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Abstract
The inner representation of deep neural networks (DNNs) is indecipherable, which makes
it difficult to tune DNN models, control their training process, and interpret their outputs.
In this paper, we propose a novel approach to investigate the inner representation of DNNs
through topological data analysis (TDA). Persistent homology (PH), one of the outstanding
methods in TDA, was employed for investigating the complexities of trained DNNs. We
constructed clique complexes on trained DNNs and calculated the one-dimensional PH of
DNNs. The PH reveals the combinational effects of multiple neurons in DNNs at different
resolutions, which is difficult to be captured without using PH. Evaluations were conducted
using fully connected networks (FCNs) and networks combining FCNs and convolutional
neural networks (CNNs) trained on the MNIST and CIFAR-10 data sets. Evaluation results
demonstrate that the PH of DNNs reflects both the excess of neurons and problem diffi-
culty, making PH one of the prominent methods for investigating the inner representation
of DNNs.

Keywords Deep neural network · Convolutional neural network · Persistent Homology ·
Topological data analysis
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1 Introduction

Deep neural networks (DNNs) have demonstrated a remarkable performance in various
fields including image analysis, speech recognition, and text classification [16, 45]. How-
ever, the inner representations of DNNs are indecipherable, which makes it difficult to tune
DNN models, control their training process, and interpret their outputs. Many approaches
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enabling the understanding of the inner representation of DNNs have been investigated,
including the input identification of specific results [2, 26, 34, 44] and similarity evaluation
between different networks [20, 27, 30]. At the same time, the complexity of DNNs is one
of the essential subjects, which represents the knowledge in trained DNNs.

In this paper, we propose a novel approach to investigate the inner representation of
DNNs using topological data analysis (TDA). TDA employs results from geometry and
topology [28, 40], which has provided new insights in various fields such as neuroscience
[8, 10, 29, 36, 43], proteomics [7, 14, 42], and material science [18, 21].

Persistent homology (PH) is one of the prominent methods in TDA owing to its three
advantages: theoretical foundation, computability in practice, and robustness with small
perturbations [28]. These advantages are beneficial for investigating DNNs. Theoretical
foundation and computability are fundamental in constructing knowledge from empirical
observations, while robustness is indispensable for investigating DNNs involving parameter
perturbations.

Bastian et al. investigated the complexity of the inner representation of DNNs using
zero-dimensional PH, which counts the number of connected neurons at different reso-
lutions [32]. At the same time, one-dimensional PH can reveal other essential aspects of
the knowledge complexity in DNNs because it can examine the combinational effects of
multiple neurons. To the best of our knowledge, there is no previous work employing one-
dimensional PH for investigating the inner representation of DNNs based on the trained
weight parameters except our presentation at a symposium [41].

We constructed clique complexes, which were employed for analyzing brain networks
[31], on trained DNNs. Furthermore, we calculated the one-dimensional PH of fully con-
nected networks (FCNs) and networks combining FCNs and convolutional neural networks
(CNNs) trained on the MNIST and CIFAR-10 data set to demonstrate the effectiveness of
one-dimensional PH.1

The remainder of this paper is organized as follows. Section 2 presents the intuition
behind this study. Background information is presented in Section 3. Clique complexes are
constructed on trained DNNs in Section 4. The evaluation setup and results are provided in
Sections 5 and 6, respectively. Section 7 discusses the assumptions and applications of the
measurement method. Related work is discussed in Section 8. Conclusions and suggestions
for future work are presented in Section 9.

2 Intuition behind topological measurement of DNNs

DNNs work as knowledge distilling pipelines, meaning that the degree of feature abstraction
increases with the depth of DNN layers [23]. For example, images of cats are incrementally
abstracted from pixels to diagonal lines and ear shapes. Additionally, DNNs can detect cats
based on feature combinations [9]. Feature relationships represent the implementation of
knowledge in DNNs, which can be investigated from DNN structures.

Previous studies have demonstrated that PH can be used for comparing and characteriz-
ing human brains. Cassidy et al. employed PH as a tool for comparing human brains using
functional magnetic resonance imaging (fMRI) [8]. Petri et al. demonstrated that psilocy-
bin affects the homological structure of the brain’s functional patterns [29]. Furthermore,

1The source code used in the evaluation can be accessed at https://github.com/satoru-watanabe-aw/
DNNtopology.

76 S. Watanabe, H. Yamana

https://github.com/satoru-watanabe-aw/DNNtopology
https://github.com/satoru-watanabe-aw/DNNtopology


Sizemore et al. employed PH to highlight the crucial features of human brains from diffu-
sion spectrum imaging (DSI) [36]. However, it is often difficult to quantify the activation
of neurons from fMRIs and DSIs. Hence, PH is more useful for analyzing DNNs because
their network structures and the activation of neurons can be described mathematically. In
this study, we employed PH to investigate the process of training a DNN and evaluate its
knowledge representation complexities.

3 Background

The terms of TDA and PH can be understood based on previous studies [11, 19, 28], while
introductory videos explaining TDA and PH can be found on on-demand video services.2

3.1 Persistent homology

The homology groups of orders zero and one represent the number of connected com-
ponents and holes, respectively. PH is a method for computing the homology groups at
different resolutions. While the formal definition of PH is provided below, its intuitive
understanding is sufficient for interpreting the presented experimental results obtained using
some computational libraries.

Definition 1 An abstract simplicial complex is a finite collection of sets K such that X ∈
K and Y ⊆ X implies Y ∈ K .

The sets X in K denote its simplices. The dimension of a simplex is dim X = card X−1,
where card X denotes the cardinality of X. The dimension of an abstract simplicial complex
is the maximum dimension of any of its simplices. The vertex set is the set consisting of all
the simplices of dimension 0, while the face of a simplex X is a non-empty subset Y ⊆ X.

A p-chain c of a simplicial complex K is a formal sum of p-simplices in K , that
is, c = ∑

aiXi , where Xi are p-simplices and ai are coefficients. We employ module-2
coefficients, that is, ai are either 0 or 1 and 1+1 = 0. The binary arithmetic of two p-chains
c = ∑

aiXi and c′ = ∑
biXi is defined as c + c′ = ∑

(ai + bi)Xi , where the coefficients
are of modulo-2. The p-chain forms a group denoted as Cp .

A boundary operator ∂p is a map from a p-simplex to the sum of its (p − 1)-simplices.
Formally, ∂pX = ∑p

j=0[v0, . . . , v̂j , . . . , vp], where [v0, . . . , vp] is the simplex with ver-
tices, while the hat indicates that vj is removed. A chain complex is the sequence of chain

groups connected by boundary operators, · · · ∂p+2−−→ Cp+1
∂p+1−−→ Cp

∂p−→ Cp−1
∂p−1−−→ · · · . A

p-cycle is a p-chain with an empty boundary forming a group denoted as Zp = ker ∂p . A
p-boundary is a p-chain, that is, the image of a (p + 1)-chain forming a group denoted as
Bp = im ∂p+1.

Definition 2 The p-th homology group denoted as Hp(= Zp/Bp) is the p-th cycle group
modulo the p-th boundary group. The p-th Betti number βp is the rank of Hp .

Definition 3 A filtration of the simplicial complex K is a sequence of simplicial complex
such that ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Kn = K .

2https://www.youtube.com/watch?v=akgU8nRNIp0, https://www.youtube.com/watch?v=2PSqWBIrn90
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For every i ≤ j , there is an induced homomorphism in each dimension p, f
i,j
p from

Hp(Ki) to Hp(Kj ). f
i,j
p satisfies the condition of f

k,j
p ◦ f

i,k
p = f

i,j
p for all 0 ≤ i ≤ k ≤

j ≤ n.

Definition 4 Let ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Kn = K be a filtration. The p-th PH of K
is the pair ({Hp(Ki)}0≤i≤n, {f i,j

p }0≤i≤j≤n), where the homomorphism f
i,j
p : Hp(Ki) →

Hp(Kj ) represents the maps induced by including maps Ki → Kj .

A homology γ ∈ Hp(Ki) can be said to be born at Ki if γ /∈ imf
i−1,i
p . Furthermore, if γ

is born at Ki , then it dies entering Kj if f
i,j−1
p (γ ) /∈ imf

i−1,j−1
p but f

i,j
p (γ ) ∈ imf

i−1,j
p .

The lifetime of γ is represented by the half-open interval [i, j). If f
i,j
p (γ ) 
= 0 (i ≤ ∀j ≤

n), γ can be said to live forever, and its lifetime is the interval [i, ∞).

3.2 Diagrams

A PH diagram illustrates the birth and death of homologies in a filtration, which was funda-
mentally introduced in [3]. Figure 1(a) shows points with oblique lined circles in R

2. When
the radius of the circles is small, the points are isolated. Two encircled regions appear in
R

2 when the circles are gradually enlarged. The appearance of the encircled regions cor-
responds to the birth of homologies. The regions disappear when the circles are enlarged
further, and the disappearances correspond to the death of homologies.

Figure 1b shows the PH diagram of Fig. 1a, in which the X-axis shows the birth of
homologies and the Y-axis the death of them. The two points in Fig. 1b correspond to the
births and deaths of the two regions. The large region in Fig. 1a is stable with regard to
the enlargement of the circles. In contrast, the small region is less stable compared to the
large region. The stability of the regions is indicated by the distance from the dialog line
in Fig. 1b, i.e., the small region is pointed near the dialog line, whereas the large region is
pointed in a distance from the dialog line.

Barcode is another diagram that gives the same information as the PH diagram. Barcode
diagram of Fig. 1a is shown in Fig. 1c, in which the start and end points of lines parallel to
the X-axis show the birth and death of homologies, respectively. The short and long lines
correspond to the small and large regions, respectively. The stability of regions is indicated
by the length of the bars in the barcode diagrams.

Fig. 1 a Examples of persistent homology diagrams; b persistent homology diagram of a; c barcode diagram
of a; d DNN for handwritten number recognition
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4 Construction of clique complexes on DNNs

We consider a set of neurons as vertices V = {v0, . . . , vn}, where n + 1 is the number of
neurons. DNNs are considered as directed graphs with weights wij , where wij denotes the
weight between vi and vj ; here, wij is zero if vi and vj are not connected. We set the value
of the relevance of identical neurons to one and the relevance Rij between the connected
neurons vi and vj as the normalized weight. Formally we set

Rij =
{

1 (i = j)

w+
ij /

∑
i,i 
=j w+

ij (i 
= j),
(1)

where w+
ij denotes the positive part of the weight, i.e. w+

ij = max{0, wij }. Rij indicates the
relevance between vi and vj because the input to the j-th neuron is calculated by

∑
i aiwij +

bj in DNNs, where ai is the activation of the i-th neuron and bj is the bias [9]. We employed
the positive part of the weight and ignored the bias, in a manner similar to the z+-rule
defined in deep Taylor decomposition [26].

To construct clique complexes on DNNs, the relevance was extended to indirectly con-
nected neurons. For example, when v0 and v2 are connected to a path v0 → v1 → v2, the
relevance between v0 and v2 corresponding to the path is defined as R01R12. The intuition
behind the definition is as follows: R01 and R12 indicate the contributions of v0 and v1 to
the increase in the inputs of v1 and v2, respectively; R01R12 indicates the contribution of v0
to the increase in the input of v2. Formally we set

R̃ij = max
(vi ,vm1 ...,vmk

,vj )∈Lij

Rvivm1
· · · Rvmk

vj
, (2)

where Lij denotes the set of all possible paths from vi to vj . It is possible to define
R̃ij using multiple paths in Lij . However, the maximum was employed in (2) to improve
computational efficiency.

Masulli et al. constructed a clique complex K(G) on a finite directed weighted graph
G = (V ,E) with vertex set V and edge set E with no self-loops and no double
edges [25]. They defined the clique complex K(G) as K(G)0 = V and K(G)p =
{(vK0 , . . . , vKp ) ; vKi

∈ V, (vKi
, vKj

) ∈ E for all Ki < Kj } (for p ≥ 1), where K(G)p
denotes the set of p-simplices on G.

Correspondingly, R̃ij enables the construction of a clique complex and filtration on V .
The neurons were numbered in ascending order from the output to input layers. Hence,
the numbers of neurons in the closer layer to the output layer are smaller than those in the
farther layer, where the distance is indicated by the number of edges from the output layer.
Using this numbering, we set p-simpleces on V as

Kt
p =

{
V (p = 0)

{(vk0 , . . . , vkp ) ; vki
∈ V, R̃kikj

≥ t for all ki>kj } (p ≥ 1),
(3)

where t is a threshold value (0 ≤ t ≤ 1).

Proposition 1 Let V = (v0, . . . , vn) be a finite set, and {wij } (0 ≤ i, j ≤ n) be a set of
real numbers. Let R̃ij (0 ≤ i, j ≤ n) be the relevance defined by (1) and (2) using {wij }.
Let Kt

p be the p-simplices defined by (3), where t is a threshold value (0 ≤ t ≤ 1). Then, a
finite collection of sets Kt = Kt

0 ∪ Kt
1 ∪ · · · ∪ Kt

n is an abstract simplicial complex.
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Fig. 2 a Example of DNN with weights; b–h simplicial complexes and betti numbers corresponding to the
filtration

Proof Let X = {vX0 , . . . , vXp } be an element of Kt . Then, R̃XiXj
is greater than or equal

to t for all Xi>Xj . Let Y = {vY0 , . . . , vYq } be a subset of X. Then, R̃YiYj
are greater than

or equal to t for all Yi>Yj . Therefore, X ∈ Kt and Y ⊆ X imply Y ∈ Kt .

Proposition 2 Let (ti)
n
i=1 be a monotonically decreasing sequence ranging from 1 to 0.

Then, K0 = ∅ and Ki = Kti (1 ≤ i ≤ n) form a filtration of Ktn .

Proof K
tk
p is included in K

tl
p (1 ≥ tk > tl ≥ 0) from (3). It implies ∅ = K0 ⊂ K1 ⊂ · · · ⊂

Kn = Ktn .

Figure 2a illustrates a four-layered DNN with an output neuron v0. The values adjacent
to the arrows denote the weight between two neurons, and the weight matrix is presented
in Fig. 3a where the (i,j) element denotes the weight between the i-th and j-th neurons.
Figure 2b illustrates the simplicial complex of Kr=1.0 with Betti number β0 = 9. The
decrease of the Betti number β0 according to the filtration can be observed in Fig. 2c to h.
Figure 2e illustrates a 2-simplex represented with the gray triangle.

Figure 2g and h illustrate the increase of the Betti number β1 corresponding to the occur-
rences of the cycle. If the vertices representing the features of input images are connected

Fig. 3 a Weight matrix of Fig. 2a; b,c barcode and PH diagrams illustrated using GUDHI library
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Algorithm 1 Algorithm for obtaining simplexes from a vertex s using a threshold t .

procedure GETSIMPLEX(M , s, t) � where M: n × n-matrix, s: array, t : threshold
relevance ← 1.0, result ← ∅, origin ← s[0]
for dest = s[0] to s[|s| − 1] do � calculate the relevance from s[0] to s[|s| − 1].

relevance ← relevance × M[origin][dest]� s[|s| − 1] is the last element of s.
origin ← dest

if relevance ≥ t then
result .append(combination(s)) � append all the combinations of the elements
in s.
lastP oint ← s[|s| − 1]
for i = 0 to n − 1 do � check if the last point has connections.

if M[lastP oint][i] > 0 and i 
= lastP oint then
ss ←deep copy of s

recResult ← getSimplex(M, ss.append(i), t) � recursive call with
extended array.
for e in recResult do

result .append(combination(e)) � append all the combinations of
the elements in e.

return unique(result) � return deduplicated array

straightforwardly to the output neurons, the knowledge in the DNN is considered to be sim-
ple because it is equivalent to feature detection. In contrast, the increase of the Betti number
β1 indicates that the DNN classifies the input based on the combination of features. From
these viewpoints, we can assume the increase in the Betti number β1 reflects the complex-
ity of knowledge in the DNN. Filtration 10 (Fig. 2i) has Betti number β1 = 1. While [0, 2]
is a simplex in Filtration 10, it is not included in another simplex [0,. . .,10] and produces
β1 = 1.

The computation of PH involves the explosion of the complexity caused by the increase
of vertices, several implementations of which are publicly available [28]. We employed the
GUDHI [6, 33, 39], JavaPlex [38], and Dionysus 2 [12, 13] libraries for the computation and
visualization. These libraries require registering simplexes in each filtration to calculate PH.

Algorithm 1 identifies all simplexes from a vertex s up to the limit of the threshold of
relevance t using the recursive procedure call. All simplexes in each filtration are identified
using this procedure and registered to the libraries. Figure 3b and c are barcode and PH
diagrams illustrated by the GUDHI library, respectively. The library employed red and green
for indicating zero- and one-dimensional homologies, respectively. The Betti numbers in
Fig. 3b correspond to the number of the intersections between the bars and the perpendicular
lines to the X-axis (remembering that the lifetime of homologies is defined by the half-open
interval [birth, death)). The GUDHI library illustrates Betti numbers using color shades
in PH diagrams shown in Fig. 3c. PH was calculated using the Dionysus 2 and JavaPlex
libraries, resulting in the same diagrams.

A filtration is defined using thresholds of relevance. This study considered 64 threshold
values composed with (1.00, . . . , 1.0−7) and eight interval values between the adjacent val-
ues. Formally, we considered the simplicial complexes Kn(r=(1−0.1×(l−1))×10−m)(1 ≤ n ≤
64), where m and l are the quotient and remainder when n is divided by 9, respectively. And
the filtration was defined as K1(r=1.0) ⊂ K2(r=0.9) ⊂ · · · ⊂ K10(r=1.0−1) ⊂ K11(r=0.09) ⊂
· · · ⊂ K64(r=1.0−7). While the thresholds should be considered depending on the network
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Table 1 Overview of the data sets and network types employed in this study

Data set Content Data size Network type

MNIST handwritten digits 784 (28 × 28 grayscale) FCN

CIFER-10 photographs 3072 (32 × 32 color) CNN, FCN

structure of DNNs, we set this aside as a task for future work; this study only examined the
prominence of the topological measurement of DNNs.

5 Evaluation setup

The MNIST and CIFAR-10 data sets were employed in the evaluation [22, 24]. As shown in
Table 1, the contents of the MNIST and CIFAR-10 data sets are 28×28 grayscale handwrit-
ten digits and 32 × 32 color photographs, respectively. The CIFAR-10 data set comprises
the photographs of 10 types of objects such as airplanes, automobiles, birds, etc. All experi-
ments were conducted using Keras and Tensorflow [1, 9], and DNNs were developed based
on the examples in Keras 2.3.0.

For the classification of the MNIST data set, we employed an FCN with two hidden
layers of sizes 300 and 100, the ReLU activation function in the hidden layers and 10 out-
put neurons with the sigmoid activation function (Fig. 1d). The models were traind for 10
epochs with a batch size of 64, and all models achieved an accuracy of over 97% on the test
data.

For the classification of the CIFAR-10 data set, we employed DNNs consisting of a
CNN and an FCN. The CNN was used to extract features from the photographs, while the
FCN was used to classify the photographs based on the combination of the features. The
proposed method was applied to the FCN since the purpose of this study was to examine
the complexity of the knowledge in DNNs represented in the combination of features.

We employed the CNN from an example network included in Keras 2.3.0 without mod-
ifications. This CNN comprises multiple layers, including two-dimensional convolution,
max pooling, and dropout layers. Two FCNs with sizes of (300, 100, 10) and (512, 512, 10)
were used for examining the sensitivity of the proposed method to the network structures.3

The DNNs were trained for 30 epochs with a batch size of 32.

6 Evaluation results

6.1 MNIST data set

Figures 4a–j illustrate PH diagrams of the FCNs produced using the Dionysus 2 library,
where the number of input digits used to train the FCN models was varied. In particular, we
extracted the images of the target digits from the MNIST data set and trained FCN models

3The following network structures are employed: input(3072)–Conv2D(32 filters, 3 × 3 kernel, ReLu
activation)–Conv2D(32 filters, 3 × 3 kernel, ReLu activation)–MaxPooling2D(2×2 pool)–Dropout(dropout
ratio 0.25)–Conv2D(64 filters, 3 × 3 kernel, ReLu activation)–Conv2D(64 filters, 3 × 3 kernel, ReLu
activation)–MaxPooling2D(2 × 2 pool)–Dropout(dropout ratio 0.25)–Flatten–Dense(300 or 512, ReLu
activation)–Dropout(dropout ratio 0.5)–Dense(100 or 512, ReLu activation)–Dense(10, softmax activation).
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Fig. 4 a–j PH diagrams of the FNC models trained to classify handwritten digits based on a varying number
of input digits from 10 to 1; k persistent diagram of the FCN model trained to classify five digits using five
output neurons; l persistent diagram of the FCN model trained to classify 10 digits using 20 output neurons

using the images of digits 0–9 (Fig. 4a), digits 0–8 (Fig. 4b), and so on. The Dionysus 2
library allows to visualize the overlapping quantity of homologies using different colors
as indicated by the legends in Fig. 4. The values of birth and death in the axes on PH
diagrams indicate the order of the 64 threshold values defined in Section 4. Let m and l are
the quotient and remainder when the values of birth and death are divided by 9, respectively,
the threshold values corresponding to the values in the axes on PH diagrams are (1 − 0.1 ×
(l − 1)) × 10−m. This correspondence is consistent through the paper.

The following three observations can be made from Fig. 4a–j: (1) points are plotted in the
belt-like area (birth+5 < death < birth+20) parallel to the dialog line; (2) some figures
have points below the belt-like area; and (3) some figures have points over the belt-like area.

With respect to observation (2), the number of points below the belt-like area increases
from Fig. 4a to g and decreases from Fig. 4h to j. This pattern reflects both the excess
of the output neurons and problem difficulty. It can be further observed that the diagrams
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Table 2 Number of points in Figs. 4a–e, i, and j

(a) (b) (c) (d) (e) (i) (j)

Total number 16,420 16,399 16,150 16,222 16,133 15,857 15,531

(c1) N/A 1,317 2,034 1,700 2,972 8,226 13,123

(c2) 0 45 26 254 273 0 0

(c1) and (c2) N/A 45 26 254 40 0 0

seem to reflect the degree of confidence of the FCN models, i.e., the excess of the output
neurons reduced the confidence, whereas the simplicity of the problem increases it. For
further investigation, we classified five digits using five output neurons (Fig. 4k) and 10
digits using 20 output neurons (Fig. 4l). In contrast to Fig. 4f, the points below the belt-like
area disappeared in Fig. 4k. The opposite can be observed in Figs. 4a and l.

Table 2 lists the number of points plotted in Fig. 4a–e, i, and j. We categorized the points
using the representative cycles calculated by the JavaPlex based on the following two con-
ditions: (c1) the homology includes unused output neurons and (c2) the points are under the
belt-like area (death ≤ birth + 5). While the number of points that include unused output
neurons in Fig. 4i and j is more than twice of that in Fig. 4e, these points are not plotted
below the belt-like area. The simplicity of the problem led to no points being plotted under
the belt-like area.

6.2 CIFAR-10 data set

Figure 5a–j illustrate PH diagrams of the DNN models combining a CNN and an FCN (300,
100, 10), where the number of classes used to train the models was varied. In particular, we
extracted photographs of the target classes from the CIFAR-10 data set and trained the DNN
models using the photographs of 10 classes (Fig. 5a), nine classes (Fig. 5b), and so on.

As described in Section 5, the contents of the CIFAR-10 data set differs from that of the
MNIST data set in terms of the image size, tone, and represented object. Unlike FCN-based
models traind on the MNIST data set, CNNs were employed in addition to FCNs to classify
the CIFAR-10 data set.

Despite these differences, Fig. 5 demonstrate similar patterns to those in Fig. 4. In partic-
ular, the points under the belt-like area appear only in Fig. 5d–h; k, where the photographs
of five classes are classified using five output neurons, has no points under the belt-like area,
whereas Fig. 5l, where the photographs of 10 classes are classified using 20 output neurons,
has points under the belt-like area.

A further experiment was conducted using the DNN models combining a CNN and an
FCN (512, 512, 10). The results of this experiment are illustrated in Fig. 6. A similar pat-
terns regarding the appearance and disappearance of points under the belt-like area can be
observed from Fig. 6; that is, only Fig. 6d–h and l have the points under the belt-like area.
This result suggests that the observation is robust to not only the network type and content
of data sets but also number of neurons in FCNs.

Two additional observations can be made from Figs. 5 and 6: (i) the numbers of points
in Fig. 6 are larger than those in Fig. 5; (ii) the sizes of the areas that points are plotted in
Fig. 6 are larger than those in Fig. 5. Tables 3 and 4 list the numbers of points and sizes of
the convex hull of the points plotted in Figs. 5a–j and 6a–j, respectively. The numbers of
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Fig. 5 a–j PH diagrams of the DNNs using the FCN (300, 100, 10) trained to classify photographs based on
a varying number of input classes from 10 to 1; k PH diagram of the DNN using the FCN (300, 100, 10)
trained to classify five classes using five output neurons; l PH diagram of the DNN using the FCN (300, 100,
10) trained to classify 10 classes using 20 output neurons

points in Fig. 6 are 8.81 to 9.31 times larger than those in Fig. 5. The sizes of the convex
hulls in Fig. 6 are 1.05 to 2.57 times larger than those in Fig. 5.

The number of points reflects the difference of expressiveness of the FCN (512, 512,
10) and FCN (300, 100, 10). The FCN (512, 512, 10) has more parameters compared to
the FCN (300, 100, 10), which results in the ability of the FCN (512, 512, 10) to learn
knowledge is higher than that of the the FCN (300, 100, 10) and produces many homologies.
As a rough approximation, the FCN (512,512,10) has 512 × 512 + 512 × 10 of weight
parameters, whereas the FCN (300, 100, 10) has 300 × 100 + 100 × 10 of them. The ratio
8.62 (= (512 × 512 + 512 × 10)/(300 × 100 + 100 × 10)) provides the explanation for the
increase in the values listed in Table 3.
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Fig. 6 a–j PH diagrams of the DNN using the FCN (512, 512, 10) trained to classify photographs based on
a varying number of input classes from 10 to 1; k PH diagram of DNN using the FCN (512, 512, 10) trained
to classify five classes using five output neurons; l PH diagram of DNN using the FCN (512, 512, 10) trained
to classify 10 classes using 20 output neurons

The increase in the size of convex hull is smaller than that of the number of points,
which indicates that the FCNs (512, 512, 10) have duplicated homologies approximately 4
to 8 times more often compared to the FCNs (300, 100, 10). It implies that the FCNs (512,
512, 10) have duplicated homologies with different neurons, which can be achieved with
expressive training to the data set. The interpretation of the PH diagrams requires further
investigation, which we left as a task for future work because the purpose of this study was
only to examine the prominence of the topological measurement of DNNs.
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Table 3 Number of points in Figs. 5a–j and 6a–j

(A) Fig. 5: FCN (B) Fig. 6: FCN (B) / (A)

(300, 100, 10) (512, 512, 10)

(a) 16,214 142,768 8.81

(b) 16,278 139,783 8.59

(c) 15,702 142,016 9.04

(d) 15,421 141,027 9.15

(e) 15,274 138,732 9.08

(f) 15,759 136,508 8.66

(g) 14,878 133,503 8.97

(h) 14,348 124,919 8.71

(i) 11,496 106,983 9.31

(j) 15,073 132,775 8.81

6.3 Robustness on weight initialization

We conducted additional experiments by varying the initial values of network weights to
investigate the robustness of the PH diagrams’ transitions described in Sections 6.1 and
6.2. Keras framework starts the training with random initial values of network weights [9].
We repeated each experiment 10 times by varying the number of input classes from 10 to
1 with the three network types, MNIST (300, 100, 100), CIFAR-10 (300, 100, 100), and
CIFAR-10 (512, 512, 10), resulting in a total of 300 additional experiments.

Figure 7 shows the minimum, average, and maximum size of convex hulls of the points
in the PH diagrams. The differences between the maximum and minimum values indicate
the degree of vibration of the experiment results. All the three graphs are approximately
convex upward, indicating that the PH diagrams transit the shape in a similar manner to
those described in Sections 6.1 and 6.2, and the transitions are robust on the initial values
of network weights.

Table 4 Size of the convex hull in Figs. 5a–j and 6a–j

(A) Fig. 5: FCN (B) Fig. 6: FCN (B) / (A)

(300, 100, 10) (512, 512, 10)

(a) 445.5 492.5 1.11

(b) 477.0 737.5 1.55

(c) 406.0 881.0 2.17

(d) 710.5 1029.5 1.45

(e) 823.0 959.5 1.17

(f) 836.0 904.8 1.08

(g) 634.5 964.5 1.52

(h) 992.0 1041.5 1.05

(i) 413.5 1061.0 2.57

(j) 232.5 254.0 1.09
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Fig. 7 a–c Size of the convex hull of points in the PH diagrams with MNIST using the FCN (300, 100, 10),
CIFAR-10 using the FCN (300, 100, 10), and CIFAR-10 using FCN (512, 512, 10) by varying the number
of input classes, respectively

In Sections 6.1 and 6.2, we observed the transition of the PH diagrams that the number
of points near the dialog line (death ≤ birth + 5) changes by varying the number of input
classes. No point near the dialog line appeared when the number of input classes was set to
10 and 1. Additionally, the number of points near the dialog line increased and decreased
with the decrease in the number of input classes from 10 to 8 and 3 to 1, respectively.

Table 5 lists the minimum, average, and maximum numbers of points near the dialog line
regarding the additional experiments. We observed that no point appeared near the dialog
line when the number of input classes was set to 10 and 1 in all the additional experiments.
Additionally, the increase and decrease followed the same trend in the additional experi-
ments, shown in Table 5, meaning that the observations obtained in Sections 6.1 and 6.2 are
robust on the initial values of network weights.

7 Discussion

In this section, the assumptions used in this study are explained and the application of the
topological measurement of DNNs is discussed.

Table 5 Number of points near the dialog line (death ≤ birth + 5)

Number of
input classes

MNIST CIFAR-10 (300-100) CIFAR-10 (512-512)

min. avg. max. min. avg. max. min. avg. max.

10 0 0 0 0 0 0 0 0 0

9 57 96 132 0 11 59 0 115 234

8 110 150 199 0 33 102 79 273 497

7 141 209 297 0 78 143 278 375 451

6 141 269 348 0 136 284 209 376 571

5 137 332 528 0 142 334 52 380 620

4 111 308 524 48 196 321 13 423 823

3 46 131 207 0 158 365 591 764 909

2 0 0 1 0 36 252 145 581 936

1 0 0 0 0 0 0 0 0 0
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7.1 Assumptions

The assumptions of this study include the follows: (1) the knowledge in DNNs can be
investigated from their network weights among neurons and (2) PH reveals the knowledge
complexity of DNNs. The first assumption is acceptable because the weights are the out-
come of the training process. The second assumption is based on the observations from
previous works described in Section 2 [9, 23]. PH reveals the births and deaths of feature
combinations, which are difficult to be captured without using PH. The effectiveness of the
second assumption can be evaluated from the usability, which changes depending on the
application.

7.2 Applications

One of the most important applications of the proposed method is recognizing the quality
of DNN training. In particular, the performance of DNNs can deteriorate for many reasons,
including a shortage of data, overfitting, and improper hyper-parameter setting [4, 37]. Our
results imply that the shortage of data can be indicated by the PH, that is the excess of
the output neurons produces homologies near the dialog line. Furthermore, the proposed
method is beneficial for selecting appropriate DNN architectures, which is one of the major
challenges when utilizing DNNs [35, 46].

8 Related work

Bianchini et al. investigated the upper and lower bounds of network complexity from the
viewpoint of PH [5]. Based on their results, Guss et al. empirically analyzed the relation-
ship between the upper bound of network complexity and data complexity measured by PH
to determine appropriate network architecture for a given data set [15]. However, these two
types of complexities are not homogeneous, and their comparability is uncertain. Under
these considerations, we addressed the inner representations of DNNs with small perturba-
tions. Our evaluation results revealed that small perturbations such as the number of output
neurons and a variety of input data have significant impact on PH. Thus, the sensitivity of
PH requires a careful investigation for securing comparability.

Bastian et al. investigated the complexity of the inner representation of DNNs using
zero-dimensional PH [32]. Zero-dimensional PH counts the number of connected compo-
nents in DNNs. Figure 2f and g have β0 = 3 and β0 = 2 corresponding to the connected
components, respectively. In contrast, the Betti number β1 reveals the combinations among
neurons illustrated in Fig. 2g, where the neurons one and three collaborate to increase the
Betti number β1. Thus, we believe that one-dimensional PH can reveal the combination of
neurons and access essential aspects of DNNs that are difficult to be accessed using other
methods.

9 Conclusion

This paper introduced a novel approach to investigate the inner representation of DNNs
using PH. Evaluations were conducted using FCNs and networks combining a CNN and an
FCN trained on the MNIST and CIFAR-10 data sets. The evaluation results demonstrated
that the one-dimensional PH of DNNs can reflect both the excess of neurons and problem
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difficulty, which implies that PH can become one of the prominent methods for investigating
the inner representation of DNNs.

The methods for constructing simplicial complexes and defining the filtration are devel-
oped on the basis of our attempts. The development of these methods will, however, include
many research areas, especially due to large variety of network types, including CNNs and
recursive neural networks (RNNs). Furthermore, with regard to computation, the devel-
opment would require considerable efforts in applying the topological measurement to
enlarged neural networks, which can have more than 1,000 layers [17]. At the same time,
we believe that the topological measurement of DNNs is worth further investigation.
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