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Abstract In this paper we consider healthcare policy issues for trading off resources in test-
ing, prevention, and cure of two-stage contagious diseases. An individual that has contracted
the two-stage contagious disease will initially show no symptoms of the disease but is ca-
pable of spreading it. If the initial stages are not detected which could lead to complications
eventually, then symptoms start appearing in the latter stage when it would be necessary to
perform expensive treatment. Under a constrained budget situation, policymakers are faced
with the decision of how to allocate budget for prevention (via vaccinations), subsidizing
treatment, and examination to detect the presence of initial stages of the contagious disease.
These decisions need to be performed in each period of a given time horizon. To aid this
decision-making exercise, we formulate a stochastic dynamic optimal control problem with
feedback which can be modeled as a Markov decision process (MDP). However, solving the
MDP is computationally intractable due to the large state space as the embedded stochas-
tic network cannot be decomposed. Hence we propose an asymptotically optimal solution
based on a fluid model of the dynamics in the stochastic network. We heuristically fine-tune
the asymptotically optimal solution for the non-asymptotic case, and test it extensively for
several numerical cases. In particular we investigate the effect of budget, length of plan-
ning horizon, type of disease, population size, and ratio of costs on the policy for budget
allocation.
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1 Introduction

In this paper we consider spread and containment of contagious diseases. Although the
description pertains to humans, the models can be suitably extended to other living beings
as well. We state the problem in an abstract manner and do not concentrate on any specific
disease, however we restrict our study to two-phase contagious diseases. These diseases are
such that when a person contracts the disease, he or she does not show any symptoms in
the initial phase but can spread the disease. This initial phase is called the latent stage. In
the latter phase of the disease, symptoms may appear and the individual may need to be
treated, typically using expensive treatments. The latter phase is usually referred to as the
symptomatic stage. If an individual is healthy, shots (usually vaccines) can be administered
so that he or she does not contract the contagious disease at least for a period of time. If
an individual is in the initial phase of the disease, he or she can be treated inexpensively
(as opposed to when the symptoms appear) and can be cautious about not spreading the
disease. Notice that individuals that are healthy cannot be distinguished from those that are
in the initial stages of the disease, unless tested. The spread of such contagious diseases
can be contained by testing individuals, giving shots to healthy individuals and treatment to
individuals known to have the disease. The objective of this paper is to devise an algorithm
to optimally allocate financial resources for testing, vaccination, and treatment by evaluating
their trade-offs across a finite planning horizon.

The main goal of this paper is to present an analytic framework that can be used for a
wide range of two-phase contagious diseases. However, for the sake of clarity in exposition,
we present a few examples. In particular, AIDS and cervical cancer can be modeled as
two-stage contagious diseases where the first stage is contracting the virus and the second
stage is getting AIDS or cervical cancer, respectively. Since cervical cancer has received a
lot of attention in the media recently, there is a reasonable amount of data available for it
and hence we use it for model illustration as well as numerical analysis in this paper. In
that light, it is worthwhile to further describe cervical cancer briefly. The cause for almost
all patients suffering from cervical cancer is Human Papilloma Virus (HPV) which can be
controlled using vaccinations that lasts four years. When a healthy person contracts HPV,
there are no symptoms until the person actually gets cancer, a process which may take many
years (Cervical-Cancer 2006). Therefore the two-stages of cervical cancer can be thought
of as: (a) having HPV but not cancer; (b) having cancer for which treatment is required
(such as surgery, radiation therapy, and chemotherapy (Cervical-Cancer-Center 2006)). On
the brighter side, treatments for cervical cancer are fairly successful (AICR 2006). However
the cost of treatment is significantly higher than many other cancers, such as breast cancer,
hence not all patients can afford the treatment (Wolstenholme and Whynes 1998).

Besides cervical cancer and AIDS, there are other examples of such two-stage contagious
diseases such as small pox and measles that people and animals are typically vaccinated
against. However, it is worthwhile noting that policies from a management standpoint in
terms of the spread of these diseases mentioned above have been well established. Where
there is a serious shortcoming is in being prepared against newly emerging disease outbreaks
in which human beings are infected by agents (such as bacteria or viruses) that spread even
before any symptoms are observed. These agents could have a long incubation period (i.e.
the time between when an individual is infected to when symptoms appear). In addition,
the disease could be communicable (i.e. the agent spreads to other individuals) even during
the incubation period. Under these circumstances there is a need to perform quick what-if
analysis with limited data to make policy decisions. The major concern is the impact in terms
of large-scale testing, vaccination, and treatment that would overwhelm existing resources.
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We seek to develop a strategy that aims to allocate a constrained budget between testing,
vaccination, and treatment subsidy across a finite time horizon.

We develop a methodology for budget allocation that would seek to optimize any objec-
tive specified by the policymaker given any Markovian disease spread model. Modeling and
analyzing this problem deals with multi-dimensional decision variables under a stochastic-
network environment. Thus, it difficult to analyze the system using dynamic programming.
There are a relatively large number of states in this system and the transition rates are also
dependent upon the state of the system. In essence, the budget allocation problem over a
finite horizon is a complex stochastic dynamic program where the objective is to determine
the optimal set of actions in each stage of the horizon which is a dynamic control problem
with feedback. The contribution of this paper is in not only providing a tool for policymakers
to effectively divide a given budget for a specific two-stage disease in healthcare, but also to
develop a methodology to handle complex dynamic control problems effectively.

This paper is organized as follows. In Sect. 2 we present a review of the literature perti-
nent to the problem described above. Further, the problem is presented in detail, along with
notations in Sect. 3. In Sect. 4 we characterize the system as a stochastic network under
dynamic control with feedback and model it as a Markov decision process (MDP). How-
ever due to the curse of dimensionality the MDP is intractable. Therefore we develop an
asymptotically optimal solution based on a fluid model of the dynamics to solve the MDP
in Sect. 5. We present extensive numerical results to evaluate the model performance on a
wide experimental design benchmarking on a cervical cancer case study in the United States
in Sect. 6. Then in Sect. 7 we evaluate the impact of various factors to develop insights for
policy and healthcare. Finally in Sect. 8 we present our findings and make concluding re-
marks.

2 Literature review

In this section we present a review of the literature by categorizing it into four phases:
historical perspective, modeling, optimization, and recent trends including our main case
study of HPV.

2.1 History perspective

Mathematical modeling of epidemic diseases has been an active area of research since the
1920s. A number of statistical models have been developed in order to be able to predict
various factors, such as the spread rate of the disease, the number of infected people, mor-
tality rate, etc. within a given time horizon. Early research was mainly devoted to developing
deterministic models. This is mainly due to the fact that these models are simpler. Anderson
and May (1991) studied various existing deterministic models, along with several applica-
tions based on real data. Stochastic epidemic models started to come around with the one
proposed by McKendrick (1926). This work was a stochastic continuous time version of the
deterministic model proposed by Kermack and McKendrick (1927). Reed and Frost intro-
duced the chain-binomial model (Andersson and Britton 2000). Barlett (1949) studied the
stochastic version of the Kermack-McKendrick model. Since then, a substantial amount of
research has been done in this field. For example, Gabriel et al. (1990), Bailey (1975) and
Anderson and May (1991) are excellent resources that have covered stochastic as well as de-
terministic models. These sources also discuss the statistical inference and a large number of
applications to real data. Further, Daley and Ganni (1999) reviewed the existing stochastic
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and deterministic models and included statistical inference. Andersson and Britton (2000)
provided a summary of stochastic models that are being used in the area. In addition, Diek-
mann and Heesterbeek (2000) focused on mathematical epidemiology of infectious diseases
and used real data for illustrations.

2.2 Analytical models

The most common type of models used for infectious diseases are SIR (Susceptible-
Infected-Removed) models, first proposed by Reed and Frost. A mixed population is the
basic assumption in that mode there are some infectious individuals (I) and some suscep-
tible individuals (S). During the infectious period, an infective person makes contact with
a susceptible individual with a given probability. Different researchers use different meth-
ods to obtain this probability, e.g., the contact number as defined by Hethcote (2000). If a
susceptible person has contact with the infectious person, he/she becomes infectious and
is immediately able to infect other individuals. There is usually a distribution assigned to
the duration of the infectious period. An individual is considered removed (R) when he/she
becomes immune to the disease after his/her infectious period is over, and plays no further
part in the spread of the disease. Newmann (2002) showed that a large class of SIR models
of epidemic disease can be solved exactly on wide variety of networks.

2.3 Optimization

Most of the existing models found in the literature deal with obtaining the measures, such as
the rate of transmission for the disease. To the best of our knowledge, not many researchers
have used the models to optimize scenarios by changing the different probabilities and rates.
Some researchers have suggested strategies to minimize the costs at different stages, for ex-
ample, in developing vaccinations (Wu et al. 2005), or to minimize the cost of examinations
(Wein and Zenios 1996). Li et al. (2004) proposed a vaccination program when the total
population size is not constant.

2.4 Recent trends in epidemic diseases including HPV

There is extensive research on dynamics of infectious disease transmission. However, each
particular disease has a unique behavior; therefore mathematical models can be different.
For example, hepatitis B is transmitted shortly after exposure to the virus with severe symp-
toms (Goldstein et al. 2005). In the case of AIDS, since the virus infection till the time
the symptoms appear takes, on average, ten years (Perelson and Nelson 1999). Therefore,
a representative mathematical model should be based on the properties of a specific dis-
ease while incorporating basic assumption and avoiding unnecessary details. In that light
it is worthwhile mentioning that our model in this paper for disease spread is simplistic,
however powerful enough to be applicable in a much broader setting.

Probabilistic models (as opposed to statistical models are also focused on pertaining to
two-stage contagious diseases. For example, Lipsitch et al. (2003) studied the dynamics of
Severe Acute Respiratory Syndrome (SARS) transmission to estimate the infectiousness of
SARS as well as possibility of outbreak epidemic after observing an infected case within
the susceptible society. They used stochastic simulation to show the robustness of outcomes
of the model, such as reproductive numbers.

Elbasha et al. (2007) developed a model to investigate the transmission dynamics of
HPV. In their model, they considered a more sophisticated version of SIR model which
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included demographic and epidemiologic components. They also included seventeen age
groups and three levels of sex activity to address the probability of becoming infected re-
alistically. Wodarz and Nowak (2002) developed a mathematical model to study dynamic
of HIV spread, its progression, evolution, and effects of different control mechanism. The
authors used this mathematical model to target both individual treatment design and social
virus control in long term. They used real data to show the effectiveness of their proposed
model.

Another important aspect of studying disease control is to choose the most relevant (i.e.
cost-efficient) set of actions (controls). Taira et al. (2004) studied the cost efficiency of HPV
vaccinations in the United States. They showed that cost efficiency of the HPV vaccination
is correlated with the duration of immunity and the vaccination age. Kim and Goldie (2008)
studied the cost-efficiency of including boys in HPV vaccination. The results showed that the
vaccination age plays an important role in the overall immunity of the society but including
boys is not cost-efficient.

Garnett et al. (2006) studied the value of screening (examination) to control infectious
diseases. They suggest that a combination of screening and vaccinating is beneficial in dis-
ease control. In Sect. 4, we leveraged upon the results of these works to restrict the set
of possible actions. Gray et al. (2003) studied the dynamic of HIV transmission in Rakai,
Uganda. They used a stochastic simulation model to observe the effect of vaccination and
antiviral treatment. They showed that antiviral treatment can reduce the number of infected
people, however the treatment alone cannot stop the epidemic since it will result in more in-
fected people in future. They found vaccination to be more effective in controlling the virus
transmission than the treatment. Therefore, combination of two may achieve a promising
result.

3 Problem description

Consider a large population of individuals. At the beginning, we assume the individuals are
in one of the following different states: u1: Healthy individuals (susceptible), u2: Individuals
having the disease (first stage) but are unaware of it, u3: Individuals that are in the first stage
of the disease and are conscious of that, and u4: people in the second stage of the disease.
Then, we consider a long time horizon (20 years for the cervical cancer and AIDS) and de-
fine each year as a period where a decision can be made regarding the number of vaccines,
examinations and treatments to be administered. This decision is made at the beginning of
the period based on the state of the system (i.e. all individuals taken together). In the begin-
ning of each period, the policymaker must specify an objective that needs to be maximized
subject to satisfying some constraints, of which the most important being the budget. The
objective function is a function of number of people in different states of the system at dif-
ferent time periods. It also can take into account the number of total effective vaccinations,
probability of an individual contracting the disease at the end of the time horizon.

In order to solve this control problem of deciding the number of vaccines, treatments,
and testing in each period, it is critical to characterize the dynamics of the system using a
stochastic network. We consider different states in the system, where apart from the afore-
mentioned states, we also have states for people who died during the time horizon (u5) and
states for people in the different stages of vaccinations (for the cervical cancer case where
vaccinations work for four years, v1, v2 and v3 are the states denoting vaccinations done
1, 2 and 3 years ago respectively). In order to keep track of the system dynamics, we also
account for the birth process, death process, vaccinations.
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An important consideration is that states u1 and u2 are indistinguishable. For any pol-
icy, a certain number of vaccinations are going to be given to some infected people (these
include individuals in u1 and u2). An effective vaccination is the one where the individual
getting the vaccination and hence would not contract the disease for the duration of the vac-
cination effectiveness period (4 years in case of cervical cancer). The vaccination could also
be given to people who do not know that they have the disease (i.e. state u2), but it would be
ineffective since they are already infected. Similarly, examinations can be termed effective
only if the person actually had the disease (i.e. state u2), and was not a healthy individual in
the susceptible state (i.e. state u1). However, while treating a patient in the second stage, the
complete information about the state of the person exists. When a person gets treated, they
can move to one of the three states: healthy and susceptible or return to first stage of disease.

Aside from the transitions based on our decisions, we also keep track of ‘natural’ flows
in the system. Since we are considering a long time horizon, we need to keep track of the
births and deaths. All newborns are assumed to go to the healthy state (although this could be
easily modified in the model). Independent of the state an individual is in, there is a chance
that the person dies of natural causes. These are also taken into consideration in the model.

The probability that a healthy individual gets the disease is dependent upon the number
of individuals who actually have the disease, and their awareness level. The people in u2

are more likely to spread the disease as compared to the ones in u3 and u4. Hence, the
probability a healthy individual gets the disease can be given by a function of number of
individuals in these three different states. When an individual is in the first phase of the
disease, the chance of that person getting to the second stage is dependent upon the person’s
awareness level. If individuals know that they have the disease, they can take precautions
(and treatments in some cases) to reduce the risk of going to the second stage. Hence, the
probability of a person getting to the second stage of the disease is different depending on the
person’s knowledge of their condition. In the next section we present a model for analysis
and control of the system described above.

4 MDP model for dynamic control with feedback

The aforementioned system is analyzed using a Markov decision process where Wn is the
state of the system at the nth period. Note that Wn is a vector of the number of individuals
in various states and would be described in Sect. 4.2. The decision variable, i.e. action to
take in the nth period is to determine how many vaccinations (denoted by xn), how many
treatments (denoted by yn), and how many tests (denoted by zn) to administer during that
period. Let X, Y and Z be T -dimensional vectors denoting the control action in T periods.

The objective is to optimize a function specified by the policymaker in terms of the
expected value of the state of the system at the end of each period in the horizon (consisting
of T periods): f (E[W1],E[W2], . . . ,E[WT ]) with the understanding that the expectation of
a vector of random variables is the expected value of the individual elements of the vector.
The optimization is subject to

cx
nxn + cy

nyn + cz
nzn ≤ Rn

where Rn, cx
n , c

y
n and cz

n are respectively the total budget, cost of vaccines, cost of treatment,
and cost of testing in period n. While solving the problem the budget constraint is usually a
binding constraint at which time we denote cx

nxn/Rn, c
y
nyn/Rn and cz

nzn/Rn as the fraction
of budget allocated for vaccines, treatment and testing in period n. By averaging over all
n ∈ [1, T ] we obtain the corresponding average values.
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The main problem is to determine an optimal control A = (X,Y,Z) that optimizes the
specified objective function subject to budget constraints. The optimal control is sequential
with feedback, i.e. for n = 0,1,2, . . . , T − 1 the problem is to determine the action in the
(n + 1)st period An+1 = (xn+1, yn+1, zn+1) given Wn (and history which can be ignored if
the stochastic process {Wn,n ≥ 0} is Markovian) for the overall objective across all periods.

4.1 Assumptions

It is critical to note that most of the assumptions are not necessary for the model to work, in
fact it would be quite straightforward to change the stochastic network or the optimization
problem accordingly. The reason they are described in detail is in order to appropriately
interpret the numerical findings as well as to replicate the experiments by other researchers.

• The budget constraint cannot be violated in any period. In addition, any portion of the
budget amount not used in a period cannot be transferred to other periods. The conse-
quence of this assumption is that for most objective functions, the budget constraint is
binding in every period.

• All treatments are successful, but a person who moves out of the second stage of disease
may still end up in the first stage.

• All tests for presence of disease are perfect (no false positives or false negatives).
• Chronological order of events in each period is: vaccination, spread of disease, birth,

going from stage one to two, test, treatment, death due to disease, and natural death.
• All newborns are healthy.
• A person in the first stage of the disease and knowing about it is less likely to spread it as

compared to the person who does not know that he/she has the disease.
• The persons who know that they have the disease are less likely to get to the second stage

as compared to the persons who do not know about their having the disease, since the
former is better equipped with knowledge of how to avoid getting to the second stage.

• The only way a person can learn whether he/she is in the first stage of the disease is
through examination.

• Only the people who are in the first stage of the disease can go to the second stage.
• All individuals behave rationally, i.e., they would not lose the opportunity to get tested,

vaccinated or treated, whichever applies to them.

Thereby using the above assumptions, we now model the system using a Markov decision
process.

4.2 Markov decision process

Since each person in the population under consideration within each period can be in one of
eight possible states, we define the following notations. Let U 1

n be the number of healthy per-
sons that are not vaccinated in the nth period (corresponding to being in state u1). Similarly,
define U 2

n , U 3
n , U 4

n , U 5
n V 1

n , V 2
n and V 3

n respectively as the number of people in the nth period
in stage-1 of the disease and are unaware of it, in stage-1 and are aware of it, in stage-2, dead
due to disease, healthy and vaccinated in the previous period, healthy and vaccinated two
periods ago, and healthy and vaccinated three periods ago (this model illustrates HPV-based
cervical cancer where the number of periods for vaccination effectiveness is 4; however for
other diseases the number would have to be suitably modified). Therefore the system state
in the nth period for HPV-based cervical cancer disease (Wn) is an 8-dimensional vector

Wn = (
U 1

n ,U 2
n ,U 3

n ,U 4
n ,U 5

n ,V 1
n ,V 2

n ,V 3
n

)
.
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By modeling Wn, we ensure the Markov property. Therefore in order to determine An+1,
the action in the (n + 1)st stage, we only need Wn. In addition, to determine Wn+1 only Wn

and An+1 would suffice. The transition probability function is given by:

P
{
Wn+1 = (i1 + i8 − � − m + b + t2 + t3 + yn+1 − α2 − α3 − d1 − d8,

i2 − k − t2 + m − j2 + α2 − d2, i3 + k − t3 + α3 − j3 − d3,

i4 − dc − yn+1 + j2 + j3 − d4, i5 + dc, �, i6 − d6, i7 − d7, i8 − d8)

|Wn = (i1, i2, i3, i4, i5, i6, i7, i8),An+1 = (xn+1, yn+1, zn+1)
}

= qb(b)qt (k; zn+1, i1, i2)qv(�;xn+1, i1 + i8)qs(m; i1 + i8 − �)qc(j2, j3; i2, i3)

× qr(t2, t3; i2 − k, i3 + k)qh(yn+1 − α2 − α3, α2, α3;yn+1, i4)qn(dc; i4)

× qd(d1, d2, d3, d4, d6, d7, d8; i1 + i8 − � − m + b + t2 + t3 + yn+1 − α2 − α3,

i2 − k − t2 + m − j2 + α2, i3 + k − t3 + α3 − j3, i4 − yn+1 + j2 + j3, �, i6, i7)

where qb(b) is the probability that there are b births (or new entrants), qt (k; zn+1, i1, i2)

is the probability that k out of the zn+1 tests were administered on the i2 individuals,
qv(�;xn+1, i1 + i8) is the probability that � of the xn+1 vaccines were given to the i1 + i8

healthy individuals, qs(m; i1 + i8 − �, i2 − k) is the probability that out of the i1 + i8 − �

healthy individuals m get the disease, qr(t2, t3; i2 − k, i3 + k) is the probability that t2 people
get removed from having the disease out of the i2 − k individuals who do not know that they
have the disease, and t3 people get removed from having the disease from i3 + k individuals
who know that they have the disease, qh(yn+1 − α2 − α3, α2, α3;yn+1, i4) is the probability
that of the yn+1 treatments, α2 people still have the disease in the first stage and do not know
about it and α3 people know that they still have the disease but in the first stage, qn(dc; i4)

is the probability that dc people die due to the disease among the i4 number of second stage
carriers, qd(·) is the probability of the number of deaths in each state given the number of
people in the respective state, and qc(j2, j3; i2, i3) is the probability that j2 people got the
second stage of the disease among the i2 people who do not know they are in the first stage
and j3 people got to the second stage of the disease from the i3 people that know they are
in the first stage. It is possible to obtain formulae for the probabilities: qb(b), qt (k; zn+1, i2),
qv(�;xn+1, i1 + i7), qs(m1,m2; i1 + i7 − �, i3 + k, i2 − k), and qc(j1, j2; i2, i3) in terms of the
following parameters: pv = a2i2 +a3i3 +a4i4 which is the probability of getting the disease,
pc2 which is the probability of getting to the second stage of the disease when the person
does not know he/she is in the first stage, pc3 which is the probability of getting to the sec-
ond stage of the disease when the person knows he/she is in the first stage, pd−cancer which
is the probability of death due to second stage, pd−nat which is the probability of natural
death, pbirth which is the probability of birth, pr1 which is the probability of recovery from
stage one for a person that does not know they are in stage one, pr2 which is the probability
of recovery from stage one for a person that knows they are in stage one, py2 which is the
probability of being treated for second stage and move to first stage but not knowing, and
py3 which is the probability of being treated for second stage and move to first stage while
being aware.

Remark 1 Although it is possible to formulate the problem as an MDP, the difficulty is in
solving it. Due to the curse of dimensionality, this MDP is indeed intractable. None of the
standard techniques such as value iteration or policy iteration (see Puterman 1994) can be
employed to obtain the optimal actions for any given state vector in a reasonable amount of
time.
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As a result we propose an asymptotically optimal solution based on a fluid model of the
dynamics of the resultant stochastic network in the next section.

5 Asymptotically optimal solution and implementation

The problem studied in this research belongs to a class of control problems in stochas-
tic networks that are difficult to solve. It is well documented (see Bauerle 2000) that such
problems are mainly solved by converting them into their corresponding fluid optimization
problem (i.e. the equivalent deterministic control). Although such a conversion appears to be
an approximation, they are indeed asymptotically exact. In other words if we let the num-
ber of individuals in the various states be extremely large (more precisely let the number
approaches infinity) then the optimal policy converges to the equivalent deterministic con-
trol problem. Therefore the policy is known as asymptotically optimal solution obtained by
taking the fluid limit (also called fluid scaling).

It is worthwhile to explain the fluid model using a simplified example. Consider a popu-
lation with N individuals of which a fraction α is given the vaccine (assume they are 100%
effective). If p is the probability that each of the non-vaccinated individuals gets the disease
during a year, then the fraction of individuals affected is according to a binomial distribution
with mean (1 − α)p and standard deviation

√
(1 − α)p(1 − p)/N . As N → ∞, this frac-

tion converges to the deterministic quantity (1 − α)p and the standard deviation converges
to zero. When N is finite, the fluid model would predict that after a year the number of
individuals affected by the disease is N(1 − α)p.

One of the main benefits of fluid models is that they are easy to solve. However in this
paper the deterministic optimal control problem is itself difficult to solve mainly because
the resulting mathematical program is such that the objective function cannot be written as
a closed-form algebraic expression of the decision variables. But the rationale behind using
the asymptotically optimal policy in this paper is that the population is indeed large and we
conjecture that the policy would be fairly accurate. However, we propose an adjustment to
the policy to further improve the quality of the solution.

Before further describing the fluid model and its adjustment, we should introduce the
notion of feedback control and control without feedback. Notice that the MDP formulation
in Sect. 4.2, is a stochastic optimal control problem with feedback and the corresponding
fluid model can be thought of as an optimal control problem without feedback (as there is
no uncertainty in terms of the state of the system in the deterministic case). The feedback
would not provide any new information in the decision-making process since the dynamics
are deterministic. However, in the real system the feedback would be somewhat different
than what is predicted and hence we need an algorithm to adjust based on the feedback. In
summary, we consider a fluid model where the aim is to obtain a dynamic control without
feedback. In other words, the set of control actions A = (X,Y,Z) can be set a priori and
they depend only on the knowledge of the initial system state W0 (and other states Wn

for n = 1,2, . . . , T are known only probabilistically). A major portion of the approximate
analysis description would revolve around this dynamic control problem without feedback.
However toward the end of this section we describe how to extend this to the case of dynamic
control with feedback as a sequential approximation (see Sect. 5.3).

Even for the optimal control without feedback, it is extremely difficult to write the ob-
jective function as a closed-form algebraic expression in terms of the decision variables, i.e.
X, Y , and Z. However for a given set of X, Y , and Z values, it is possible (although not
straightforward) to obtain the objective function. We take advantage of this observation to
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Fig. 1 Meta-heuristic and
objective function evaluation
engine

develop our approximate algorithm. In particular, we select a meta-heuristic to efficiently
search through the space of all possible values of X, Y , and Z. One of the key requirements
for the meta-heuristic is an engine that would evaluate the objective function for a given
(X,Y,Z). This is depicted in Fig. 1. Our goal in this paper is to select an appropriate meta-
heuristic and to develop alternative methodologies to evaluate the objective function (i.e.
objective function evaluating engine) for a given set of X, Y and Z values. These tasks are
addressed in the next two sub-sections (viz. 5.1 and 5.2) respectively.

5.1 Meta-heuristic selection: genetic algorithm

Genetic algorithm is one of the most applicable methodologies for analyzing large scale
systems. Since the approach is well-studied in the literature and due to page limitations,
we do not provide a description of the algorithm or the jargon used therein. The reader is
encouraged to refer to articles such as Whitley (1994). In this specific implementation of
genetic algorithm, we have a population of chromosomes, or solutions, consisting of values
for our three T -dimensional decision variables: Number of vaccinations (X), number of
treatments (Y ), and number of examinations (Z). Each chromosome can be evaluated for
its ‘fitness’ by computing the objective value using one of the techniques we describe (in
Sect. 5.2).

In summary, we generate the population for each of the generations. Each chromosome
is evaluated for its fitness and subsequent generations obtained from this generation. This
process is repeated for a large, pre-specified number of generations. From the first genera-
tion, we store the best solution as the incumbent solution and at the end of the run, obtain it
as the best solution, which is expected to be close to the optimal solution.

For this implementation, we used the following parameter values: population size is 100,
number of generations is 1000, separation is 10, distance factor is 0.1, and number of pe-
riods is 20. Crossovers and mutations account for 90% of the chromosomes for the new
generation. We pick the top one-fifth of the chromosomes for mutation.

5.2 Determining the objective function value

The crucial item required for the genetic algorithm in Sect. 5.1 is an engine for evaluating
the objective function value for a given action (X,Y,Z) as described in Fig. 1. In order
to evaluate the objective function value f (E[W1],E[W2], . . . ,E[WT ]) we need to obtain
E[W1],E[W2], . . . ,E[WT ] values given the initial state W0 and action (X,Y,Z). Since the
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approximation does not use any feedback, it is possible to evaluate the objective function
with just the initial state and action which is generated by the genetic algorithm. We de-
scribe three techniques to evaluate E[W1],E[W2], . . . ,E[WT ], namely, deterministic anal-
ysis (Sect. 5.2.1), individual Markov chains (Sect. 5.2.2), and simulation (Sect. 5.2.3). The
three techniques would converge asymptotically as the number of individuals in each state
approaches infinity for the first two and the number of replications besides the number of
individuals approaches infinity for simulation. Therefore, although the techniques are in-
deed approximations, the conditions for the problem domain are conducive for asymptotic
analysis as the population is large and simulation replications for large populations (due to
central limit theorem and strong law of large numbers) are doable. However the main reason
we present various techniques is for broader considerations (such as for different population
numbers, other diseases, other types of stochastic networks, generic MDPs, etc.). In addition
to the three techniques, we also present bounds (best case and worst case) for the objective
function value in Sect. 5.2.4.

5.2.1 Deterministic analysis

The deterministic analysis is an approximation where the state of the system is known de-
terministically at the beginning of each period. In particular, given the state at the beginning
of a period and the action during that period, the state of the system at the beginning of the
next period is approximated as its expected value (rounded off to the nearest integer). As a
result, the analysis is reduced to a deterministic dynamic programming problem. However
we continue to use the genetic algorithm to generate candidate solutions and search through
the solution space.

Mathematically, the deterministic analysis is explained as follows. The state of the system
at the beginning of the (n + 1)st period, Wn+1, given Wn and the action during the n + 1st

period An+1 = (xn+1, yn+1, zn+1) is approximated as

Wn+1 = (
E

[
U 1

n+1|Wn,An+1

]
,E

[
U 2

n+1|Wn,An+1

]
,E

[
U 3

n+1|Wn,An+1

]
,E

[
U 4

n+1|Wn,An+1

]
,

E
[
U 5

n+1|Wn,An+1

]
,E

[
V 1

n+1|Wn,An+1

]
,E

[
V 2

n+1|Wn,An+1

]
,E

[
V 3

n+1|Wn,An+1

])
.

Therefore for a given action set (X,Y,Z) and initial state W0, we obtain E[W1]. To
obtain E[W2] given W1 and the action during that period, we approximate by us-
ing E[W1] instead of all possible values of W1. In this manner we recursively obtain
E[W2],E[W3], . . . ,E[WT ]. As an example, we can compute E[U 1

n+1|Wn = (i1, i2, i3, i4, i5,

i6, i7, i8),An+1 = (Xn+1, Yn+1,Zn+1)] as

max

{
i1 − i1pd−nat − Xn+1

i2

i1 + i2
+ i8 − i8pd−nat + i2pr2 + i3pr3 + Yn+1py1 − i1pv

+ (i1 + i2 + · · · + i8)pbirth,0

}
.

Thereby, using the deterministic approximation we evaluate the objective function f (E[W1],
E[W2], . . . ,E[WT ]).

5.2.2 Individual Markov chains

Instead of modeling the system for the entire population, we can also model the passage of
each individual through the various possible states: u1, u2, u3, u4, u5, v1, v2, and v3. The
state an individual is within a particular period can be modeled as a Markov chain with 8
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Fig. 2 Transition diagram for an individual

elements (i.e. the 8 states mentioned earlier for the HPV-based cervical cancer in Sect. 4.2)
in its state-space. The transition diagram is described in Fig. 2. Let Pn be the one-step
transition probability matrix for the nth stage. Since it is straightforward to express Pn from
the transition diagram, we do not explicitly present it here.

Note that the Markov chain is not time-homogeneous and that is why there is a subscript
n in Pn. This is because some of the transition probabilities depend on the number of peo-
ple that are present in each state and as this number changes from stage to stage, so does
the transition probability matrix. We consider two approximations to estimate Pn given the
action (X,Y,Z). The first approximation uses the initial number of individuals in each state
across the horizon which can be computed easily and thereby Pn becomes independent of
n. The second approximation uses the deterministic analysis in Sect. 5.2.1 to estimate the
average number of individuals in each state in each stage.

Then using the Pn matrices and knowing the number of individuals in each state initially,
one can obtain the average number of individuals in each state in every stage. For the first
method we can just use P 20

1 and for the second method we need P ∗ = P1 × P2 × · · · × P20.
Also, using the number of new individuals that enter the system at stages other than the first
stage, they also can be included in the computation (by considering the right stages in the
analysis). Thereby we obtain E[W1],E[W2], . . . ,E[WT ] which can be used in the objective
function.

5.2.3 Simulations

We consider Monte Carlo simulation as another alternative to evaluate the objective func-
tion. In particular, using the initial state W0 and action (X,Y,Z), we generate sample realiza-
tions of W1,W2, . . . ,WT and statistically estimate the values of E[W1],E[W2], . . . ,E[WT ],
and thereby obtain an estimate of the objective function f (E[W1],E[W2], . . . ,E[WT ]). The
simulations also enable us to get estimates of Var[W1],Var[W2], . . . ,Var[WT ].

From an implementation standpoint, in order to obtain a small confidence interval
with high level of confidence, we ran 1000 replications (i.e. sample realizations) of
W1,W2, . . . ,WT . For that we needed a fast way to simulate the transitions as Bernoulli trials
for each individual in the population are computationally tedious. Therefore, assuming that
the number of people in each state is large (using Central Limit Theorem) we generate tran-
sitions by sampling from a Normal distribution (however, Poisson distribution would have
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also sufficed since in the limit the binomial distribution converges to Poisson). We use the
Box-Muller formula for generating the samples as described in Banks et al. (2005).

5.2.4 Bounds

Note that it is not possible to distinguish between people in states u1 (healthy and no vacci-
nation) and u2 (in first stage but do not know). Vaccinations and tests are provided to people
in both states. For a given policy (X,Y,Z) we study the best possible scenario (vaccines
are administered to people in u1 and tests to people in u2) and the worst possible scenario
(vaccines are administered to people in u2 and tests to people in u1). By comparing against
the best-case and the worst-case scenarios, we can study the impact of having complete
information and wrong information.

5.3 Incorporating feedback

So far we have assumed there is no feedback. The genetic algorithm together with the objec-
tive function evaluation engine will produce an action set (X,Y,Z) for a given initial state
W0 and no other information (such as feedback). However, consistent with standard MDPs,
it is possible to obtain W1,W2, . . . ,WT values by sampling the population at the end of each
period. We propose an algorithm to incorporate the feedback that is obtained periodically
over time.

In order to determine the action in the n + 1st period (i.e. An+1 = (xn+1, yn+1, zn+1)),
given the state at the beginning of that period (i.e. Wn), we solve the approximation without
feedback for the remaining T − n periods and choose the prescribed action for the first of
those periods, namely, An+1. Therefore at the beginning of each period the approximation
without feedback is performed as though the current state is the initial state and the horizon
is the number of periods that are remaining. We describe the algorithm using a flow chart in
Fig. 3.

6 Numerical results: modeling perspective

We divide the numerical experiments into two categories. First we focus on the modeling
aspects in this section and in Sect. 7 we evaluate the impact of various factors on healthcare
and policy issues. We perform several numerical evaluations to (a) analyze the resulting
control action between dimensions and across the horizon, (b) implement various objec-
tive functions, (c) compare the different engines for objective function evaluation, (d) study
the effect of the main constraint by considering different budgets, (e) contrast the policies
obtained by considering feedback against those that do not consider feedback, and (f) under-
stand requirements in terms of computational time and effort for the various approximation
schemes. In order to not clutter graphs and also to avoid being repetitive, we divide up the
evaluations into categories and only present a subset of the results.

As an example of a two-stage contagious disease, we consider a case study of HPV-
based cervical cancer. However, we would like to make a few disclaimers. It is crucial to
notice that the objective is only to illustrate the type of policy decisions that are possible
using this research study. In practice one would require excellent estimates of various quan-
tities and a more appropriate disease spread model than what is considered in this example.
Further, notice that we have tried to obtain as realistic estimates as possible for the numer-
ical values for the parameters described in Sects. 3 and 4. Next we present the parameter
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Fig. 3 Flow chart of the
proposed algorithm

values and describe the sources (if estimated) or a clarification regarding how they were
obtained.

We consider the entire population in the United States with the understanding that it
is purely for illustration purposes and not a suggestion for either the level at which poli-
cymaking must take place or the type of diseases this model can be applied to. We pre-
dominantly use HPV and cervical cancer statistics provided by Center for Disease Control
and Prevention in years 2005 and 2006 (HPV-Associated-Cancer-Statistics 2006). Based on
the U.S. Census Bureau data (US-Census-Bureau 2006), the population of the United State
was 298,444,215 in 2006. Of that, 170,113,202, were female and about 65% of the female
population was between the age of 12 and 60—most likely to be susceptible to HPV. As a
result we approximate the initial susceptible population (i1) to be 100 million. Note that we
exclude men from our model (AMCHP-Fact-Sheet 2006).

The number of people who have HPV, whether they are aware of it (i2) or not (i3) is
estimated to be 18 million (HPV-Statistics 2006), i.e. i2 + i3 = 18,000,000. For the purpose
of our simulations we arbitrarily use i2 = 10,000,000 and i3 = 8,000,000 but assume only
i2 + i3 is known for our analysis. It is estimated (Cervical-Cancer-Statistics 2006) that about
25,000 HPV-associated cancers had occurred each year in the period between 1998 and
2003. As a result, the number of women with cervical cancer (i4) in 2006 would have been
between 250,000 to 500,000 (CRI 2006). For our computations we use the overestimated
value of 500,000. Further, it has been estimated that 6.2 million new HPV infections occur
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each year (HPV-Statistics 2006). Hence as an initial estimate for the probability of becoming
infected by the virus pv = 6.2/(0.65 × 170113202) = 0.056.

We allow pv to change from one year to another based on the number of individuals
during that year that have the disease. To capture the dynamics of the disease spread we
define a linear model so that if i2, i3, and i4 are as described above during any year then there
exists constants a2, a3, and a4 such that the probability of becoming infected by the virus for
a susceptible individual is pv = a2i2 + a3i3 + a4i4. We arbitrarily choose a2 = 7 × 10−9 and
a3 = a4 = 7 × 10−12. Next we describe other measures used in the transition probabilities
from one year to another.

It is important to realize that cervical cancer was one of the most common causes of
cancer-related fatalities for American women. Then, between 1955 and 1992, the cervical
cancer mortality rate declined by 74% and continues to decline by nearly 4% each year (CRI
2006). On average, cervical cancer will lead to the death of 4,000 women in the USA and
12,000 new cases are diagnosed each year (Cervical-Cancer-Statistics 2006). We use this
data to realistically measure the transition probabilities as: pc2 = 0.00006, pc3 = 0.00004
and the probability of dying from cervical cancer as pd−cancer = 0.03. We arbitrarily as-
sume the recovery probabilities as pr2 = 0.02, pr3 = 0.04, py1 = 0.6, py2 = 0.3, py3 = 0.1.
Note that the latter probabilities are relatively high, due to the high chance of recovering
from HPV and success of surgical treatment of cervical cancer (Cervical-Cancer-Treatment
2006). We would like to particularly emphasize that we consider a wide range for the popu-
lation of women with HPV to account for the inherent uncertainties in this number, mostly
due to the declining rate of diagnosis of cervical cancer and the declining rate of cancer-
related mortality.

Further, the birth (pbirth) and natural death (pd−nat ) probabilities in 2006 have been esti-
mated to be 0.012 and 0.006 respectively, based on CDC statistics (Birth-Data 2006). Also,
in terms of the costs, we assume that a single vaccination costs $90–$125 in 2006 (HPV-
Vaccine 2006), a test costs between $40 and $50 (OBGYN 2006), and a cervical cancer
treatment runs about $7,000 to $24,000 per woman (Cervical-Cancer-Treatment 2001). Us-
ing that we chose vaccination costs as cx = 90, treatment cost as cy = 8000, and testing
cost as cz = 40. Finally, we arbitrarily choose w0 = 0.25, w1 = 0.1, w2 = −0.2, w3 = 0,
w4 = −0.5, w5 = −8 as weight coefficients in the objective function—more details in
Sect. 6.2.

We present the results of the numerical evaluations as follows: first we consider a static
policy in Sect. 6.1, then we describe results for dynamic policy without feedback in Sect. 6.2,
and finally we present results for dynamic policy with feedback in Sect. 6.3. While we
describe the details of the above three categories later, we should point out here that the
objective functions for the three categories are not chosen to be the same. This is done
intentionally to clarify that our contribution is not in selecting an objective function, but if
the policymaker provides an objective function of the format f (E[W1],E[W2], . . . ,E[WT ])
and other input data, then our tool will prescribe a policy (or control action) that should be
taken.

6.1 Static policy evaluations

As described above, the first of the three categories that we consider is the static policy.
Here we impose a constraint on the problem described in Sect. 3. We require that the control
policy in each period be the same. The motivation for this comes from the fact that the
policymaker may be inclined to announce publicly what control action he/she proposes (and
many times it appears reasonable if the action is uniform in each year). It is important to
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Table 1 Objective function for
static control for various budgets Budget

(million)
Simulation Deterministic Markov P 20

1 Markov P ∗

1 6.5328 6.6886 6.5148 6.5515

5 33.1604 33.1194 31.7414 32.3034

10 65.6323 65.6794 60.9582 63.2792

50 324.3613 324.2647 229.6935 287.2886

100 647.3186 647.4737 411.4088 566.3500

500 3175.1503 3175.1937 2833.7934 3085.1242

1000 6351.7723 6351.8246 5328.7201 6309.7490

note that this restriction implies that there is no feedback and the policy is made upfront.
Although this is significantly different from what is described in Sect. 3, the reason it is
presented before the other categories that are much closer is that our intention is to describe
results in an order where the objective function value improves with the categories.

For this set of experiments we use the objective function f (E[W1],E[W2], . . . ,
E[WT ]) = (E[WT ] − E[W ′

T ]) · [w1 w2 w3 w4 w5 w0 w0 w0] for T = 20 years where wi

are given weights and E[W ′
T ] is the state of the system under the “do nothing” policy.

The “do nothing” policy corresponds to giving zero vaccinations, zero treatments and zero
testing (in other words zero budget). Essentially this objective is a weighted function of the
improvement in each state between the do nothing policy and the static policy. The objective
function translates to the following (for T = 20)

5∑

i=1

wi

(
E

[
Ui

T

] − E
[
U

′i
T

]) +
T∑

t=1

w0E
[
V 1

t

]
.

We first study the objective function obtained using the three methods: deterministic, in-
dividual Markov chains (using both P 20 as well as the product of Pn values), and simulation
as described in Sect. 5.2. In Table 1 we compare the objective function values for various
budgets using the three methods (although there are four columns, the last two correspond
to the same “method”). Note that these are indeed the optimum objective function values
generated by the genetic algorithm. From the analysis it is evident that the objective value
obtained using simulation is always close to the that using the deterministic approxima-
tion. The individual Markov chain methodology produces results are close to the simulation
values (but not as close as the deterministic analysis). Although the simplest to implement
and the fastest, the individual Markov chain model with the approximate P matrix which
is raised to higher powers was not as close as the others. Note that similar results in terms
of the performance of the simulation, deterministic analysis, and individual Markov chains
were obtained for the dynamic policies both with or without feedback (these corresponding
results are not presented in the results section for the dynamic policies).

Next we present the results for the bounds described in Sect. 5.2.4 in Fig. 4. In particular
the bounds are obtained using the worst case and best case of administering of vaccines as
well as tests. Clearly, significant benefits can be obtained with additional information and
significant losses would be incurred if erroneous information is used. The results are similar
for the dynamic policies as well and hence are not presented in that section.

Finally, for the static policy where the control action is identical in every period, it is
easy to tabulate the policy for various budget values. The results are presented in Table 2.
In that table, note that X, Y , and Z respectively denote the number of vaccines, number of
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Fig. 4 Objective function, best case and worst case versus budget

Table 2 Policies for static
control for various budgets Budget

(million)
X Y Z

1 172 5 23613

5 170 16 121417

10 164 156 218431

50 164 5048 240031

100 65 11254 249053

500 3514414 16750 1242568

1000 8596646 16716 2314346

treatments and number of tests in every period for each budget value. It is encouraging from
a fairness standpoint to note that the resulting policy implements the action over all three
domains (and not just one, although such all-or-none policies are fairly common in other
applications).

6.2 Dynamic policy without feedback

The second of the three categories that we consider is the dynamic policy without feedback.
Here we do not impose any constraints such as in the static policy. However we do not use
feedback. Therefore this does not describe the final step of the approximation when using
feedback. For this set of experiments (and those in the next section which deals with dy-
namic policy with feedback) we use the objective function f (E[W1],E[W2], . . . ,E[WT ]) =
1
T

∑T

n=1(E[Wn]−E[W ′
n]) · [w1 w2 w3 w4 w5 w0 w0 w0] for T = 20 years where wi are given

weights and E[W ′
T ] is the state of the system under the do nothing policy. This objective is

a weighted function of the improvement in each state between the do nothing policy and the
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Table 3 Dynamic policy vectors
for 1 billion budget Period X (in millions) Y (in 1000s) Z (in millions)

1 0.000 124.995 0.001

2 0.000 76.765 9.647

3 0.000 124.995 0.001

4 1.303 86.493 4.769

5 2.773 53.351 8.089

6 7.123 7.578 7.456

7 7.760 3.612 6.817

8 7.931 4.396 6.274

9 6.010 3.981 10.680

10 8.270 1.285 6.133

11 8.536 3.580 5.077

12 5.825 5.471 10.797

13 6.118 18.673 7.499

14 9.446 0.259 3.692

15 5.961 40.545 3.478

16 3.318 71.113 3.309

17 11.111 0.000 0.000

18 11.111 0.000 0.000

19 11.106 0.000 0.011

20 11.111 0.000 0.000

dynamic policy. In terms of the number of people in various stages, the objective function
translates to:

1

T
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We first analyze the effect of dynamic policy on the action space over time. We arbitrarily
pick a budget value of 1 Billion units for the analysis (with the understanding that for other
budget values the results are more or less similar). In Table 3 we illustrate the vector of X,
Y , and Z values for this dynamic policy without feedback. The policy is indeed dynamic
and the results appear to be different at the extremes (than in the middle periods). This is
due to the fact that the horizon is finite and the policy could be potentially different near the
start and finish.

Next we compare the dynamic policy without feedback against the static policy. Although
there is merit in announcing a “static” policy for vaccination, treatment, and tests, the dy-
namic policy possibly produces better results. For this purpose we compare the objective
function for the dynamic policy against the static policy for various budget values as shown
in Fig. 5. There is a significant improvement in the objective (higher value is better) when
the static constraint is removed.

Finally we compare the actions for the dynamic policy in each period against the static
policy. Across different periods we plot the number of vaccinations (X), number of treat-
ments (Y ), and number of tests (Z) respectively in Figs. 6, 7 and 8. The figures present the
policies for both static as well as dynamic policy without feedback.
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Fig. 5 Objective function for static versus dynamic policies for various budgets

Fig. 6 Number of vaccines in each period, static vs. dynamic policies

6.3 Dynamic policy with feedback

The last of the three categories that we consider is the dynamic policy with feedback. This
essentially is the complete approximation to the MDP described in Sect. 5. For this set of
experiments we use the same objective function as in Sect. 6.2.

We first analyze the effect of dynamic policy with feedback on the objective function
for various budgets. Table 4 contains the objective values (in 1000’s) for the static policy,
dynamic policy without feedback and dynamic policy with feedback. The dynamic policy
with feedback is indeed better than without feedback but not significantly. It can be con-
cluded that the additional complexity due to obtaining the state information does not result
in significantly stronger numerical results.
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Fig. 7 Number of treatments in each period, static vs. dynamic policies

Fig. 8 Number of tests in each period, static vs. dynamic policies

Next we compare the control policy of the various policies. In particular, we plot the
average number of vaccinations, average number of treatments and average number of tests
in each period. This is done in Fig. 9. The control actions even after averaging are reasonably
different for each policy.
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Table 4 Objective function for
various policies for different
budgets

Budget
(million)

Static
policy

Dynamic policy
without feedback

Dynamic policy
with feedback

1 0.32 0.51 0.61

5 1.58 2.64 2.76

10 3.13 5.58 5.53

50 15.44 28.93 29.01

100 30.83 51.98 56.21

500 151.19 246.69 248.45

1000 302.47 428.27 430.15

Fig. 9 Comparing static, dynamic without feedback and dynamic with feedback policies

7 Numerical experiments: evaluating impact for policy and healthcare

In this section we design experiments to evaluate the performance of our model with re-
spect to several factors including (a) comparing against existing HPV vaccination policy,
(b) contrasting our model for HPV and HIV AIDS, (c) judging the impact of time horizon,
(d) impact of cost ratios, and (e) population size. For these experiments we stick to the fol-
lowing modeling considerations: The objective function is f (E[W1],E[W2], . . . ,E[WT ]) =
1
T

∑T

n=1(E[Wn] − E[W ′
n]) · [w1 w2 w3 w4 w5 w0 w0 w0]; the budget is 5 million; objective

function engine is chosen to be simulation; dynamic policy with feedback is used for all the
results. In addition, all the HPV parameters are identical to that in Sect. 6, Table 5 describes
the baseline case and the various factors that would be changed in each of the experiments.
For example in Sect. 7.3 we will use all the baseline cases but try a horizon of 5 years besides
20 years to evaluate its impact on the policy.

7.1 Impact of policy

The state of the literature suggests that seventy percent of eligible population be vaccinated
(Garnett et al. 2006). A natural question to ask is: what if the budget required to vaccinate
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Table 5 Scope of design of
experiments Section Factor Baseline case Experimental case

7.1 Policy this paper state of the art

7.2 Disease HPV-Cervical Cancer HIV-AIDS

7.3 Horizon 20 years 5 years

7.4 Cost ratio 0.1 0.2–1.4

7.5 Population large small

Fig. 10 Comparing the existing policy versus that proposed in this paper

70% of the eligible was available to allocate among examinations, vaccinations, and treat-
ment subsidy? We seek to evaluate the effect on the objective function by comparing that for
our model versus the state of the literature. It is crucial to notice that the choice of objective
function will not affect the validity of the developed methodologies.

Figure 10 illustrates a comparison of the objective function where static policy refers to
the state of the literature and dynamic policy refers to our proposed policy. There is over
30% improvement in the objective function by incorporating our proposed policy which is
by all means extremely significant. Although we do not present the budget allocation, our
results suggest a more balanced allocation for testing, vaccination and treatment subsidy as
opposed to investing only in vaccination. Understandably for HPV although the testing is
included for free in most health plans, this paper suggests providing financial incentives to
go perform the examinations (which is more crucial than vaccinating most of the eligible
population).

7.2 Comparing HPV with HIV

Besides cervical cancer caused by HPV, another two-stage disease is AIDS caused by HIV.
The question we seek to address is if the budget allocation for examinations, vaccinations,
and treatment subsidy would be any different for the two diseases. It is critical to under-
stand a few nuances with respect to HIV. First of all there is not a 100% effective vaccine
against HIV (efficiency is 25–75% (Gray et al. 2003)). Secondly, although we have kept sev-
eral model parameters similar (population, budget, etc.), there still are differences between
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Fig. 11 Comparing the policies for HPV-Cervical cancer against HIV-AIDS

HPV/Cervical-Cancer and HIV/AIDS. The main differences are: There is higher chance get-
ting AIDS after having the HIV than getting cervical cancer after being infected by HPV;
The most common treatment for cervical cancer is by surgery (more costly) which is a one-
time action, however in the case of AIDS the treatment is over time and by using drugs
(less costly); The HPV vaccine is effective for 4 years and after that it should be repeated,
but for HIV the chance of immunity is low but it remains for longer time. Based on these
conditions, we compare our budget allocation policies for HIV and HPV.

For HPV we used the same numerical values as stated in Sect. 6, however for HIV we use
(source: AIDS-Vaccine-Initiative 2009): a2 = 5 × 10−10, a3 = 5 × 10−12, a4 = 5 × 10−12,
pc2 = 0.0005, pc3 = 0.0003, py2 = 0.006, py3 = 0.005, i1 = 100000000, i2 = 10000000,
i3 = 8000000, i4 = 500000, i5 = 0, cx = 150, cy = 2500, and cz = 200. Also parameters
that are identical to the HPV case are not reported above.

Figure 11 shows the average fraction of budget allocated for vaccination, examination,
and treatment per year. The average is computed over the 20-year horizon for both cases
of HIV and HPV. Based on the results in Fig. 11, we conclude that in the case of HPV
the policy assigns more of the budget to vaccination, whereas for HIV more of the budget
is assigned to treatment and testing. One reason is that the HIV vaccinations are not as
effective and the other means of preventing the spread appear to be more effective. Because
of space limitations we only show the baseline case of HPV for the remaining experiments
emphasizing that the qualitative conclusions for the other factors are fairly similar for HIV
ad HPV. The only interesting finding we would like to present is that the vaccination is more
favored when the population is larger.

7.3 Impact of planning horizon

For policymakers a critical decision-making paradigm is the horizon to consider for the
policies. In order to address that issue we consider two planning horizons and compare the
policies for them: 20 years and 5 years. An interesting result from a modeling standpoint that
is that as the planning horizon becomes shorter, the difference between having feedback and
not having the feedback in dynamic policy becomes more significant (since in a long horizon
we anticipate deviations from predicted states to average out). We evaluate by comparing the
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Fig. 12 Comparing the effect of planning horizon of 20 versus 5 years on (a) testing, (b) treatment and
(c) vaccinations

policy for 5 versus 20 years in Fig. 12 which shows the effect of length of planning horizon
on the policy. Note that only the first five bars in the charts since that is the place the two
policies can be compared.

Our findings indicate the following: in the case of short horizon, treatment plays a more
important role and in fact most of the budget goes into treatment. But when the horizon is
longer vaccination becomes more important because it helps to reduce the overall cost in
future. In other words, longer horizon emphasizes on the value of future, which is exactly
the reason for vaccinating. We compare the graphs, in the first 5 periods the short horizon
model assigns most of the money to treatment whereas in long term horizon a significant
portion of the budget was allocated to vaccination in the first 5 periods.

7.4 Impact of cost ratio

As mentioned before the examination cost can be thought of an incentives for citizens to
perform tests, it is worthwhile to see the effect on policy for various examination costs.
We use the ratio of examination cost to the vaccination cost. As illustrated in Fig. 13, the
ratio increases to 0.8 (meaning the cost of examination is close to vaccination cost), there
are more vaccination. Since the basic reason of having examination is preventing the cost
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Fig. 13 Evaluating the impact of
the ratio of examination cost to
vaccination cost

of vaccination when it is not efficient, if their costs are similar it is clear that vaccinations
would be better.

We observe in Fig. 13 that the effect of the ratio is not smooth. Instead of fixing the
vaccination cost and just changing the examination cost (which would have resulted in a
smooth curve), we emphasize that besides the ratio, the individual cost parameters are also
crucial. Therefore the figure shows the effect on number of vaccination and examination as
the cost ratio (exam/vaccine) increases. The reason that the number of examination does not
converge to zero even when it costs more than vaccination is that examination has two other
advantages in our model: the people who know they have the virus have a smaller chance of
getting cancer (they can take better care) and also a better chance of recovering.

7.5 Impact of population

We also study the effect of population size on the policies. In particular, we study the im-
pact of population size on how the budget is allocated among the three dimensions: testing,
vaccination and treatment. From Fig. 14 it is apparent that when the population size is large,
the budget is relatively evenly spread between testing, vaccination and treatment. However,
when the population size is not as large (small is still over 50,000) it appears as if it would
make more sense to spend more on treatment than either of the other two options. From a
policymaking standpoint this is interesting if we consider small nations or small populations
with little or no interactions with the rest of the world.

8 Concluding remarks

In this paper we study policies for budget allocation to prevent and cure two-stage conta-
gious diseases. The methodologies developed in this paper, are independent of the choice
of objective functions and can be adapted to variety of real world policy making decisions.
The decision-support tool would also need appropriate parameters as well as model for dis-
ease spread which would typically be provided by epidemiologists. Further, to make our
recommendations, we formulate a Markov decision process (MDP) problem to obtain the
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Fig. 14 Comparing the policies for large and small sized populations

optimal dynamic control with feedback. However since solving the MDP is computation-
ally intractable, we use an asymptotic optimal policy based on a fluid model of the stochas-
tic network dynamics. This results in dynamic policies without feedback that we iteratively
solve for the feedback case as information rolls in. The paper uses a genetic algorithm which
heuristically searches through the space of possible actions and evaluates the objective func-
tion value for each candidate action. One of the contributions is the development of methods
to characterize the objective function value for a given action vector.

8.1 Implementation

Due to the large state and action space for the MDP, we implement meta-heuristic methods
using genetic algorithm combined with an evaluating engine as shown in Fig. 1. The eval-
uating engine step in all cases takes less than a second in total for the entire computation.
However, the genetic algorithm part depends on the policy. In our experiments the static pol-
icy took an average of 13 seconds using the deterministic methodology whereas 25 seconds
on average with simulations. The dynamic policy without feedback was only fractionally
slower. For that the deterministic version took 15 seconds and the simulation methodology
took 27 seconds on average. However, the dynamic policy with feedback which only runs as
a simulation took about 8300 seconds on average, although it could take up to a day in the
worst case. Further, we ran several sensitivity analysis experiments and they indicate that
the results are fairly robust. Among all the experiments we performed, the largest change in
the objective function was 2%.

8.2 Key findings

We perform several numerical experiments which resulted in the following findings: the
methodology to determine the action in each period can be implemented in a timely fashion;
the resulting control policy is not easy to characterize—however for the static policy the pre-
scribed solution spreads across the action space, for the dynamic policies the solutions look
different near the boundaries as compared to the center of the horizon; the different engines



Ann Oper Res (2012) 196:707–735 733

for objective function evaluation namely simulation, individual Markov chains, and deter-
ministic analysis produce reasonably close solutions; there was a noticeable difference in
the policy as the budgets changed; as expected the static policy was inferior to dynamic; the
dynamic policy without feedback was not significantly worse off compared to the case with
feedback; the dynamic policy without feedback is not only just marginally worse than with
feedback, it runs much faster (few seconds) than with feedback (few hours). It is important
to realize that the results depend on the choice of objective function. Also, generally speak-
ing the technique described in this paper is applicable to solve generic MDPs approximately
especially when there is curse of dimensionality.

In addition, we also perform several experiments to demonstrate the potential impact of
various factors in terms of healthcare policy decisions. In particular, by comparing against
existing HPV vaccination policy of vaccinating 70% of eligible population, our policy seems
to perform much better in improving the objective function. In essence it would be worth-
while using the budget for examinations (essentially incentives) and treatment. Further, to
study how the policies differ between HIV-AIDS and HPV. Since HIV vaccination is not as
effective, it is natural to devote more of the budget to examination and treatment as com-
pared to HPV. We also find that since the impact of vaccinations cannot be realized in a
short time-horizon, the decisions are significantly different for both HPV and HIV. In addi-
tion, for both HIV and HPV as the population size becomes small it is more effective to use
a larger fraction of the budget for treatment (as opposed to the large population where the
budget is spent more-or-less evenly between testing, vaccination and treatment). Returning
to the HPV incentives for examinations, it appears that using a weak incentive would fa-
vor more examinations versus vaccinations and vice versa (contradicting human behavior)
forces policymakers to consider this issue more closely.

8.3 Limitations

The goal of this study is to illustrate the potential of Operations Research methods (espe-
cially stochastic control) for solving problems in healthcare policies. However, it is crucial
to realize that the claims made such as the ones in the previous section ought to be first
validated using appropriate statistical methods. In particular, some of the findings in the
previous paragraph come with a disclaimer that they are based on the objective function
and disease spread model described in the paper. Thus while developing a decision-support
tool, we recommend investigating a variety of objective functions, disease spread models,
robustness analysis, sensitivity analysis, and model uncertainty.

There are other situations for which the model would perhaps have to be fine tuned sig-
nificantly. For example, the budget for the entire planning horizon we assume is known
deterministically. Further, we assume that the model parameters are known with a reason-
able amount of certainty but that is not realistic considering the variability in model structure
and scarce data. This is critical and would have to be considered while building a decision-
support tool where the eventual solution should be checked for robustness with respect to
perturbation of the model parameters. However, we should clarify that addressing this pa-
rameter uncertainty issue is beyond the scope of this study as our manuscript presents a
probabilistic analysis (and not a statistical analysis). The data used in this paper is purely for
illustrative purposes.

In particular, the disease spread model may have to be suitably modified when the spread-
ing mechanism changes (this would not be as straightforward in general but the method-
ology would remain unchanged as long as the behavior is Markovian). From a modeling
standpoint, the only major requirement in terms of the disease model is that it must satisfy
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the Markov property. In fact one could also include herd immunity which is gaining a lot of
importance in large-scale vaccinations. Although we have not explicitly considered herd im-
munity, there is an implicit provision for that in our proposed framework. In particular, our
model considers spread of disease as a function of the number of individuals who are not be-
ing vaccinated. This way, herd immunity can be incorporated into our proposed framework.
However, considering the focus of this paper and space limitations, we feel herd immunity
is best left as a limitation of our study.

In summary, our key finding is that the resource allocation problem considered in this
paper be solved first to determine a rough estimate for the number of vaccinations, exami-
nations and treatment subsidies. Using this coarse first cut via a simplistic model, one could
use the extensive literature on disease spread to determine a strategy for implementation on
individuals. In essence, this paper provides a tool for effective pro-active management of
two-stage communicable diseases. However, the entire analysis is probabilistic, therefore
a significant statistical analysis is required before building an appropriate decision-support
tool.
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