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Abstract In this paper, we pay our attention tomultiplicative parameters of randomvariables
and their estimators. We study multiplicative properties of the multiplicative expectation and
multiplicative variation as well as their estimators. For distributions having applications in
finance and insurance we provide their multiplicative parameters and their properties. We
consider, among others, heavy-tailed distributions such as lognormal and Pareto distributions,
applied to the modelling of large losses. We discuss multiplicative models, in which the
geometric mean and the geometric standard deviation are more natural than their arithmetic
counterparts. We provide two examples from theWarsaw Stock Exchange in 1995–2009 and
from a bid of 52-week treasury bills in 1992–2009 in Poland as an illustrative example.

Keywords Geometric mean · Geometric variance · Lognormal distribution · Pareto
distribution · Multiplicative estimators

1 Introduction

Twomeasures frequently used in descriptive statistics are the arithmeticmean and the standard
deviation. The geometric mean is used less often, while the geometric standard deviation
connected with the geometric mean is used even more rarely.
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When is it better to use arithmetic (additive) parameters and when geometric (multiplica-
tive) ones? A lot of attention has been paid to these problems in the economic and finance
literature. One of the firsts papers on this topic was the article by Latané (1959), who intro-
duced the geometric-mean investment strategy into the finance and economics literature.
Weide, Peterson and Maier wrote in their paper (1977).

Most of this work has been devoted to the investigation of various properties of the geo-
metric mean strategy. Among the properties of optimal geometric-mean portfolios recently
discovered are (i) they maximize the probability of exceeding a given wealth level in a fixed
amount of time, (ii) they minimize the long-run probability of ruin, and (iii) they maximize
the expected growth rate of wealth.

In the paper (Weide et al. 1977), they consider either the computational problem of finding
the optimal geometricmean portfolio or the question of the existence of such a portfolio. They
analysed both of these problems under various assumptions about the investor’s opportunity
set and the form of his/her subjective probability distribution of holding period returns.

Let us assume that the gross return R in a single period has a lognormal distribution. The
unknown parameter is a = E (R) = em+σ 2/2. To estimate this parameter one can use the
arithmetic mean of gross returns:

R = 1

N

N∑

i=1

Ri .

It is an unbiased estimator of the parameter a. Another unknown parameter considered in
(Cooper 1996) is the geometric mean of the gross return b = EG (R) = em . The parameter
b can be estimated as the geometric mean

RG = eln R = exp

(
1

N

N∑

i=1

ln Ri

)
.

In (Cooper 1996; Jacquier et al. 2003, 2005), the expected value E
(
RG

)
is calculated. This

value is an asymptotically unbiased estimator of b. Moreover, the variance D2
(
RG

)
, which

tends to zero, is determined. In our paper, we point out that the quality of the geometric
estimator should be examined by the geometric mean and variance, not by their arithmetic
counterparts as in (Cooper 1996; Jacquier et al. 2003, 2005).

In the paper (Hughson et al. 2006), the authors point out that forecasting a typical future
cumulative return should be more focused on estimating the median of the future cumulative
return than on the median of the expected cumulative return. Expectation of the cumulative
return is always higher than the median of the cumulative return. The probability distribution
of returns from risky ventures is positively skewed. It is frequently assumed that returns
have lognormal distributions. For a lognormal distribution, the median and the geometrical
expectation are equal. Another distribution frequently used in finance and insurance is the
Pareto distribution, in which the geometric mean is close to the median and far from the
arithmetic mean.

Arithmetic and geometricmeans are somewhat controversialmeasurements of the past and
future investment returns. Critical remarks on this topic are given in the paper (Missiakoulis
et al. 2007). A review of basic equalities and inequalities in the context of a gross income
from the investment in a discrete time can be found in the article (Cate 2009).

Properties of various kinds of means can be found in the review paper (Ostasiewicz and
Ostasiewicz 2000).
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In this paper, unlike in the results discussed above, the issue concerning multiplicative
parameters, including ageometricmean, is also extendedwith interpretations and applications
of multiplicative variance as a measure of dispersion. Such a measure, as we justify in more
detail in the next sections, is a better and more natural measure of deviation between random
variables and their geometric mean.

The geometric variance is invariant with respect to multiplication by a constant. From
this property it follows that the variance of an economic quantity given in different monetary
units is constant, independent of the choice of the unit. For example, if the monetary unit
is $1 or one monetary unit is $100 then the variance is the same. Moreover, the geometric
variance is a dimensionless measure of variability. For example, it allows to compare the
variability of exchange rates between different currencies.

In Sect. 2.1 we give definitions and properties of multiplicative parameters. We discuss
multiplicative models, in which the geometric mean and the geometric standard deviation are
more natural than their arithmetic counterparts. In Sect. 2.2 we introduce typical distributions
for which the multiplicative parameters are more natural than the additive ones. In Sect. 2.3
we provide estimators of the multiplicative parameters considered in Sect. 2.1 and their
properties. In Sect. 3 we give real examples of applications. These examples indicate the real
benefits of applying the geometric parameters instead of arithmetic ones in real situations in
economics and finance.

2 Parameters and models

2.1 Multiplicative parameters and models

Let us define the multiplicative (geometric) mean by

EG (X) = eE(ln X), (1)

where Pr (X > 0) = 1. From Jensen’s inequality it is easy to see that

EG (X) ≤ E (X) .

Belowwegive someobvious properties of the geometricmean. Eq. (1) implies the formula

EG

(
n∏

i=1

Xi

)
=

n∏

i=1

EG (Xi ) , (2)

providedmultiplicative expectations of random variables Xi exist. In this formula the random
variables Xi may be dependent. Moreover, for every a > 0

EG (aX) = aEG (X) ,

and for every a ∈ R

EG
(
Xa) = (EG (X))a . (3)

From (3) for a = −1 we obtain

EG

(
1

X

)
= 1

EG (X)
. (4)
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Hence, from (2) and (4) we have

EG

(
X

Y

)
= EG (X)

EG (Y )
.

Property 1 If EG (X + Y ) exists then

EG (X + Y ) ≥ EG (X) + EG (Y ) . (5)

Proof The formula (5) is by definition equivalent to

eE(ln(X+Y )) ≥ eE(ln(X)) + eE(ln(Y )). (6)

Dividing both sides of (6) by eE(ln(X)) we obtain an equivalent inequality

eE(ln(1+Y/X)) ≥ 1 + eE(ln(Y/X)).

Let T = Y/X . Then, it is sufficient to prove the inequality

eE(ln(1+T )) ≥ 1 + eE(ln T ).

Let us assume that T is a discrete random variable and Pr (T = xi ) = pi . From the inequal-
ity (7.1) from the book (Mitrinović et al. 1993), p. 6, we obtain, after the substitution
f (x) = ln (1 + ex ), the inequality

ln

(
exp

(
n∑

i=1

pi xi

)
+ 1

)
≤

n∑

i=1

pi ln
(
exi + 1

)
.

Substituting xi = ln ai we obtain

exp

(
n∑

i=1

pi ln ai

)
+ 1 ≤ exp

(
n∑

i=1

pi ln (ai + 1)

)
,

which completes the proof of (5) for discrete X and Y . For any X and Y in the inequality (5)
we approximate X and Y by discrete random variables. ��

The square multiplicative divergence between positive t and 1 is defined by the following
conditions:

1. f (t) ≥ 1 and f (1) = 1,

2. f (t) = f

(
1

t

)
,

3. f (t) is an increasing function for t ≥ 1.

Condition 2 means that for any two positive numbers u or v:

f
(u

v

)
= f

(v

u

)
.

The function

f (t) = eln
2 t = t ln t (7)

fulfils the above conditions and plays the same role for quotients as t2 for differences. It
means that f (u/v) is a square multiplicative deviation of u/v from 1.
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We will define the geometric variance as the multiplicative mean of the square multiplica-
tive deviation of the random variable X from its geometric mean:

D2
G (X) = EG

(
exp

(
ln2

X

EG (X)

))
= eD

2(ln X). (8)

From definition (8) we have

D2
G (X) ≥ 1,

D2
G (X) = 1 ⇐⇒ Pr (X = const) = 1.

The multiplicative (geometric) standard deviation is defined by:

σG (X) = e
√

D2(ln X).

Note that if D2
G (X) 
= 1 or D2

G (X) 
= e then σG (X) 
=
√
D2
G (X). A counterpart of

σ (X) + σ (Y ) ≥ σ (X + Y )

is given by the equation

σG (X) σG (Y ) ≥ σG (X + Y ) . (9)

However, one cannot compare D2 (X) and D2
G (X) because σ (X) =

√
D2 (X) is represented

in the same units as X (e.g. in euro or units of weights or sizes) but σG (X) is dimensionless
(may be expressed in percent after multiplying by 100).

Apart from function (7) the function

f (t) = e|ln t | (10)

also fulfils the above conditions (Saaty and Vargas 2007). Note, however, that the function
defined by (10) is a multiplicative counterpart of E |X − EX |, not of the variance D2 (X).

Below we give some properties of the multiplicative variance. Eq. (8) implies the formula

D2
G

(
n∏

i=1

Xi

)
=

n∏

i=1

D2
G (Xi ) , (11)

provided multiplicative variances of random variables Xi exist and Xi are independent.
Moreover, for every a > 0

D2
G (aX) = D2

G (X) ,

and for every a ∈ R

D2
G

(
Xa) = (

D2
G (X)

)a2
,

σG
(
Xa) = (σG (X))a . (12)

From (12) for a = −1 we obtain

D2
G

(
1

X

)
= D2

G (X) . (13)

Hence, if X and Y are independent then from (11) and (13) we have

D2
G

(
X

Y

)
= D2

G (X)D2
G (Y ) .
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The multiplicative variance and standard deviation are quotient measures of the deviation
between a random variable and its multiplicative mean mG = EG (X), whereas the additive
variance and standard deviation are difference measures of the deviation between a random
variable and its additive mean m. Since in the additive case it is useful to define the kth
interval of the form

(m − kσ, m + kσ) ,

in the multiplicative case we have the counterpart of the form
(
mGσ−k

G , mGσ k
G

)
. (14)

Let (X, Y ) be a two-dimensional random vector. We will find the best exponential approx-
imation of a random variable Y by a random variable X . To achieve that we will find a
multiplicative counterpart of the equation

min
a,b

E (Y − (aX + b))2 = E
(
Y − (

ãX + b̃
))2

.

The measure of the distance between a random variable Y and the exponential function of a
random variable X of the form eαX+β will be, according to Eq. (7), the geometric expectation
of the random variable eln

2 T , where

T = eαX+β

Y
.

Note that

EG

(
eln

2 T
)

= exp
(
E ln eln

2 t
)

= eE
(
ln2 T

)
= eE(ln Y−(αX+β))2 .

Instead of minimizing the expression E (Y − (aX + b))2 we will minimise the expression

EGe
(αX+β−ln Y )2 .

Therefore,

min
α,β

E (ln Y − (αX + β))2 = E
(
ln Y − (

α̃X + β̃
))2

,

for

α̃ = Cov (X, ln Y )

D2 (X)
, (15)

β̃ = E (ln Y ) − Cov (X, ln Y )

D2 (X)
E (X) . (16)

Formulae (15) and (16) imply that the function that is the best approximation of the random
variable Y has the form

y = eα̃(x−E(X))EG (Y ) . (17)

Note that in Eq. (17) the parameters of the random variable X are additive whereas the
parameters of the random variable Y are multiplicative.

The multiplicative econometric model with one explanatory variable is of the form

Y = f (x) ε,
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where ε is a random component. It is frequently assumed that ε has a lognormal distribution
with parameters m and σ . Let Z = ln Y . Then

Z = ln f (x) + ln ε (18)

is an additive model with a random component η = ln ε with a normal distribution N (0, σ ).
We will denote its trend by z, where

z = ln f (x) . (19)

An exponential trend is defined by the formula

y = f (x) = eαx+β . (20)

The trend in the multiplicative model is given by

y = ez . (21)

The behaviour of the variable y in themultiplicative model is reflected by its geometric mean.

2.2 Parameters of selected distributions

In this sectionwewill determinemultiplicative parameters of distributions frequently applied
to the modelling of a finance risk. Two heavy-tailed distributions, namely lognormal and
Pareto distributions used to estimate large losses on financial and insurance markets, are
especially important.

A random variable X has a lognormal distribution if Y = ln X has a normal distribution,
Y ∼ N (m, σ ), EY = m, D2Y = σ 2. Then, the expectation is

E (X) = em+σ 2/2

and the variance

D2 (X) = e2m+σ 2
(
eσ 2 − 1

)
.

Multiplicative parameters are the following:

EG (X) = Me (X) = em = e−σ 2/2E (X) ,

D2
G (X) = eσ 2

,

where the median Me (X) = EG (X) and D2
G (X) depend only on m and σ , respectively.

The divergence between means E (X) and EG (X) measured by their relationship d is
given by

d (σ ) = E (X)

EG (X)
= em+σ 2/2

em
= eσ 2/2

and increases exponentially with σ 2.
In this context, an interesting distribution is the Pareto distribution, with a cumulative

distribution function

FP (x) =
{
1 −

(
β
x

)α

for x ≥ β,

0 for x < β,
(22)

where α > 0, β > 0.
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The additive parameters of the random variable X are:

E (X) = αβ

α − 1

for α > 1 and

D2 (X) = αβ2

(α − 2) (α − 1)2

for α > 2.
The multiplicative parameters are:

EG (X) = βe1/α, (23)

D2
G (X) = e1/α

2
(24)

and exist for any α > 0. The median Me(X) exists for any α and is given by

Me (X) = β21/α < EG (X) .

Since

lim
α→∞E (X) = lim

α→∞EG (X) = 1,

for large α we have E (X) ≈ EG (X).

2.3 Estimation of multiplicative parameters

Let us define the following empirical parameters: the geometric mean

xG =
(

n∏

i=1

xi

)1/n

= exp

(
1

n

n∑

i=1

ln xi

)
(25)

and geometric variances

s2G =
(

n∏

i=1

exp

(
ln2

xi
xG

))1/n

= exp

(
1

n

n∑

i=1

ln2
xi
xG

)
, (26)

ŝ2G =
(

n∏

i=1

exp

(
ln2

xi
xG

))1/(n−1)

= exp

(
1

n − 1

n∑

i=1

ln2
xi
xG

)
. (27)

Then, empirical standard deviations are defined as

ln sG =
√√√√1

n

n∑

i=1

ln2
xi
xG

,

ln ŝG =
√√√√ 1

n − 1

n∑

i=1

ln2
xi
xG

.

Nowwe can derive fromSect. 2.1 the equations for estimators of themultiplicative parameters
and their properties.
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Let X1, X2, . . . , Xn be a random sample for a population with cdf F (x). Let θ be a
multiplicative parameter of F (x), e.g. θ = EG (X) or θ = D2

G (X). Below we formulate the
basic properties of the multiplicative estimators of such parameters.

The statistic Zn = f (X1, . . . , Xn) is amultiplicative unbiased estimator of θ if EG (Zn) =
θ . The Zn is amultiplicative, asymptotically unbiased estimator of θ if limn→∞ EG (Zn) = θ .
The Zn is a multiplicative consistent estimator of θ if Zn/θ is convergent in probability to 1,

denoted as Zn/θ
P−→ 1, i.e.

lim
n→∞Pr

(∣∣∣∣
Zn

θ
− 1

∣∣∣∣ > ε

)
= 0,

for any ε > 0.

Theorem 1 Let X1, X2, . . . , Xn be a random sample with the multiplicative mean EGXi =
mG. The statistic XG is a multiplicative unbiased estimator of mG.

Proof From (3) and (1) we have

EG
(
XG

) = EG

⎛

⎝
(

n∏

i=1

Xi

)1/n
⎞

⎠ =
(
EG

(
n∏

i=1

Xi

))1/n

=
(

n∏

i=1

EG (Xi )

)1/n

.

Then, EG
(
XG

) = mG. ��
Moreover, one can easily calculate the following:

Property 2 If X1, X2, . . . , Xn are independent, identically distributed random variables
and have the multiplicative expectations mG and variances σ 2

G then

D2
G

(
XG

) = (
D2
G (X)

)1/n
.

Proof

D2
G

(
XG

) = D2
G

(
n∏

i=1

Xi

)1/n

=
(
D2
G

(
n∏

i=1

Xi

))1/n2

=
(

n∏

i=1

D2
G (Xi )

)1/n2

= (
D2
G (X)

)1/n = (
σ 2
G

)1/n
.

��
Note that D2

G

(
XG

) → 1 while n → ∞.

Theorem 2 If X1, X2, . . . , Xn are independent, identically distributed random variables
and have the multiplicative expectations mG and variances σ 2

G then XG is the consistent
estimator of mG.

Proof From the Law of Large Numbers for the sequence ln X1, ln X2, . . . , ln Xn we have

1

n

n∑

i=1

ln Xi
P−→ E ln X.
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For any continuous g (x)

g

(
1

n

n∑

i=1

ln Xi

)
P−→ g (E ln X) .

Taking g (x) = ex we have XG
P−→ mG . Hence, XG is the consistent estimator

of mG . ��

Theorem 3 Let X1, X2, . . . , Xn be independent, identically distributed random variables.
The statistic Ŝ2G is a multiplicative unbiased estimator of σ 2

G and S2G is a multiplicative
asymptotically unbiased estimator of σ 2

G.

Proof To prove that Ŝ2G is a multiplicative unbiased estimator of σ 2
G we have to calculate the

term

EG

(
n∏

i=1

eln
2
(
Xi /XG

)
)1/n

.

Let yi = ln xi . Similarly to proving that

Ŝ2 = 1

n − 1

n∑

i=1

(
Xi − X

)2

is an unbiased estimator of D2 (X)we can prove that Ŝ2G is amultiplicative unbiased estimator
of σ 2

G. Hence, we omit details. As a simple conclusion we obtain that S2G is a multiplicative
asymptotically unbiased estimator of σ 2

G . ��

Theorem 4 Let X1, X2, . . . , Xn be independent, identically distributed random variables.
Then S2G and Ŝ2G are the consistent estimators of σ 2

G .

Proof

S2G = exp
1

n

n∑

i=1

ln2
Xi

XG
.

Since

ln2
Xi

XG
= (

ln Xi − ln XG
)2 = (ln Xi )

2 − 2 ln Xi ln XG + (
ln XG

)2
,

we have

1

n

n∑

i=1

ln2
Xi

XG
= 1

n

n∑

i=1

(
(ln Xi )

2 − 2 ln Xi ln XG + (
ln XG

)2)

= 1

n

n∑

i=1

(ln Xi )
2 − 2 ln XG

1

n

n∑

i=1

ln Xi + (
ln XG

)2
.
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From the facts

1

n

n∑

i=1

(ln Xi )
2 P−→ E (ln X)2 ,

1

n

n∑

i=1

ln Xi
P−→ E (ln X) ,

ln XG
P−→ lnmG ,

(
ln XG

)2 P−→ (lnmG)2 ,

we obtain by easy calculations

exp

(
1

n

n∑

i=1

ln2
Xi

XG

)
P−→ exp

(
E (ln X − mG)2

) = exp
(
D2 (ln X)

)
,

which completes the proof. ��
Estimators α̂ and β̂ of the parameters α̃ and β̃ given by Eqs. (15) and (16) are given

respectively by

α̂ =
∑n

i=1 xi ln yi − nx ln y
∑n

i=1 x
2
i − nx2

, (28)

β̂ = ln y − α̂x . (29)

Estimators of the trend y given by (20) has the form

ŷG = exp
(
ẑ
)
, (30)

where ẑ = α̂x + β̂.

3 Applications of the multiplicative model

Many applications of the geometric mean in economics can be found in the papers (Hughson
et al. 2006; Jacquier et al. 2003). The future portfolio of shares in (Jacquier et al. 2003) and the
expected gross return in (Hughson et al. 2006) were estimated by the geometricmean. Cooper
in (1996) provided some interesting considerations on how one can apply the geometric or
the arithmetic mean to the estimation of the discount rate of planned investments.

However, applications nearly always used the multiplicative mean. Only in (Saaty and
Vargas 2007) the multiplicative dispersion given by (10) was applied, but, as it was explained
in Sect. 2.1, that dispersion differs from our standard deviation.

In insurance and finance huge losses are modelled by Pareto or lognormal distributions.
Such distributions are positively skewed, so their arithmetic expected values are very far
from their medians. Therefore, the expected values do not reflect the central tendency of
these distributions. As we will see later, geometric means of distributions do not have such
defects. Moreover, it is evident that the dispersion around EGX must be equal to D2

GX , not
to D2X .

Let us only point out that also in other fields of science, multiplicative parameters give
a better description of some phenomena than additive ones—see, for example, (Zacharias
et al. 2011) and references therein.
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Table 1 Return rates ir100% of
indexes WIG20 in the years
1995–2009

Source http://www.
gpw.pl/analizy_i_statystyki_pel
na_wersja (November 2014)

Year Rate (%) Coefficient

2009 33.47 1.33

2008 −48.21 0.52

2007 5.19 1.05

2006 23.75 1.24

2005 35.42 1.35

2004 24.56 1.25

2003 33.89 1.34

2002 −2.70 0.97

2001 −33.46 0.67

2000 3.40 1.03

1999 43.80 1.44

1998 −16.20 0.84

1997 1.10 1.01

1996 82.10 1.82

1995 8.20 1.08

In the next sections we provide two examples of applications of multiplicative parameters.
Those examples come from the Polish market and concern the Stock Exchange in Poland.

3.1 Return index rates

Return rates ir100% of indexesWIG20 from theWarsaw Stock Exchange in the years 1995–
2009 are given in Table 1, r = 1995 . . . 2009. The accumulation coefficients ar = 1+ ir are
given in the third column.

The total return at the end of 2009 of an investing initial capital p = 1 at the beginning
of 1995 (future value FV ) is given by the formula:

FV =
2009∏

r=1995

ar .

Since aG = 1.0820,

FV = (aG)15 = 3.2656.

Using the arithmetic mean a = 1.1295 instead of the geometric mean we obtain

FV ′ = (a)15 = 6.2161, (31)

which is a two-time overstated estimation of the quantity FV .
Next, we calculate ŝG = 1.1600. Using Eq. (14) we have the kth interval for aG:

(0.9328, 1.2550), (0.8042, 1.4561) and (0.6933, 1.6890) for k = 1, k = 2 and k = 3,
respectively.

If we calculate aG = 1.1036 from the 10 years 1995–2004 only, then the total forecasted
return of the capital with the investment of initial capital p = 1 at the beginning of the
year 2005 is equal to 1.6370. The forecast using the arithmetic mean a = 1.1447 from the
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Table 2 Average annual
profitabilities of treasury papers
in bids in the years 1992–2009

Source www.money.pl/pieniadze/
bony/archiwum/ (November
2014)

Year Arithmetic Geometric Median Number
of bids

1992 0.4864 0.4861 0.4729 34

1993 0.3842 0.3841 0.3817 52

1994 0.3238 0.3231 0.3816 52

1995 0.2618 0.2618 0.2611 58

1996 0.2054 0.2054 0.2034 52

1997 0.2210 0.2210 0.2193 56

1998 0.1851 0.1844 0.1889 53

1999 0.1291 0.1290 0.1229 52

2000 0.1761 0.1761 0.1780 49

2001 0.1464 0.1462 0.1536 48

2002 0.0821 0.0821 0.0840 48

2003 0.0536 0.0536 0.0549 48

2004 0.0659 0.0659 0.0678 46

2005 0.0679 0.0508 0.0421 36

2006 0.0420 0.0419 0.0421 23

2007 0.0464 0.0464 0.0445 18

2008 0.0652 0.0652 0.0656 20

2009 0.0465 0.0465 0.0475 49

years 1995–2004 is equal to 1.9653. The true value of the total return is equal to 1.2185.
Therefore, it is more precisely estimated by the geometric mean than by the arithmetic
mean.

The analogical conclusion can be drawn from determining the present value PV by the
geometric and arithmetic means of the discount factor vr = 1/ar . Namely,

PV = (vG)15 = 0.3062,

PV ′ = (v)15 = 0.6504.

3.2 The mean annual rate of profitability of treasury bills

A multiplicative model will be used here to describe the annual market rate with investment
for 52-week treasury bills in Poland. The use of a multiplicative model can be justified by the
fact that the accumulation of the capital is yielded by the multiplication, not by the addition,
of gross return from an investment. Let R denote the annual rate for the 52-week treasury
bills and f (t) = abt be an exponential function of trend. Assume that (see Eq. (20))

R = abtε,

where the random component ε has a lognormal distribution LN (0, σ ).
To estimate the unknown parameters a and b (see Eqs. (28) and (29)) of the trend function

of the annual rate of interest we make use of the observations of the average profitabilities
from weekly bids in the years 1992–2009. In the observed years, there were from 18 to 56
bids per year. For these particular years, the arithmetic and geometric means as well as the
medians were taken as the means—see Table 2.
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Fig. 1 Annual means and their exponential approximations

Since differences between them are small, we take as ri the arithmetic mean from the
annual profitabilities of bids in a particular year.

We will test the hypothesis of normality of ln ε using the modified Jarque–Bera test. Let
n be the sample size, b1/21 = m3/m

3/2
2 , b2 = m4/m2

2, wheremi is the i-th central moment of

the observationsmi = ∑ (
c j − x

)i
/n, and x the sample mean. For testing normality we use

the Jarque–Bera test modified by Urzúa (1996) (see also Thadewald and Büning (2004)):

ALM =
(
b1/21

)2

c1
+ (b2 − c2)2

c3
. (32)

Here the parameters ci , i = 1, 2, 3, are given by

c1 = 6 (n − 2)

(n + 1) (n + 3)
,

c2 = 3 (n − 1)

(n + 1)
,

c3 = 24n (n − 2) (n − 3)

(n + 1)2 (n + 3) (n + 5)
.

For our data, we have m2 = 0.046825093, m3 = −0.003081238, m4 = 0.006135356, and
n = 18. Hence, we can calculate that ALM = 0.4062. The statistic (32) has an asymptotic χ2

distribution. Würtz and Katzgraber (2005), using a Monte Carlo simulation, provide precise
quantiles for small samples. For the size of sample n = 20 and the levels 0.01 and 0.05 they
obtain critical values 18.643 and 6.9317, respectively. Therefore, for such critical values one
can not reject the null hypothesis of normality.

Figure 1 shows the average annual profitabilities as well as their exponential approxima-
tion

r̂ (t) = exp (−0.1425t − 0.7299)

given by (20).
The geometric (multiplicative) mean rG = 0.1245 was used here to determine the expo-

nential (that is multiplicative) trend of profitability R (see formula (17)). For comparison,

123



Ann Oper Res (2016) 238:299–313 313

the arithmetic mean amounts to r = 0.1661, and therefore, since it is significantly greater
than rG, it overestimates the long-run returns (see, e.g., (Cooper 1996) and (Jacquier et al.
2003)).
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