
https://doi.org/10.1007/s10472-019-09672-4

What do you really want to do? Towards a Theory
of Intentions for Human-Robot Collaboration

Rocio Gomez1 ·Mohan Sridharan2 ·Heather Riley1

© The Author(s) 2020

Abstract
The architecture described in this paper encodes a theory of intentions based on the key
principles of non-procrastination, persistence, and automatically limiting reasoning to rele-
vant knowledge and observations. The architecture reasons with transition diagrams of any
given domain at two different resolutions, with the fine-resolution description defined as a
refinement of, and hence tightly-coupled to, a coarse-resolution description. For any given
goal, nonmonotonic logical reasoning with the coarse-resolution description computes an
activity, i.e., a plan, comprising a sequence of abstract actions to be executed to achieve
the goal. Each abstract action is implemented as a sequence of concrete actions by auto-
matically zooming to and reasoning with the part of the fine-resolution transition diagram
relevant to the current coarse-resolution transition and the goal. Each concrete action in this
sequence is executed using probabilistic models of the uncertainty in sensing and actuation,
and the corresponding fine-resolution outcomes are used to infer coarse-resolution obser-
vations that are added to the coarse-resolution history. The architecture’s capabilities are
evaluated in the context of a simulated robot assisting humans in an office domain, on a
physical robot (Baxter) manipulating tabletop objects, and on a wheeled robot (Turtlebot)
moving objects to particular places or people. The experimental results indicate improve-
ments in reliability and computational efficiency compared with an architecture that does
not include the theory of intentions, and an architecture that does not include zooming for
fine-resolution reasoning.

Keywords Knowledge representation and reasoning · Theory of intentions ·
Non-monotonic logical reasoning · Probabilistic reasoning · Human-robot collaboration

� Mohan Sridharan
m.sridharan@bham.ac.uk

Rocio Gomez
rociogomezbardon@gmail.com

Heather Riley
hril230@aucklanduni.ac.nz

1 Department of Electrical and Computer Engineering, University of Auckland,
Auckland, New Zealand

2 School of Computer Science, University of Birmingham, Birmingham, UK

Annals of Mathematics and Artificial Intelligence (2021) 89:179–208

Published online: 24 March 2 020

http://crossmark.crossref.org/dialog/?doi=10.1007/s10472-019-09672-4&domain=pdf
http://orcid.org/0000-0001-9922-8969
mailto: m.sridharan@bham.ac.uk
mailto: rociogomezbardon@gmail.com
mailto: hril230@aucklanduni.ac.nz

R. Gomez et al.

Mathematics Subject Classification (2010) 03B42 · 68T27 · 68T30 · 68T37 · 68T40

1 Introduction

Consider a wheeled robot delivering objects to particular places or people, or a robot with
manipulators stacking objects in particular configurations on a tabletop, as shown in Fig. 1.
Such robots that are deployed to assist humans in dynamic domains have to reason with dif-
ferent descriptions of uncertainty and incomplete domain knowledge. Information about the
domain often includes commonsense knowledge, especially default knowledge that holds in
all but a few exceptional circumstances. For instance, the robot may be told that “books are
usually in the library, but cookbooks may be in the kitchen”. The robot also extracts infor-
mation from sensor inputs using algorithms that quantify uncertainty probabilistically, e.g.,
“I am 95% certain the robotics book is on the table”. Although it is difficult to equip robots
with comprehensive domain knowledge or provide elaborate supervision, reasoning with
incomplete or incorrect information can lead to incorrect or suboptimal outcomes, espe-
cially when the robot is faced with unexpected success or failure. For example, a robot may
be asked to move two books from the office to the library in a domain with four rooms. If
this robot can only grasp one object at a time, it will plan to move one book at a time from
the office to the library. After moving the first book, if the robot observes the second book in
the library, or in another room on the way back to the office, it should stop executing the cur-
rent plan because this plan will no longer achieve the desired goal. Instead, it should reason
about this unexpected observation and compute a new plan if necessary. One way to achieve
this behavior with a traditional planning system is to reason about all observations of domain
objects and events during plan execution, but this approach is computationally unfeasible in
complex domains. The architecture described in this paper, on the other hand, achieves the
desired behavior by equipping a robot pursuing a particular goal with an adapted theory of
intentions. This theory builds on the fundamental principles of non-procrastination and per-
sistence in the pursuit of a desired goal. It enables the robot to reason about mental actions
and states, automatically identifying and considering the domain observations relevant to
the current action and the goal during planning and execution. We refer to actions in such
plans as intentional actions. We describe the following characteristics of our architecture:

Fig. 1 Robot platforms used in the experimental trials reported in this paper: (a) Baxter robot manipulating
objects on a tabletop; and (b) Turtlebot moving objects to particular locations in a lab

180

Representing and Reasoning with Intentional Actions on a Robot

– The domain’s transition diagrams at two different resolutions are described in an action
language, with the fine-resolution transition diagram defined as a refinement of the
coarse-resolution transition diagram. At the coarse resolution, non-monotonic logical
reasoning with incomplete commonsense domain knowledge, which includes a theory
of intentions, produces a sequence of intentional abstract actions for any given goal.

– Each intentional abstract action is implemented as a sequence of concrete actions by
automatically zooming to and reasoning with the part of the fine-resolution system
description relevant to the current coarse-resolution transition and the goal. Each con-
crete action in this sequence is executed using probabilistic models of uncertainty, and
the observed and inferred outcomes are added to the appropriate coarse/fine-resolution
history.

Action languages are formalisms that are used to model domain dynamics (i.e., action
effects). We chose to use an extension to action language ALd [13], which we introduced
in prior work to model non-Boolean fluents and non-deterministic causal laws [26], because
it provides the desired expressive power for robotics domains. Also, we chose to translate
our action language descriptions to programs in CR-Prolog [2], an extension of Answer
Set Prolog (ASP) [14], because it supports non-monotonic logical reasoning with incom-
plete commonsense knowledge in dynamic domains, which is a key desired capability in
robotics.1 Furthermore, for the execution of each concrete action, we use existing algorithms
that include probabilistic models of the uncertainty in perception and actuation.

Our architecture builds on the complementary strengths of prior work on an architec-
ture that used declarative programming to reason about intended actions to achieve a given
goal [5], and an architecture that introduced step-wise refinement of tightly-coupled transi-
tion diagrams at two different resolutions to support non-monotonic logical reasoning and
probabilistic reasoning for planning and diagnostics [26]. Prior work on the refinement-
based architecture did not include a theory of intentions. Also, prior work on the theory of
intentions did not consider the uncertainty in sensing and actuation, and did not scale to
complex domains. The key contributions of our architecture are thus to:

– enable planning with intentional abstract actions, and the associated mental states,
actions, and beliefs, in the presence of incomplete domain knowledge, partial observ-
ability, and non-deterministic action outcomes; and

– support scalability to larger domains by automatically restricting fine-resolution rea-
soning to knowledge and observations relevant to the goal or the coarse-resolution
abstract action at hand, and by using probabilistic models of the uncertainty in sensing
and actuation only when executing concrete actions.

We demonstrate the applicability of our architecture in the context of a: (i) simulated robot
assisting humans in an office domain; (ii) physical robot (Baxter) manipulating objects on
a tabletop; and (iii) wheeled robot (Turtlebot) moving target objects to desired locations or
people in an office domain. We show that our architecture improves reliability and com-
putational efficiency in comparison with a baseline architecture that does not reason about
intentional actions and beliefs at different resolutions, and with a baseline architecture that
does not limit reasoning to the relevant part of the domain.

1We use the terms “ASP” and “CR-Prolog” interchangeably in this paper. In the logic programming literature,
ASP is also referred to as “Answer Set Programming” but we chose to use the earlier “Answer Set Prolog”
expansion because we often refer to ASP programs.

181

R. Gomez et al.

The remainder of the paper is organized as follows. First, Section 2 reviews some related
work to motivate the need for our architecture. Section 3 then describes the knowledge
representation and reasoning architecture. The results of evaluating the capabilities of this
architecture are described in Section 4, followed by a description of the conclusions and
future work in Section 5.

2 Related work

There is much work on modeling, recognizing, and reasoning about intentions. For instance,
Belief-desire-intention (BDI) architectures model the intentions of reasoning agents and use
these models to eliminate choices that are inconsistent with the agent’s current intentions
[6, 20]. However, these approaches do not learn from experience, are unable to adapt to new
situations, and make it difficult (by themselves) to explicitly represent or reason about goals
(e.g., for planning). There has been work in developing probabilistic graphical models that
enable a robot to reason with encoded domain knowledge and learned models to recognize
a human participant’s intentions [16, 17]. These approaches assume that the structure of the
models used to represent knowledge is known a priori (e.g., the nodes and links of a hidden
Markov model), and use prior (observed) data to estimate the model parameters, e.g., the
probabilities of particular state transitions, and of obtaining particular observations. Reason-
ing about intent, and identifying discrepancies between expectations and observations, has
also been modeled as a component of architectures for agents that perform goal-directed rea-
soning. For instance, a recent architecture models metacognitive expectations by allowing
agents to reason about their cognition [7]. This meta-reasoning is achieved by introducing
different levels in the architecture, along with distinct mechanisms at each level, to represent
and reason about the domain knowledge and the beliefs of the associated agent. Having such
separate levels that are not tightly coupled limits generalization, and the smooth transfer of
control and information between the levels.

Initial work on formalizing intentions based on declarative programming introduced
an action language and two fundamental principles: (i) non-procrastination, i.e., intended
actions are executed as soon as possible; and (ii) persistence, i.e., unfulfilled intentions per-
sist [3]. This architecture did not model agents with specific goals, but it was used to enable
an observer to recognize an agent’s activity and intention [12]. The Theory of Intentions
(T I) extended this work to goal-driven agents by expanding transition diagrams with phys-
ical states and physically executable actions to include mental fluents and actions [4, 5].
It associated a sequence of agent actions (called an “activity”) with the goal it intended to
achieve, and the intentional agent only performed activities needed to achieve the goal. This
theory has been used to understand narratives of restaurant scenarios [30], and to model
goal-driven agents in dynamic domains [23]. A requirement of such theories is that the
domain knowledge, including the preconditions and effects of actions and goals, be encoded
in advance, which is difficult to do in robot domains. Also, the set of states (and actions)
can be large in robot domains, making efficient reasoning a challenging task. Recent work
attempted to improve computational efficiency of reasoning with such theories by cluster-
ing indistinguishable states [24], but this approach required the clusters to be encoded in
advance [30]. Furthermore, these approaches do not consider the uncertainty in sensing and
actuation, which is the primary source of error in robotics.

Logic-based methods have been used widely in robotics, including those that also sup-
port probabilistic reasoning [15, 31]. Methods based on classical first-order logic do not
support non-monotonic logical reasoning or the desired expressiveness, e.g., it is not always

182

Representing and Reasoning with Intentional Actions on a Robot

meaningful to express degrees of belief by attaching probabilities to logic statements. Log-
ics such as ASP support non-monotonic logical reasoning and have been used in cognitive
robotics [10] and many other applications [9]. However, classical ASP formulations do not
support probabilistic models of uncertainty, and such models are used widely to model the
uncertainty in sensing and actuation in robotics. Approaches based on logic programming
also do not support one or more of the desired capabilities such as reasoning with large
probabilistic components, or incremental addition of probabilistic information and vari-
ables to reason about open worlds. As a step towards addressing these challenges, our prior
refinement-based architecture reasoned with tightly-coupled transition diagrams at two res-
olutions [26]. For any given goal, each abstract action in a coarse-resolution plan computed
using ASP-based reasoning with commonsense knowledge, was executed as a sequence
of concrete actions computed by probabilistic reasoning over the relevant part of the fine-
resolution diagram using partially observable Markov decision processes. In this paper, we
explore the combination of the principles of step-wise refinement with those of T I . In com-
parison with prior work, the architecture described in this paper supports reasoning about
intentional actions and beliefs in the presence of incomplete domain knowledge, partial
observability, and non-deterministic action outcomes, and it incorporates a more efficient
approach for fine-resolution reasoning to support scalability to larger domains.

3 Knowledge representation and reasoning architecture

Figure 2 is a simplified block diagram of the overall architecture. Similar to prior work [26],
this architecture may be viewed as comprising three tightly-coupled components: a con-
troller, a logician, and an executor; the significant differences in comparison with prior work
are described later in this section. The controller maintains the overall beliefs regarding the
state of the domain, and transfers control and information between the components. Rea-
soning is based on transition diagrams of the domain at two different resolutions, with a
fine-resolution representation defined as a refinement of a coarse-resolution representation
of the domain. For any given goal, the logician performs non-monotonic logical reasoning

Fig. 2 Architecture represents and reasons with intentions and beliefs using tightly coupled transition dia-
grams at two different resolutions. It combines the complementary strengths of non-monotonic logical
reasoning and probabilistic reasoning, and it may be viewed as comprising a controller, a logician, and an
executor

183

R. Gomez et al.

Fig. 3 Four rooms considered in Example 1, with a human in the kitchen and two books in off ice2. Only
the library’s door can be locked; all other rooms are open at all times

with the coarse-resolution representation of commonsense domain knowledge to generate
an activity, i.e., a sequence of intentional abstract actions to achieve the goal. To imple-
ment each such intentional abstract action, the controller automatically zooms to the part
of the fine-resolution representation that is relevant to the desired abstract transition and
the goal. Reasoning with this relevant part provides a plan of concrete actions; each such
concrete action is executed by the executor using probabilistic models of the uncertainty in
sensing and actuation. The observed and inferred outcomes of executing a concrete action,
along with any other relevant observations, are communicated to the controller and added
to the coarse-resolution history. The logician reasons with this history and continues with
the current activity of intentional abstract actions only if it will achieve the desired goal. If,
on the other hand, the logician finds that pursuing the current activity will not achieve the
desired goal, a new activity is computed and implemented. We use CR-Prolog to represent
and reason with the coarse-resolution and fine-resolution representations. We use existing
implementations of probabilistic algorithms for executing concrete actions. The following
running example will be used to describe the components of the architecture, along with
differences from prior work.

Example 1 [Robot Assistant (RA) Domain] Consider a robot assisting humans in moving
particular objects to desired locations in an indoor office domain with:

– Sorts such as place, thing, robot , object , and book, arranged hierarchically, e.g.,
object and robot are subsorts of thing. Sort names and constants are in lower-case,
and variable names are in uppercase.

– Places: {off ice1, off ice2, kitchen, library} with a door between neighboring
places—see Fig. 3; only the door between kitchen and library can be locked.

– Instances of sorts, e.g., rob1, book1, book2.
– Static attributes such as color , size and different parts (e.g., base and handle)

associated with objects.
– Other agents that may influence the domain, e.g., move a book or lock a door. These

agents are not modeled explicitly; only the potential execution of exogenous actions by
these agents is used to explain unexpected observations.

3.1 Action Language and Domain Representation

We first describe the action language encoding of the dynamics of the domain, and the
translation of this encoding to CR-Prolog programs for knowledge representation and
reasoning.

184

Representing and Reasoning with Intentional Actions on a Robot

3.1.1 Action LanguageALd

Action languages are formal models of parts of natural language used for describing tran-
sition diagrams of dynamic systems. We use an extension of the action language ALd [13]
that supports non-Boolean fluents and non-deterministic causal laws [26], to describe the
transition diagrams of our domain at different resolutions.ALd has a sorted signature with
actions, i.e., a set of elementary operations, statics, i.e., domain attributes whose values
cannot be changed by actions, and fluents, i.e., attributes whose values can be changed by
actions. Basic fluents obey laws of inertia and can be changed by actions, whereas defined
fluents do not obey laws of inertia and are not changed directly by actions.ALd allows three
types of statements (i) causal law; (ii) state constraint; and (iii) executability condition:

a causes lb if p0, . . . , pm (Causal law)
l if p0, . . . , pm (State constraint)

impossible a0, . . . , ak if p0, . . . , pm (Executability condition)

where a is an action, l is a literal (i.e., a domain attribute or its negation), lb is a basic literal,
and p0, . . . , pm are domain literals. The causal law implies that if action a is executed
in a state satisfying p0, . . . , pm, the literal lb will be true in the resulting state. The state
constraint implies that literal l is true in a state satisfying p0, . . . , pm. The executability
condition implies that it is impossible to execute actions a0, . . . , ak in a state satisfying
domain literals p0, . . . , pm.2 For more details about the syntax and semantics of ALd ,
please see [13], and for details about the extension of ALd to support non-Boolean fluents
and non-deterministic causal laws, please see [26].

3.1.2 Coarse-resolution knowledge representation

The coarse-resolution domain representation consists of system description Dc, which is a
collection of statements of ALd , and history Hc. System description Dc has a sorted sig-
nature �c and axioms that describe the corresponding transition diagram τc. The signature
�c defines the basic sorts, domain attributes and actions. In addition to the basic sorts and
ground instances introduced in Example 1, �c for the RA domain includes sort step for
temporal reasoning. Domain attributes (i.e., statics and fluents) and actions are described in
terms of their arguments’ sorts. In the RA domain, coarse-resolution statics include relations
such as next to(place, place), which describes the relative arrangement of places in the
domain; and relations modeling object attributes, e.g., we may represent an object’s color
as obj color(object, color).3 Fluents of the coarse-resolution representation of the RA
domain include loc(thing, place), which denotes the location of the robot or other domain
objects; in hand(robot, object), which denotes whether a particular object is in the robot’s
hand; and locked(place), which implies that a particular place is locked. The locations
of other agents, if any, are not changed by the robot’s actions; these locations are inferred
from observations obtained from other sensors. Next, �c for the RA domain includes
actions such as move(robot, place), pickup(robot, object), putdown(robot, object),
and unlock(robot, place); we also consider exogenous actions exo move(object, place)

and exo lock(place) for diagnostic reasoning, e.g., for explaining unexpected observations.

2For simplicity, we do not describe the non-deterministic causal laws or non-Boolean fluents here.
3It is possible to represent and reason about actions that change the values of the object attributes such as
color; we just choose to represent them as statics in this work.

185

R. Gomez et al.

Finally, �c also includes the relation holds(f luent, step) to imply that a particular flu-
ent is true at a particular time step. Note that it is possible to consider domain attributes
and actions as functions and use the corresponding notation, e.g., loc : thing → place,
in hand : robot×object → bool, and move : robot×place → action. We use the pred-
icate notation for simplicity, ease of understanding, and to be consistent with the notation
used in other parts of this paper.

Axioms in the coarse-resolution representation of the RA domain include causal laws,
state constraints, and executability conditions such as:

move(rob1, P) causes loc(rob1, P) (1a)

pickup(rob1,O) causes in hand(rob1,O) (1b)

¬loc(T h, P2) if loc(T h, P1), P1 �= P2 (1c)

loc(O, P) if loc(rob1, P), in hand(rob1, O) (1d)

impossible pickup(rob1,O) if loc(rob1, P1), loc(O, P2), P1 �= P2 (1e)

impossible move(rob1, P) if loc(rob1, P1), ¬next to(P, P1) (1f)

which describe the dynamics of the domain. For instance, Statement 1(a) implies that exe-
cuting action move(rob1, library) causes loc(rob1, library) to be true in the resultant
state, Statement 1(c) implies that any object can only be in one location at a time, and State-
ment 1(e) implies that the robot cannot pick an object up unless the object is in the same
location as the robot. These axioms are used for inference, planning, and diagnostics, as
described later in Section 3.1.3.

The history Hc of a dynamic domain is usually a record of statements of the form: (i)
obs(f luent, boolean, step) implying that particular fluents were observed to be true or
false at a particular time step; and (ii) hpd(action, step) implying that particular actions
happened at a particular time step. In [26], this notion was expanded to represent defaults
describing the values of fluents in the initial state. For instance, in the coarse-resolution
history Hc of the RA domain, the statement “a book is usually in the library and if it is not
there, it is normally in the office” is encoded as:

initial default loc(X, library) if book(X) (2a)

initial default loc(X, off ice1) if book(X), ¬loc(X, library) (2b)

These statements represent prioritized defaults. We can also encode exceptions, e.g.,
“cookbooks are in the kitchen”; for more information, please see [14]. Notice that this
representation does not assign numerical values to degrees of belief associated with these
defaults, but supports elegant reasoning with generic defaults and their specific exceptions
(if any).

3.1.3 Reasoning with Knowledge

Key tasks of an agent equipped with a system description and history include reasoning
with this domain representation for planning and diagnostics. In our architecture, these tasks
are accomplished by translating the domain representation to a program in CR-Prolog, a
variant of ASP that incorporates consistency restoring (CR) rules [2]. An independent group
of researchers have developed (and will be releasing) software to automate the translation
between a description inALd and the corresponding description in CR-Prolog. In our case,
we build on previous work that specified steps for this translation [26], and either perform
this translation manually or use a script that automates this translation.

186

Representing and Reasoning with Intentional Actions on a Robot

ASP is based on stable model semantics and supports concepts such as default negation
and epistemic disjunction, e.g., unlike “¬a” that states a is believed to be false, “not a” only
implies a is not believed to be true, and unlike “p ∨ ¬p” in propositional logic, “p or ¬p”
is not tautologous. In other words, each literal can be true, false or just “unknown”, and
an agent associated with an ASP program only believes that which it is forced to believe.
ASP can also represent recursive definitions and constructs that are difficult to express
in classical logic formalisms, and it supports non-monotonic logical reasoning, i.e., it is
able to revise previously held conclusions based on new evidence. The CR-Prolog program
�(Dc,Hc) for the coarse-resolution representation of the RA domain includes the signature
and axioms of Dc, inertia axioms, reality checks, closed world assumptions (CWAs) for
defined fluents and actions. For instance, �(Dc,Hc) includes:

holds(F, I + 1) ← holds(F, I), not ¬holds(F, I + 1) (3a)

¬holds(F, I + 1) ← ¬holds(F, I), not holds(F, I + 1) (3b)

← ¬holds(F, I), obs(F, true, I) (3c)

← holds(F, I), obs(F, f alse, I) (3d)

¬occurs(A, I) ← not occurs(A, I) (3e)

where Statements 3(a)-(b) are inertia axioms for basic fluents, Statements 3(c)-(d) are reality
check axioms implying that any mismatch between observations and expectations based on
current beliefs results in an inconsistency, and Statement 3(e) is the CWA for actions.

Program �(Dc,Hc) also includes observations, actions, and defaults from Hc. Every
default also has a CR rule that allows the robot to assume the default’s conclusion is false
to restore consistency under exceptional circumstances. For instance, the axiom:

¬loc(X, library)
+← book(X) (4)

considers the rare event of a book not being in the library. This axiom is only used under
exceptional circumstances to restore consistency in the presence of an unexpected obser-
vation, e.g., a book that is expected to be in the library is later found to be in off ice2.
Each answer set of an ASP program, typically computed by applying a SAT (i.e., satis-
fiability) solver to the ASP program, represents the set of beliefs of an agent associated
with the program. Algorithms for computing entailment, and for planning and diagnostics,
reduce these tasks to computing answer sets of CR-Prolog programs. We compute answer
sets of CR-Prolog programs using the system called SPARC [1]. An illustrative version
of the coarse-resolution CR-Prolog program for the RA domain (written using SPARC) is
available in our open-source software repository [25].

3.2 Adapted Theory of Intention

For any given goal, a robot reasoning with domain knowledge (as described above) will
compute a plan and execute it actions in the plan until either the goal is achieved or an action
in the plan has an unexpected outcome. In the latter case, the robot will attempt to explain
the unexpected outcome (i.e., perform diagnostics) and compute a new plan if necessary.
To motivate the need for a different approach in dynamic domains, consider the following
five scenarios in which the goal is to move book1 and book2 to the library; these scenarios
have been adapted from scenarios considered in prior work [5]:

187

R. Gomez et al.

– Scenario 1 (planning): Robot rob1 is in the kitchen holding book1, and believes book2
is in the kitchen and that the library is unlocked. The computed plan is:

move(rob1, library), putdown(rob1, book1)

move(rob1, kitchen), pickup(rob1, book2)

move(rob1, library), putdown(rob1, book2)

– Scenario 2 (unexpected success): Assume that rob1 in Scenario-1 has moved to the
library and put book1 down, and observes book2 there. The robot should be able
to explain this observation (e.g., book2 was moved there as a result of an exogenous
action) and realize that the goal has been achieved.

– Scenario 3 (not expected to achieve goal, diagnose and replan, case 1): Assume
rob1 in Scenario-1 starts moving book1 to library, but observes book2 is not in the
kitchen. The robot should realize the plan will fail to achieve the overall goal, explain
the unexpected observation, and compute a new plan.

– Scenario 4 (not expected to achieve goal, diagnose and replan, case 2): Assume
rob1 is in the kitchen holding book1, and believes that book2 is in off ice2 and the
library is unlocked. The robot plans to put book1 in the library before fetching book2
from off ice2. Before rob1 moves to the library, it unexpectedly observes book2 in the
kitchen. The robot should realize that its current plan will fail, explain the unexpected
observation, and compute a new plan.

– Scenario 5 (failure to achieve the goal, diagnose and replan): Assume robot rob1
in Scenario-1 is putting book2 in the library, after having put book1 in the library

earlier, and observes that book1 is no longer there. The robot’s intention should persist;
it should explain the unexpected observation, replan if necessary, and execute actions
until the goal is achieved (i.e., both books are in the library).

One way to support the desired behavior in such scenarios is to reason with all obser-
vations of domain objects and events, e.g., observations of all objects in the field of view
of the robot’s (or the domain’s) sensors, during plan execution. Such an approach would be
computationally unfeasible in complex domains in which there may be many new obser-
vations and events at each time step. Also, only a small number of these observations and
events may be relevant to the task at hand. We thus pursue a different approach in our archi-
tecture; our adapted theory of intention builds on the principles of non-procrastination and
persistence, and extends the ideas from T I . Specifically, our architecture enables the robot
to automatically compute actions that are intended for the given goal and current beliefs.
As the robot attempts to implement each such action, the robot automatically identifies and
considers those observations that are “relevant” to this action or the goal. The robot adds
these observations to the recorded history, and uses them to reason about mental states and
actions, to determine if and when it should replan as against following the existing plan. We
will henceforth use AT I to refer to this adapted theory of intention; it expands both the
system description Dc and history Hc in the original program �(Dc,Hc) to reason about
intentional actions and beliefs. Below, we describe the steps of this expansion along with
some examples, and provide a link to an illustrative program that is obtained by applying
these steps in the RA domain.

188

Representing and Reasoning with Intentional Actions on a Robot

First, the signature �c is expanded to represent an activity as a triplet comprising a goal,
a plan to achieve the goal, and a specific name for the activity. We do so by introducing (in
�c) relations such as:

activity(name), activity goal(name, goal) (5)

activity length(name, length)

activity component (name, number, action)

which represent each named activity, the goal and length of each activity, and the actions
that are the components of the activity. Note that these relations are not ground initially
because the specific activities and goals are constructed or defined as needed. However,
once they are ground, the corresponding terms behave as statics.

Next, the existing fluents of�c are considered to be physical fluents and the set of fluents
is expanded to include mental fluents such as:

active activity(activity), in progress goal(goal) (6)

next action(activity, action),

in progress activity(activity),

active goal(goal), next activity name(name)

current action index(activity, index)

where the relations in the first three lines are defined fluents, whereas the other relations are
basic fluents that obey the laws of inertia. All these fluents represent the robot’s belief about
a particular activity, action, or goal being active or in progress. None of these mental fluents’
values are changed directly by executing any physical action. For example, the value of the
relation current action index changes if the robot has completed an intended action or if a
change in the domain makes it impossible for an activity to succeed. The values of the other
mental fluents are changed directly or indirectly by expanding the set of existing physical
actions of �c to include mental actions such as:

start (name), stop(name) (7)

select (goal), abandon(goal)

where the first two mental actions are used by the controller to start or stop a particular
activity, and the other two actions represent exogenous actions executed (e.g., by a human
or an external system) to select or abandon a goal.

In addition to �c, the domain’s historyHc is expanded to include relations such as:

attempt(action, step) (8)

¬ hpd(action, step)

which denote that a particular action was attempted at a particular time step, and that a
particular action did not happen (i.e., was not executed successfully) at a particular time
step. Note that it is straightforward for the robot to figure out when an action was attempted,
but figuring out when an action was actually executed (or not executed) requires external
(e.g., sensor) input and reasoning, e.g., diagnostic reasoning with observations to determine
whether an action had the intended outcome(s). In our control loop and experimental trials,
we use ASP to reason with the observations to determine whether an action was actually
executed, and then use this information for subsequent reasoning.

The expansion of the signature and the history makes it necessary to expand the descrip-
tion of the domain dynamics. To do so, we introduce new axioms in D′

c. This includes

189

R. Gomez et al.

axioms that represent the effects of the physical and mental actions on the physical and
mental fluents, e.g., starting (stopping) an activity makes it active (inactive), and executing
an action in an activity keeps the current activity active. The new axioms include state con-
straints, e.g., to describe conditions under which any particular activity or goal is active, and
executability conditions, e.g., it is not possible for the robot to simultaneously execute two
mental actions or to start an activity when another activity is active and still valid. In addi-
tion, axioms are introduced to generate intentional actions, build a consistent model of the
domain history, and to perform diagnostics. For example, the following axioms are related
to finding the next intended action given an activity and a goal:

occurs(AA, I1) ← current step(I), I <= I1, #agent action(AA), (9a)

active goal activity(AN, I), holds(in progress activity(AN), I1),

holds(next action(AN,AA), I1), not impossible(AA, I1)

projected success(AN, I) ← current step(I), I < I1, holds(G, I1) (9b)

holds(active activity(AN), I1), activity goal(AN,G)

¬projected success(AN, I) ← current step(I), (9c)

not projected success(AN, I)

intended action(AA, I) ← current step(I), #agent action(AA), (9d)

active goal activity(AN, I), holds(next action(AN,AA), I),

projected success(AN, I)

where Statement 9(a) implies that if the next agent action AA in the current activity is not
impossible, it is expected to occur in a subsequent time step. Statement 9(b) implies that if
the goal holds in a future step, given that actions of the current activityAN occur as planned,
the activity has a projected success. Statement 9(c) implies that if we do not have a projected
success, it must have been because one of our actions cannot occur, or our current activity
AN does not reach the goal. Finally, Statement 9(d) implies that if our current activity has
a projected success, the activity’s next action will be the next intended action.

As another example, the following axioms of D′
c define an activity as being futile:

← current step(I), active goal activity(AN, I), (10a)

¬ projected success(AN, I), not f utile activity(AN, I)

f utile activity(AN, I)
+← current step(I), active goal activity(AN, I), (10b)

¬ projected success(AN, I)

intended action(stop(AN), I) ← currents tep(I), active goal activity(AN, I),

f utile activity(AN, I) (10c)

where Statement 10(a) introduces an inconsistency if there is an active activityAN that does
not have projected success and has not been defined as being futile. Then, Statement 10(b)
is a CR rule that provides a path out of such an inconsistency by defining the activity as
being futile in these exceptional circumstances. Finally, Statement 10(c) implies that is an
activity as been defined as being futile, the next intentional action of the robot will be to
stop this activity and plan a different activity.

As described in Section 3.1.3, we use a script to automatically translate the revised sys-
tem description D′

c and history H′
c to a CR-Prolog program �(D′

c,H′
c) that is solved for

planning or diagnostics. However, recall that CR-rules are used to build a consistent model
of history, which involves reasoning about potential exceptions to defaults and the execution

190

Representing and Reasoning with Intentional Actions on a Robot

of exogenous actions, and to generate minimal plans of intentional actions. This reason-
ing is challenging because we need to encode some preferences between the different CR
rules; unexpected observations could potentially be explained using exceptions to defaults
or using exogenous actions, e.g., a book may be observed in the kitchen because it is an
exception to the corresponding default, or because it was moved there by some one. Our
preference is based on the following key postulate:

Unexpected observations are more likely to be due to exceptions to defaults than due to
exogenous actions.

This is a reasonable claim for many robotics domains, and is translated to the following
preference:

First try to explain unexpected observations by considering exceptions to defaults; if that
does not suffice, consider exogenous actions to generate explanations.

Even with this preference, the agent will have to use CR rules for both diagnostics
and planning. Exploring all possible combinations of such rules can become computation-
ally expensive in complex domains. To ensure efficient and correct reasoning while still
encoding the desired preference, we modify the axioms (by adding suitable flags) such that
coarse-resolution reasoning with AT I is performed in two phases. The robot first com-
putes a consistent model of history without considering axioms for plan generation, and
then uses this model to guide the computation of plan(s) without considering the axioms
for diagnostics. A CR-Prolog program illustrating this process for the RA domain, writ-
ten in SPARC with explanatory comments, is available in ToI planning.sp in the folder
simulation/ASP f iles/ in our open-source software repository [25].

The following are the key differences that distinguish AT I from the prior work on T I
and the prior work on coarse-resolution reasoning in the refinement-based architecture [26]:

1. T I becomes computationally expensive, especially as the size of the plan or domain
history increases. Reasoning with T I performs diagnostics and planning jointly, which
allows it to consider different explanations during planning but makes computation
unfeasible in all but the very simple domains. On the other hand, reasoning withAT I ,
as stated above, first builds a consistent model of history by considering different
explanations, and uses the chosen model to guide planning, significantly improving
computational efficiency and supporting scalability in complex domains.

2. T I assumes complete knowledge of the state of other agents (e.g., humans or other
robots) that perform exogenous actions. In most robotics domains, this assumption
is unrealistic; these domains typically only afford partial observability. AT I instead
makes the more realistic assumption that the robot can only make unreliable observa-
tions of its domain through its sensors and infer exogenous actions by reasoning about
and trying to explain these observations.

3. AT I does not include the notion of sub-goals and sub-activities (and associated rela-
tions) from T I , as they are not necessary. Also, these sub-activities and sub-goals need
to be encoded in advance to use T I , which is difficult to do in practical (robotics)
domains. Furthermore, even if this knowledge is encoded, it will make reasoning (e.g.,
for planning or diagnostics) significantly more computationally expensive if the robot
has to repeatedly examine if one of the many stored activities provides a minimal and
correct path to the desired goal.

4. Coarse-resolution reasoning in the prior work on the refinement-based architecture
did not (a) reason about intentional actions; or (b) reason about exogenous actions
in addition to initial state defaults. These limitations are relaxed in the architecture
described in this paper. A consistent model of history is constructed with defaults and

191

R. Gomez et al.

exogenous actions at the coarse resolution, and reasoning with intentional actions
supports reasoning in the presence of unexpected successes and failures.

Any architecture with AT I , the original T I , or a different reasoning component based
on non-monotonic logics or classical first-order logic, will have two key limitations that
have not been discussed so far. First, reasoning does not scale well to the finer resolution at
which actions will often have to be executed to perform various tasks in robotics domains.
For instance, the coarse-resolution representation discussed so far is not sufficient if the
robot has to grasp and pickup a particular cup from a particular table, or deliver the cup to a
particular person. Also, using logics to reason with a sufficiently fine-grained domain rep-
resentation (e.g., to perform the grasping task) will be computationally expensive. Second,
we have not yet modeled the actual sensor observations of the robot or the uncertainty in
sensing and actuation. This uncertainty is the primary source of error on robots, and many
existing algorithms use probabilities to model this uncertainty quantitatively. Section 2
discusses additional limitations of approaches based on logical and probabilistic reason-
ing for robotics domains. Our architecture addresses these limitations by combining AT I
with ideas that build on prior work on a refinement-based architecture [26], as described
below.

3.3 Refinement, Zooming and Execution

Consider a coarse-resolution system description Dc of transition diagram τc that includes
AT I . For any given goal, reasoning with �(Dc,Hc) will provide an activity, i.e., a
sequence of abstract intentional actions. In our architecture, the execution of the coarse-
resolution transition corresponding to each such abstract action is based on a fine-resolution
system description Df of transition diagram τf that is a refinement of, and is tightly cou-
pled to, Dc. We can imagine refinement as taking a closer look at the domain through a
magnifying lens, potentially leading to the discovery of concrete structures that were previ-
ously abstracted away by the designer, e.g., for efficient reasoning with rich commonsense
knowledge. Our architecture builds on the general design methodology described in prior
work [26] to construct Df using Dc and some domain-specific information provided by
the designer. This approach includes a weak refinement that temporarily limits the robot’s
ability to observe the value of fluents (through sensors), and a theory of observation that
leads to the definition of strong refinement by relaxing this limitation. The coarse-resolution
transition is then implemented by automatically zooming to and reasoning with the part
of Df relevant to this transition and the coarse-resolution goal. We describe the steps of
this process and highlight key differences between our current approach and prior work
[26].

First, the signature �f of Df includes all elements of �c except those related to AT I ,
and a new sort for every sort of �c that is magnified by the increase in resolution; these new
sorts are the fine-resolution counterparts of the magnified sorts. For instance, �f of the RA
domain includes:

place = {off ice1, off ice2, kitchen, library}, cup = {cup1},
place∗ = {c1, . . . , cm}, cup∗ = {cup1 base, cup1 handle}

book = {book1, book2}
(11)

where the superscript “*” represents fine-resolution counterparts of the sorts in Dc that are
magnified by refinement. Also, {c1, . . . , cm} are the grid cells that are the components of
the original set of places, and any cup has a base and handle as components (i.e., parts);
a book, on the other hand, is not magnified and has no components. The sort hierarchy

192

Representing and Reasoning with Intentional Actions on a Robot

is also suitably modified, e.g., cup and cup∗ are siblings that are children of sort object .
Also, for each domain attribute of �c magnified by the increase in resolution, we introduce
appropriate fine-resolution counterparts in�f . For instance, in the RA domain,�f includes
domain attributes such as:

loc(thing, place), next to(place, place) (12)

loc∗(thing∗, place∗), next to∗(place∗, place∗)
where relations with and without the “*” superscript represent the fine-resolution counter-
parts and their coarse-resolution versions respectively. The specific relations listed above
describe the location of each thing at two different resolutions, and describe two places or
cells that are next to each other. The signature �f will also include actions that are copies of
those in �c and those with magnified sorts. For instance, �f for the RA domain includes:

move(robot, place), in hand(robot, object) (13)

move∗(robot, place∗), in hand∗(robot, cup∗)
Finally, the signature �f includes domain-dependent statics component (O∗, O) relating
the magnified objects and their counterparts, e.g., component (cup1 base, cup1) describes
that the base of a cup is a component of the corresponding cup. The axioms of Df are then
obtained by restricting the axioms of Dc (except those for AT I) to the signature �f . This
would, for instance, remove all axioms related to AT I , leave certain axioms unchanged,
and introduce fine-resolution versions of certain axioms. For instance, the axioms inDf for
the RA domain will now include:

move∗(R,C) causes loc∗(R,C) (14a)

pickup(R,O) causes in hand(R,O) (14b)

pickup∗(R,Opart) causes in hand∗(R,Opart) (14c)

next to∗(C2, C1) if next to∗(C1, C2) (14d)

where C, C1 and C2 are elements of sort place∗ (i.e., grid cells in places), and Opart is an
element of sort cup∗, i.e., cup1 base or cup1 handle. We also include bridge axioms that
relate coarse-resolution domain attributes to their fine-resolution counterparts. For instance:

loc(O, P) if component (C, P), loc∗(O,C) (15a)

in hand(R,O) if component (Opart,O), in hand∗(R,Opart) (15b)

where Statement 15(a) implies that any object that is in a particular cell within a particular
room is also within that room, and Statement 15(b) implies that if the robot has some part
of an object in its grasp then the entire object is also in its grasp. Note that the refinement
process does not inherit any of the relations or axioms that were introduced in Dc to reason
about intentional actions.

Next, to support the observation of the values of fluents, the signature �f is expanded to
include knowledge-producing action test (robot, f luent) that checks the value of a fluent in
a given state, and only changes the value of appropriate (fine-resolution) knowledge fluents.
We also introduce knowledge fluents to describe observations of the environment, e.g., basic
fluents to describe the direct (sensor-based) observation of the values of the fine-resolution
fluents, and defined domain-dependent fluents that determine when the value of a particular
fluent can be tested. Note that the value of any concrete fluent or static in �f is directly
observable, e.g., the grid cell location of the robot, whereas any abstract fluent or static in
�f is only indirectly observable, e.g., the place location of an object cannot be observed

193

R. Gomez et al.

directly. The axioms of Df are then expanded to include (a) causal laws describing the
effect of the test action on the corresponding fine-resolution basic knowledge fluents; (b)
executability conditions for these test actions; (c) axioms that describe the robot’s ability to
sense the values of directly and indirectly observable fluents; and (d) auxiliary axioms for
indirect observation of fluents. For example:

test (rob1, F) causes observed(rob1, F) if F = true (16a)

impossible test (rob1, F) if ¬can test (rob1, F) (16b)

can test (rob1, in hand(rob1,O)) (16c)

observed(rob1, loc(O, P)) if observed(rob1, loc(O,C)), component (C, P)

(16d)

where can test (rob1, F) is a domain-dependent defined fluent that encodes the informa-
tion about when the robot can test the value of a particular fluent, and observed(rob1, F)

is a knowledge fluent that encodes that the robot has observed a particular value for a par-
ticular fluent directly, e.g., Statement 16(a), or indirectly, e.g., Statement 16(d). Prior work
has shown that if certain conditions are met by the definition of Df and Dc, then for each
transition in τc between coarse-resolution states σ1 and σ2, there exists a path in τf between
some refinement of σ1 and some refinement of σ2—see [26] for related definitions and
proofs. Although the Dc described in this paper also includes AT I , recall that the design
of our architecture includes the key decision of confining the representation and reasoning
methods associated with this theory to the coarse resolution. In other words, although the
transition diagrams for Dc and Df , i.e., τc and τf , are tightly-coupled, the components of
the signature and the axioms added to Dc for AT I are not refined or included in Df . Our
design choice thus enables us to include the additional theory while ensuring that the result
from [26] about the correspondence of paths in τc and τf holds for the coarse and fine
resolution descriptions in this paper.

While the tight coupling established by refinement between the coarse resolution and
fine resolution descriptions is appealing, reasoning at fine resolution using Df becomes
computationally unfeasible for complex domains. Also, the refined description does not (so
far) consider probabilistic models of the uncertainty in sensing and actuation. We address
the computational complexity problem through a key expansion to the principle of zooming
introduced in [26]. Specifically, for each abstract transition T to be implemented (i.e., exe-
cuted) at fine resolution, the previous definition of zooming determined Df (T), the part of
the system description Df relevant to transition T ; it did so by determining the object con-
stants of �f relevant to T and restrictingDf to these object constants. Here, we extend this
definition of zooming to identify Df (T , G), the part of system description Df relevant to
the transition or the overall goal. To identify this part, we first make some key changes to
the definition of relevance in [26] as follows.

Definition 1 [Constants relevant to a transition or goal] For any given (ground) transition
T = 〈σ1, aH , σ2〉 of τc and goal G, relConc(T ,G) denotes the minimal set of object
constants of signature �c of system description Dc closed under the following rules:

1. Object constants occurring in aH are in relConc(T ,G);
2. Object constants occurring in G are in relConc(T ,G);
3. If the term f (x1, . . . , xn, y) belongs to state σ1 or σ2, but not both, then the constants

x1, . . . , xn, y are in relConc(T , G);

194

Representing and Reasoning with Intentional Actions on a Robot

4. If the body of an executability condition of aH contains a term f (x1, . . . , xn, y) that is
in σ1, the constants x1, . . . , xn, y are in relConc(T ,G);

5. If f (x1, . . . , xn, y) belongs to G, then x1, . . . , xn, y are in relObConc(T ,G).

Constants from relConc(T , G) are said to be relevant to T or G.

Note that unlike prior work, this definition of relevance considers the coarse-resolution
goal when identifying the object constants relevant to a particular coarse-resolution tran-
sition. Consider a scenario in our RA domain, in which the goal is to take the book tb1,
which is known to be in off ice1, to the library, with the robot rob1 being in the kitchen.
For the first transition T = 〈σ1,move(rob1, off ice1), σ2〉 in the activity for this goal,
rob1 and tb1 are relevant; other domain objects are not considered to be relevant. Also
note that in the absence of considering object constants relevant to the goal, tb1 would
not be in relConc(T ,G). Now, the coarse-resolution system description Dc(T ,G) rele-
vant to T or G is obtained by first constructing signature �c(T ,G) whose object constants
are those of relConc(T ,G). Basic sorts of �c(T , G) are intersections of basic sorts of
�c with those of relConc(T , G), e.g., we would not consider sorts such as cup. The
domain attributes and actions of �c(T , G) are those of �c restricted to the basic sorts
of �c(T , G), i.e., we only retain the domain attributes and actions that can be defined
entirely in terms of the basic sorts of �c(T ,G); we would not, for instance, consider
in hand(robot, cup) or pickup(robot, cup). In a similar manner, the axioms ofDc(T ,G)

are restrictions of axioms of Dc to �c(T , G), e.g., we would not consider axioms related
to action pickup(robot, cup). It is easy to show that for any coarse-resolution transition
T = 〈σ1, aH , σ2〉, there exists a transition 〈σ1(T ,G), aH , σ2(T ,G)〉 in transition diagram
of Dc(T ,G), with σ1(T ,G) and σ2(T , G) being restrictions of σ1 and σ2 (respectively) to
the relevant signature �c(T ,G).

Once the relevant coarse-resolution system description has been identified, the zoomed
system description can be constructed as follows.

Definition 2 [Zoomed system description]
For a coarse-resolution transition T and goal G, the fine-resolution system description
Df (T ,G) with signature �f (T , G) is the zoomed fine-resolution system description if:

1. Basic sorts of �f (T , G) are those of Df that are components of the basic sorts of
Dc(T).

2. Functions of �f (T ,G) are those of Df restricted to the basic sorts of �f (T ,G).
3. Actions of �f (T , G) are those of Df restricted to the basic sorts of �f (T , G).
4. Axioms of Df (T , G) are those of Df restricted to the signature �f (T ,G).

Continuing with our example in the RA domain, the object constants of �f (T ,G)

include rob1, places {off ice1, kitchen}, cells {ci : ci ∈ kitchen ∪ off ice1}, and book
tb1. Domain attributes of �f (T ,G) include loc(rob1, P), loc∗(rob1, C), next to(P1, P2),
next to∗(C1, C2), with the variables taking values from the set of places and cells in
�f (T , G), and properly restricted relations for testing and observing the values of fluents
etc. In a similar manner, actions of �f (T ,G) include move∗(rob1, ci), which moves the
robot to a particular cell, test (rob1, loc∗(rob1, ci)), which checks whether rob1 is in a
particular cell location, and observed(rob1, loc(tb1, cj)), which represents the observa-
tion of tb1 in a particular cell. Also, restricting axioms of Df to the signature �f (T ,G)

removes causal laws for pickup and putdown, and irrelevant state constraints and exe-
cutability conditions; the variables in the remaining axioms are restricted to object constants

195

R. Gomez et al.

in �f (T ,G). It can be shown that for any given transition 〈σ1(T ,G), aH , σ2(T ,G)〉 in
the coarse-resolution transition diagram of Dc(T , G), there exists a path between a refine-
ment of σ1(T , G) and a refinement of σ2(T , G). This result can be established by following
steps similar to those in the proof provided in prior work [26]. The key differences are the
revised definitions of relevance and zooming, as provided above, which will require suitable
revisions in the proof.

Once the relevant fine-resolution description has been identified, prior work achieved
fine-resolution implementations of any desired coarse resolution transition T by (a) map-
pingDf (T) and estimated probabilities of state transitions to a partially observable Markov
decision process (POMDP); and (b) using an approximate solver to solve each such POMDP
and obtain a policy that maps belief states to actions. Although the POMDP that is con-
structed and solved only focuses on the relevant part of the fine-resolution description, this
approach can become computationally expensive in complex domains. Instead, to imple-
ment transition T in our architecture, ASP-based reasoning with �(Df (T , G),Hf) is used
to compute a sequence of concrete (i.e., fine-resolution) actions, with the goal being a
fine-resolution counterpart of the resultant state of the coarse-resolution transition T . In
what follows, we use “refinement and zooming” to refer to the use of both refinement and
zooming as described above. The execution of each fine-resolution concrete action is then
based on existing implementations of algorithms for common robotics tasks such as nav-
igation, mapping, object recognition, localization, and grasping—see Section 4 for more
details. These algorithms provide probabilistic measures of certainty about their decisions,
e.g., about the presence or absence of target objects in an image of the scene. When the
robot makes decisions at the fine resolution, the high-probability outcomes of each con-
crete action’s execution get elevated to statements associated with complete certainty inHf

and used for subsequent reasoning; this approach may result in incorrect commitments but
the non-monotonic logical reasoning capability helps the robot identify and recover from
such errors. The coarse-resolution outcomes of such fine-resolution reasoning are added to
the coarse-resolution Hc for subsequent reasoning using AT I . The CR-Prolog programs
for fine-resolution reasoning in the RA domain (i.e., with the refined and zoomed system
description), and the program for the overall control loop of the architecture, are available
in our online repository [25].

The following are the key differences that distinguish fine-resolution reasoning in our
architecture from that in prior work on the refinement-based architecture [26]:

1. Prior work did not maintain a history and perform logical reasoning at the fine-
resolution; as stated earlier, a POMDP-based approach was used, which becomes
computationally expensive in complex domains. Also, prior work assumed limited
dynamic changes in the domain during planning and execution. These limitations are
relaxed in the architecture described in this paper. Fine-resolution reasoning builds a
consistent model of history, and considers the relevant fine-resolution observations to
compute and add appropriate statements to the coarse-resolution history. Furthermore,
the tight coupling between the system descriptions and the separation of concerns, with
AT I only included in the coarse resolution, helps establish the desirable properties of
prior work, e.g., about the existence of paths in the fine-resolution transition diagram
for any given transition in the coarse-resolution diagram.

2. Zooming is a key requirement for the desired reasoning capabilities and for com-
putational efficiency. Prior work on zooming automatically extracted the part of the
fine-resolution system description relevant to the implementation of any given tran-
sition at the coarse resolution. The architecture described in this paper, on the other

196

Representing and Reasoning with Intentional Actions on a Robot

hand, automatically identifies and reasons about the part of the fine-resolution system
description relevant to the coarse-resolution transition and the goal under consideration.
As a result, reasoning and plan execution are reliable and efficient in the presence of
dynamic (and unexpected) changes in the domain.

3. Prior work used a POMDP to reason probabilistically over the zoomed fine-resolution
system description Df (T) for any coarse-resolution transition T . This is a computa-
tionally expensive process, especially when domain changes prevent reuse of POMDP
policies [26]. In this paper, CR-Prolog is used to compute a plan of concrete actions
from Df (T , G). Each concrete action is then executed using algorithms that incorpo-
rate probabilistic models of uncertainty, significantly reducing the computational cost
of fine-resolution reasoning and execution. In addition, the algorithms for the individ-
ual concrete actions can be implemented, revised, and replaced without requiring any
further changes in the other components of the architecture.

As we show below, these differences help improve the reliability and computational
efficiency of reasoning.

4 Experimental setup and results

This section reports the results of experimentally evaluating the capabilities of our architec-
ture in different scenarios. We evaluated the following hypotheses:

– H1: using AT I improves the computational efficiency in comparison with not using
it, especially in scenarios with unexpected success.

– H2: using AT I improves the accuracy in comparison with not using it, especially in
scenarios with unexpected goal-relevant observations.

– H3: the architecture that combines AT I with refinement and zooming supports
reliable and efficient operation in complex (robot) domains.

We report results of evaluating these hypotheses experimentally: (a) in a simulated domain
based on Example 1; (b) on a Baxter manipulating objects on a tabletop; and (c) on a Turtle-
bot finding and moving objects to particular places in an indoor domain. We also provide
some execution traces as illustrative examples of the working of the architecture. To eval-
uate the ability to scale to more complex domains, we defined variants of the RA domain
at eight different complexity levels. The key components of each complexity level are as
follows:

– L1: one object with one fine-resolution part, i.e., no new parts considered after
refinement; two rooms with two cells in each room.

– L2: two objects, each with two refined parts; three rooms with two cells in each room.
– L3: three objects, each with three fine-resolution parts (e.g., base and handle of cup);

four rooms with four cells in each room.
– L4: four objects, each with four refined parts; five rooms with five cells in each room.
– L5: eight objects, each with two refined parts; five rooms with nine cells in each room.
– L6: eight objects, each with two fine-resolution parts, and four objects, each with one

fine-resolution part; five rooms with twelve cells in each room.
– L7: eight objects, each with two fine-resolution parts, and four objects, each with one

fine-resolution part; five rooms with sixteen cells in each room.

197

R. Gomez et al.

– L8: sixteen objects, each with two fine-resolution parts, and eight objects, each with
one fine-resolution part; five rooms with sixteen cells in each room.

where the number of objects, number of object parts, number of rooms, and the number
of cells in each room, typically increase between consecutive complexity levels. There are
some exceptions, e.g., between L5 − L6 and L6 − L7, introduced to isolate and study the
effects of a change in the value of one of these parameters.

In each experimental trial, the robot’s goal was to find and move one or more objects to
particular locations. As a baseline for comparison for hypotheses H1 and H2, we used an
ASP-based reasoner that does not include AT I—we refer to this as the “traditional plan-
ning” (T P) approach. The term “traditional” implies that the planner only monitors the
effects of the action being executed; it does not identify and monitor observations related to
the current transition and the goal. We do not use T I as the baseline for comparison because
it includes components that make it much more computationally expensive thanAT I . Also,
T I does not support reasoning with incomplete knowledge, non-determinism, and partial
observability, capabilities that are often needed in robotics domains—see Section 3.2 for
a related discussion. In the T P approach, the robot uses ASP to reason with incomplete
domain knowledge, and only monitors the outcome(s) of the action currently being exe-
cuted. Recall that AT I is introduced in the coarse resolution; to thoroughly examine the
effect of this theory, we first compare AT I with T P in the coarse resolution, i.e., with-
out any refinement, zooming, or fine-resolution reasoning. We then separately examine the
effect of refinement, zooming, and probabilistic models of the uncertainty in sensing and
actuation, in the context of evaluating hypothesis H3. We do so by combining refinement
and zooming with AT I; the baseline for comparison was a system that did not use zoom-
ing as part of fine-resolution reasoning—we refer to this as the “non-zooming” approach
that still includes AT I (at the coarse resolution) and reasoning with the refined descrip-
tion. We also combine AT I with refinement and zooming to run experiments on robots.
Although we do not do so in this paper, our architecture’s components for fine-resolution
reasoning can also be combined with T P (if needed).

As stated in Section 3.3, we use existing implementations of suitable algorithms for exe-
cuting the concrete actions, e.g., for navigation, object recognition, obstacle avoidance, and
manipulation. These algorithms internally model and estimate the uncertainty in sensing and
actuation probabilistically. Some of these algorithms operate continuously (e.g., for obstacle
avoidance), while others (e.g., object recognition) are selected and used as needed. When
we run experiments in simulation (see Section 4.2 below), we use statistics obtained from
executing the concrete actions on robots to simulate the probabilistic models of uncertainty,
e.g., the robot moves to the desired grid cell in 85% of the trial and recognizes an object
correctly in 90% of the trials. When we run experiments on robots (see Section 4.3 below),
we use existing implementations of algorithms developed by us and other researchers based
on the Robot Operating System (ROS). For instance, whenever we use our architecture in
a domain where the robot can move, we use the particle filter-based algorithm in ROS for
simultaneous localization and mapping [8]. This algorithm enables the robot to periodically,
simultaneously, and probabilistically track multiple hypotheses, each of which represent a
pose sequence and a map of the domain. For visual object recognition, we use an algorithm
developed by others in our research group. This algorithm is used when needed by execut-
ing a suitable knowledge-producing (e.g., test) action, and is based on learned models that
characterize each object using color, shape, and local gradient features [18]. We also use
an existing implementation in ROS for local obstacle avoidance. These algorithms asso-
ciate probabilities with outcomes, e.g., a probabilistic measure of certainty is computed and

198

Representing and Reasoning with Intentional Actions on a Robot

provided with the robot’s estimate of its pose, or its estimate of the class label assigned to
domain objects observed in camera images.

We used one or more of the following performance measures to evaluate the hypothe-
ses: (i) total (planning and execution) time; (ii) number of plans computed; (iii) planning
time; (iv) execution time; (v) number of actions executed; and (vi) accuracy. Note a plan is
considered to be correct if it is minimal and results (on execution) in the achievement of the
goal. We begin with execution traces demonstrating the working of the architecture.

4.1 Execution traces

The following execution traces illustrate the differences in the decisions made by a robot
using AT I in comparison with a robot using T P , focusing primarily on coarse-resolution
reasoning. These traces correspond to scenarios drawn from the RA domain; we focus on
scenarios in which the robot has to respond to unexpected observed effects (successes and
failures) caused by exogenous actions.

Execution Example 1 [Example of Scenario-2] Assume that robot rob1 is in the kitchen

initially, holding book1 in its hand, and believes that book2 is in off ice2 and the library is
unlocked.

– The goal is to have book1 and book2 in the library. The computed plan is the same for
AT I and T P , and consists of actions:

move(rob1, library), putdown(rob1, book1),

move(rob1, kitchen), move(rob1, off ice2),

pickup(rob1, book2), move(rob1, kitchen)

move(rob1, library), putdown(rob1, book2)

– Assume that as the robot is putting book1 down in the library, book2 has been moved
(e.g., by a human or other external agent) to the library.

– WithAT I , the robot observes book2 in the library, reasons and explains the observa-
tion as the result of an exogenous action, realizes the goal has been achieved and stops
further planning and execution.

– With T P , the robot does not observe or does not use the information encoded in the
observation of book2. It will thus waste time executing subsequent steps of the plan
until it is unable to find or pickup book2 in the library. It will then replan (potentially
including prior observation of book2) and eventually achieve the desired goal. It may
also compute and pursue plans assuming book2 is in different places, and take more
time to achieve the goal.

Execution Example 2 [Example of Scenario-5]
Assume that robot rob1 is in the kitchen initially, holding book1 in its hand, and believes
that book2 is in the kitchen and the library is unlocked.

– The goal is to have book1 and book2 in the library. The computed plan is the same for
AT I and T P , and consists of the actions:

move(rob1, library), putdown(rob1, book1),

move(rob1, kitchen), pickup(rob1, book2),

move(rob1, library), putdown(rob1, book2)

199

R. Gomez et al.

– Assume the robot is in the act of putting book2 in the library, after having already put
down book1 in the library earlier. However, book1 is unexpectedly moved from the
library (e.g., to the kitchen, unknown to the robot) while the robot is moving book2.

– With AT I , the robot observes book1 in not in the library, realizes the goal has not
been achieved although the computed plan has been completed, computes a new plan,
and executes this plan until it finds book1 and moves it to the library.

– With T P , the robot puts book2 in the library and stops execution because it believes
it has achieved the desired goal. In other words, it does not realize that the goal has not
been achieved.

4.2 Experimental results in simulation

We evaluated hypotheses H1 and H2 extensively in a simulated world that mimics
Example 1, with four places and different objects. Please note the following:

– As stated earlier, we first compared AT I with T P in the context of the coarse-
resolution domain representation, i.e., these trials did not include refinement, zooming
or fine-resolution reasoning. We also temporarily abstracted away uncertainty in
perception and actuation.

– We conducted paired trials and compared the results obtained using T P with those
obtained using AT I for the same initial conditions and for the same dynamic domain
changes (when appropriate), e.g., a book is moved unknown to the robot and the robot
obtains an unexpected observation.

– When we included fine-resolution reasoning in simulation, we assumed a fixed execu-
tion time for each concrete action to measure execution time, e.g., 15 units for moving
from a room to the neighboring room, 5 units to pick up an object or put it down; and 5
units to open a door.

– Ground truth (e.g., minimal plan) was provided by a separate component that reasons
with complete domain knowledge.

Table 1 summarizes the results of ≈ 800 paired trials in each of the five scenarios
described in Section 3.2. Also, all claims made below were tested for statistical significance.

Table 1 Experimental results comparingAT I with T P in different scenarios

Scenarios Average ratios Accuracy

Tot. Time # Plans Plan. Time Exec. Time # Actions T P AT I

1 0.81 1.00 0.45 1.00 1.00 100% 100%

2 3.06 2.63 1.08 5.10 3.61 100% 100%

3 0.81 0.92 0.34 1.07 1.12 72% 100%

4 1.00 1.09 0.40 1.32 1.26 73% 100%

5 0.18 0.35 0.09 0.21 0.28 0% 100%

All 1.00 1.08 0.41 1.39 1.30 74% 100%

3 - no failures 1.00 1.11 0.42 1.32 1.39 100% 100%

4 - no failures 1.22 1.31 0.49 1.61 1.53 100% 100%

All - no failures 1.23 1.30 0.5 1.72 1.60 100% 100%

Values of all performance measures (except accuracy) for T P are expressed as a fraction of the values of
the same measures for AT I. AT I improves accuracy and computational efficiency, especially in dynamic
domains with unexpected successes and failures

200

Representing and Reasoning with Intentional Actions on a Robot

The initial conditions, e.g., starting location of the robot and objects’ locations, and the
goal, were set randomly in each paired trial. However, before choosing a particular instance
of a scenario defined by a particular initial condition, the simulator does use ground truth
knowledge (not available to the robot) to verify that the chosen goal is reachable from
the chosen initial conditions. Also, in suitable scenarios, a randomly-chosen, valid (unex-
pected) domain change is introduced in each paired trial. Given the significant differences
that may exist between two paired trials, averaging the measured time or plan length across
different trials does not provide any useful information about the performance of the two
approaches being compared. In each paired trial, the value of each performance measure
(except accuracy) obtained with T P is thus expressed as a fraction of the value of the same
performance measure obtained with AT I; each value reported in Table 1 is the average of
these computed ratios. We highlight some key findings below.

Scenario-1 represents a standard planning task with no unexpected domain changes. In
this scenario, both T P and AT I provide the same accuracy (100%) and compute essen-
tially the same plan, but computing an activity comprising intentional actions and repeatedly
checking the validity of this activity takes longer. This explains the reported average values
of 0.45 and 0.81 for planning time and total time (for T P) in Table 1 above.

In Scenario-2 (unexpected success), both T P and AT I achieve 100% accuracy. Here,
AT I stops reasoning and execution once it realizes the desired goal has been achieved
unexpectedly. However, T P does not realize this because it does not consider observations
not directly related to the action being executed; it keeps trying to find the objects of interest
in different places. This explains why T P has a higher planning time and execution time,
computes more plans, and executes more actions (i.e., plan steps) thanAT I .

Scenarios 3-5 correspond to different kinds of unexpected failures. In each trial for these
scenarios, AT I leads to a successful achievement of the goal, whereas there are many
instances in which T P is unable to recover from the unexpected observations and achieve
the goal. For instance, if the goal is to move two books to the library, and one of the books
is moved to an unexpected location when it is no longer part of an un-executed action in
the robot’s plan, the robot may not reason about this unexpected occurrence and the desired
goal may not be achieved. This phenomenon is especially pronounced in Scenario-5 that
represents an extreme case in which the robot using T P is never able to achieve the assigned
goal because it never realizes that it has failed to achieve the goal. Notice that in the trials
corresponding to all three scenarios, AT I takes more time than T P to plan and execute
the plans for any given goal, but this increase in time is justified given the high accuracy
and the desired behavior that the robot is able to achieve in these scenarios using AT I .

The row labeled “All” in Table 1 shows the average of the results obtained in the different
scenarios. The subsequent three rows in Table 1 summarize results after removing from
consideration trials in which T P fails to achieve the assigned goal. We then notice that
AT I is at least as fast as T P and is often faster, i.e., it takes less time (overall) to plan and
execute actions to achieve the desired goal. In summary, T P may result in faster planning
in well-defined domains with little or no dynamic changes, but it results in lower accuracy
and higher execution time than AT I in dynamic domains, especially in the presence of
unexpected successes and failures that are common in dynamic domains. The results in
Table 1 provide evidence in support of hypotheses H1 and H2. The subsequent analysis of
the fine-resolution components of our architecture was thus performed by combining them
with AT I and not with T P .

Next, to evaluate hypothesis H3, we ran experiments in the eight complexity levels
listed in Section 4, with and without including zooming. All trials included AT I for
coarse-resolution reasoning with the adapted theory of intentions, and refined domain

201

R. Gomez et al.

representation for fine-resolution reasoning. Recall that the robot cannot actually execute
the coarse-resolution actions. As before, the goal in each experimental trial was to find
and move a target object to a target location. Similar to the experiments used to evaluate
H1 and H2, the values of performance measures without zooming are, wherever appro-
priate, expressed a fraction of the values with zooming. Tables 2 and 3 summarize the
corresponding results, and we make the following observations:

– When AT I was used with zooming, all trials in all complexity levels terminated suc-
cessfully, i.e., the assigned goal was always achieved—see Table 2. Without zooming,
the goal was achieved in all trials in complexity levels L1 and L2, in only 65% of the
trials in complexity level L3, and in none of the trials in complexity levels L4 − L8.
The observed failures in complexity levels L3 − L8 were due to the existence of too
many options (i.e., paths in the transition diagram) to consider during fine-resolution
reasoning in the absence of zooming. In such cases, fine-resolution planning termi-
nated unexpectedly (i.e., before the goal was achieved) in the absence of zooming.
Thus, Tables 2 and 3 do not consider paired trials at or above complexity level L4;
at these complexity levels, we only report results of trials that included zooming in
fine-resolution reasoning.

– The coarse-resolution reasoning time, i.e., the time for coarse-resolution planning and
diagnostics, increases gradually (as expected) with the increase in the complexity level.
In general, the time taken for coarse-resolution reasoning is much smaller in compar-
ison with the fine-resolution reasoning time in complex domains The fine-resolution
reasoning time, i.e. the time for planning at the fine resolution, and for inferring coarse-
resolution observations based on fine-resolution outcomes, also increases with the
increase in the complexity level. With zooming included in the fine-resolution reason-
ing, this increase is reasoning time scales well with the increase in the complexity level.
However, in the absence of zooming, the increase in reasoning time is much more pro-
nounced, e.g., fine-resolution reasoning at complexity level L3 without zooming takes
(on average) 55 times as much time as when zooming is used.

– Note that reasoning can imply multiple instances of planning and diagnostics for a
particular goal. When zooming is used, the average time spent computing each refined
plan scales well with the increase in the level of complexity. When zooming is not
included in the fine-resolution reasoning, the average time spent in each refined plan
increases dramatically, e.g., even at complexity level L3, each refined plan without
zooming takes (on average) 85 times as much time as with zooming.

– The results with complexity levels L7 and L8 present an interesting comparison, and
further indicate the benefits of zooming. Complexity level L8 has the same number
of rooms and cells in each room as L7, but it has twice as many objects as L7. This
increase would typically have caused a significant increase in the reasoning time,
especially when we consider the parts of the different objects in the fine-resolution.
However, zooming enables the robot to limit its attention to only the objects and object
parts relevant to any given task; we only observe a small increase in the coarse-resolu-
tion reasoning time, with hardly any change in the fine-resolution reasoning time.

Overall, Tables 2 and 3 indicate that zooming supports scalable fine-resolution reasoning
with the increase in complexity. When used in conjunction with the AT I at the coarse
resolution, we obtain reliable and efficient performance in dynamic domains. These results
thus support hypothesis H3.

202

Representing and Reasoning with Intentional Actions on a Robot

Ta
bl
e
2

Pe
rf
or
m
an
ce

w
ith

an
d
w
ith

ou
tz
oo
m
in
g
at
co
m
pl
ex
ity

le
ve
ls

L
1

−
L
3

C
om

pl
ex
ity

le
ve
l

L
1

L
2

L
3

R
ea
so
ni
ng

tim
e
(t
ot
al
)

Z
oo
m

1.
00

(6
.2
4

±
1.
56
)

1.
00

(8
.8
2

±
2.
95
)

1.
00

(1
1.
59

±
3.
88
)

N
o
zo
om

1.
01

(6
.2
8

±
1.
57
)

1.
20

(1
0.
74

±
4.
14
)

20
.0
7
(2
25
.4
9

±
17
7.
64
)

R
ea
so
ni
ng

tim
e
(f
in
e)

Z
oo
m

1.
00

(1
.5
7

±
0.
51
)

1.
00

(2
.5
3

±
0.
92
)

1.
00

(4
.1
9

±
1.
48
)

N
o-
zo
om

1.
02

(1
.6
1

±
0.
54
)

1.
71

(4
.4
6

±
2.
29
)

55
.2
3
(2
18
.1

±
17
6.
97
)

R
ea
so
ni
ng

tim
e
(c
oa
rs
e)

Z
oo
m

1.
00

(4
.6
7

±
1.
05
)

1.
00

(6
.2
9

±
2.
06
)

1.
00

(7
.4

±
2.
57
)

N
o
zo
om

1.
00

(4
.6
7

±
1.
03
)

1.
00

(6
.2
8

±
2.
06
)

1.
00

(7
.3
9

±
2.
58
)

T
im

e
pe
r
re
fi
ne
d
pl
an

Z
oo
m

1.
00

(0
.3
7

±
0.
02
)

1.
00

(0
.4
1

±
0.
02
)

1.
00

(0
.5
6

±
0.
05
)

N
o
zo
om

1.
03

(0
.3
9

±
0.
01
)

2.
26

(0
.9
3

±
0.
32
)

83
.4
9
(4
5.
98

±
43
.0
5)

C
om

pl
et
ed

tr
ia
ls

Z
oo
m

10
0%

10
0%

10
0%

N
o
zo
om

10
0%

10
0%

65
%

V
al
ue
s
of

re
as
on
in
g
tim

es
w
ith

ou
t
zo
om

in
g
ar
e
ex
pr
es
se
d
as

a
fr
ac
tio

n
of

th
e
va
lu
es

w
ith

zo
om

in
g.

W
e
on
ly

co
m
pu
te

th
e
ra
tio

of
re
as
on
in
g
tim

es
in

tr
ia
ls

th
at

re
su
lte
d
in

su
cc
es
sf
ul

ac
hi
ev
em

en
to

f
th
e
as
si
gn
ed

go
al
;t
hi
s
co
ns
id
er
s
al
lt
he

tr
ia
ls
fo
r
co
m
pl
ex
ity

le
ve
ls

L
1

−
L
2,

bu
to

nl
y
65
%

of
th
e
tr
ia
ls
fo
r
co
m
pl
ex
ity

le
ve
lL

3

203

R. Gomez et al.

Ta
bl
e
3

R
ea
so
ni
ng

tim
e
fo
r
tr
ia
ls
us
in
g
zo
om

in
g
at
co
m
pl
ex
ity

le
ve
ls

L
4

−
L
8;

tr
ia
ls
w
ith

ou
tz
oo
m
in
g
w
er
e
un
ab
le
to

te
rm

in
at
e
at
th
es
e
co
m
pl
ex
ity

le
ve
ls

C
om

pl
ex
ity

le
ve
l

L
4

L
5

L
6

L
7

L
8

R
ea
so
ni
ng

tim
e
(t
ot
al
)

18
.6
3

±
5.
49

22
.7
3

±
7.
46

29
.8

±
10
.5
5

41
.9
3

±
17
.2
6

42
.9
9

±
18
.0
4

R
ea
so
ni
ng

tim
e
(f
in
e)

8.
89

±
2.
99

10
.7
8

±
4.
08

17
.7
7

±
7.
55

30
.0
7

±
15
.4
8

29
.3
6

±
15
.7
6

R
ea
so
ni
ng

tim
e
(c
oa
rs
e)

9.
74

±
3.
26

11
.9
5

±
4.
17

12
.0
3

±
4.
33

11
.8
6

±
4.
12

13
.6
3

±
5.
07

T
im

e
pe
r
re
fi
ne
d
pl
an

0.
95

±
0.
26

0.
98

±
0.
22

1.
64

±
0.
68

2.
3

±
1.
02

2.
3

±
1.
09

A
ll
tr
ia
ls
us
in
g
zo
om

in
g
w
er
e
ab
le
to
dr
aw

in
fe
re
nc
es

an
d
ge
ne
ra
te
pl
an
s
th
at
ac
hi
ev
ed

th
e
as
si
gn
ed

go
al
at
al
lc
om

pl
ex
ity

le
ve
ls
.T

he
in
cr
ea
se

in
re
as
on
in
g
tim

e
w
ith

th
e
in
cr
ea
se

in
co
m
pl
ex
ity

le
ve
ls
is
re
as
on
ab
le
an
d
de
m
on
st
ra
te
s
th
e
sc
al
ab
ili
ty

of
ou
r
ap
pr
oa
ch

th
at
co
m
bi
ne
s
A
T
I
w
ith

re
fi
ne
m
en
ta
nd

zo
om

in
g

204

Representing and Reasoning with Intentional Actions on a Robot

4.3 Experimental results on physical robots

We also ran experimental trials with the combined architecture, i.e., AT I with refine-
ment and zooming, on two different robot platforms. These trials represented instances of
the different scenarios (in Section 3.2) in domains that are variants of the RA domain in
Example 1.

First, consider the experiments with the Baxter manipulating objects on a tabletop as
shown in Fig. 1. This domain is characterized by the following:

– The goal is to move particular objects between different “zones” (instead of places), or
between particular cell locations within the zones, on a tabletop.

– After refinement, each zone is magnified to obtain grid cells. Also, each object is
magnified into parts such as base and top after refinement.

– Objects are characterized by the attributes color and size.
– The robot does not have a mobile base but it uses its arm to move objects between cells

or zones.

Next, consider the experiments with the Turtlebot robot operating in an indoor domain as
shown in Fig. 1. This domain is characterized by the following details:

– The goal is to find and move particular objects between places in an indoor domain.
– The robot does not have a manipulator arm. It solicits help from a human to pickup the

desired object when it has reached the location of the target object, and to put the object
down when it has reached the location where it has to move the object.

– Objects are characterized by the attributes color and type.
– After refinement, each place or zone was magnified to obtain grid cells. Also, each

object is magnified into parts such as base and handle after refinement.

Although the two domains differ significantly, e.g., in terms of the domain attributes, actions
and complexity, no change is required in the architecture or the underlying methodology.
Other than providing the domain-specific information, no human supervision is necessary;
most of the other steps are automated. Similar to the experiments in simulation, we used
accuracy (of task completion) and time (for planning and execution) as the performance
measures, expressing the values of relevant measures (e.g., planning time) for the baseline
implementation as a fraction of the values with our architecture. In ≈ 50 experimental
trials in each domain, the robot using the combined architecture is able to successfully
achieve the assigned goal. The performance is similar to that observed in the simulation
trials. For instance, if we do not include AT I , i.e., use T P with refinement and zooming,
the accuracy with which the goal is achieved reduces from 100% to ≈ 60%, and it takes
≈ 2 − 3 times as much time to achieve the goal, especially in the presence of unexpected
success or failure. In other scenarios, the performance with AT I is at least as good as
that with T P . Also, if we do not include zooming, the robot takes significantly longer
to plan and execute concrete actions. In fact, as the domain becomes more complex, i.e.,
with an increase in the number of domain objects and the length of the plan required to
achieve the desired goal, planning starts becoming computationally expensive and (often)
computationally unfeasible without zooming. These results support the three hypotheses
listed in Section 4.

Videos of the trials on the Baxter and the Turtlebot corresponding to different scenarios
can be viewed online [29].

For instance, in one trial involving the Turtlebot, the goal is to have both a cup and a
bottle in the library, and these objects and the robot are initially in off ice2. The computed

205

R. Gomez et al.

plan has the robot pick up the bottle, move to the kitchen, move to the library, put the
bottle down, move back to the kitchen and then to off ice2, pick up the cup, move to the
library through the kitchen, and put the cup down. When the Turtlebot is moving to the
library holding the bottle, someone moves the cup to the library. With AT I , the robot
uses the observation of the cup (as it is putting the bottle down in the library), to infer
that the goal has been achieved and to terminate plan execution early. Without AT I , i.e.,
with T P , the robot continued with its initial plan and realized that there was a problem
(unexpected observation of the cup in the library) only when it went back to off ice2 and
did not find the cup there.

Similarly, in one trial with the Baxter, the goal is to have blue blocks and green blocks in
zone Y (yellow zone on the right side of the screen) and these blocks are initially in zone R
(red zone on the left side of the screen). The computed plan has the Baxter move its arm to
zone R, pick up a block, move to zone G (green zone in the center) then to zone Y to put the
block down, and repeat this process until it has moved all the blue blocks and green blocks.
When the Baxter has moved one block and is moving back to pick up the second block
from zone R, an exogenous action puts the first block in zone G. With AT I , as the Baxter
is moving over zone G on the way to zone R, it observes the block (that it has previously
placed in zone Y), performs diagnostics and realizes his current activity will not achieve
the goal. It then stops executing its current activity, computes a new activity of intentional
actions, and succeeds in moving both blocks to zone Y. With T P , the robot is not able to
use the observation of the first block in zone G, continues with the initial plan and never
realizes that the goal has not been achieved.

5 Discussion and future work

In this paper we presented a general architecture that represents and reasons with inten-
tional actions. The architecture represents and reasons with domain knowledge and beliefs
encoded as tightly-coupled transition diagrams at two different resolutions, with the fine-
resolution description defined as a refinement of the coarse-resolution description. For any
given goal, non-monotonic logical reasoning with the coarse-resolution domain represen-
tation containing commonsense domain knowledge is used to provide a plan of intentional
abstract actions. The coarse-resolution transition corresponding to each such abstract inten-
tional action is implemented as a sequence of concrete actions by automatically identifying
and reasoning with the part of the fine-resolution representation relevant to the coarse-
resolution transition and the coarse-resolution goal. The execution of each concrete action
uses probabilistic models of the uncertainty in sensing and actuation, and any associated
outcomes are added to the coarse-resolution history. Experimental results in simulation and
on different robot platforms, as summarized above, indicate that this architecture improves
the accuracy and computational efficiency of decision making in comparison with an archi-
tecture that does not reason with intentional actions. It also significantly improves the
computational efficiency of decision making in comparison with an architecture that does
not support zooming in the fine resolution.

This architecture opens up multiple directions for future research that build on the capa-
bilities of the current architecture. First, although the current architecture builds on key
results of the coupling between the transition diagrams, it will be interesting to formally
establish the relationship between the different transition diagrams in this architecture, along
the lines of the analysis provided in [26]. This will enable any designer using our architec-
ture for a particular robotics domain to establish correctness of the algorithms and build trust

206

Representing and Reasoning with Intentional Actions on a Robot

in the resultant behavior of the robot. Second, the results reported in this paper are based
on experimental trials in variants of a particular (RA) domain. However, the underlying
capability of modeling and reasoning about intentional actions is relevant to other problems
and applications characterized by dynamic changes. For instance, other work within our
research group has combined the reasoning capabilities of our architecture with inductive
learning of domain constraints to guide the construction of deep networks that have been
used for estimating the occlusion and stability of object structures [19] and for answering
explanatory questions about images [21, 22]; other research groups have explored the com-
bination of ASP-based knowledge representation with low-level perceptual processing for
explaining spatial relations in videos [28]. Future research can adapt our architecture to such
problems in more complex domains to demonstrate the scalability and wider applicability of
our architecture. Third, the relational representation and reasoning capabilities supported by
our architecture can be used to provide explanations of the decisions made, the underlying
beliefs, and the experiences that informed these beliefs. Currently, our architecture only rea-
sons with representations at two different resolutions, but proof of concept work indicates
that it is possible to introduce a theory of explanations and expand the notion of refine-
ment to interactively provide explanations at different levels of abstraction [27]. Fourth, the
architecture has only considered a single robot representing and reasoning with intentional
actions. There is considerable research on a team of robots working with humans, including
approaches based on logic programming [11]. Future work can extend our architecture to a
team of robots collaborating with humans in dynamic application domains such as disaster
rescue, surveillance, and healthcare. The long-term goal is to enable a team of robots col-
laborating with humans in complex domains to represent and reason reliably and efficiently
with different descriptions of incomplete domain knowledge and uncertainty.

Acknowledgements The authors thankMichael Gelfond for discussions related to the modeling of defaults
and exogenous actions in the architecture reported in this paper. This work was supported in part by the Asian
Office of Aerospace Research and Development award FA2386-16-1-4071 and the U.S. Office of Naval
Research Science of Autonomy Award N00014-17-1-2434. Opinions and conclusions in this article are those
of the authors.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommonshorg/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Balai, E., Gelfond, M., Zhang, Y.: Towards Answer Set Programming with Sorts. In: International
Conference on Logic Programming and Nonmonotonic Reasoning. Corunna, Spain (2013)

2. Balduccini, M., Gelfond, M.: Logic Programs with Consistency-Restoring Rules. In: AAAI Spring
Symposium on Logical Formalization of Commonsense Reasoning, pp. 9–18 (2003)

3. Baral, C., Gelfond, M.: Reasoning about intended actions. In: Proceedings of the National Conference
on Artificial Intelligence, vol 20, p. 689 (2005)

4. Blount, J., Gelfond, M., Balduccini, M.: Towards a Theory of Intentional Agents. In: Knowledge
Representation and Reasoning in Robotics. AAAI Spring Symp. Series, pp. 10–17 (2014)

5. Blount, J., Gelfond, M., Balduccini, M.: A Theory of Intentions for Intelligent Agents. In: International
Conference on Logic Programming and Nonmonotonic Reasoning, pp. 134–142. Springer (2015)

6. Bratman, M.: Intention, plans, and practical reason. Center for the Study of Language and Information
(1987)

207

http://creativecommonshorg/licenses/by/4.0/

R. Gomez et al.

7. Dannenhauer, D., Cox, M., Munoz-Avila, H.: declarative metacognitive expectations for High-Level
cognition. Adv. Cogn. Syst. 6, 231–250 (2018)

8. Dissanayake, G., Newman, P., Clark, S.: A Solution to the Simultaneous Localization and Map Building
(SLAM) Problem. IEEE Trans. Robot. Autom. 17(3), 229–241 (2001)

9. Erdem, E., Gelfond, M., Leone, N.: Applications of Answer Set Programming. AI Mag. 37(3), 53–68
(2016)

10. Erdem, E., Patoglu, V.: Applications of Action Languages in Cognitive Robotics. In: Correct Reasoning,
pp. 229–246. Springer (2012)

11. Erdem, E., Patoglu, V.: applications of ASP in robotics. Kunstliche Intell. 32(2-3), 143–149 (2018)
12. Gabaldon, A.: Activity Recognition with Intended Actions. In: International Joint Conference on

Artificial Intelligence (IJCAI). Pasadena, USA (2009)
13. Gelfond, M., Inclezan, D.: Some Properties of System Descriptions ofALd . J Appl Non-Class Log, Spec

Issue Equil Log Answer Set Programm 23(1-2), 105–120 (2013)
14. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of Intelligent Agents: The

Answer-Set Programming Approach. Cambridge University Press. https://books.google.co.nz/books?
id=99XSAgAAQBAJ (2014)

15. Hanheide, M., Gobelbecker, M., Horn, G., Pronobis, A., Sjoo, K., Jensfelt, P., Gretton, C., Dearden, R.,
Janicek, M., Zender, H., Kruijff, G.J., Hawes, N., Wyatt, J.: Robot Task Planning and Explanation in
Open and Uncertain Worlds. Artif. Intell. 247, 119–150 (2017)

16. Kelley, R., Tavakkoli, A., King, C., Ambardekar, A., Nicolescu, M., Nicolescu, M.: Context-Based
bayesian intent recognition. IEEE Trans. Auton. Ment. Dev. 4(3), 215–225 (2012)

17. Kelley, R., Tavakkoli, A., King, C., Nicolescu, M., Nicolescu, M., Bebis, G.: Understanding Human
Intentions via Hidden Markov Models in Autonomous Mobile Robots. In: International Conference on
Human-Robot Interaction (HRI). Amsterdam, Netherlands (2008)

18. Li, X., Sridharan, M.: Move and the Robot Will Learn: Vision-Based Autonomous Learning of Object
Models. In: International Conference on Advanced Robotics, pp. 1–6, Montevideo, Uruguay (2013)

19. Mota, T., Sridharan, M.: Commonsense Reasoning and Knowledge Acquisition to Guide Deep Learning
on Robots. In: Robotics Science and Systems. Freiburg, Germany (2019)

20. Rao, A.S., Georgeff, M.P.: BDI Agents: From Theory to Practice. In: First International Conference on
Multiagent Systems, pp. 312–319, San Francisco (1995)

21. Riley, H., Sridharan, M.: Non-monotonic Logical Reasoning and Deep Learning for Explainable Visual
Question Answering. In: International Conference on Human-Agent Interaction. Southampton, UK
(2018)

22. Riley, H., Sridharan, M.: Integrating Non-monotonic Logical Reasoning and Inductive Learning With
Deep Learning for Explainable Visual Question Answering. Frontiers in Robotics and AI, special issue
on Combining Symbolic Reasoning and Data-Driven Learning for Decision-Making. Volume 6 (2019)

23. Saribatur, Z.G., Baral, C., Eiter, T.: Reactive Maintenance Policies over Equalized States in Dynamic
Environments. In: Oliveira, E., Gama, J., Vale, Z., Lopes Cardoso, H. (eds.) Progress in Artificial
Intelligence, pp. 709–723. Springer International Publishing, Cham (2017)

24. Saribatur, Z.G., Eiter, T.: Reactive Policies with Planning for Action Languages. In: Michael, L., Kakas,
A. (eds.) Logics in Artificial Intelligence, pp. 463–480. Springer International Publishing (2016)

25. Software and results corresponding to the evaluation of our architecture. https://github.com/hril230/
theoryofintentions/tree/master/code (2019)

26. Sridharan, M., Gelfond, M., Zhang, S., Wyatt, J.: REBA: a Refinement-Based architecture for knowledge
representation and reasoning in robotics. J. Artif. Intell. Res. 65, 87–180 (2019)

27. Sridharan, M., Meadows, B.: Theory of Explanations for Human-Robot Collaboration. In: AAAI Spring
Symposium on Story-Enabled Intelligence. Stanford, USA (2019)

28. Suchan, J., Bhatt, M., Walega, P., Schultz, C.: Visual Explanation by High-Level Abduction: on
Answer-Set Programming Driven Reasoning about Moving Objects. In: AAAI Conference on Artificial
Intelligence, pp. 1965–1972, New Orleans, USA (2018)

29. Videos demonstrating the use of our architecture on robot platforms. https://drive.google.com/open?
id=1mjVV25vFvi35Ai9N7RYFFOPNaZIUdpZ (2019)

30. Zhang, Q., Inclezan, D.: An application of asp theories of intentions to understanding restaurant
scenarios. International Workshop on Practical Aspects of Answer Set Programming (2017)

31. Zhang, S., Sridharan, M., Wyatt, J.: Mixed Logical Inference and Probabilistic Planning for Robots in
Unreliable Worlds. IEEE Trans. Robot. 31(3), 699–713 (2015)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

208

https://books.google.co.nz/books?id=99XSAgAAQBAJ
https://books.google.co.nz/books?id=99XSAgAAQBAJ
https://github.com/hril230/theoryofintentions/tree/master/code
https://github.com/hril230/theoryofintentions/tree/master/code
https://drive.google.com/open?id=1mjVV25vFvi35Ai9N7RYFFOPNaZIUdpZ
https://drive.google.com/open?id=1mjVV25vFvi35Ai9N7RYFFOPNaZIUdpZ

	Representing and Reasoning with Intentional Actions on a Robot
	Abstract
	Introduction
	Related work
	Knowledge representation and reasoning architecture
	Action Language and Domain Representation
	Action Language ALd
	Coarse-resolution knowledge representation
	Reasoning with Knowledge

	Adapted Theory of Intention
	Refinement, Zooming and Execution

	Experimental setup and results
	Execution traces
	Experimental results in simulation
	Experimental results on physical robots

	Discussion and future work
	References

