu 2011). Dyer
(2000) found that the collaborative behaviours of supply chain tend to be more accountable
to reduce the supply chain-wide costs (costs associated with negotiating, monitoring, and
enforcing contracts). According to Uzzi (1997) and Gadde and Snehota (2000), the negative
effects related to dependency of supply chain partners can be mitigated through the strong
multiple relationships. Krause et al. (2007) recognized that commitment and social capital
accumulation among the stakeholders are important complementary conditions that estab-
lish performance goals and improve buying performance. However, most of these research
focussed on establishing the benefits of having multiple relationships. Very negligible work
has been done o demonstrate the effects of the evolving social relationships on price and
demands. In addition, tvery limited work investigated the impact of these relationships
on firms’ objectives such as profitability, risk mitigation and carbon emission in a supply
chain.
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Supply chain risks including disruption and its management have received a great atten-
tion in academic literature as well as in industrial applications. Supply chain disruption is an
unanticipated event that spawns disturbance in normal flow of material within SCN (Craig-
head et al. 2007). Supply chain riskmanagement (SCRM) has emerged due to various reasons
including globalization, volatile market places, crisis and calamities etc., and substantially
more susceptible than traditional integrated production planning (Hoffmann et al. 2013). An
empirical study of around 800 instances of supply chain disruptions conducted by Hendricks
and Singhal (2005) suggested that the companies that suffered with supply chain disruptions
earned lower share prices return (33–40% lesser) and higher share price volatility (13.5%
higher) compared to the general market benchmarks. In light of three dimensions of supply
disruption risk namely magnitude, probability, and overall supply disruption risk, Ellis et al.
(2010) empirically explored that both the probability and magnitude are important to overall
perception of supply disruption risk. According to Cruz and Liu (2011), supply chain dis-
ruptions have worldwide impacts and therefore in order to capture the complex interactions
among stakeholders, a holistic and system-wide SCN modelling and analysis is essential.
Nonetheless, very limited researchers have examined SCRM considering supply chain rela-
tionship issues. An exhaustive latest review related to supply chain disruption is presented in
Ellis et al. (2010).

In addition to supply disruption risk, opportunism risk is also studied in several SCN liter-
atures (e.g., Tangpong et al. 2010; Vandenbosch and Stephen 2010). Opportunism is lack of
candour/honesty in transaction and self-interest seeking with guile, which also includes fal-
sification of expense reports, breach of distribution contracts, bait-and-switch tactics, quality
shirking, and violation of promotion agreements (Cruz and Liu 2011; Handley and Benton
2012). Very little or negligible work has been done to combine social relationship, supply dis-
ruption and opportunism risks in designing SCN and therefore an identified research gaps to
pursue the proposed research. In addition, environmental concerns have also been considered
in this research.

Increasing awareness of the need of environmental protection and sustainability stimulate
government, consumers, local communities, and stakeholders groups to exert pressure on
companies to effectively incorporate sustainability issues into their supply chain manage-
ment practices (Cruz 2013; Gold et al. 2010). Now a day, environmental performance at any
stage of supply chain is one of the most crucial criteria to evaluate the reputation of a com-
pany. As an example of public awareness campaigns by advocacy group, many companies
such as McDonalds, Mitsubishi, Monsanto, Nestle, Shell, and Texaco have suffered with
damages of reputation and sales (Svendsen et al. 2001). In recent years, increasing environ-
mental concerns enforced researchers to deal with environmental risks. The increased focus
on environment highly influences the supply chain schemes. Consequently, stakeholders of
an organization are forced to stretch their responsibility for their product beyond their sales
and delivery locations (Bloemhof-Ruwaard et al. 1995). An exhaustive review concentrating
about environmental issues is available in Cruz and Wakolbinger (2008), Cruz (2013) and
Tseng and Hung (2014). However, social relationship is capable to lead the programs of col-
laborative waste reduction, cost-effective environmental solutions, environmental innovation
at the interface, the rapid development and uptake of innovation in environmental technolo-
gies, and allows firms to better understand the environmental impact of their supply chains
(Simpson and Power 2005).

Environmental issue in sustainable SC and closed-loop SC has been modelled by many
researchers such as Wang and Gunasekaran (2015), De Giovanni (2014), Costa et al. (2014).
Zakeri (2014) discussed the impact of carbon trading schemes and its impact on tactical supply
chain planning decision. Similarly, Fahimnia et al. (2015a) discussed a tactical planning
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model to manage supply chains under two carbon regulatory schemes. They implemented
their model using real data from an Australian furniture manufacturing company. Fahimnia
et al. (2013) developed a SC model in which environmental issue is tackled by minimization
of emission. Battini et al. (2014) proposed a sustainable SC focusing on CO2 emission due
to transportation, in which an economic order quantity is derived for material purchasing.
Zakeri et al. (2015) discussed the impact of carbon trading schemes and its impact on tactical
supply chain planning decision. Rezaee et al. (2015) extended Fahimnia et al. (2015a, b)
model by considering stochastic demand. Andriolo et al. (2015) proposed a bi-objective SC
focusing on minimization of total cost including transportation, while second objective is to
minimize the carbon emission. An exhaustive review of modelling of environmental issues
in supply chain is conducted Fahimnia et al. (2015a, b).

The aforementioned discussion indicates that negligible research has been done in devel-
opingmodels which have simultaneously dealt with social relationship, supply disruption and
opportunism risks, and emissions. Furthermore, most of the previous models have focussed
on single-objective optimization process. However, real-life supply chain environment is very
sophisticated and complex in nature, and involves optimization of several incommensurable
objectives simultaneously. Therefore, there is need to consider the multi-objective nature of
SCN problems. Researchers have shown a great interest in recent years to use multi-objective
optimization techniques in supply chainmodelling problems such as Liao et al. (2011), Soysal
et al. (2014), Zhang et al. (2013), Govindan et al. (2014), Liang et al. (2013) and Devika et al.
(2014) in various domains of supply chain. However, none of this research simultaneously
considered social-relationship, risk, and emission in supply chain.

In recent years, researchers have shown their interest to use MOO techniques in SC
modelling problems. The classical method of solving a MOP is to use weighted sum method
that combines all the objective functions into one-objective function and treat it as a single
objective with multiple constraints. Value fraction, ε-constraint, and weighted-matrix are
some other classical methods to solve the MOPs. All these algorithms convert the MOP into
single-objective problem (SOP). Other way to solve the MOP is to develop a Pareto-front for
given objectives, and then select the Pareto-front using several methods. Liao et al. (2011)
formulate anMOP for vendormanaged inventory (VMI) setup, which integrates the effects of
distribution, facility location, and inventory issues, then used a multi-objective evolutionary
algorithm based on the non-dominated sorting genetic algorithm-II (NSGA-II) (see Deb
et al. 2002) to solve the MOP. Similarly, Govindan et al. (2014) formulated a mathematical
model of an MOP to solve environmental issues of food supply chain for perishable product.
Furthermore, they employed multi-objective evolutionary algorithm NSGA-II to solve the
problem.

Motivated by identified research gaps in literature and the complexity of real-life supply
chain environment, we formulate a MOP for multi-tier, multi-period supply chain that simul-
taneously includes social relationship, supply disruption andopportunism risks, and emission.
In this research, we present a model [an extension of Cruz and Liu (2011)] to integrate the
concepts of social relationship, supply chain disruption and opportunism risks, and emis-
sions. To obtain good near optimal solution, we employ famous and efficient multi-objective
based meta-heuristic NSGA-II. One of the main motivations to choose this approach is its
successful applicability in various other domains ofmulti-objective optimization. In addition,
it is well known that Taguchi method is based upon statistical experimental design that eval-
uate and implement improvement in products, process and equipment (Tiwari et al. 2010).
This research integrates Taguchi method to tune the algorithmic parameters of NSGA II to
improve the quality of solutions obtained by NSGA-II.
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3 The MOMP integrated SCN model

This section develops the proposedMOMP integrated SCNmodel by incorporating the emis-
sion and disruption risk. This model is based on the assumption that a centralized decision
maker makes all decisions of the SCN including the size of shipments between the stake-
holders, levels of social relationship, production quantities and inventories in each period.
At this stage, our first objective is to maximize the profit of entire supply chain consisting
of the profits of I suppliers, J manufacturers, and K retailers. The second objective is to
minimize the risks including supply disruption and opportunism, while, third objective is
to minimize the emission of entire supply chain. Furthermore, we assume that the planning
horizon is finite and is discretized into T periods, as shown in Fig. 1. As we endeavour to
extend the model proposed by Cruz and Liu (2011), the indices and decision variables used
throughout the paper are adopted from Cruz and Liu (2011), and are described in Tables 1
and 2.

TheSCNunder consideration comprises of three tiers. The top tiers (i.e. suppliers) provides
parts/raw-materials to the manufacturers, who convert them to finished goods, which are then
sold to the retailers i.e. the bottom tier of the SCN. The retailers sell these products to the
consumers. In our model, we have assumed that there are no constraints on the interaction
between the tiers i.e. each manufacturer can procure materials from any of the suppliers, and
each of the retailers can acquire products from any of the manufacturers. This would result in
two variables (1) transaction quantity (q) and (2) social relationship level (η) associated with
any pair of supplier and manufacturer, manufacturer and retailer. We have also considered
a fixed planning horizon with discretised time periods. The evolution of the SCN over the
planning horizon is shown in Fig. 1.
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Fig. 1 Time evolution of the SCN model (adopted from Cruz and Liu 2011)
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Table 1 Indices used throughout
the paper i = 1, . . . , I Supplier

j = 1, . . . , J Manufacturer

k = 1, . . . , K Retailer

t = 1, . . . , T Time period

The model consists of I number of suppliers, J number of manufacturers, K number of
retailers, and a fixed planning horizon T which is discretized into periods: 1,…,t ,…,T . A
typical supplier in the top tier is denoted by i , a typical manufacturer in the middle tier is
denoted by j , and a typical retailer in the bottom tier is denoted by k. As shown in Fig. 1,
the nodes (i, t) denotes supplier i in time period t , node ( j, t) represents the manufacturer j
in time period t , and the node (k, t) denotes the retailer k in time period t . In summary, the
suppliers (1,…,i ,…,I ), manufacturers (1,…, j ,…,J ), and retailers (1,…,k,… K ) remain the
same throughout the planning horizon, but the transaction quantities, and social relationship
levels varies with time period. Therefore, the SCN at a time period t represents the level of
transaction quantity and social relationship between the entities of the SC. The indices and
decision variables used throughout the paper are adopted from Cruz and Liu (2011), and are
described in Tables 1 and 2.

The cost incurred on suppliers, manufacturers, and retailers are described in terms of
transaction and social relationship level in Table 3. The production cost for each supplier or
manufacturer at each time period t is a function of product out-turns. The transaction cost
between stakeholders depends upon product quantity transacted between them. Suppliers,
manufacturers and retailers may keep inventory to avoid supply disruption and to quickly
deliver product. Thus, inventory cost depends upon quantities of product held for the peri-
ods. Furthermore, to mitigate risks associated with SCN, certain level of relationships to be
achieved between the supplier and the manufacturer, the manufacturer and the retailer, and
vice-versa. To achieve this objective, each stakeholder may spend money in the form of time,
service, information sharing, assets or additional personnel. The relationship cost functions
reflect the expenditure in order to maintain and/or improve the relationship level. However,
relationship establishment and maintenance cost functions for each combination such as
supplier–manufacturer or manufacturer–retailer may be distinct. The buyer–seller interac-
tion and communication magnitude changes the relationship strength (Crosby and Stephens
1987), and vice-versa. The functional form of social relationship cost may be influenced
by many factors such as the willingness of decision-maker to establish/maintain a level of
social relationship and improvement in level of relationship (Cruz and Liu 2011). The level
of relationship is a real number that lies between zero and one where zero indicates no social
relationship and one indicates the strongest possible level of social relationship. The levels of
social relationship and the material flows are endogenous and are determined by the decision
maker.

Table 4 presents the description of the risk functions, which are often inherent in the supply
chain. The risk functions considered in this model are functions of the transaction quantity
and the relationship level. Juttner et al. (2003) highlighted that there are mainly three sources
of supply chain-relevant risk: (1) environmental, e.g., fire, flood, or social-political actions,
(2) organizational, e.g., supply disruption, production uncertainties or exchange rate risk,
and (3) network-related risk. Furthermore, Johnson (2001) and Norrman and Jansson (2004)
discussed that lack of cooperation and interaction between the stakeholders within the SC
engender network-related risk. Thismodel assumes that each stakeholder faces environmental
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Table 2 Description of decision
variables

Notation Description

qij t Quantity of product supplied by supplier i to
manufacturer j at time period
t, i = 1, 2, . . . , I ; j = 1, 2, . . . , J and
t = 1, 2, . . . , T

q j
kt Quantity of product supplied by manufacturer j to

retailer k at time period
t, j = 1, 2, . . . , J ; k = 1, 2, . . . , K and
t = 1, 2, . . . , T

qkt Quantity of product sold by retailer k at time period
t, k = 1, 2, . . . , K and t = 1, 2, . . . , T

yit Production quantity of supplier i at time period t ,
i = 1, 2, . . . , I and t = 1, 2, . . . , T

y jt Production quantity of manufacturer j at time period
t, j = 1, 2, . . . , J and t = 1, 2, . . . , T

υi t Inventory kept by supplier i at time period t ,
i = 1, 2, . . . , I and t = 1, 2, . . . , T

υ j t Inventory kept by manufacturer j at time period
t, j = 1, 2, . . . , J and t = 1, 2, . . . , T

υkt Inventory kept by retailer k at time period
t, k = 1, 2, . . . , I and t = 1, 2, . . . , T

ηij t Level of social relationship between supplier i and
manufacturer j at time period
t, i = 1, 2, . . . , I ; j = 1, 2, . . . , J and
t = 1, 2, . . . , T

ηi+j t Increment in level of social relationship between
supplier i and manufacturer j at time period
t, i = 1, 2, . . . , I ; j = 1, 2, . . . , J and
t = 1, 2, . . . , T

ηi−j t Decrement in level of social relationship between
supplier i and manufacturer j at time period
t, i = 1, 2, . . . , I ; j = 1, 2, . . . , J and
t = 1, 2, . . . , T

η
j
kt Level of social relationship between manufacturer j and

retailer k at time period
t, j = 1, 2, . . . , J ; k = 1, 2, . . . , K and
t = 1, 2, . . . , T

η
j+
kt Increases in level of social relationship between

manufacturer j and retailer k at time period
t, j = 1, 2, . . . , J ; k = 1, 2, . . . , K and
t = 1, 2, . . . , T

η
j−
kt Decrement in level of social relationship between

manufacturer j and retailer k at time period
t, j = 1, 2, . . . , J ; k = 1, 2, . . . , K and
t = 1, 2, . . . , T

and/or organizational engendered supply disruption risks, and opportunism risk engendered
by insufficient cooperation and commitment between the partners of the SCN. In this research,
our presented model considers organizational risk, environmental risk and network related
risk of supply chain by defining risk as a function of transaction volume and level of social
relationship.
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Table 3 Description of cost
functions

Notation Description

fi t (yit ) Production cost of supplier i at period t

f j t (y jt ) Production cost of manufacturer j at period t

cij t (q
i
j t ) Transportation/transaction cost of supplier i with

manufacturer j at period t

c ji t (q
i
j t ) Transportation/transaction cost of manufacturer j with

manufacturer i at period t

c jkt (q
j
kt ) Transportation/transaction cost of manufacturer j with

retailer k at period t

ckj t (q
j
kt ) Transportation/transaction cost of retailer k with

manufacturer j at period t

hit (υi t ) Inventory cost of supplier i at period t

h j t (υ j t ) Inventory cost of manufacturer j at period t

hkt (υkt ) Inventory cost of retailer k at period t

bij t (η
i
j t ) Social relationship maintaining cost of supplier i with

manufacturer j at period t

bi+j t (ηi+j t ) Social relationship improvement cost of supplier i with
manufacturer j at period t

b j
i t (η

i
j t ) Social relationship maintaining cost of manufacturer j

with supplier i at period t

b j+
i t (ηi+j t ) Social relationship improvement cost of manufacturer j

with supplier i at period t

b j
kt (η

j
kt ) Social relationship maintaining cost of manufacturer j

with retailer k at period t

b j+
kt (η

j+
kt ) Social relationship improvement cost of manufacturer j

with retailer k at period t

bkj t (η
j
kt ) Social relationship maintaining cost of retailer k with

manufacturer j at period t

bk+j t (η
j+
kt ) Social relationship improvement cost of manufacturer k

with retailer j at period t

Table 5 presents a description of the emission functions. The growing environmental
concerns motivate to incorporate the environmental issues specifically carbon emission while
modelling a SC problem (Qiu et al. 2001). The amount of emissions generated depends
upon the volume of product produced and transacted as well as level of social relationship in
current and previous periods (Cruz andWakolbinger 2008). In this model, we assume that the
decision maker seeks to minimize the total emissions generated by suppliers, manufacturers
and retailers in the process of production as well as in the process of product delivery to the
next tier of supply chain.

The inverse demand function associated with the retail market is presented in Table 6.

3.1 Profit maximization

The first objective of this MOP is to maximize the total profit of entire supply chain over
the planning horizon T . Most of the decision variables considered in this model are adopted
from Cruz and Liu (2011), and are described in Table 2. The associated cost functions are
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Table 4 Description of risk
functions

Notation Description

r1ij t (q
i
j t ) Supply disruption risk incurred at supplier i

associated with the transaction with
manufacturer j at period t

r2ij t (q
i
j t , η

i
j t ) Opportunism risk incurred at supplier i

associated with the transaction with
manufacturer j at period t

r1 ji t (qij t ) Supply disruption risk incurred at manufacturer
j associated with the transaction with supplier
i at period t

r2 ji t (qij t , η
i
j t ) Opportunism risk incurred at manufacturer j

associated with the transaction with supplier i
at period t

r1 jkt (q j
kt ) Supply disruption risk incurred at manufacturer

j associated with the transaction with retailer
k at period t

r2 jkt (q j
kt , η

j
kt ) Opportunism risk incurred at manufacturer j

associated with the transaction with retailer k
at period t

r1kj t (q j
kt ) Supply disruption risk incurred at manufacturer

j associated with the transaction with retailer
k at period t

r2kj t (q j
kt , η

j
kt ) Opportunism risk incurred at manufacturer j

associated with the transaction with retailer k
at period t

Table 5 Description of emission
functions

Notation Description

eij t (q
i
j t , η

i
j t ) Emission at supplier i associated with manufacturer

j at period t

e ji t (q
i
j t , η

i
j t ) Emission at manufacturer j associated with supplier

i at period t

e jkt (q
j
kt , η

j
kt ) Emission at manufacturer j associated with retailer

k at period t

ekj t (q
j
kt , η

j
kt ) Emission at retailer k associated with manufacturer

j at period t

Table 6 Inverse demand
function

Notation Description

ρ3kt (dt ) Inverse demand function in the retail market

described in Table 3. The profit of entire supply chain is the sum of the profits earned by the
suppliers, manufacturers, and retailers over the periods T . Hence, the profit maximization
problem of entire supply chain can be expressed as follows:
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max
T∑

t=1
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⎡

⎣
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1 j t q

i
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qij t
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ηij t

)
− bi+j t

(
ηi+j t

)]
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⎤
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)
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)
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η
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⎤

⎥⎥⎦

+
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K∑
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⎡

⎣ρ3kt qkt − fkt (qkt ) − hkt (υkt ) −
J∑

j=1
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(
q j
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)
+ bkjt

(
ηkj t

)
+ bk+j t

(
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)
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ρ
j
2kt q

j
kt

⎤

⎦

(1)

Equation (1) represents the cost function of entire SCN. The first summation represents
cost functions of all suppliers, in which first term represents revenue and the next five terms
represent transaction costs, costs of social relationship with manufacturers, costs of social
relationship improvement, production costs and inventory costs respectively. The second
summation of Eq. (1) represents cost function for all manufacturers, in which first term rep-
resents revenue and subsequent five terms represent transaction costs with retailers, costs
of social relationship with retailers, costs of social relationship improvement with retailers,
production costs and inventory costs respectively. Remaining four terms of the second sum-
mation represent transaction costs with suppliers, social relationship costs with suppliers,
costs of social relationship improvement with suppliers and purchasing costs respectively.
The last summation represents cost function for retailers, in which first term represents rev-
enue, second term represents production cost, third term represents inventory cost, fourth term
represents transaction costs with manufacturer, fifth term represents costs of social relation-
ship with manufacturer, sixth term represents cost of social relationship improvement with
manufacturer, and the last one represents purchasing costs. Equation (1) can be simplified
and re-written in the following form:

max
T∑

t=1

K∑

k=1

⎡

⎣ρ3ktqkt − fkt (qkt ) − hkt (υkt )−
J∑
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(
q j
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)
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(
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)
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(
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)]
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⎦
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)
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(
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)]
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−
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)]

⎤

⎥⎥⎦ (2)

3.2 Risk minimization

The second objective of the proposed MOP is the minimization of risks. In this model,
individual firms intend to minimize both supply disruption and opportunism risks while
dealing with the adjacent echelon/echelons. The parameters related to the risks are described
in Table 4. The risk minimization of the entire SC is mathematically expressed as:

min
T∑

t=1

I∑

i=1

J∑

j=1

[
ω1i

j r
1i
j t

(
qij t

)
+ ω2i

j r
2i
j t

(
qij t , η

i
j t

)]
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+
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(3)

In Eq.3, ω1i
j , ω

1 j
i , ω

1 j
k and ω1k

j are non-negative weights assigned for supply disrup-

tion risk, and ω2i
j , ω

2 j
i , ω

2 j
k and ω2k

j are non-negative weights assigned for opportunism
risk. The non-negative weights quantify importance of risks, in addition it also trans-
form these values into monetary units. In general, supply disruption and opportunism
risks are uncertain in nature. As Cruz and Liu (2011) suggested, statistical uncertainty

is included in these two types of risk. In particular, r1ij t

(
qij t

)
, r1 ji t

(
qij t

)
, r1 jkt

(
q j
kt

)
and

r1kj t

(
q j
kt

)
are defined as expected material quantities subject to the supply disruption risk,

and r2ij t

(
qij t , η

i
j t

)
, r2 ji t

(
qij t , η

i
j t

)
, r2 jkt

(
q j
kt , η

j
j t

)
and r2kj t

(
q j
kt , η

j
kt

)
are expected material

quantities subject to opportunism risk, and these are defined as follows in Eqs. (4)–(11).

r1ij t

(
qij t

)
=

qij t∫

0

(
qij t − u

)
pij (u)du (4)

r1 ji t

(
qij t

)
=

qij t∫

0

(
qij t − u

)
p j
i (u)du (5)

r1 jkt

(
q j
kt

)
=

∫ q j
kt

0

(
q j
kt − u

)
p j
k (u)du (6)

r1kj t

(
q j
kt

)
=

q j
kt∫

0

(
q j
kt − u

)
pkj (u)du (7)

r2ij t

(
qij t , η

i
j t

)
= φi

j t

(
1 − ηij t

)
qij t (8)

r2 ji t

(
qij t , η

i
j t

)
= φ

j
i t

(
1 − ηij t

)
qij t (9)

r2 jkt

(
q j
kt , η

j
kt

)
= φ

j
kt

(
1 − η

j
kt

)
q j
kt (10)

r2kj t

(
q j
kt , η

j
kt

)
= φk

j t

(
1 − η

j
kt

)
q j
kt (11)

where pij (u) is probability distribution function indicating that supplier i is able to deliver

u units of the material/parts to manufacturer j without any disruption and delay. φi
j t is the

probability that manufacturer j conduct opportunism behaviours such as cancellation of
order, failure or delay of payments, etc., in the transactions with supplier i , when relationship
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level between the two parties is 0. p j
i (u), p j

k (u) and pkj (u), andφ
j
i t , φ

j
kt andφk

j t can be defined
in the similar way.

3.3 Emission minimization

The third objective of the MOMP supply chain is the minimization of the total emissions
engendered during production and transactions among SCpartners, over the planning horizon
T . Hence, total emissions of entire SC can be expressed mathematically as:

min
T∑

t=1

I∑

i=1

J∑

j=1

ω3i
j e

i
j t

(
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+
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ω
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j
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k=1

J∑

j=1

ω3k
j e

k
j t

(
q j
kt , η

j
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)
(12)

In emission minimization as mentioned in Eq. (12), ω3i
j is a non-negative weight assigned by

supplier i to total emission engendered by production process and transaction with manu-
facturer j . ω3 j

i and ω
3 j
k are non-negative weights assigned by manufacturer to total emission

engendered by production activities and transaction with supplier i and retailer k, respec-
tively. Non-negative weight ω3k

j is assigned by retailer k to total emission generated by
production process and transaction with manufacturer j . The non-negative weights quantify
the importance of emissions, and, in addition transform these values into monetary units. In
particular, eij t , e

j
i t , e

j
kt and e

k
jt are defined as follows in Eqs. (13)–(16).

eij t

(
qij t , η

i
j t

)
=

(
1 − aij
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ηijs

)
qij t (13)

e ji t

(
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i
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)
=

(
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i
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s=1

ηijs

)
qij t (14)

e jkt

(
q j
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j
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)
=

(
1 − a j

k

t∑

s=1

η
j
ks

)
q j
kt (15)

ekjt

(
q j
kt , η

j
kt

)
=

(
1 − akj

t∑

s=1

η
j
ks

)
q j
kt (16)

where aij , a
j
i , a j

k and akj are positive real numbers. Most of these functions are adopted from
Cruz and Liu (2011).

3.4 Constraints

Theconstraints imposedon the suppliers,manufacturers, and retailers are discussed as follows
in Eqs. (17)–(31).

yit ≤ CAPit ,∀t (17)
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yi1 ≥
J∑

j=1

qij1 + υi1 (18)

yit + υi t−1 ≥
J∑

j=1

qij1 + υi t , t = 2, . . . , T (19)

y jt ≤ CAPjt ,∀t (20)

y jt ≤
I∑

i=1

qij t ,∀t (21)

y j1 ≥
K∑

k=1

q j
k1 + υ j1 (22)

y jt + υ j t−1 ≥
K∑

k=1

q j
k j + υ j t , t = 2, . . . , T (23)

J∑

j=1

q j
k1 ≥ qk1 + υk1 (24)

J∑

j=1

q j
kt + υkt−1 ≥ qkt + υkt , t = 2, . . . , T (25)

ηij1 = η̇ij (26)

ηij t + ηi+j t − ηi−j t = ηij t+1, t = 1, 2, . . . , T − 1 (27)

η
j
k1 = η̇

j
k (28)

η
j
kt + η

j+
kt − η

j−
kt = η

j
kt+1, t = 1, 2, . . . , T − 1 (29)

K∑

k=1

qkt = dt ,∀t (30)

qij t ≥ 0, q j
kt ≥ 0, qkt ≥ 0, 0 ≤ ηij t ≤ 1, 0 ≤ ηi+j t ≤ 1, 0 ≤ ηi−j t ≤ 1, 0 ≤ η

j
kt ≤ 1, 0

≤ η
j+
kt ≤ 1, 0 ≤ η

j−
kt ≤ 1,

0 ≤ ηkj t ≤ 1, 0 ≤ ηk+j t ≤ 1, 0 ≤ ηk−j t ≤ 1, yit ≥ 0, y jt ≥ 0, υi t ≥ 0, υ j t

≥ 0, υkt ≥ 0, ρ3kt ≥ 0,∀i, j, k, t (31)

Constraint (17) restricts the produced quantity of material/part by supplier i in each time
period t less than or equal to production capacity. Constraints (18) and (19) provide a balanced
relationship among production, inventory and material for manufacturers in each time period
t . Constraint (20) restricts the produced quantity of material/part by manufacturer j in each
time period t be always less than or equal to production capacity. Constraint (21) ensures
the material requirement for production by manufacturers. Constraints (22) and (23) provide
the balance relationship among production, inventory and material flow for retailers in each
time period t . Constraints (24) and (25) provide the balanced relationship between inventory
and material flow for customers. Constraints (26) and (27) identify the relationship levels
between suppliers and manufacturers, and constraints (28) and (29) identify the relationship
levels between manufacturers and retailers where η̇ij and η̇

j
k denote initial relationship levels.
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Constraints in Eq. (31) are non-negativity constraints related to transaction quantities, social
relationship levels, production quantities and inventories.

The following section discusses the method used for solving the multi-objective mathe-
matical model developed in this section.

4 Solution methodology

4.1 Multi-objective optimization approach

A MOO technique deals with simultaneous optimization of several conflicting objective
functions. One of the major difficulties is to find the best or the global solution with respect
to all the objectives. The classical MOO techniques focussed on combining the multiple
objective functions into a single composite objective, and then optimize it by using traditional
mathematical methods. In this process, a precedence or utility function needs to be identified
according to the preference of a decision-maker. The other method, which is frequently
used, is Pareto optimal. This method is based on the non-dominance solution concept, and
prohibits converting the multi-objective functions into a single objective function (Govindan
et al. 2014). In Pareto optimal solutions, the improvement of each objective component of
any solution along with the Pareto front is based on the degradation of at least one of its other
objective component. In the non-dominated set, no solution is absolutely better than any other,
thus any one of them is an acceptable solution. As it is difficult to choose a particular solution
as a unique global optimal solution without iterative interaction with the decision maker,
the general approach is to choose entire set of the Pareto optimal solutions. There are many
algorithms that can be used to generate the non-dominant Pareto optimal solutions such as ant-
Q algorithm, tabu search, Simulated Annealing (SA), fuzzy logic, neural networks, genetic
algorithm and other evolutionary strategies etc. (Luh et al. 2003). A detailed description
of these meta-heuristics is discussed in Osman (1993), Shukla et al. (2009), Shukla et al.
(2013a, b). A population search based multi-objective evolutionary algorithm (MOEA) can
present a set of Pareto optimal solution of a MOP. MOEA randomly generates an initial set
of solutions called a population and thereafter performs a set of genetic operations namely
selection, crossover and mutation, to generate a new set of solutions for next iteration called
a generation (for detail see Deb 2001). After a certain number of iterations, the final set of
solutions is obtained based on defined criteria. The following presents some definitions that
are useful for further discussion.

A solution x ofmulti-objectiveminimization problem, f (x) = [ f1(x), f2(x), . . . , fm(x)]
subject to constraints g j (x) ≤ 0( j = 1, . . . , k), dominates a solution y(x ≺ y) if ∀i, fi (x) ≤
fi (y) and there exists at least one l such that fl(x) < fl(y). If x does not dominate y and vice-
versa, the two are called to be non-dominated solutions. A set of non-dominated solutions is
called a non-dominated front.

The non-dominated front obtained for a given population can be ranked on domination
criterion. Each front is represented by a unique number k, and is denoted by Fk , where
k(k ≥ 1) is the front number. The smaller value of k represents a higher rank and is a
better solution. For example, F1 ranks higher than F2, and F2 ranks higher than F3. The
non-dominated fronts have the properties: (1) every solution in Fk+1 must be dominated by
at least solution of Fk and (2) a solution in Fk may or may not dominate solutions in Fk+1.
Hence, high-ranked solutions front have higher fitness value (preference), and are preferred
for selection in comparison to low-ranked fronts.
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4.2 Non-dominated sorting genetic algorithm-II (NSGA-II)

The concept of non-dominated sorting genetic algorithm (NSGA) is introduced by Goldberg
(1989), and is first time implemented by Srinivas and Deb (1995) in the context of MOO
problem. The working of selection operator in NSGA is the only criterion that differenti-
ates it from the well-established genetic algorithm (GA). Although, NSGA has been widely
used to solve a variety of MOPs, yet it has some drawbacks such as: (1) high computational
complexity of non-dominated sorting, (2) lack of elitism and (3) the need for specifying the
tuning parameters. Deb et al. (2002) developed a robust algorithm called non-dominated
sorting genetic algorithm-II (NSGA-II) to overcome these drawbacks associated with
NSGA.

NSGA-II maintains a population of random individuals, which are improved over iter-
ations. The improvement over iterations is represented in terms of the fitness value of the
individual with respect to all the objectives of the problem. Each individual in a population
is called as a chromosome and it represents an individual solution of the problem. Chromo-
somes may be coded as binary or real value strings. The population is updated over iterations
through a process of genetic operations of selection, cross-over and mutation. In crossover
operation, two individuals or chromosomes exchange digits to form two new individuals or
new chromosomes. In mutation, an individual is modified through string modification oper-
ations. In NSGA-II, we first create an offspring population Qt (of size N ) from the parent
population Pt . Offspring population thus obtained is combined with parent population to
form an intermediate population of size 2N . The new population is obtained after updating
the existing population. In each iteration, the fitness of the individual is evaluated in terms
of all the objectives. After evaluation of individuals in each generation, multiple individuals
are selected through different selection mechanism. The detailed steps involved in NSGA-II
are schematically presented in Fig. 2.

4.3 Implementation of NSGA-II

The detailed implementation of the algorithm to solve the current multi-objective model is
discussed as follows.

4.3.1 Chromosome representation

Each bit of the chromosome represents a decision variable described in Table 2. The model
consists of I suppliers, J retailers, K retailers, and T time periods. For a particular time
period, there would be a total of I × J transaction quantity variables between the suppli-
ers and the manufacturers, J × K transaction quantity variables between the manufacturers
and the retailers, and K transaction variables representing the quantity sold by the retailers.
These transaction quantity variables are represented by the first I × J + J × K + K bits of
the chromosome. The next I + J bits of the chromosome represent the production quantity
variables of I suppliers and J manufacturers. Similarly the next I + J + K bits of the chro-
mosome represents the inventory variables of I suppliers, J manufacturers, and K retailers.
There would be a total of I × J social relationship level variables between the suppliers and
manufacturers, and J × K social relationship level variables between the manufacturers and
retailers. These transaction quantity variables are represented by the next I × J + J × K
bits of the chromosome. The next I × J + J × K bits of the chromosome represent the
increment in the value of the social relationship level at a particular time period. Similarly

123



Ann Oper Res (2017) 250:427–461 443

Generation of initial random
chromosomes

NSGA-II parameter initialization:
IPC, GEN, CP, MP

Forming of several fronts of non-
dominated fronts (Pt)

Perform crossover and mutation
operations on Pt to obtain Qt

Coalesce Qt with Pt to form fronts of
non-dominated solutions

From previous step make Pt+1 with size
IPC

Termination criterion

Pareto solutions

Yes

No

Fig. 2 Flow-chart of NSGA-II algorithm

the last I × J + J × K bits of the chromosome represent the increment in the value of the
social relationship level at a particular time period.

Hence, a total of
(I× J+ J×K +K + I+ J+ I+ J+K + I× J+ J×K + I× J+ J×K + I× J+ J×K )

bits are used to represent the variables of one time period. Representing variables of all the
time periods would require a chromosome of length

(I×J+J×K+K+ I+J+ I+J+K+ I×J+J×K+ I×J+J×K+ I×J+J×K )×T
bits. Such a representation of chromosome is shown in Fig. 3. It should be noted that the order
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Fig. 3 Chromosome representation

of bits representing different variables in the chromosomes is not important. But an assumed
fixed order is to be maintained throughout the population of chromosomes generated, so that
when an optimal solution is generated in the form of a chromosome, it would be convenient
to map the values of the bits of the chromosome to the variables. A sample representation of
chromosome is presented in Fig. 3.

Initially a set of random chromosomes (Initial Population Count – IPC) are generated.
The algorithm is run for a specified number of generations (GEN), considering it as the
termination criterion.

4.3.2 Crossover operation

Since the encoded chromosomes consist of real values, in the current problem simu-
lated binary crossover (SBX) has been used. The number of chromosomes participating
in crossover is controlled by crossover probability (CP). A detailed study on SBX can be
found in Deb (2001).

4.3.3 Mutation operation

A polynomial mutation is used to perform the mutation operation in NSGA II to solve the
problem under consideration. The number of bits participating in mutation is controlled by
mutation probability (MP), which is a tuning parameter. A detailed study on polynomial
mutation can be found in Deb (2001).

There are four controllable parameters in NSGA-II: (1) IPC, (2)GEN, (3)CP, and (4)MP.
The quality of solution obtained depends largely on these four parameters. User defined these
parameters and therefore there is a need to choose the optimal values for these parameters
that yield better solutions. This can be achieved by tuning of parameters. Many parameter
tuning approaches have been studied in literature, among them Taguchi method is vastly
used for the analysis of robust design. In this research, Taguchi method of fractional factorial
design has been implemented to obtain the optimal NSGA-II parameters. This method has
been discussed in the Sect. 6.

5 An illustrative example and computational studies

An illustrative example is presented and analysed using the above mentioned NSGA-II algo-
rithm. Most of the functions and parameters considered in this study are collected from Cruz
and Liu (2011) and Cruz and Wakolbinger (2008), and are presented in Table 7. This numer-
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Table 7 Functions and parameters used for computational study

Production cost functions Relationship
production
functions

Transaction cost functions

fi t (yit ) = 5yit + 0.05(yit )
2 b j

i t

(
ηij t

)
= 10

(
ηij t

)2
c ji t

(
qij t

)
= qij t

f j t (yit ) = 5y jt + 0.05(y jt )
2 bkjt

(
η
j
kt

)
= 10

(
η
j
kt

)2
ckj t

(
q j
kt

)
= q j

kt

fkt (qit ) = 5qkt + 0.05 (qkt )
2 b j+

i t

(
ηi+j t

)
= 10

(
ηi+j t

)2
Parameter values

Inventory cost functions bk+j t
(
η
j+
kt

)
= 10

(
η
j+
kt

)2
φi
j t = 0.1

hi t (υi t ) = υi t Probability functions φ
j
kt = 0.1

h j t (υ j t ) = υ j t pij (u) = 1
20 e

− u
20 ω1i

j = 0.8 = ω
1 j
k

hkt (υkt ) = υkt p j
k (u) = 1

20 e
− u

20 ω2i
j = 4 = ω

2 j
k

Demand Function p j
k (u) = 1

20 e
− u

20 ω
3 j
t = 0.12

dt = 50 − ρ3kt aij = 0.2 = a j
i = a j

k = akj

ical problem considers two suppliers (I = 2), two manufacturers (J = 2), and two retailers
(K = 2), who trade for a term of five periods (T = 5).

Suppliers primarily incur production costs and inventory holding costs for the given supply
chain problem. Manufacturers incur costs related to transaction, supply disruption, oppor-
tunism risks, and relationship maintenance and improvement in addition to production and
inventory costs. Since, there is no production involved at the retailers, they mainly incur
handling costs, inventory costs, costs related to transaction, supply disruption, opportunism
risks, and relationship maintenance and improvement.

In this research, handling and fixed production costs are not considered and are assumed
as sunk costs. Linear terms used for handling and production costs reflect the unit costs. The
fact of increasing marginal production as the production quantity approaches the maximum
capacity is reflected by the quadratic terms.

Analysis of this study has been carried out by solving four different variants of the problem:
(1) profit versus risk, (2) profit versus emission, (3) emission versus risk, and (4) profit versus
risk versus emission. These analysis are presented in Sect. 7 followed by parameter setting
and Taguchi application in the next section.

6 Parameter tuning and application of Taguchi method

This section discusses Taguchi method implementation (Sadeghi et al. 2014) for NSGA-II
parameters setting in order to obtain the better quality solutions (with respect to objectives’
values) of the proposed SCN model. Fisher introduced factorial designs to investigate the
effect of various factors on the mean response. In our context, factors are the parameters
of algorithmic solution and response is the fitness value of the solution. In order to reduce
large number of experiments in full factorial designs, Taguchi designed fractional factorial
experiments. In Taguchi method the parameters affecting the solution are divided into two
parts: controllable (signal) factors S and noise factors N . In experiments only S factors can
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be directly controlled. In order to reduce the variation around the target, Taguchi developed
a procedure to control the N factors. Analysis of results is performed in two ways: (1)
employing analysis of variance of experiments with a single replicate; (2) using signal to
noise ratio (S/N) in experiments with multiple replications. Owing to the better performance
of the second way (the one with multiple replications), solution in the current problem is
analysed using S/N ratio. This method aims to minimize the effect of noise factors, in other
words the parameter setting at which the S/N ratio is maximum [effect of Signal (S) is much
greater than effect of Noise (N)] is considered as the optimal.

6.1 Implementation of Taguchi method

Four tuning parameters namely, IPC, GEN, CP, and MP of NSGA-II are considered as the
affecting parameters in Taguchi method. Three different levels of these parameters employed
for fractional factorial design are shown in Table 8. These levels of the parameters have been
obtained using trial and error procedure. Tuning of parameters is carried out utilizing the
Taguchi L9 orthogonal array shown in Table 9.

Three different responses: (1) Pareto solution count (PSC), (2) spacing (Sp), and (3)
best solution (Bsol) (Deb 2001), each representing a specific quality of a solution obtained
using NSGA-II are considered as response variables for the experiments. To obtain the
Bsol in a replication, the fitness values of the solution are first normalized employing the
linear dimensionless approach of a multi-attribute decision making processes. Then they are
summed together with a weight of 1/3 each. Since it is a minimization problem the solution
with the lowest combined value of the normalized objective function values is considered as
the best. In case of a minimization problem, lower value of Sp and higher values of PSC and
Bsol explain better efficiency of NSGA-II.

Three replications have been carried out for analysis. The results obtained for nine different
parameter settings (L9 orthogonal array) in the first replication are displayed in Table 10.

Table 8 Three different levels of
parameters considered for
parameter tuning

Parameter Level 1 Level 2 Level 3

IPC 400 500 600

GEN 6000 7000 8000

CP 0.6 0.7 0.8

MP 0.0095 0.01 0.015

Table 9 Nine different sets of
parameter setting

IPC level GEN level CP level MP level

1 1 1 1

1 2 2 2

1 3 3 3

2 1 2 3

2 2 3 1

2 3 1 2

3 1 3 2

3 2 1 3

3 3 2 1

123



Ann Oper Res (2017) 250:427–461 447

Table 10 Metrics obtained in the
first replication

PSC Sp Bsol

39 59.56024 0.306691455

34 31.97096 0.317492501

22 56.91282 0.314949391

20 23.44959 0.325227925

22 24.2082 0.325860372

33 59.1193 0.316484335

30 55.85967 0.30904986

38 46.48426 0.308702526

33 52.43977 0.31341027

Table 11 Normalized metrics
obtained in case of first
replication

PSC Sp Bsol Sum

1 0.393712 1 2.393712

0.871795 0.733465 0.96598 2.57124

0.564103 0.412026 0.97378 1.949909

0.512821 1 0.943005 2.455825

0.564103 0.968663 0.941174 2.47394

0.846154 0.396649 0.969057 2.21186

0.769231 0.419795 0.992369 2.181394

0.974359 0.504463 0.993485 2.472307

0.846154 0.447172 0.978562 2.271888

Table 11 shows the normalized values of responses, and the sum for each parameter setting.
These normalized values are obtained as follows.

For PSC, normalized value of a parameter setting i is given by :

PSCi

max(PSC1, PSC2, . . . , PSC9)
(32)

For Sp, normalized value of a parameter setting i is given by :

min(Sp1, Sp2, . . . , Sp9)

Spi
(33)

For Bsol, normalized value of a parameter setting i is given by :

min(Bsol1,Bsol2, . . . ,Bsol9)

Bsoli
(34)

Sum values of all three replications are displayed in Table 12. Since a solution with the
highest sum is desired, the aim is to find the maximum S/N calculated by

S/N = −Log10

(
1

n

∑n

i=1

1

sum2
i

)
(35)

where n = 3 represents the number of replications, and sumi represents the sum in the i th
replication.
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Table 12 Experimental results of three replications

IPC level GEN level CP level MP level Sum1 Sum2 Sum3 S/N

1 1 1 1 2.393712121 2.410107063 2.397255657 7.605409

1 2 2 2 2.571240281 2.617910344 2.594182395 8.280185

1 3 3 3 1.949909174 1.978083312 1.964754059 5.863483

2 1 2 3 2.455824996 1.894676294 2.469320469 6.929495

2 2 3 1 2.473940108 2.520121776 2.488785066 7.938139

2 3 1 2 2.211859806 2.246958862 2.23412709 6.969369

3 1 3 2 2.181394287 2.215217841 2.201637284 6.845628

3 2 1 3 2.472307409 2.514268151 2.497948533 7.940233

3 3 2 1 2.271887989 2.308621488 2.294155264 7.202038

Fig. 4 Mean S/N plot for
different levels of IPC
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Fig. 5 Mean S/N plot for
different levels of GEN
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Figures 4, 5, 6 and 7 display the graph of mean S/N against the three levels of IPC, GEN,
CP, andMP. The mean value of S/N for a level j of the various parameters is calculated as
follows:
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Fig. 6 Mean S/N plot for
different levels of CP
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Fig. 7 Mean S/N plot for
different levels MP
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mean(S/N ) j = 1

3

⎡

⎣
∑

i∈I PC j

(S/N )i

⎤

⎦ (36)

where I PC j represents the set of parameter combinations in which the level of IPC is j .

mean(S/N ) j = 1

3

⎡

⎣
∑

i∈GEN j

(S/N )i

⎤

⎦ (37)

where GEN j represents the set of parameter combinations in which the level of GEN is j .

mean(S/N ) j = 1

3

⎡

⎣
∑

i∈CPj

(S/N )i

⎤

⎦ (38)

where CPj represents the set of parameter combinations in which the level of CP is j .

mean(S/N ) j = 1

3

⎡

⎣
∑

i∈CMj

(S/N )i

⎤

⎦ (39)

where CMj represents the set of parameter combinations in which the level of CM is j .
Based on the highest mean values of S/N , optimal NSGA-II parameters are obtained after

tuning as: I PC = 600,GEN = 7000,CP = 0.6, and MP = 0.0095.
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7 Results and discussion

In this section, illustrative example presented in Sect. 4 is solved by NSGA-II, where optimal
algorithmic parameters (IPC = 600, GEN = 7000, CP = 0.6, and MP = 0.0095) derived by
Taguchi method application in the above section, has been used. Next, we discuss the results
obtained for four problem variants.

7.1 Problem 1: profit versus risk

We solve the proposed model considering three different cases with a view to examine the
effectiveness of the parameters of relationship maintaining cost and risks on the decision
policies. It is also aimed to answer the first three questions mentioned in the introduction
section.

Case 1: the functions and parameters mentioned in Table 7 are used in this case. It can
be observed that all the transaction costs and relationship costs are same between any pair of
stakeholders of different tiers (i.e., between suppler andmanufacturer; betweenmanufacturer
and retailer). Since profit maximization and risk minimization are conflicting objectives, our
natural conscience would be to expect a Pareto-optimal relation between profit and risk.
Figure 8 shows a graph displaying the relationship between the risk and profit of the SCN.
It is evident from the graph that as risk decreases profit also decreases. This can be justi-
fied by arguing that an increase in the level of social relationship requires investment in the
form of time, additional personnel, money, etc. leading to decreased profit. This improve-
ment in relationship level curtails the opportunism risks due to improved co-operation and
communication between the tiers of supply chain. A firm chooses one solution among the
Pareto-optimal front based on its profit preference and risk standards. One solution from the
set of Pareto solutions, displaying data related to product flows, relationship level, demand
and inventories is shown in Table 13.

It can be observed from Table 13 that social relationship level between each pair of adja-
cent echelon firm increases from 0 in period 1 to 0.429 in period 5, which means that social
relationships become stronger over the periods. The increasing relationships curtail oppor-
tunism risks leading to a decrease in overall risk in supply chain. The following observations
can also be made from Table 13: product flow consistently increase from 2.909 to 3.865
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Fig. 8 Pareto optimal front obtained for profit versus risk
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over the period, demand increases from 11.636 in period 1 to 15.460 in period 5, and price
decreases from 38.364 in period 1 to 34.540 in period 5. From these observations it can
be concluded that the evolving relationships have significant effects on the product flows,
supply, price, and demand.

Case 2: in this case, we attempt to answer the second question, how do the upstream firms’
relationships affect the relationships with downstream firms, and how these relationships
influence the objectives of the SCN? An assumption is made that manufacturer 1 has lower
cost parameter associatedwithmaintaining the relationshipswith suppliers thanmanufacturer
2, while remaining parameters are same as in Case 1. In particular, we let b1i t = 6(η1i t )

2 and
b2i t = 14(η2i t )

2. Since the objective functions are the same as in Case 1, we again obtain a
Pareto optimal front as in Case 1. One result from the set of Pareto solutions displaying data
related to product flows, relationship level, demand and inventories is shown in Table 14.

The following observations can be made from Table 14. Firstly, it can be observed that the
relationship levels evolution between manufacturer 1 and suppliers, ηi1t s are faster compared
to relationship levels evolution between manufacturer 2 and the suppliers, ηi2t s. As for
example, increment in ηi1t s are from 0 in period 1 to 0.794 in period 5, while at the same
period, increment in ηi2t s are from 0 to 0.228. Moreover it can be observed that the product
flows between suppliers andmanufacturer 1 rapidly increase from2.909 in period 1 to 4.334 in
period 5, while the product flows between suppliers and manufacturer 2 increases from 2.909
in period 1 to 3.283 in period 2, thereafter consistently decrease to 3.042 in period 5. Such
observations are not astonishing sincemanufacturer 1 has lower cost parameter in relationship
maintaining cost functions compared to manufacturer 2, thus by encouraging the suppliers to
maintain stronger relationships with manufacturer 1 preferred to manufacturer 2. Moreover,
though the relationship maintaining cost functions are identical between the manufacturers
and the retailers, the relationship levels of the retailers with manufacturer 1 still evolve
rapidly than those with manufacturer 2. As for example, η1kt s increase from 0 to 0.441 over
the periods, while increments in η2kt s during the same are 0–0.321. These outcomes manifest
that if the upstream firmsmaintain better relationship in the SCN, then downstream firms will
be eager to improve the relationship with the company. The reason behind phenomena is that
better relationships of upstream firms generate lower total risks. Such an advantage makes
the manufacturer more competitive compared to other manufacturers, so that the retailers are
interested to develop strong relationship, and purchase more product from this manufacturer.

Above mentioned discussion also indicates that if a manufacturer is more cost effective
in better managing relationships with upstream supply chain partners, then the firm will
achieve lower supply risk, and will gain competitive advantage over other manufacturers.
Such competitive edge will significantly encourage the downstream supply chain partners
to establish stronger relationships with the manufacturer. In brief, better relationships with
upstream supply chain partners encourage downstream partners to improve the relationship
with supply chain partners.

Case 3: in this case focus is on the third research question: “how through supply chain
relationship, the supply disruption risk interacts with the opportunism risks, and affects the
objectives of the SC?” For this, we consider that manufacturer 2 is less reliable, and hence
it has more chance of supply disruption. The remaining functions parameters are same as
those in Case 1. In particular, we let p j

k (u) = e−u/15/15 for j = 2, k = 1, 2. Note that the
expected value 15 of probability density function implies that 15 quantities can be supplied
without any disruption. Similar to the above two cases we obtain a set of Pareto solutions in
this case. For our analysis, one solution among Pareto solutions considered is displayed in
Table 15.
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Fig. 9 Pareto optimal front obtained for profit versus emission

It can be observed from Table 15 that the transaction quantities frommanufacturer 1 to the
retailers are higher than those from manufacturer 2, because manufacturer 1 is more reliable
than manufacturer 2. For instance, q1kt s increases from 2.672 to 3.090 and q2kt s decreases
from 2.671 to 2.508 over the periods. Due to higher product flows with manufacturer 1, the
retailers are interested to develop stronger relationships with manufacturer 1 compared to
manufacturer 2. For example, the relationship levels η1kt s between retailers and manufacturer
1 increases to 0.776 in period 5 from 0 in period 1 compared to lower increase of η2kt s
(relationship levels between retailers and manufacturer 2) to 0.624 in period 5 from 0 in
period 1.

In summary, supply disruption has significant influence on relationship level and product
flows. Stakeholders with more reliable productions (as manufacturer 1) have better relation-
ships with supply chain partners, and maintain higher product flows.

7.2 Problem 2: profit versus emission

In this problem, profit and emission of the SC are considered and solved employing NSGA-
II. The parameters displayed in Table 7 are used to obtain the computational results. Since
it is a multi-objective scenario involving conflicting objectives, we could expect a Pareto
optimal front. The result obtained is displayed in Fig. 9. From the graph it can be observed
that as emission decreases, profit also decreases. This can be justified by arguing that, the
stakeholders invest in innovative technologies, build stronger relationships to reduce their
emissions below the environmental standards. Such investment in novel technologies and
stronger relationships leads to an increase in the cost thereby reducing the profit of the
supply chain. In summary, it can be said that lower emissions lead to lower profits, and vice
versa.

7.3 Problem 3: risk versus emission

In this problem, risk and emission of the SC are considered and solved for the data mentioned
in Table 7 employing NSGA-II. The result obtained is displayed in Fig. 10. It can be observed
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Fig. 10 Pareto optimal front obtained for risk versus emission

that there is only one optimal solution rather than multiple solutions as obtained in the above
mentioned problems. Justification for such a result is discussed below.

Consider the risk function displayed in Eq. (3). It is basically a sum of supply disruption
and opportunism risks. It can be observed from supply disruption risk functions displayed in
Eqs. (4)–(7) that supply disruption risk increases with increase in transaction quantity. Now,
let consider the opportunism risk functions displayed in Eqs. (8)–(11), it can be observed that
opportunism risk increases with an increase in transaction quantity and decreases with an
increase in the relationship level. In summary, it can be said that:

• Total risk of SC increases with increase in transaction quantities.
• Total risk of SC decreases with decrease in relationship levels.

Now considering the emission functions displayed in Eqs. (13)–(16), it can be said that

• Emission of SC increases with increase in transaction quantities.
• Emission of SC decreases with increase in relationship levels.

It can be said from the above arguments that both risk and emission functions are increasing
with respect to transaction quantities and decreasing with respect to relationship levels. Since
our objective is to decrease risk and emissions, the optimal choice would be lowest possible
value for transaction quantities, and highest possible value for relationship levels. The lowest
possible value for transaction quantities is zero, but since demand constraints are present, the
lowest possible value for transaction quantities cannot be zero. The highest possible value for
relationship level would be 1. The result obtained is displayed in Table 16. It can be observed
that relationship levels take highest possible value i.e., 1.

7.4 Problem 4: profit versus risk versus emission

In this problem, all the three objectives profitmaximization, risksminimization, and emission
minimization is considered. The result obtained is displayed in Fig. 11. It can be concluded
from Fig. 11 that as risk decreases profit also decreases, which is in tune with the conclusion
of Sect. 7.1. It can be observed from the figure that as emission decreases profit also decreases,
which is also in tune with the conclusion derived in Sect. 7.2.
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Table 16 Computational results for profit versus emission

t = 1 t = 2 t = 3 t = 4 t = 5

qij t i = 1; j = 1, 2 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

i = 2; j = 1, 2 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

q j
kt j = 1; k = 1, 2 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

j = 2; k = 1, 2 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

qkt k = 1, 2 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

ηij t i = 1; j = 1, 2 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

i = 2; j = 1, 2 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

η
j
kt j = 1; k = 1, 2 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

j = 2; k = 1, 2 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

yit i = 1, 2 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

y jt j = 1, 2 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

υi t i = 1, 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

υ j t j = 1, 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

υkt k = 1, 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ρ3kt 40 40 40 40 40

dt 10 10 10 10 10

In the above discussion, we observed that social relationship levels between stakeholders
increase over the periods starting with 0 from first period. In case of long term planning
horizon the solution of the model reaches a converging point at which the social relationship
levels between the stakeholders reaches the value 1. The solution of the model after this
converging point results in constant transaction quantities and social relationship levels. In
summary, after a certain time period all the variables of the model attain saturation values
which remain constant in further time periods.

8 Conclusion

In this paper, we have proposed a MOMP integrated supply chain network consisting of
suppliers, manufacturers and retailers, who work in collaborative environment to mitigate
the risks including supply disruption and opportunism. To achieve this, each stakeholder
maintains a level of social relationship with unlike tier’s stakeholders. We have evaluated the
level of social relationship over time and described its effects. The collaborative approach
is also aimed to maximize the profitability of entire supply chain as well as to minimize
the emission. Owing to the complexity of the problem, to generate near optimal solution
for multiple objectives more effectively and efficiently, population based random search
algorithm NSGA-II have been used to find the Pareto efficient solution. Furthermore, in
order to ameliorate the quality of solutions, tuning parameters of the NSGA-II are modulated
by using the Taguchi method.

We have examined the proposed model through numerical experiment. The numerical
experiment determined the trade-off of the profit, risks and emissions that have been consid-
ered in the objective and also provided the insights that assist the decision making process.
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Fig. 11 3-D graph displaying the result for profit versus risk versus emission

Furthermore, we have determined the trade-offs of the profit and risks, the profit and emis-
sion, and risks and emission. We have also discussed how the relationship level changes over
a period of time, and how it affects the profitability, risks, and emission.

This model aims at SC versus SC competition, i.e., optimizing supply chain as a whole.
Hence, in a real setting, this would require the stakeholders of a SC to work collaboratively
to optimize the objectives of entire SC. In this aspect, each stakeholder of the network
would require the knowledge of the other potential stakeholders. Stakeholders working in
such collaboration would strive to reduce the risk and emission associated with the flow
of transaction quantities. This would ultimately lead to establishment of social relationships
between the stakeholders and would result in optimal profits of all the stake holders, therefore
giving way to a robust and optimized SCN.

This model is limited in a way due to our assumption that each stakeholder of upstream
SC transacts with all the stakeholders of downstream supply chains without considering the
issue of geographical location. Thus, incorporation of geographical location of stakeholders,
and accordingly minimization of transportation cost is a potential future scope of this study.
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The other primary limitation of the model is the determination of parameters associated with
the risk and emission. Determining these parameters would require incorporating a number
of factors which vary drastically with domain. For example the risk factors associated with
an aviation supply network would differ largely with the risk factors in a pharmaceutical
industry. Furthermore, this model does not consider any level of association between the
stake holders of the same tier, which could be a potential future research area. This model
can further be extended to incorporate additional factors besides the price to determine
the customer demand. All received quantity may not be passable to the next tiers because
during the operation, product volume may decrease. Hence, conversion factor of received
quantity to passable quantity can be considered in this model. This model can be extended
for perishable food supply chain, wherein preventing technology reduces the perishing rate.
Thus, minimization of perish product can be considered as an objective.
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