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The second part of the paper deals with a long version of the tightness
game. Although this game is very different from the Menger game, the main
result here, Theorem 9, looks quite similar to Theorem 5.

2. Long Menger game and cardinality

After Arhangel’skĭı’s cardinal inequality |X| ≤ 2ω, for any first count-
able Lindelöf T2 space X , a lot of attention has been paid to the possibility
of extending this theorem to the whole class of spaces with Gδ points (see
e.g. [6]). The problem turned out to be very non-trivial and the first neg-
ative consistent answer was given by Shelah. Later on, a simpler construc-
tion of a Lindelöf T3 space with points Gδ whose cardinality is bigger than
the continuum was obtained by Gorelic [4]. Somewhat related to the Lin-
delöf property are the Rothberger and Menger games (see e.g. [8]). Indeed,
by working in this direction, Scheepers and Tall [10] proved a cardinality
bound for a topological space with points Gδ by means of a long version
of the Rothberger game. The natural question to extend this result to the
much weaker Menger game was studied in [1]. There, a partial answer was
obtained under the Continuum Hypothesis. The main purpose of this note
is to provide the full solution to the question in ZFC. The proof we present
here uses elementary submodels and looks much simpler and direct.

We follow the standard notation for games: we will denote by G
κ
1(A,B)

the game played by players Alice and Bob such that, at each inning ξ < κ,
Alice chooses Aξ ∈ A. Then Bob chooses aξ ∈ Aξ . Bob wins if {aξ : ξ < κ}
∈ B.

We will denote by O the family of all open covers for a given space.
Thus, Gκ

1(O,O) means that at each inning Alice chooses an open cover and
Bob chooses one of its members. Bob wins if the collection of the chosen
sets covers the space.

According to this notation, Gω
1 (O,O) = G1(O,O) is the classical Roth-

berger game.
As usual, c = 2ω.
The starting point of our investigation is in the following:

Theorem 1 (Scheepers–Tall [10]). If X is a space with points Gδ and
Bob has a winning strategy in the game G

ω1

1 (O,O), then |X| ≤ 2ω.

To appreciate the strength of the above result and consequently of The-
orem 5 below, notice that the example of Gorelic [4] provides a space X with
points Gδ in which Alice does not have a winning strategy in G

ω1

1 (O,O)
and |X| > 2ω (see [10] for a justification of this fact).

A very natural question arises on whether the Scheepers–Tall’s inequal-
ity can be improved by replacing “G1” with “Gfin”, i.e., the game where Bob

chooses finitely many sets per inning, instead of only one. In other words,
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Menger game. This result, which improves a similar one of Scheepers and Tall,
was already established by the authors under the Continuum Hypothesis. The
paper is completed by few remarks on a long version of the tightness game.

1. Introduction

As usual, for notation and undefined notions we refer to [3]. In this
paper we consider the long version of two well-known topological games.
In particular, we study the influence of the existence of a winning strategy
for the second player in both games on certain cardinality properties of the
space.

The main result (Theorem 5) shows that a cardinality bound, obtained
by Scheepers and Tall with the help of the Rothberger game, continues to
hold with the much weaker help of the Menger game. Our generalization
works in the class of regular spaces and we will remark that some separation
axiom is definitely needed for it (see Example 7).
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we wonder whether the long Menger game can suffice in the above cardinal
inequality.

We already obtained a positive partial answer under the continuum hy-
pothesis in [1]. Our goal here is to present a proof of this statement in ZFC.

In [1] the duality between G
ω1

fin(O,O) and the compact-open game of
length ω1 is used. This duality is true under CH but we do not know if it is
true in general. The proof presented here does not use any duality.

From now on, let σ be a fixed winning strategy for Bob in the game
G
κ
fin(O,O) played on the space X . Recall that a strategy for Bob in

G
κ
fin(O,O) is a function σ : O<κ =

⋃

{α+1O : α < κ} →
[
⋃

O
]<ω

and for any

s ∈ α+1O we have σ(s) ⊂ s(α).
We will say that K ⊂ X is good if there is an s ∈ O<κ such that K =

⋂

C∈O

⋃

σ(s�C).

Lemma 2. Every good subset of a regular space is compact.

Proof. Let K =
⋂

C∈O

⋃

σ(s�C) and take a collection V of open sets
such that K ⊂

⋃

V . Fix a neighbourhood assignment V = {Vx : x ∈ X}
in such a way that Vx ⊂ Ux ∈ V if x ∈ K and Vx ∩K = ∅ if x ∈ X \K.
If σ(s�V) = {Vx : x ∈ F ∈ [X]<ω}, then we clearly have K ⊂

⋃

{Vx : x ∈
F ∩K} ⊂

⋃

{Ux : x ∈ F ∩K}. �

Lemma 3. Let X be a space. If K is good, i.e. there is an s ∈ O<κ

such that K =
⋂

C∈O

⋃

σ(s�C), and K =
⋂

ξ<λ Vξ where each Vξ is open, then

there is an O′ ⊂ O such that K =
⋂

C∈O′

⋃

σ(s�C) and |O′| < λ+ κ.

Proof. As we are assuming that Bob has a winning strategy in
G
κ
fin(O,O), the Lindelöf degree of X is at most κ. Consequently, we have

L(X \K) ≤ λ+κ. Since the family
{

X \
⋃

σ(s�C) : C ∈ O
}

is an open cover

of X \K, there exists O′ ⊂ O such that |O′| ≤ λ+ κ and
{

X \
⋃

σ(s�C):

C ∈ O′
}

covers X \K. Therefore, K =
⋂

C∈O′

⋃

σ(s�C) and we are done.
�

Lemma 4. Let X be a space with points Gδ . Then for every compact sub-

set K there is a sequence �Vξ : ξ < 2ω� of open sets such that K =
⋂

ξ<2ω Vξ .

Proof. First note that each compact K ⊂ X satisfies |K| ≤ 2ω. This is
a consequence of a theorem of Gryzlov [5]. For every x ∈ K, let {V x

n : n ∈ ω}
be a family of open subsets of X satisfying

⋂

n<ω V x
n = {x}.

Let B =
{
⋃k

i=0 V
xi

ni
⊃ K : x0, . . . , xk ∈ K, n0, . . . , nk ∈ ω

}

. Note that
⋂

B = K and |B| ≤ 2ω. �

Now, we have everything to prove the announced result.
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Theorem 5. Let X be a regular space with points Gδ such that Bob
has a winning strategy for the G

ω1

fin(O,O) game. Then |X| ≤ 2ω.

Proof. Let µ be a large enough regular cardinal and M be an ele-
mentary submodel of H(µ) such that |M | = 2ω, X,σ,O ∈ M, c+1 ⊂ M and
[M ]ω ⊂ M . Let K = {K ⊂ X : K ∈ M and K is good}. It is enough to show
that X =

⋃

K, since each K ∈ K is such that |K| ≤ 2ω.

Assuming the contrary, there is an x ∈ X \
⋃

K. Let K0 =
⋂

C∈O

⋃

σ(C).
Note that K0 is definable in M and so K0 ∈ K. Working inside of M , K0 is
compact by Lemma 2, therefore, by Lemma 4, we can apply Lemma 3 and
obtain that there is an O′ ∈ M such that |O′| ≤ 2ω and K0 =

⋂

C∈O′

⋃

σ(C).
Since c+ 1 ⊂ M , we actually have O′ ⊂ M and so there is a C0 ∈ M ∩O
such that x �∈

⋃

σ(C0). We now proceed by induction. Assume to have al-
ready defined open covers {Cα : α < ξ} ⊂ M and define s : ξ → O by letting
s(α) = Cα for α < ξ. Since M is ω-closed, we actually have s ∈ M , since

the κ in Lemma 3 is now ω1. Therefore, Kξ =
⋂

C∈O

⋃

σ(s�C) is definable
in M and so it is again an element of K. Then, as before we can obtain a
Cξ ∈ M ∩O such that x �∈

⋃

σ(s�Cξ).
But note that doing like this, we find a play of the game where Bob

loses although using a winning strategy. �

Note that we actually proved that under the hypothesis of Theorem 5,
X =

⋃

ξ<c
Kξ, where each Kξ is compact. However, this is not enough to

guarantee that the first player wins in the long compact-open game without
CH (see [1]).

Furthermore, note that with a simple modification in the previous argu-
ment, using a countable submodel we obtain the Telgarsky’s result (reproved
by Scheepers in [9]):

Corollary 6. If X is a regular space where every compact set is a Gδ

and Bob has a winning strategy for the usual Menger game Gfin(O,O), then
X is σ-compact.

Since Theorem 1 is actually true for T1 spaces, we could suppose that the
same happens to Theorem 5. But, Theorem 5 drastically fails for T1 spaces.
Indeed, even under the stronger assumption that Bob has a winning strat-
egy in the “short” Menger game, the cardinality of a space with points Gδ

can be very big.

Example 7. If κ is less than the first measurable cardinal, then there
exists a T1 space X with points Gδ such that Bob has a winning strategy
in Gfin(O,O) and |X| ≥ κ.

Proof. The example we need is just the space X constructed by Juhász
in [7, Example 7.2]. Following the notation in [7], we have X =

⋃

{Xn :
n < ω}, where X0 = κ. In [7] it is pointed out that for a given n < ω every
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open family covering Xn+1 has a finite subfamily covering all but finitely
many members of Xn. The latter assertion clearly implies that every open
cover of X has a finite subfamily which covers the whole Xn and this in turn
guarantees an easy winning strategy to Bob in Gfin(O,O). �

The original cardinality bound of Arhangel’skĭı as well as most of its
variations work for T2 spaces. So, it is reasonable to ask:

Question 8. Does Theorem 5 continue to hold for T2 spaces?

Recall that, given a space X , the symbol Xδ denotes the space with the
same underlying set X with the topology generated by the Gδ subsets of X .
In [1] it was shown that Theorem 1 is actually a consequence of the more
general statement that a winning strategy for Bob in G

ω1

1 (O,O) implies that
the Lindelöf degree of Xδ is at most 2ω. This seems to suggest a possible
further strengthening of Theorem 5 as follows: if X is a regular space where
Bob has a winning strategy in G

ω1

fin(O,O), then L(Xδ) ≤ 2ω. However, this
conjecture drastically fails because there are compact T2 spaces such that
the Lindelöf degree of the Gδ-modification is much bigger than the contin-
uum (see e.g. [11] or [12]), while for every compact space Bob may win in
G
ω1

fin(O,O) at the first inning!

3. Few remarks on the long tightness game

We conclude the paper by looking at a long version of the tightness game.
One reason is in the similarity of Theorem 5 and Theorem 9 below.

Given a space X and a point x ∈ X , Ωx denotes the collection of all sets
A ⊆ X satisfying x ∈ A. The tightness game G1(Ωx,Ωx) is played between
players Alice and Bob in such a way that, at every inning n ∈ ω, Alice
chooses a member An ∈ Ωx, and then Bob chooses an ∈ An. Bob is declared
the winner if, and only if, {an : n ∈ ω} ∈ Ωx (see [2] for much more).

If the previous game consists of ω1-many innings, then we have the long
tightness game G

ω1

1 (Ωx,Ωx).

Theorem 9. If X is a regular space that has a dense subset E with
|E| ≤ 2ω and Bob has a winning strategy in the game G

ω1

1 (Ωp,Ωp) for some
p ∈ X , then χ(p,X) ≤ 2ω.

Proof. Let σ be a winning strategy for Bob. Let µ be a large enough
regular cardinal and M be an elementary submodel of H(µ) such that
E ⊂ M , X,σ, p,Ωp ∈ M , [M ]ω ⊂ M and |M | = 2ω. For every sequence
s ∈ Ω<ω1

p , there is a neighbourhood Vs of p such that for every x ∈ Vs, there

is a D ∈ Ωp such that x = σ(s�D). We will call such a neighbourhood good.
To verify the existence of Vs, assume the contrary and let D be the set of
all x ∈ X such that σ(s�A) �= x for each A ∈ Ωp. But then D ∈ Ωp and so
σ(s�D) ∈ D, in contrast with the definition of D.
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Now, to prove the theorem it is enough to show that V = {V ⊂ X :
V ∈ M and V is good} is a local base at p. Assume the contrary. Then, by
regularity, there is an open neighborhood W of p such that V �⊂ W for every
V ∈ V . Let V0 be an open set such that for every x ∈ V0 there is a D ∈ Ωp

such that x = σ(D). V0 is definable in M and so V0 ∈ V . Besides, by den-
sity, there is an e0 ∈ (V0 \W ) ∩E. Note that e0 is in M , therefore there
is a D0 such that σ(D0) = e0. Now, we proceed by induction, by assum-
ing to have already defined points eα ∈ E and sets Dα ∈ Ωp for α < ξ. let
s = {(eα,Dα) : α < ξ} ∈ (Ωp ∩M)<ω1 . Since M is countably closed, s ∈ M .
Therefore, there is an open neighborhood Vs of p such that for every x ∈ Vs,
σ(s�D) = x. Again, Vs ∈ M . As before, we can take eξ ∈ (Vs \W ) ∩E and
then choose Dξ such that eξ = σ(s�Dξ). Note that Dξ ∈ M . But, playing
like this, at the end Bob would loose the game — a contradiction. �

One may wonder if the above theorem is the best possible, namely if
we could get χ(p,X) ≤ ω1. This obviously happens by assuming 2ω = ω1,
but the next example shows it is no longer true without the Continuum
Hypothesis.

Example 10. There exist a regular space X with a dense set E of
size 2ω and a point p such that Bob has a winning strategy in G

ω1

1 (Ωp,Ωp)
and χ(p,X) = 2ω.

Proof. Let E be a set of cardinality 2ω with the discrete topology and
let X = E ∪ {p} be the one-point Lindelöfication of E. Observe that U is
a neighbourhood of p in X if and only if p ∈ U and |X \ U | ≤ ω. We have
χ(p,X) = 2ω. Indeed, if U is a collection of neighborhoods of p satisfying
|V| < 2ω, then |E \

⋂

V| ≤ |V|ω < 2ω and so |
⋂

V| = 2ω, which in turn im-
plies that V cannot be a local base. On the other hand, Bob has an easy
winning strategy in G

ω1

1 (Ωp,Ωp): fix ξ < ω1 and suppose that eα is the point
Bob has chosen at the inning α < ξ. If at the ξ-inning Alice plays Aξ ∈ Ωp,
then Bob simply takes a point eξ ∈ Aξ \ {eα : α < ξ}. This can be done be-
cause Aξ is uncountable. Now, at the end of the game Bob has chosen an
uncountable set of points and so he wins. �

Let us denote by D the collection of all dense subsets of a given topolog-
ical space. Note that if Bob has a winning strategy for the game Gω1

1 (D,D),
then the density of the space is less than or equal to ω1. Therefore, the next
result can be proved with almost the same argument as that in Theorem 9:

Theorem 11. If X is a regular space where Bob has a winning strategy
in the game G

ω1

1 (D,D) then πw(X) ≤ 2ω.

Comparing Theorems 1 and 5, one may be tempted to conjecture that
a result similar to Theorem 9 continues to hold for Gfin instead of G1. But,
it turns out that even the difference between G2 and G1 can be very big —
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Theorem 11. If X is a regular space where Bob has a winning strategy
in the game G

ω1

1 (D,D) then πw(X) ≤ 2ω.

Comparing Theorems 1 and 5, one may be tempted to conjecture that
a result similar to Theorem 9 continues to hold for Gfin instead of G1. But,
it turns out that even the difference between G2 and G1 can be very big —
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here G2 is the game where Bob is allowed to take at most 2 points instead
of just one. Indeed, even the fact that Bob always wins the “short” game
G2(Ωp,Ωp) does not guarantee that Bob has a winning strategy in the long
tightness game, as the following example from [2] shows:

Example 12. A zerodimensional T1 space where Bob has a winning
strategy in G2(Ωp,Ωp) and Alice has a winning strategy in G

ω1

1 (Ωp,Ωp).

Proof. Let X = {p} ∪ ω<ω1 with the following topology: every point
other than p is isolated. The basic neighborhoods at p are of the form

{p} ∪ ω<ω1 \ F

where F is the union of finitely many branches in the tree ω<ω1 . Let us
show that Alice has a winning strategy in G

ω1

1 (Ωp,Ωp). Alice starts with
D0 = {�n� : n ∈ ω}. Let s be the choice of Bob. Note that then Alice can
play D1 = {s�n : n ∈ ω}. Indeed, by playing in this way, at a certain inning
the set of all choices of Bob is a function s : α+1 → ω. Then Alice simply
can play D = {s�n : n ∈ ω}. Note that playing like this, at the end all of
the choices of Bob forms a branch thus Alice wins.

Now let us see that Bob has a winning strategy for the G2(Ωp,Ωp) game.
It is enough to show that, for each n ∈ ω, the set of all the answers played
by Bob in the first n innings includes a set {s1, . . . , sn} with the property
that no branch contains two elements of it.

Let us proceed by induction. If, in the first inning, Alice plays A1, then
Bob chooses {s1, s2} ⊂ A1 such that s1 and s2 are not in the same branch.
Suppose that at the end of the nth inning, the set of all answers of Bob
contains a set {s1, . . . , sn} satisfying our assumption. Let An+1 be the play
of Alice at the inning n+1. If there is a point in An+1 that lies in a branch
missing {s1, . . . , sn}, then Bob chooses this point together with some other
one. In the remaining case, since p is in the closure of An+1, there is at least
one si and two incompatible elements a1, a2 ∈ An+1 such that si ⊂ a1 and
si ⊂ a2. The answer of Bob in the (n+ 1)th inning will be just {a1, a2}.
Observe that every branch meets the set {sj : j �= i} ∪ {a1, a2} in at most
one point. �

In the previous proof, we did not use that much information about the
height of the tree. Therefore, we can easily modify the example to obtain
the following:

Proposition 13. There is a zero-dimensional T1 space X and a point
p ∈ X such that Bob has a winning strategy in G2(Ωp,Ωp), |X| = 2ω and
χ(p,X) > 2ω.

In particular, this shows that we cannot generalize Theorem 9 for the
version where Bob is allowed to pick two points instead of one!

Finally, a simplified version of the above construction gives:
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Proposition 14. There is a countable zero-dimensional space X where
Bob has a winning strategy in G2(Ωp,Ωp) but χ(p,X) > ω.

Inspired by Example 12, we finish with a similar construction that may
serve as an example of the ideas used here. Let T be an uncountable tree
with no uncountable chains (e.g. an ω1-Aronszajn three) and consider X =
T ∪ {p} with the following topology: every point of T is isolated and the
neighborhoods of p are of the form X \

⋃

F where F is a finite collection
of branches of T . Note that Alice cannot repeat the analogous strategy
made in Example 12, since that would imply the existence of an uncountable
branch, which is impossible. Moreover, it is very easy for Bob to guarantee
his own victory. Indeed, it is enough to him to play in a manner where he
ends up by playing uncountably many distinct points. This is enough since
in a tree any uncountable set contains either an uncountable branch or an
infinite antichain.
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Proposition 14. There is a countable zero-dimensional space X where
Bob has a winning strategy in G2(Ωp,Ωp) but χ(p,X) > ω.

Inspired by Example 12, we finish with a similar construction that may
serve as an example of the ideas used here. Let T be an uncountable tree
with no uncountable chains (e.g. an ω1-Aronszajn three) and consider X =
T ∪ {p} with the following topology: every point of T is isolated and the
neighborhoods of p are of the form X \

⋃

F where F is a finite collection
of branches of T . Note that Alice cannot repeat the analogous strategy
made in Example 12, since that would imply the existence of an uncountable
branch, which is impossible. Moreover, it is very easy for Bob to guarantee
his own victory. Indeed, it is enough to him to play in a manner where he
ends up by playing uncountably many distinct points. This is enough since
in a tree any uncountable set contains either an uncountable branch or an
infinite antichain.
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