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Abstract In this paper, we study single-server tandem queues with general service times
and finite buffers. Jobs are served according to the Blocking-After-Service protocol. To
approximately determine the throughput and mean sojourn time, we decompose the tan-
dem queue into single-buffer subsystems, the service times of which include starvation and
blocking, and then we iteratively estimate the unknown parameters of the service times of
each subsystem. The crucial feature of this approach is that in each subsystem successive
service times are no longer assumed to be independent, but a successful attempt is made
to include dependencies due to blocking by employing the concept of Markovian Arrival
Processes. An extensive numerical study shows that this approach produces very accurate
estimates for the throughput and mean sojourn time, outperforming existing methods, es-
pecially for longer tandem queues and for tandem queues with service times with a high
variability.

Keywords Blocking · Decomposition · Finite buffer · Flow line · Markovian arrival
process · Matrix-analytic methods

1 Introduction

The subject of this paper is the approximative analysis of single-server tandem queues with
general service times and finite buffers. The blocking protocol is Blocking-After-Service
(BAS): if the downstream buffer is full upon service completion the server is blocked and
has to wait until space becomes available before starting to serve the next job (if there is any).

R. Bierbooms · I.J.B.F. Adan (�)
Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
e-mail: i.j.b.f.adan@tue.nl

R. Bierbooms
e-mail: r.bierbooms@tue.nl

M. van Vuuren
CQM B.V., P.O. Box 414, 5600 AK, Eindhoven, The Netherlands
e-mail: vanvuuren@cqm.nl

mailto:i.j.b.f.adan@tue.nl
mailto:r.bierbooms@tue.nl
mailto:vanvuuren@cqm.nl


68 Ann Oper Res (2013) 209:67–84

Fig. 1 A tandem queue with
4 servers

Networks of queues (and in particular, tandem queues) with blocking, have been extensively
investigated in the literature; see e.g. Buzacott et al. (1995), Colledani and Tolio (2011),
Dallery and Gershwin (1992), Perros and Altiok (1986), Perros (1989, 1994). In most cases,
however, queueing networks with finite buffers are analytically intractable and therefore the
majority of the literature is devoted to approximate analytical investigations. The approxi-
mation developed in this paper is based on decomposition, following the pioneering work of
Gershwin (1987): the tandem queue is decomposed into single-buffer subsystems, the pa-
rameters of which are determined iteratively. In each subsystem, the “actual” service time,
starvation and blocking are aggregated in a single service time, and these aggregate service
times are typically assumed to be successively independent. However, these aggregate ser-
vice times are not independent. For instance, knowledge that the server is blocked after ser-
vice completion (resulting into a long aggregate service time) makes it more likely that the
server will also be blocked after the next service. Especially in longer tandem queues with
small buffers and in tandem queues with service times with high variability, dependencies
of successive aggregate service times may have a strong impact on the performance. In this
paper, an approach is proposed to include such dependencies in the aggregate service times.

The model considered in the current paper is a tandem queue L consisting of N servers
and N −1 buffers in between. The servers (or machines) are labeled Mi , i = 0,1, . . . ,N −1.
The first server M0 acts as a source for the tandem queue, i.e., there is always a new job
available for servicing. The service times of server Mi are independent and identically dis-
tributed, and they are also independent of the service times of the other servers; Si denotes
the generic service time of server Mi , with rate μi and squared coefficient of variation c2

Si
.

The buffers are labeled Bi and the size of buffer Bi is bi (i.e., bi jobs can be stored in Bi ).
We assume that each server employs the BAS blocking protocol. An example of a tandem
queue with 4 machines is illustrated in Fig. 1.

The approximation is based on decomposition of the tandem queue into subsystems, each
one consisting of a single buffer. To take into account the relation of buffer Bi with the up-
stream and downstream part of the tandem queue, the service times of the server in front of
buffer Bi and the one after buffer Bi are adapted by aggregating the “real” service times Si−1

and possible starvation of Mi−1 before service, and Si and possible blocking of Mi after ser-
vice. The aggregate service processes of Mi−1 and Mi are described by employing the con-
cept of Markovian Arrival Processes (MAPs; see e.g. Neuts 1989), the parameters of which
are determined iteratively. It is important to note that Markovian Arrival Processes can be
used to describe dependencies between successive service times. Although decomposition
techniques for single-server queueing networks have also been widely used in the literature,
see e.g. Gershwin (1987), Helber (2005), Kerbache and MacGregor Smith (1987), Perros
(1994), van Vuuren et al. (2005), van Vuuren and Adan (2009), the distinguishing feature of
the current approximation is the inclusion of dependencies between successive (aggregate)
service times by employing Markovian Arrival Processes.

The paper is organized as follows. In Sect. 2 we describe the decomposition of the tan-
dem queue in subsystems. Section 3 presents the iterative algorithm. The service processes
of each subsystem are explained in detail in Sects. 4 and 5, after which the subsystem is
analyzed in Sect. 6. Numerical results can be found in Sect. 7 and they are compared to sim-
ulation and other approximation methods. Finally, Sect. 8 contains some concluding remarks
and gives suggestions for further research.
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Fig. 2 Decomposition of the
tandem queue of Fig. 1 into
3 subsystems

2 Decomposition

The original tandem queue L is decomposed into N −1 subsystems L1,L2, . . . ,LN−1. Sub-
system Li consists of buffer Bi of size bi , an arrival server Ma

i in front of the buffer, and a
departure server Md

i after the buffer. Figure 2 displays the decomposition of line L of Fig. 1.
The arrival server Ma

i of subsystem Li is, of course, server Mi−1, but to account for the
connection with the upstream part of L, its service times are different from Si−1. The random
variable Ai denotes the service time of the arrival server Ma

i in subsystem Li . This random
variable aggregates Si−1 and possible starvation of Mi−1 before service because of an empty
upstream buffer Bi−1. Accordingly, the random variable Di represents the service time of
the departure server Md

i in subsystem Li ; it aggregates Si and possible blocking of Mi after
service completion, because the downstream buffer Bi+1 is full. Note that successive service
times Di of departure server Md

i are not independent: a long Di induced by blocking is
more likely to be followed by again a long one. The same holds for long service times Ai

induced by starvation. We try to include dependencies between successive aggregate service
times in the modeling of Di , but they will be ignored in Ai . The reason for modeling Ai

and Di differently is that starvation occurs before the service start and blocking after service
completion, so there is an “asymmetry” in the available information at the end of Ai and Di ,
respectively. In the subsequent sections we construct an algorithm to iteratively determine
the characteristics of Ai and Di for each i = 1, . . . ,N − 1.

3 Iterative method

This section is devoted to the description of the iterative algorithm to approximate the per-
formance of tandem queue L. The algorithm is based on decomposition of L in N − 1
subsystems L1,L2, . . . ,LN−1 as explained in the previous section.

Step 0: Initialization
The first step of the algorithm is to initially assume that there is no blocking. This means
that the random variables Di are initially assumed to be equal to Si .

Step 1: Evaluation of subsystems
We subsequently evaluate each subsystem, starting from L1 and up to LN−1. First we de-
termine new estimates for the first two moments of Ai , before calculating the equilibrium
distribution of Li .
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(a) Service process of the arrival server
For the first subsystem L1, the service time A1 is equal to S0, because server M0 cannot
be starved. For the other subsystems we proceed as follows in order to determine the first
two moments of Ai . Define pi,bi+2 as the long-run fraction of time arrival server Ma

i of
subsystem Li is blocked, i.e., buffer Bi is full, Md

i is busy, and Ma
i has completed service

and is waiting to move the completed job into Bi . By Little’s law we have for the throughput
Ti of subsystem Li ,

Ti = 1 − pi,bi+2

E[Ai] . (1)

By substituting in (1) the estimate T
(k)

i−1 for Ti , which is the principle of conservation of flow,

and p
(k−1)

i,bi+2 for pi,bi+2 we get as new estimate for E[Ai],

E
[
A

(k)
i

] = 1 − p
(k−1)

i,bi+2

T
(k)

i−1

, (2)

where the superscripts indicate in which iteration the quantities have been calculated. The
second moment of Ai cannot be obtained by using Little’s law. Instead we calculate the
second moment using (3).

(b) Analysis of subsystem Li

Based on the new estimates for the first two moments of Ai , we translate subsystem Li to a
Markov process and calculate its steady-state distribution as described in Sect. 6.

(c) Determination of the throughput of Li

Once the steady-state distribution is known, we determine the new throughput T
(k)
i accord-

ing to (7).

Step 2: Service process of the departure server
From subsystem LN−2 down to L1, we adjust the parameters to construct the distribution of
Di , as will be explained in Sect. 5. Note that DN−1 = SN−1, because server MN−1 can never
be blocked.

Step 3: Convergence
After Steps 1 and 2 we verify whether the iterative algorithm has converged or not by com-
paring the throughputs in the (k − 1)-th and k-th iteration. When

N−1∑

i=1

|T (k)
i − T

(k−1)
i | < ε,

we stop and otherwise repeat Steps 1 and 2.

4 Service process of the arrival server

In this section, we model the service process of arrival server Ma
i of subsystem Li (cf.

Step 1(a) in Sect. 3). As an approximation, we act as if the service times Ai are independent
and identically distributed, thus ignoring dependencies between successive service times Ai .

Note that an arrival in buffer Bi , i.e., a job being served by Ma
i moves to buffer Bi when

space becomes available, corresponds to a departure from Md
i−1 in the upstream subsystem
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Li−1. Just after this departure, two situations may occur: subsystem Li−1 is empty with
probability (w.p.) qe

i−1, or it is not empty with probability 1 − qe
i−1. By convention, we do

not count the job at Ma
i−1 as being in Li−1. So subsystem Li−1 is empty whenever there are

no jobs in Bi−1 and Md
i−1. In the former situation, Mi−1 has to wait for a residual service

time of arrival server Ma
i−2 of subsystem Li−1, denoted as RAi−1, before the actual service

Si−1 can start. In the latter situation, the actual service Si−1 can start immediately. Hence,
since the service time Ai of arrival server Ma

i includes possible starvation of Mi−1 before
the actual service Si−1, we have

Ai =
{

RAi−1 + Si−1 with probability qe
i−1,

Si−1 otherwise.

This representation is used to determine the second moment of Ai . Based on qe
i−1 and the

first two moments of RAi−1, the determination of which is deferred to Sect. 6 (cf. (8)), we
obtain the second moment E[A2

i ] as

E
[
A2

i

] = qe
i−1E

[
RA2

i−1

] + 2qe
i−1E[RAi−1]E[Si−1] + E

[
S2

i−1

]
. (3)

The first moment E(Ai) follows from (2) expressing conservation of flow.

5 Service process of the departure server

In this section, we describe the service process of the departure server Md
i of subsystem Li

in detail (cf. Step 2 in Sect. 3). To describe Di we take into account the occupation of the last
position in buffer Bi+1 (or server Md

i+1 if bi+1 = 0). A job served by Md
i may encounter three

situations in downstream subsystem Li+1 on departure from Li , or equivalently, on arrival at
Li+1; see Fig. 3. The situation encountered on arrival has implications for possible blocking
of the next job served by Md

i , as will be explained below.

(i) The arrival is triggered by a service completion of departure server Md
i+1 of Li+1, i.e.,

server Ma
i+1 was blocked because the last position in Bi+1 was occupied, and waiting

for Md
i+1 to complete service. Then the next service of Md

i (if there is a job) and Md
i+1

start simultaneously and buffer Bi+1 is full. We denote the time elapsing till the next
service completion of departure server Md

i+1 by Db
i+1, which is equal to the time the

last position in Bi+1 will be occupied before it becomes available again. Hence, in this
situation, the next service time Di of Md

i is equal to the maximum of Si and Db
i+1, if

Md
i can immediately start with the next service. Otherwise, if Md

i is starved just after
the departure, Di is equal to the maximum of Si and the residual time of Db

i+1 at the
service start of Md

i .
(ii) Just before the arrival there is only one position left in buffer Bi+1. So, right after this

arrival, Bi+1 is full. Now we denote the time elapsing till the next service completion
of departure server Md

i+1 by D
f

i+1, which is again the time the last position in Bi+1 will

stay occupied. Thus Di is equal to the maximum of Si and the residual time of D
f

i+1 at
the service start of Md

i .
(iii) Finally, when neither of the above situations occurs, the arrival does not fill up buffer

Bi+1, because there are at least two positions available in Bi+1. Hence, the last position
in Bi+1 stays empty and the next service time Di is equal to Si .

Note that only in situation (i) and (ii) the next job to be served by Md
i can be possibly

blocked at completion of Si . If a departure from Li encounters situation (i), (ii), or (iii)
in Li+1, then what is the probability that the next departure from Li encounters one of these
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Fig. 3 Possible situations in
downstream subsystem Li+1
encountered on departure
from Li

situations? Now we are not going to act as if the probability that the next departure from
Li encounters either of the three situations is independent of the past. This would imply
that successive service times Di are independent (and they are not). Instead, we are going
to introduce transition probabilities between the above three situations, i.e., the probabil-
ity that a departure encounters situation (i), (ii) or (iii) depends on the situation encoun-
tered by the previous one. Hence, the service process of Md

i will be described by a Markov
chain.

If a departure from Li sees situation (i), and Md
i can immediately start with the next

Si and finishes before Md
i+1 finishes Db

i+1, then the next departure from Li sees again (i).
However, if Md

i+1 finishes first, then on completion of Si by Md
i , both (ii) or (iii) may be

seen. We denote by p
b,nf

i+1 the probability that Md
i+1 completes at least two services before the

next arrival at Li+1, given that Md
i+1 completes at least one service before the next arrival.

So, if Md
i+1 finishes first, then the next departure from Li sees (iii) with probability p

b,nf

i+1 ,
and (ii) otherwise. We assumed that Md

i can immediately start service after a departure. If,
on the other hand, Md

i is starved and has to wait for the next job to arrive, then Db
i+1 should

be replaced by the residual time of Db
i+1 at the service start of Md

i .
The transitions are the same from situation (ii), except that Db

i+1 should be replaced

by D
f

i+1. So, if a departure from Li sees situation (ii), and Md
i finishes before Mi+1 (i.e.,

Si < D
f

i+1), then the next departure from Li certainly sees (i). If Si > RD
f

i+1, then the next

departure from Li sees (iii) with probability p
f,nf

i+1 and (ii) otherwise.
Finally, in situation (iii), the next departure from Li will never see (i). It will see (ii)

with probability p
nf,f

i+1 and (iii) otherwise, where p
nf,f

i+1 is defined as the probability that,
on an arrival at Li+1, there is exactly one position left in the buffer of Li+1. The different
situations and possible transitions are summarized in Table 1, where we assume that Md

i can
immediately start with the next service after a departure. If this is not the case, then Db

i+1

and D
f

i+1 should be replaced by their residual times at the start of the next service of Md
i

(since Db
i+1 and D

f

i+1 will always start at the moment of a departure).
This completes the description of the service processes of the arrival and departure

servers of Li . In the next section, we translate subsystem Li to a Quasi-Birth-Death (QBD)
process; see Latouche and Ramaswami (1999).
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Table 1 Different situations and possible transitions of the service process of departure server Md
i

Service starts in Aggregate service time Next service starts in

(i) max(Si ,D
b
i+1) if Si < Db

i+1: (i)

if Si > Db
i+1: (ii) w.p. 1 − p

b,nf
i+1

(iii) w.p. p
b,nf
i+1

(ii) max(Si ,D
f
i+1) if Si < D

f
i+1: (i)

if Si > D
f
i+1: (ii) w.p. 1 − p

f,nf
i+1

(iii) w.p. p
f,nf
i+1

(iii) Si (ii) w.p. p
nf,f
i+1

(iii) w.p. 1 − p
nf,f
i+1

6 Subsystem

In this section, we describe the analysis of a subsystem Li (cf. Steps 1(b) and 1(c) in Sect. 3).
For ease of notation, we drop the subscript i in the sequel of this section. In order to translate
L to a Markov process, we will describe the random variables introduced in the foregoing
sections in terms of exponential phases, commonly referred to as phase-type distributed ran-
dom variables (see e.g. Tijms 1994). In Sect. 6.1, we first explain how to fit phase-type
distributions on the first and second moment. By employing this concept, we translate sub-
system L to a Quasi-Birth-and-Death process (QBD) in Sect. 6.2. Based on the steady-state
distribution of this QBD, we derive performance measures, which can be used to model the
service process of the arrival server succeeding the subsystem and the service process of the
departure server preceding the subsystem.

6.1 Fitting phase-type distributions on the first two moments

Consider a random variable X with mean E[X] and second moment E[X2]. The squared
coefficient of variation c2

X is defined as

c2
X = var(X)

E2[X] = E[X2]
E2[X] − 1.

We adopt the following recipe to fit a phase-type distribution on E[X] and c2
X , see Tijms

(1994). If 1/k ≤ c2
X ≤ 1/(k − 1) for some k = 2,3, . . . , then the mean and squared coeffi-

cient of variation of the Erlangk−1,k distribution with density

f (x) = pμk−1 xk−2

(k − 2)!e
−μt + (1 − p)μk xk−1

(k − 1)!e
−μx, x ≥ 0, (4)

matches E[X] and c2
X , provided the parameters p and μ are chosen as

p = 1

1 + c2
X

(
kc2

X − (
k
(
1 + c2

X

) − k2c2
X

)1/2)
, μ = k − p

E(X)
.

Hence, in this case we may describe X in terms of a random sum of k − 1 or k independent
exponential phases, each with rate μ. The phase diagram of the Erlangk−1,k distribution is
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Fig. 4 Phase diagram of
Erlangk−1,k distribution (left)
and Hyper-exponential2
distribution (right)

illustrated in the left part of Fig. 4. Alternatively, if c2
X > 1, then the Hyper-Exponential2

distribution with density

f (t) = pμ1e
−μ1x + (1 − p)μ2e

−μ2x, x ≥ 0, (5)

matches E[X] and c2
X , provided the parameters p, μ1 and μ2 are chosen as

p = 1

2

(
1 +

√
c2
X − 1

c2
X + 1

)
, μ1 = 2p

E[X] , μ2 = 2(1 − p)

E[X] .

This means that X can be represented in terms of a probabilistic mixture of two exponential
phases with rates μ1 and μ2, respectively. The phase diagram of the Hyper-exponential2

distribution is illustrated in the right part of Fig. 4.
A unified representation of Erlang and Hyper-exponential distributions is provided by

the family of Coxian distributions (cf. Cumani 1982). A random variable X is said to have
a Coxiank distribution if it has to go through at most k exponential phases, where phase i

has rate νi , i = 1, . . . , k. It starts in phase 1 and after phase i, i = 1, . . . , k − 1, it enters
phase i + 1 with probability pi , and otherwise, it exits with probability 1 − pi . Phase k is
the last phase, so pk = 0. Clearly, the Erlangk−1,k distribution is a Coxiank distribution with
νi = μ for all i and pi = 1 for i = 1, . . . , k − 2 and pk−1 = 1 − p. The Hyper-exponential2

distribution is a Coxian2 distribution with

ν1 = μ1, ν2 = μ2, p1 = (1 − p)
μ1 − μ2

μ1
,

where, without loss of generality, μ1 ≥ μ2. This representation of Erlang and Hyper-
exponential distributions in terms of Coxians will be convenient for the description of the
service processes of the arrival and departure server in Appendices A and B.

It is also possible to use phase-type distributions matching the first three (or even higher)
moments; see e.g. van der Heijden (1993), Osogami and Harchol-Balter (2003). Obviously,
there exist many phase-type distributions matching the first two moments. However, numer-
ical experiments suggest that the use of other distributions does not essentially affect the
results, cf. Johnson (1993).

6.2 Subsystem analysis

We apply the recipe of Sect. 6.1 to represent each of the random variables A, S, Db and Df

in terms of exponential phases. The status of the service process of the arrival server Ma

can be easily described by the service phase of A. The description of the service process of
the departure server Md is more complicated. Here we need to keep track of the phase of S

and the phase of Db or Df , depending on situation (i), (ii) or (iii). The description of this
service process is illustrated in the following example.

Example Suppose that S can be represented by two successive exponential phases, Db by
three phases and Df by a single phase, where each phase possibly has a different rate. Then
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Fig. 5 Phase diagram for the
service process of the departure
server

the phase-diagram for each situation (i), (ii), and (iii) is sketched in Fig. 5. States a, b and c

are the initial states for each situation. The gray states indicate that either S, Db or Df has
completed all phases. A transition from one of the states d , e, f , g and h corresponds to a
service completion of departure server Md (i.e., a departure from subsystem L); the other
transitions correspond to a phase completion, and do not trigger a departure. The probability
that a transition from state e is directed to initial state a is equal to 1; the probability that
a transition from state d is directed to initial state a, b and c is equal to 0, 1 − pb,nf and
pb,nf , respectively. The transition probabilities from the other states f , g and h can be found
similarly.

In Fig. 5 it is assumed that Md can immediately start with the next service S after a
departure. However, if Md is starved, then S will not immediately start but has to wait for
the next arrival at L (i.e., service completion of the arrival server Ma). However, Db or
Df will immediately start completing their phases, and may even have completed all their
phases at the start of S.

From the example above, it will be clear that the service process of Md can be described
by a Markovian Arrival Process (MAP): a finite-state Markov process with generator Qd .
This generator can be decomposed as Qd = Qd0 + Qd1, where the transitions of Qd1 cor-
respond to service completions (i.e., departures from L) and the ones of Qd0 correspond to
transitions not leading to departures. The dimension nd of Qd can be large, depending on the
number of phases required for S, Db and Df . Similarly, the service process of Ma can be
described by a Markovian Arrival Process with generator Qa = Qa0 +Qa1 of dimension na .
For an extensive treatment of MAPs, we refer the reader to Neuts (1989). The specification
of the generators Qa and Qd is deferred to Appendices A and B, respectively.

Subsystem L can be described by a QBD with states (i, j, l), where i denotes the number
of jobs in subsystem L, excluding the one at the arrival server Ma . Clearly, i = 0, . . . , b + 2,
where i = b + 2 indicates that the arrival server is blocked because buffer B is full. The
state variables j and l denote the state of the arrival and departure process, respectively. To
specify the generator Q of the QBD we use the Kronecker product: If A is an n1 ×n2 matrix
and B is an n3 × n4 matrix, the Kronecker product A ⊗ B is defined as

A ⊗ B =
⎛

⎜
⎝

A(1,1)B · · · A(1, n2)B
...

...

A(n1,1)B · · · A(n1, n2)B

⎞

⎟
⎠ .
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We order the states lexicographically and partition the state space into levels, where level
i = 0,1, . . . , b + 2 is the set of all states with i jobs in the system. Then Q takes the form:

Q =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

B00 B01

B10 A1 A0

A2
. . .

. . .

. . .
. . . A0

A2 A1 C10

C01 C00

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

.

Below we specify the submatrices in Q. The transition rates from levels 1 ≤ i ≤ b are given
by

A0 = Qa1 ⊗ Ind
,

A1 = Qa0 ⊗ Ind
+ Ina ⊗ Qd0,

A2 = Ina ⊗ Qd1,

where In is the identity matrix of size n. The transition rates are different for the levels i = 0
and i = b + 2. At level b + 2 the arrival server Ma is blocked, so

C10 = Qa1(:,1) ⊗ Id,

C00 = Qd0,

C01 = Ina (1, :) ⊗ Qd1,

where P (x, :) is the x-th row of matrix P and P (:, y) is the y-th column of P . To specify
the transition rates to level 0, we introduce the transition rate matrix Qs of dimension ns ,
describing the progress of the phases of Db or Df while the departure server Md is starved.
Further, the nd × ns matrix Q̄d1 contains the transition rates from states in Qd , that corre-
spond to a departure, to the initial states in Qs . Finally, Īns ,nd

is the 0-1 matrix of size ns ×nd

that preserves the phase of Qs (i.e., the phase of Db or Df ) when the departure server Md

starts serving the next job after having been starved. Then we obtain

B10 = Ina ⊗ Q̄d1,

B00 = Qa0 ⊗ Ins + Ina ⊗ Qs,

B01 = Qa1 ⊗ Īns ,nd
.

This concludes the specification of Q.
The steady-state distribution of the QBD can be determined by the matrix-geometric

method; see e.g Latouche and Ramaswami (1999), Naoumov et al. (1997), van Vuuren and
Adan (2009). We denote the equilibrium probability vector of level i by πi . Then πi has the
matrix-geometric form

πi = x1R
i−1 + xb+1R̂

b+1−i , i = 1, . . . , b + 1, (6)

where R is the minimal nonnegative solution of the matrix-quadratic equation

A0 + RA1 + R2A2 = 0,

and R̂ is the minimal nonnegative solution of

A2 + R̂A1 + R̂2A0 = 0.
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The matrices R and R̂ can be efficiently determined by using an iterative algorithm devel-
oped in Naoumov et al. (1997). The vectors π0, x1, xb+1 and πb+2 follow from the balance
equations at the boundary levels 0,1, b + 1 and b + 2,

0 = π0B00 + π1B10,

0 = π0B01 + π1A1 + π2A2,

0 = πbA0 + πb+1A1 + πb+2C01,

0 = πb+1C10 + πb+2C00.

Substitution of (6) for π1 and πb+1 in the above equations yields a set of linear equations for
π0, x1, xb+1 and πb+2, which together with the normalization equation, has a unique solution.
This completes the determination of the equilibrium probabilities vectors πi . Once these
probability vectors are known, we can easily derive performance measures and quantities
required to describe the service times of the arrival and departure server.

Throughput:
The throughput T satisfies

T = π1B10e +
b+1∑

i=2

πiA2e + πb+2C01e

= π0B01e +
b∑

i=1

πiA0e + πb+1C10e, (7)

where e is the all-one vector.

Service process of the arrival server:
To specify the service time of the arrival server we need the probability qe that the system is
empty just after a departure and the first two moments of the residual service time RA of the
arrival server at the time of such an event. The probability qe is equal to the mean number of
departures per time unit leaving behind an empty system divided by the mean total number
of departures per time unit. So

qe = π1B10e/T . (8)

The moments of RA can be easily obtained, once the distribution of the phase of the service
time of the arrival server, just after a departure leaving behind an empty system, is known.
Note that component (j, k) of the vector π1B10 is the mean number of transitions per time
unit from level 1 entering state (j, k) at level 0. By adding all components with j = l and
dividing by π1B10e, i.e., the mean total number of transitions per time unit from level 1 to
0, we obtain the probability that the arrival server is in phase l just after a departure leaving
behind an empty system. Further, if the service time A of the arrival server is represented by
a Coxian distribution with na phases, where phase j has rate ωj and exit probability 1 −pj ,
j = 1, . . . , na , then the first two moments of the residual service time RA given that the
service time A is in phase l are given by

E[RA|A in l] =
na∑

j=l

j−1∏

k=l

pk(1 − pj )

j∑

k=l

1

ωk

,

E
[
RA2|A in l

] =
na∑

j=l

j−1∏

k=l

pk(1 − pj )

j∑

k=l

j∑

m=l

2

ωkωm

.
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Summation of the conditional moments multiplied by the probability of being in phase l

yields the moments of RA.

Service process of the departure server:
We need to calculate the first two moments of Db and Df and the transition probabilities
pb,nf , pf,nf and pnf,f . This requires the distribution of the initial phase upon entering level
b + 1 due to a departure (or arrival). Clearly, component (j, k) of πb+2C01 is equal to the
number of transitions per time unit from level b+2 entering state (j, k) at level b+1. Hence,
πb+2C01/πb+2C01e yields the distribution of the initial phase upon entering level b + 1 due
to a departure. Defining Db(1) and Db(2) as the time till the first, respectively second,
departure and Ab(1) as the time till the first arrival, from the moment of entering level
b + 1, it is straightforward to calculate the moments of Db(1) ≡ Db and the probabilities
Pr[Db(1) < Ab(1)] and Pr[Db(2) < Ab(1)]. Transition probability pb,nf now follows from

pb,nf = Pr
[
Db(2) < Ab(1)|Db(1) < Ab(1)

] = Pr[Db(2) < Ab(1)]
Pr[Db(1) < Ab(1)] .

Calculation of the moments of Df and transition probability pf,nf proceeds along the same
lines, where the distribution of the initial phase upon entering level b + 1 due to an arrival
is given by πbA0/πbA0e. Finally, pnf,f satisfies

pnf,f = πbA0e

π0B01e + ∑b

i=1 πiA0e
.

7 Numerical results

In order to investigate the quality of the current method we evaluate a large set of examples
and compare the results with discrete-event simulation. We also compare the results with the
approximation of van Vuuren and Adan (2009), a recent and accurate approximation. The
crucial difference between the two methods lies in the modeling of the departure service
process: the current method attempts to take into account dependencies between successive
service times. In each example we assume that only mean and squared coefficient of varia-
tion of the service times at each server are known, and we match, both in the approximation
and discrete-event simulation, mixed Erlang or Hyper-exponential distributions to the first
two moments of the service times, depending on whether the coefficient of variation is less
or greater than 1; see (4) and (5) in Sect. 6. Then we compare the throughput and the mean
sojourn time (i.e., the mean time that elapses from the service start at server M0 until ser-
vice completion at server MN−1) produced by the current approximation and the ones in van
Vuuren and Adan (2009) with the ones produced by discrete-event simulation. Each sim-
ulation run is sufficiently long such that the widths of the 95% confidence intervals of the
throughput and mean sojourn time are smaller than 1%.

We use the following set of parameters for the tests. The mean service times of the servers
are all set to 1. We vary the number of servers in the tandem queue between 4, 8, 16, 24 and
32. The squared coefficient of variation (SCV) of the service times of each server is the same
and is varied between 0.5, 1, 2, 3 and 5. The buffer sizes between the servers are the same
and varied between 0, 1, 3 and 5. We will also test three kinds of imbalance in the tandem
queue. We test imbalance in the mean service times by increasing the average service time of
the ‘even’ servers from 1 to 1.2. The effect of imbalance in the SCV is tested by increasing
the SCV of the service times of the ‘even’ servers by 0.5. Finally, imbalance in the buffer
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Table 2 Overall results for tandem queues with different buffer sizes

Buffer
sizes

Error (%) in the throughput Error (%) in mean sojourn time

Avg. 0–2 2–4 >4 VA Avg. 0–2 2–4 >4 VA

0,0, . . . 1.41 88 10 2 7.22 3.94 53 19 28 11.66

1,1, . . . 3.99 46 36 18 4.60 2.89 59 30 11 7.14

3,3, . . . 3.32 56 28 16 3.85 2.03 75 25 0 4.61

5,5, . . . 2.23 75 20 5 3.69 2.25 66 32 2 3.89

0,2, . . . 1.56 89 11 0 4.70 2.38 75 23 2 6.76

1,3, . . . 3.36 58 27 15 3.95 2.41 69 31 0 4.94

3,5, . . . 2.71 66 21 13 3.63 1.88 77 22 1 3.88

5,7, . . . 1.88 79 21 0 3.53 2.50 66 30 4 3.70

Table 3 Overall results for tandem queues with different SCVs of the service times

SCVs Error (%) in the throughput Error (%) in mean sojourn time

Avg. 0–2 2–4 >4 VA Avg. 0–2 2–4 >4 VA

0.5,0.5, . . . 0.77 100 0 0 1.03 2.37 70 21 9 2.67

1,1, . . . 1.22 100 0 0 1.27 2.18 75 19 6 2.83

2,2, . . . 1.85 90 10 0 3.09 2.24 76 20 4 4.95

3,3, . . . 2.90 51 49 0 5.53 2.40 75 23 2 7.20

5,5, . . . 5.58 15 45 40 9.64 3.29 48 45 7 10.31

0.5,1, . . . 0.88 100 0 0 1.60 2.53 70 23 7 3.08

1,1.5, . . . 1.22 100 0 0 1.85 2.26 73 21 6 3.20

2,2.5, . . . 2.00 85 15 0 3.74 2.23 76 20 4 5.60

3,3.5, . . . 3.19 41 59 0 6.18 2.40 75 23 2 7.75

5,5.5, . . . 5.96 14 40 46 10.06 3.43 38 51 11 10.63

Table 4 Overall results for tandem queues with different mean service times

Mean service
times

Error (%) in the throughput Error (%) in mean sojourn time

Avg. 0–2 2–4 >4 VA Avg. 0–2 2–4 >4 VA

1,1, . . . 2.65 68 23 9 4.23 2.50 69 26 5 5.71

1,1.2, . . . 2.46 71 21 8 4.57 2.57 67 27 6 5.93

sizes is tested by increasing the buffers size of the ‘even’ buffers by 2. This leads to a total
of 800 test cases.

The results for each category are summarized in Tables 2, 3, 4 and 5. Each table lists the
average error in the throughput and the mean sojourn time compared with simulation results.
Each table also gives for three error-ranges the percentage of the cases that fall in that range,
and the average error of the approximation of van Vuuren and Adan (2009), denoted by VA.

From the tables we can conclude that the current method performs well and better than
van Vuuren and Adan (2009). The overall average error in the throughput is 2.56% and the
overall average error in the mean sojourn time is 2.54%, while the corresponding percent-
ages for van Vuuren and Adan (2009) are 4.40% and 5.82%, respectively.
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Table 5 Overall results for tandem queues of different length

Servers
in line

Error (%) in the throughput Error (%) in mean sojourn time

Avg. 0–2 2–4 >4 VA Avg. 0–2 2–4 >4 VA

4 2.26 69 29 2 0.57 1.77 83 17 0 0.95

8 2.68 66 27 7 2.87 1.82 81 18 1 2.80

16 2.68 68 21 11 5.30 1.63 88 9 3 5.39

24 2.55 72 17 11 6.41 2.65 66 26 8 8.38

32 2.61 73 16 11 6.84 4.80 19 62 19 11.59

Table 6 Throughput for four-server lines with exponential service times

τi = 1/μi bi Throughput

0 1 2 3 1 2 3 Exact App Buz Per

1 1.1 1.2 1.3 1 1 1 0.710 0.702 0.700 0.694

1 1.2 1.4 1.6 1 1 1 0.765 0.759 0.756 0.751

1 1.5 2 2.5 1 1 1 0.861 0.858 0.855 0.853

1 2 3 4 1 1 1 0.929 0.929 0.927 0.927

Table 7 Throughput for three-server lines with general service times

τi = 1/μi c2
Si

bi Throughput

0 1 2 0 1 2 1 2 Sim App Buz Alt

0.5 0.5 0.5 0.75 0.75 0.75 2 2 0.385 0.383 0.385 0.368

0.5 0.5 0.5 2 2 2 2 2 0.322 0.317 0.312 0.338

0.5 0.5 0.5 2 2 2 2 9 0.360 0.353 0.349 0.368

In Table 2 it is striking that in case of zero buffers the current method produces the most
accurate estimates, while the method of van Vuuren and Adan (2009) produces the least
accurate results. A possible explanation is that for each subsystem the current method keeps
track of the status of the downstream server while its departure server is starved; this is not
done in van Vuuren and Adan (2009). Both methods seem to be robust to variations in buffer
sizes along the line. Table 3 convincingly demonstrates that especially in case of service
times with high variability the current approximation performs much better that van Vuuren
and Adan (2009). Remarkably, Table 5 shows that, while van Vuuren and Adan (2009)
performs better for short lines, the average error in the throughput of the current method
does not seem to increase for longer lines, a feature not shared by the approximation of van
Vuuren and Adan (2009).

Lastly, we compare the current method to other approaches reported in the literature. In
Table 6, results are listed for tandem lines with four servers and exponential service times
(used in Buzacott et al. 1995). The columns Exact, App, Buz, and Per list the exact results,
results of the current approximation, the approximation of Buzacott et al. (1995), and the
one of Perros and Altiok (1986). Table 7 lists results for tandem lines with three servers
and non-exponential service times. In this table, the columns Sim, App, Buz, and Alt show
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results of simulation, the current approximation, the approximation of Buzacott et al. (1995),
and the one of Altiok (1989). Both tables show that the methods perform well on these cases.

8 Conclusions

In this paper, we developed an approximate analysis of single-server tandem queues with
finite buffers, based on decomposition into single-buffer subsystems. The distinguishing
feature of the analysis is that dependencies between successive aggregate service times
(including starvation and blocking) are taken into account. Numerical results convincingly
demonstrated that it pays to include such dependencies, especially in case of longer tandem
queues and service times with a high variability. The price to be paid, of course, is that the
resulting subsystems are more complex and computationally more demanding.

We conclude with a remark on the subsystems. There seems to be an asymmetry in the
modeling of the service processes of the arrival and departure server. The service times of
the arrival server are assumed to be independent and identically distributed, whereas the
service times of the departure server are modeled by a Markovian arrival process, carefully
taking into account dependencies between successive service times. Investigating whether a
similar Makovian description of the service process of the arrival server is also feasible (and
rewarding) seems to be an interesting direction for future research.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

Appendix A: Arrival service generator Qa0 + Qa1

This appendix is devoted to the specification of generator Qa = Qa0 + Qa1 of the MAP
describing the service process of the arrival server Ma . Using the first two moments of
A from (2) and (3) we can fit a phase-type distribution as described in Sect. 6.1. We can
equivalently represent this distribution as a Coxian distribution with na phases, numbered
1, . . . , na ; the starting phase is 1, the rate of phase j is ωj , pj is the probability to proceed
to the next phase j +1, and 1−pj is the probability that A is completed. Since na is the last
phase, we have pna = 0. Then the states of the MAP are numbered 1, . . . , na . Its generator
can be expressed as Qa0 +Qa1, where the transition rates in Qa1 are the ones corresponding
to a service completion, i.e., an arrival in the buffer. The non-zero elements of Qa0 and Qa1

are presented below:

Qa0(j, j) = −ωj , j = 1, . . . , na,

Qa0(j, j + 1) = pjωj , j = 1, . . . , na − 1,

Qa1(j,1) = (1 − pj )ωj , j = 1, . . . , na.

Appendix B: Departure service generator Qd0 + Qd1

In this appendix we specify the generator Qd = Qd0 + Qd1 of the service process of the
departure server Md . The generator Qd applies to the situation that Md can immediately
start with the next service after a departure (see Table 1). In case Md is starved, the arrival
and departure processes are specified by B10, B00 and B01 in Sect. 6.
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First, we fit a phase-type distribution on the random variables S, Db, and Df as described
in Sect. 6.1. In the same way as in Appendix A, we construct a MAP for each of the three
random variables with the following generators:

• Qdb = Qdb0 + Qdb1 of size ndb × ndb for Db ,
• Qdf = Qdf 0 + Qdf 1 of size ndf × ndf for Df ,
• Qs = Qs0 + Qs1 of size ns × ns for S.

These generators can be used to construct Qd0 and Qd1. We start with specifying the transi-
tion rates in Qd0, which are the phase transitions not corresponding to a service completion
(i.e. not corresponding to a departure from the subsystem). We divide the states of D in three
groups, each group corresponding to one of the situations in Sect. 5. The matrix Qd0 can be
divided accordingly into blocks:

Qd0 =
⎛

⎝
Q

(i)

d0 0 0
0 Q

(ii)

d0 0
0 0 Q

(iii)

d0

⎞

⎠ .

Note that once we start service in either of the three situations, we cannot move to another
situation without having a departure first. This explains why the non-diagonal blocks in Qd0

consist of zeros only. The matrix Q
(i)

d0 corresponds to situation (i) in Sect. 5 and is again
divided in three parts. In the first part of the process, the phases of both S and Db are
uncompleted, in the second part the phases of S are completed and the phases of Db are
uncompleted, and in the third part the phases of S are uncompleted and the phases of Db are
completed. Using the Kronecker product as defined in Sect. 6.2 we get:

Q
(i)

d0 =
⎛

⎝
Qs0 ⊗ Indb

+ Ins ⊗ Qdb0 Qs1(:,1) ⊗ Indb
Ins ⊗ Qdb1(:,1)

0 Qdb0 0
0 0 Qs0

⎞

⎠ ,

where In is the identity matrix of size n and P (:,1) is the first column of the matrix P .
Transition matrix Q

(ii)

d0 corresponds to situation (ii) in Sect. 5 and can be obtained in a
similar way as Q

(i)

d0:

Q
(ii)

d0 =
⎛

⎝
Qs0 ⊗ Indf

+ Ins ⊗ Qdf 0 Qs1(:,1) ⊗ Indf
Ins ⊗ Qdf 1(:,1)

0 Qdf 0 0
0 0 Qs0

⎞

⎠ .

The matrix Q
(iii)

d0 corresponds to situation (iii) in Sect. 5 where D is equal to S, so

Q
(iii)

d0 = Qs0.

Next, we obtain the transition rates in Qd1 corresponding to departures from the subsystem.
As for Qd0, we divide the states in three groups corresponding to the three situations in
Sect. 5, and we adjust Qd1 accordingly:

Qd1 =
⎛

⎝
Q

(i)→(i)

d1 Q
(i)→(ii)

d1 Q
(i)→(iii)

d1

Q
(ii)→(i)

d1 Q
(ii)→(ii)

d1 Q
(ii)→(iii)

d1

Q
(iii)→(i)

d1 Q
(iii)→(ii)

d1 Q
(iii)→(iii)

d1

⎞

⎠ ,

where, for instance, the rates in Q(iii)→(i) correspond to completions of services which
started in situation (iii), and which encounter situation (i) on completion. Recall that we
divided the states corresponding to situation (i) in three parts: phases of both S and Db un-
completed, only phases of S completed, and only phases of Db completed. In Sect. 5, we
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argued that if S < Db , the next service starts in situation (i). However, if S > Db , the next
service starts in situation (ii) with probability 1 −pb,nf and in situation (iii) with probability
pb,nf . Based on this information, we can construct the first rows of Qd1:

Q
(i)→(i)

d0 =
⎛

⎝
0 0 0

ens ⊗ Qdb1 0 0
0 0 0

⎞

⎠ , Q
(i)→(ii)

d0 =
⎛

⎝
0 0 0
0 0 0

(1 − pb,nf )Qs1 ⊗ endb
0 0

⎞

⎠ ,

Q
(i)→(iii)

d0 =
⎛

⎝
0
0

pb,nf Qs1

⎞

⎠ ,

where en is the first row of the identity matrix of size n. Similarly we get:

Q
(ii)→(i)

d0 =
⎛

⎝
0 0 0

ens ⊗ Qdb1 0 0
0 0 0

⎞

⎠ , Q
(ii)→(ii)

d0 =
⎛

⎝
0 0 0
0 0 0

(1 − pf,nf )Qs1 ⊗ endf
0 0

⎞

⎠ ,

Q
(ii)→(iii)

d0 =
⎛

⎝
0
0

pf,nf Qs1

⎞

⎠ ,

and finally,

Q
(iii)→(i)

d0 = (
0 0 0

)
, Q

(iii)→(ii)

d0 = (
pnf,f Qs1 ⊗ endf

0 0
)
,

Q
(iii)→(iii)

d0 = (
1 − pnf,f

)
Qs1.
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