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Abstract In this article we introduce the notion of a controlled group graded ring. Let G

be a group, with identity element e, and let R = ⊕g∈GRg be a unital G-graded ring. We say
that R is G-controlled if there is a one-to-one correspondence between subsets of the group
G and (mutually non-isomorphic) Re-sub-bimodules of R, given by G ⊇ H �→ ⊕h∈H Rh.
For strongly G-graded rings, the property of being G-controlled is stronger than that of
being simple. We provide necessary and sufficient conditions for a general G-graded ring
to be G-controlled. We also give a characterization of strongly G-graded rings which are
G-controlled. As an application of our main results we give a description of all intermediate
subrings T with Re ⊆ T ⊆ R of a G-controlled strongly G-graded ring R. Our results
generalize results for artinian skew group rings which were shown by Azumaya 70 years
ago. In the special case of skew group rings we obtain an algebraic analogue of a recent
result by Cameron and Smith on bimodules in crossed products of von Neumann algebras.

Keywords Graded ring · Strongly graded ring · Crossed product · Skew group ring ·
Bimodule · Picard group

Mathematics Subject Classification (2010) 16S35 · 16W50 · 16D40

1 Introduction

Recently, Cameron and Smith [2] studied bimodules over a von Neumann algebra M in the
context of an inclusion M ⊆ M�α G, where G is a group acting on M by ∗-automorphisms
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and M �α G is the corresponding crossed product von Neumann algebra. They have shown
[2, Theorem 4.4(i)] that if G is a discrete group acting by outer ∗-automorphisms on a
simple1 von Neumann algebra M , then there is a bijective correspondence between subsets
of G and B-closed (i.e. closed in the Bures-topology) M-sub-bimodules of M �α G.

It is natural to ask whether the same correspondence holds for a skew group ring, which
is the algebraic analogue of a crossed product von Neumann algebra. To be more precise, if
G is a group which is acting by outer automorphisms on a simple and unital ring A, then we
ask whether each A-sub-bimodule of the skew group ring A�α G is of the form ⊕h∈H Auh

for some subset H ⊆ G, where ∅ corresponds to the zero-module. As it turns out, although
it was not the main focus of his investigation, in one of his proofs Azumaya has observed
this correspondence in the case when G is finite [1].

The purpose of this article is to study in a systematic way the same type of correspon-
dence in the more general context of group graded rings.

Throughout this article, let R be an associative and unital ring and let G be a multiplica-
tively written group with identity element e ∈ G. For subsets X and Y of R, we let XY

denote the set of all finite sums of elements of the form xy, for x ∈ X and y ∈ Y . If there is
a family {Rg}g∈G of additive subgroups of R such that

R = ⊕g∈GRg and RgRh ⊆ Rgh

for all g, h ∈ G, then the ring R is said to be G-graded (or graded by G). A G-graded ring
R for which RgRh = Rgh holds, for all g, h ∈ G, is said to be strongly G-graded.

If R is a G-graded ring, then one immediately observes that Re is a subring of R and
that 1R ∈ Re (see e.g. [4, Proposition 1.4]). For any g ∈ G, Rg is an Re-bimodule. If R

is strongly G-graded, then for each g ∈ G, Rg is finitely generated and projective as a left
(right) Re-module (see [6, Proposition 1.10]). Any G-graded ring R will be viewed as an
Re-bimodule with scalar multiplication given by the ring multiplication in R. The set of all
Re-sub-bimodules ofR will be denoted by ModR(Re). IfM,N ∈ ModR(Re) are isomorphic
as Re-bimodules, then we will write M ∼= N .

Each subset of G gives rise to an Re-sub-bimodule of R. Indeed, if H is a subset of G,
then RH = ⊕h∈H Rh is an Re-sub-bimodule of R. We let the empty set give rise to the
zero-module, i.e. R∅ = {0}. It is natural to ask the following question:

When does every Re-sub-bimodule of R arise in this way?

We make the following definition.

Definition 1 (G-controlled ring) A ring R is said to be G-controlled if it is equipped with
a G-gradation such that the following two assertions hold:
1. The map

ϕ : P(G) → ModR(Re), H �−→ ⊕h∈H Rh

is a bijection.
2. For S, T ∈ P(G), ϕ(S) ∼= ϕ(T ) if and only if S = T .

This article is organized as follows.
In Section 2 we recall important notions which will be used in subsequent sections. In

Section 3 we give a complete characterization of G-controlled rings (see Theorem 1). We

1In fact their result is more general. They only assume that M is a factor.
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also provide examples of G-controlled rings which are not strongly G-graded (see Exam-
ples 1 and 2). In Section 4 we first point out that G-controlled rings are often strongly
G-graded (see Proposition 3 and Remark 1). We then give a characterization of strongly
G-graded rings which are G-controlled (see Theorem 2). We also specialize this result
to G-crossed products (incl. skew group rings) to see how G-controlness is connected to
outerness (see Corollary 2 and Remark 2). This shows how our results generalize those
of Azumaya [1]. In Section 5 we give a description of all intermediate subrings T where
Re ⊆ T ⊆ R of a strongly G-graded and G-controlled ring R (see Proposition 4). In
Section 6 we present some simplicity results on strongly G-graded rings and explain how
they are related to our investigation of G-controlled rings. We also present some open
questions (see Questions 1, 2 and 3).

2 Preliminaries and Notation

The centralizer of a non-empty subset S of a ring T will be denoted by CT (S) and is defined
as the set of all elements of T that commute with each element of S. The center of T

is defined as CT (T ) and will be denoted by Z(T ). The group of multiplication invertible
elements of T will be denoted by U(T ).

Let R = ⊕g∈GRg be a G-graded ring. Each element x ∈ R may be written as x =∑
g∈G xg where xg ∈ Rg is unique for each g ∈ G, and zero for all but finitely many g ∈ G.

For g ∈ G we define a map

Eg : R → Rg, x =
∑

h∈G

xh �→ xg.

Notice that Eg is an Re-bimodule homomorphism. The support of r ∈ R is defined as
Supp(r) = {g ∈ G | Eg(r) 
= 0}. An ideal I of a G-graded ring R is said to be graded if
I = ⊕g∈G(I ∩ Rg) holds. The ring R is said to be graded simple if R and {0} are the only
two graded ideals of R.

Recall that R = ⊕g∈GRg is said to be a G-crossed product if Eg(R) ∩ U(R) 
= ∅, for
each g ∈ G. In that case, we may choose an invertible element ug ∈ Rg , for each g ∈ G.
Pick ue = 1R . It is clear that Rg = Reug = ugRe and that the set {ug | g ∈ G} is a basis
for R as a left (and right) Re-module. We now define two maps:

σ : G → Aut(Re) by σg(a) = ugau−1
g for g ∈ G, a ∈ Re,

and
α : G × G → U(Re) by α(g, h) = uguhu

−1
gh for g, h ∈ G.

One may now show that the following holds for any g, h, t ∈ G and a ∈ Re (see e.g.
[8, Proposition 1.4.2]):
1. σg(σh(a)) = α(g, h)σgh(a)α(g, h)−1

2. α(g, h)α(gh, t) = σg(α(h, t))α(g, ht)

3. α(g, e) = α(e, g) = 1R .
Any two homogeneous elements a ∈ Rg and b ∈ Rh may be expressed as a = a1ug and
b = b1uh, for some a1, b1 ∈ Re, and their product is

ab = (a1ug)(b1uh) = a1(ugb1u
−1
g )uguh = a1(ugb1u

−1
g )(uguhu

−1
gh )ugh

= a1σg(b1)α(g, h)ugh.

Important examples of G-crossed products are given by e.g. skew group rings, twisted
group rings and group rings. It is not difficult to see that G-crossed products are necessarily



1486 J. Öinert

strongly G-graded. However, as e.g. Example 5 demonstrates, not all strongly G-graded
rings are G-crossed products.

3 A Characterization of G-Controlled Rings

In this section we give a characterization of G-controlled rings (see Theorem 1). We begin
by finding necessary conditions for a G-graded ring to be G-controlled.

Proposition 1 Let G be a group and let R be a G-graded ring. If R is G-controlled, then
the following five assertions hold:
(i) Rg

∼= Rh if and only if g = h (where g, h ∈ G);
(ii) Rg is a (non-zero) simple Re-sub-bimodule of R, for each g ∈ G;
(iii) Re is a simple ring;
(iv) CR(Re) = Z(Re);
(v) Every ideal of R is graded.

Proof Let R be a G-controlled ring, and let ϕ be defined as in Definition 1.
(i): Take g, h ∈ G. Notice that ϕ({g}) ∼= ϕ({h}) if and only if g = h, i.e. Rg

∼= Rh if and
only if g = h.

(ii): Take g ∈ G. By the injectivity of ϕ we get that Rg 
= {0}, and by the surjectivity of
ϕ, Rg can not contain any proper non-zero Re-sub-bimodule. Thus, Rg is a simple Re-sub-
bimodule of R.

(iii): This follows immediately from (ii).
(iv): Notice that CR(Re) is a G-graded subring of R. Take g ∈ G and let xg ∈

CR(Re) ∩ Rg be non-zero. Define f : Re → Rg, r �→ rxg . Clearly, f is an Re-bimodule
homomorphism. Using (ii) we conclude that ker f = {0} and that im f = Rg , i.e. f is an
isomorphism. From (i) we get g = e. Hence, CR(Re) ⊆ Re which yields CR(Re) = Z(Re).

(v): Every ideal I of R is an Re-sub-bimodule of R. Hence I = ⊕h∈H Rh for some subset
H ⊆ G. In particular, I is graded.

We now begin our search for sufficient conditions for G-controlness by showing the
following essential lemma.

Lemma 1 Let S be a unital ring and let M and N be simple S-bimodules which are
non-isomorphic. For any x ∈ M \ {0} and y ∈ N \ {0} there is some n ∈ Z+ and
s
(1)
1 , . . . , s

(1)
n , s

(2)
1 , . . . , s

(2)
n ∈ S such that

∑n
i=1 s

(1)
i xs

(2)
i 
= 0 and

∑n
i=1 s

(1)
i ys

(2)
i = 0.

Proof Take x ∈ M \ {0} and y ∈ N \ {0}. We notice that SxS = M and SyS = N . Seeking
a contradiction, suppose that

∑n
i=1 s

(1)
i xs

(2)
i = 0 whenever

∑n
i=1 s

(1)
i ys

(2)
i = 0. We define

a map f : N → M,
∑n

i=1 s
(1)
i ys

(2)
i �→ ∑n

i=1 s
(1)
i xs

(2)
i . By our assumption f is a well-

defined homomorphism of S-bimodules. Moreover, by the unitality of S and the simplicity
of M and N we conclude that f is an isomorphism. This is a contradiction.

Proposition 2 Let G be a group and let R = ⊕g∈GRg be a G-graded ring. Suppose that
Rg is a simple Re-sub-bimodule of R, for each g ∈ G, and that Rg

∼= Rh if and only if
g = h, for g, h ∈ G. If P is a non-zero Re-sub-bimodule of R and x ∈ P \ {0}, then Rg

is an Re-sub-bimodule of P , for each g ∈ Supp(x). In particular, P = ⊕s∈SRs for some
subset S ⊆ G.
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Proof Take x ∈ P \{0} and g ∈ Supp(x). Choose y ∈ P \{0} such that | Supp(y)| is minimal
amongst all elements satisfying g ∈ Supp(y) ⊆ Supp(x). Seeking a contradiction, suppose
that | Supp(y)| > 1. Choose some h ∈ Supp(y) \ {g}. Using Lemma 1, with S = Re, M =
Rg and N = Rh, we conclude that there is some y′ ∈ P such that |Supp(y′)| < | Supp(y)|
and g ∈ Supp(y′) ⊆ Supp(x). This is a contradiction. Hence, P ∩ Rg 
= {0}. Using that Rg

is a simple Re-sub-bimodule of R we conclude that Rg is an Re-sub-bimodule of P . From
this it follows that P = ⊕s∈SRs for some subset S ⊆ G.

Lemma 2 Let G be a group and let R be a G-graded ring such that Rg is a simple Re-sub-
bimodule of R, for each g ∈ G. The following two assertions are equivalent:
(i) RS

∼= RT if and only if S = T (where S, T ⊆ G);
(ii) Rg

∼= Rh if and only if g = h (where g, h ∈ G).

Proof (i)⇒(ii): This is trivial.
(ii)⇒(i): The “if” statement is trivial. Now we show the “only if” statement. Suppose that
f : RS → RT is an Re-bimodule isomorphism. Take s ∈ S. Then f (Rs) is a simple Re-
sub-bimodule of RT . By Proposition 2 we conclude that f (Rs) = Rt for some t ∈ T .
This shows that Rs

∼= Rt and by (ii) we get s = t . Thus, s ∈ T . Using that s was chosen
arbitrarily, we get S ⊆ T . In the same way we can show that T ⊆ S. This shows that
S = T .

We are now ready to prove the first main result of this article.

Theorem 1 Let G be a group and let R be a G-graded ring. Then R is G-controlled if and
only if (a) Rg is a simple Re-sub-bimodule of R, for each g ∈ G; and (b) Rg

∼= Rh if and
only if g = h, for g, h ∈ G.

Proof The “only if” statement follows from Proposition 1.
We now show the “if” statement. Suppose that (a) and (b) hold. By using the maps Eg ,

for g ∈ G, we may conclude that ϕ (in Definition 1) is injective. By Proposition 2, ϕ is
surjective. Hence, ϕ is a bijection. By Lemma 2 we get that assertion (2) of Definition 1
holds. This shows that R is G-controlled.

We shall now present two examples of G-graded rings which are G-controlled but not
strongly G-graded. In the first example the group G is finite, and in the second example G

is infinite. Notice that these rings are not simple (cf. Proposition 3).

Example 1 Let A be a simple unital ring. Choose a simple A-bimodule M which is not
isomorphic to A as an A-bimodule. The A-bimodule R = A × M may be equipped with a
multiplication defined by (a, m)(b, n) = (ab, an + mb). It is readily verified that R is an
associative and unital ring. Choose G = C2 = {e, g}, the group with two elements. Clearly,
Re = A × {0} and Rg = {0} × M defines a G-gradation on R.

As a concrete example, we may take β to be an outer automorphism on A. Then we can
take M = A with bimodule structure given by a · m · b = amβ(b). Clearly, M is simple as
an A-bimodule. We claim that A 
∼= M . Seeking a contradiction, suppose that f : A → M

is an isomorphism of A-bimodules. Then there is some v ∈ A such that f (v) = 1. If we
put u = f (1), then we see that vu = v · u = v · f (1) = f (v1) = f (v) = 1 = f (v) =
f (1v) = f (1) · v = u · v = uβ(v). Hence, u is invertible and for every a ∈ A we have
au = f (a) = u·a = uβ(a), i.e. β(a) = u−1au. Thus, β is not outer. This is a contradiction.
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Example 2 Consider the first Weyl algebra A1 = C〈x, y〉/(yx − xy − 1). Recall that
A1 is a simple noetherian domain. Take any automorphism γ : A1 → A1 satisfying
{a ∈ A1 | γ n(a) = a for some n 
= 0} = C. (We may e.g. choose γ defined by x �→ x − 1
and y �→ y + 1.) Let us now define a free left A1-module R = ⊕n∈ZA1un with basis
{un}n∈Z. We define a multiplication on R by

aun · bum =
{

aγ n(b)un+m if n = 0 or m = 0
0 otherwise.

It is not difficult to verify that this turns R into a unital and associative ring which is Z-
graded, but not strongly Z-graded. Moreover, Rn = A1un is a simple R0-sub-bimodule of
R, for each n ∈ Z. Take n, m ∈ Z with n 
= m. We claim that Rn and Rm can not be
isomorphic as R0-bimodules. Seeking a contradiction, suppose that there is an R0-bimodule
isomorphism f : Rn = A1un → Rm = A1um. Then there is some non-zero c ∈ A1 such
that f (1un) = cum. But then c2um = c(cum) = cf (un) = f (cun) = f (unγ

−n(c)) =
f (un)γ

−n(c) = cumγ −n(c) = cγ m−n(c)um. Using that Rm is a free left A1-module, we
get c2 = cγ m−n(c). By our assumptions we conclude that c ∈ C = Z(A1). Now, take any
b ∈ A1 \ C. Then, we get

cγ m(b)um = cumb = f (un)b = f (unb) = f (γ n(b)un) = γ n(b)f (un) = γ n(b)cum

and hence cγ m(b) = γ n(b)c = cγ n(b). By our assumptions this yields b ∈ C, which is a
contradiction. Using Theorem 1 we conclude that R is a Z-controlled ring.

4 A Characterization of G-Controlled Strongly G-Graded Rings

In this section we give a characterization of G-controlled rings which are strongly G-graded
(see Theorem 2). We begin by noticing that by Examples 1 and 2 there exist G-controlled
rings which are not strongly G-graded. In many cases, however, G-controlness will force
the gradation to be strong (see Proposition 3).

Lemma 3 Let G be a group and let R be a G-graded ring. If R is G-controlled, then the
following two assertions hold, for each g ∈ G:
(i) If RgRg−1 = {0}, then Rg−1Rg = {0};
(ii) If RgRg−1 = Re, then Rg−1Rg = Re.

Proof We first notice that by Proposition 1(ii), Rg is a (non-zero) simple Re-sub-bimodule
of R, for each g ∈ G.

(i): Suppose that RgRg−1 = {0} holds. Seeking a contradiction, suppose that Rg−1Rg 
=
{0}. Then Rg−1Rg = Re and hence Rg = RgRe = Rg(Rg−1Rg) = {0}Rg = {0}. By
Proposition 1(ii), this is a contradiction.

(ii): This follows from (i).

Recall from [13, Definition 2] that a G-graded ring R is said to have a right non-
degenerate (resp. left non-degenerate) G-gradation if, for each g ∈ G and each non-zero
x ∈ Rg , the set xRg−1 (resp. Rg−1x) is non-zero.

Proposition 3 Let G be a group and let R be a G-graded ring. If R is G-controlled, then
the following four assertions are equivalent:
(i) R is graded simple;
(ii) R is simple;
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(iii) R is strongly G-graded;
(iv) The G-gradation on R is left (and right) non-degenerate.

Proof (iii)⇒(iv): This is clear.
(iv)⇒(ii): Suppose that the G-gradation on R is left (and right) non-degenerate. Let I

be a non-zero ideal of R. It follows from Proposition 1(v) that I is graded. Hence, by the
assumption and Proposition 1(iii) we conclude that Re ⊆ I . Thus, I = R.

(ii)⇒(i): This is clear.
(i)⇒(iii): Suppose that R is graded simple. Take g ∈ G and notice that Rg is non-zero.

By graded simplicity there are some s, t ∈ G such that sgt = e and RsRgRt = Re. From
this we get

RsRgRtRt−1 = ReRt−1 = Rt−1 
= {0}. (1)

Hence, RtRt−1 
= {0} and therefore RtRt−1 = Re. From this we get RsRg = Rt−1 and
Rt−1Rt = Re, using Lemma 3(ii). From Eq. 1 we get

RtRsRg = RtRt−1 = Re (2)

and hence tsg = e, i.e. ts = g−1. Since RtRs ⊆ Rg−1 , this shows that Rg−1Rg 
= {0} which
yields Rg−1Rg = Re � 1R . Hence, R is a strongly G-graded ring.

Remark 1 If a G-controlled ring is e.g. crystalline graded [9] or epsilon-strongly graded
[10], then it is necessarily strongly G-graded. This follows from Proposition 3 and the fact
that both crystalline graded rings and epsilon-strongly graded rings are left (and right) non-
degenerate.

Recall that if T is a ring, then a T -bimodule M is said to be invertible if there is a T -
bimodule N such that M ⊗T N ∼= T and N ⊗T M ∼= T . The Picard group of a ring T ,
denoted by Pic(T ), consists of all equivalence classes of invertible T -bimodules and the
group operation is given by ⊗T . Using that R is strongly G-graded, the map ψ : G →
Pic(Re), g �→ [Rg] is a group homomorphism (see e.g. [8, Corollary 3.1.2]).

For strongly G-graded rings, we record the following observation.

Lemma 4 Let G be a group and let R be a strongly G-graded ring. Consider the following
assertions:

(i) CR(Re) = Z(Re);
(ii) The group homomorphism ψ : G → Pic(Re), g �→ [Rg] is injective.

The following conclusions hold:

(a) (i) implies (ii);
(b) If Re is a simple ring, then (i) holds if and only if (ii) holds;
(c) If R is G-controlled, then both (i) and (ii) hold.

Proof (a): Suppose that (i) holds. Take g ∈ G such that Rg
∼= Re. Then there is an Re-

bimodule isomorphism f : Re → Rg . We notice that 0 
= f (1R) ∈ Rg . For any a ∈ Re we
have af (1R) = f (a1R) = f (1Ra) = f (1R)a, showing that f (1R) ∈ CR(Re) = Z(Re) ⊆
Re. Thus, g = e. This shows that ψ is injective.

(b): Let Re be a simple ring and suppose that (ii) holds. Notice that CR(Re) is a G-graded
subring of R. Take g ∈ G and a non-zero xg ∈ CR(Re) ∩ Rg . The set I = xgRg−1 ⊆ Re

is a non-zero ideal of Re. Indeed, by the strong gradation we get xgRg−1 
= {0} and from
the fact that Rg−1 is an Re-sub-bimodule of R and that xg ∈ CR(Re), it follows that I is an
ideal of Re. By simplicity of Re we get I = Re. In particular, there is some yg−1 ∈ Rg−1
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such that xgyg−1 = 1R . Symmetrically we get that Rg−1xg = Re which yields that xg also
has a left inverse. Hence, xg is invertible.

Clearly, Rexg ⊆ Rg and Rgyg−1 ⊆ Re. Using that yg−1xg = 1R we get Rg ⊆ Rexg . This
shows that Rg = Rexg .

Notice that f : Re → Rg = Rexg, r �→ rxg is an isomorphism of Re-bimodules. By
the injectivity of ψ we conclude that g = e. Hence, CR(Re) ⊆ Re which yields CR(Re) =
Z(Re).

(c): This follows from (a) and Proposition 1(iv).

We are now ready to prove the second main result of this article.

Theorem 2 Let G be a group and let R be a strongly G-graded ring. The following three
assertions are equivalent:

(i) R is G-controlled;
(ii) Rg is a simple Re-sub-bimodule of R, for each g ∈ G, and CR(Re) = Z(Re);
(iii) Rg is a simple Re-sub-bimodule of R, for each g ∈ G, and the group homomorphism

ψ : G → Pic(Re), g �→ [Rg] is injective.
Proof This follows from Lemma 4 and Theorem 1.

By combining Theorem 2 and Proposition 3 we get the following generalization of [1,
Theorem 4(1)].

Corollary 1 If R is a strongly G-graded ring such that Rg is a simple Re-sub-bimodule of
R, for each g ∈ G, and CR(Re) = Z(Re), then R is a simple ring.

The following corollary is an algebraic analogue of [2, Theorem 4.4(i)].

Corollary 2 Let G be a group and let R be a G-crossed product. The following three
assertions are equivalent:

(i) R is G-controlled;
(ii) Re is a simple ring and CR(Re) = Z(Re);
(iii) Re is a simple ring and for every invertible ug ∈ Rg , g 
= e, the automorphism of Re,

defined by σg(a) = ugau−1
g , for a ∈ Re, is outer.

Proof Put R = Re �
α
σ G and let {ug}g∈G be a basis for R as a free left Re-module.

(i)⇒(ii): This follows immediately from Proposition 1.
(ii)⇒(iii): Suppose that (ii) holds. Take g ∈ G. Suppose that σg is inner, i.e. there is some

invertible v ∈ Re such that σg(a) = ugau−1
g = vav−1 holds for all a ∈ Re. From this we

get that av−1ug = v−1uga holds for all a ∈ Re. Hence, v−1ug ∈ CR(Re) = Z(Re) ⊆ Re

and therefore we must have g = e. This shows that (iii) holds.
(iii)⇒(i): Suppose that (iii) holds. We begin by noticing that CR(Re) is a G-graded sub-

ring of R. Take g ∈ G. Let x ∈ CR(Re) be a non-zero homogeneous element of degree g.
Then, x = aug for some a ∈ Re. By definition, raug = augr for each r ∈ Re. Hence,
ra = aσg(r) for each r ∈ Re. From this we get that aRe = Rea is a non-zero two-sided
ideal of Re. By simplicity of Re we conclude that a is invertible. Hence, a−1ra = σg(r) for
each r ∈ Re. In other words, σg is inner. By our assumption we conclude that g = e. This
shows that CR(Re) ⊆ Re, from which we get CR(Re) = Z(Re). Using that Re is a simple
ring we conclude that Reug is a simple Re-sub-bimodule of R, for each g ∈ G. The desired
conclusion now follows directly from Theorem 2.
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Remark 2 For a skew group ring A�σ G, Corollary 2(iii) means that A is a simple ring and
that the action of G on A is outer (see e.g [3, 7] or [12]).

Example 3 We shall now apply Corollary 2 to two examples.
(a) Suppose that L/K is a finite Galois extension of fields. Notice that each non-identity

element of G = Gal(L/K) is an outer automorphism of L. By taking σ : G → Aut(L) to
be the natural map, we may form the G-controlled skew group ring L �σ G.

(b) Recall that each non-identity automorphism of the first Weyl algebra A1 is outer.
Hence, by taking any non-identity automorphism σ1 : A1 → A1 we may form a
Z-controlled skew group ring A1 �σ Z.

5 Subrings of Strongly G-Graded Rings

In this section we give a description of certain subrings of G-controlled rings. We begin
with the following result which generalizes [1, Theorem 4(2)].

Proposition 4 If R is a strongly G-graded ring which is G-controlled, then there is a one-
to-one correspondence between submonoids of G and unital subrings of R containing Re

given by

{Submonoids of G} � H
φ�−→ RH = ⊕h∈H Rh.

In particular, if R is a G-crossed product, then this occurs if Re is simple and CR(Re) =
Z(Re).

Proof If H is a submonoid of G, then RH = ⊕h∈H Rh is a unital subring of R, containing
Re. Hence φ is well-defined. Moreover, it is clear that if H1 
= H2 then RH1 
= RH2 , and
this shows that φ is injective.

Let S be a unital subring of R containing Re. Then S is an Re-sub-bimodule of R and
hence, by the definition of a G-controlled ring, there is a non-empty subset H ⊆ G such
that S = RH . Take g, h ∈ H . Using that S is a ring and that R is strongly G-graded, we
have {0} 
= Rgh = RgRh ⊆ S. This shows that gh ∈ H and hence H is a subsemigroup of
G. From the fact that Re ⊆ S we get e ∈ H , and hence H is a submonoid of G. This shows
that φ is surjective. The last part follows from Corollary 2.

Corollary 3 LetG be a finite group. IfR is a stronglyG-graded ring which isG-controlled,
then there is a one-to-one correspondence between subgroups of G and unital subrings of
R containing Re given by

{Subgroups of G} � H
φ�−→ RH = ⊕h∈H Rh.

In particular, if R is a G-crossed product, then this occurs if Re is simple and CR(Re) =
Z(Re).

Remark 3 Clearly, subrings of Re are also subrings of R, but in general they can not be
described by the above correspondence. Take e.g. a skew group ringA�σ G and consider the
subrings Z(A) respectively AG = {a ∈ A | σg(a) = a, ∀g ∈ G}. Notice that AG = A if
and only if A�σ G is a group ring. Hence, in Proposition 4 and Corollary 3 the requirement
“subrings of R containing Re” can not be relaxed.
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6 Simple Strongly G-Graded Rings and Some Open Questions

By Proposition 3, G-controlled rings which are strongly G-graded are necessarily simple.
In this section we shall discuss some known simplicity results for strongly G-graded rings
and see how they are related to our investigation of G-controlness. We will also present
some open questions (see Section 6.1).

The following result was shown by Van Oystaeyen (see [15, Theorem 3.4]).

Theorem 3 ([15]) Let R be a strongly G-graded ring such that the morphism G →
Pic(Re), defined by g �→ [Rg], is injective. If Re is a simple ring, then R is a simple ring.

Using Lemma 4 we get the following equivalent formulation of Theorem 3.

Proposition 5 Let R be a strongly G-graded ring such that CR(Re) = Z(Re) holds. If Re

is a simple ring, then R is a simple ring.

It now becomes clear that Van Oystaeyen’s result is in fact a generalization of Azumaya’s
result [1, Theorem 4(1)], from skew group rings by finite groups to general strongly group
graded rings. (In fact, it is even more general than Corollary 1.) The following example
shows that Proposition 5 does not necessarily hold if we relax the assumption on the strong
gradation.

Example 4 If R is not strongly G-graded, then assuming CR(Re) = Z(Re) and simplicity
of Re is not enough to guarantee that R be simple. Indeed, let F be a field and let τ :
F → F be a field automorphism of infinite order. We define a (not strongly) Z-graded ring
R = ⊕n∈ZRn, with Rn = Fun for n ≥ 0 and Rn = {0} for n < 0, whose multiplication is
defined by aunbum = aτn(b)un+m for a, b ∈ F and n, m ∈ Z. Clearly, F = Re is simple
and CR(Re) = CR(F ) = F = Z(Re). However, the ideal generated by u1 is proper. Hence,
R is not simple. Also notice that R is not Z-controlled.

Remark 4 Let R be a G-graded ring.
(a) Suppose that the gradation on R is left (or right) non-degenerate. If Re is a simple

ring, then R is graded simple.
(b) CR(Re) = Z(Re) is not a necessary condition for simplicity of R. To see this,

consider e.g. the skew group ring M2(R) �σ Z/2Z in [12, Example 4.1].

Recall that a group G is said to be hypercentral if every non-trivial factor group of G

has a non-trivial center. Hypercentral groups include e.g. all abelian groups. The following
result follows from [5, Theorem 6] and is a partial generalization of Van Oystaeyen’s result
(Theorem 3).

Proposition 6 Let G be a hypercentral group and let R be a strongly G-graded ring. If R

is graded simple and CR(Re) = Z(Re) holds, then R is a simple ring.

Proof Suppose that R is graded simple and that CR(Re) = Z(Re) holds. If we can show
that Z(R) is a field, then by [5, Theorem 6] we are done.

Take a non-zero c ∈ Z(R) ⊆ CR(Re) = Z(Re) ⊆ Re. Clearly, cR is a non-zero graded
ideal of R. Hence, by graded simplicity of R, we get cR = R. From the gradation we
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conclude that cRe = Re. In particular, c is invertible in Re. One easily verifies that the
inverse of c belongs to Z(R). This shows that Z(R) is a field.

Example 5 Consider the matrix ring R = M3(C) equipped with the following gradation by
G = Z/2Z.

R0 =
⎛

⎝
C 0 C

0 C 0
C 0 C

⎞

⎠ R1 =
⎛

⎝
0 C 0
C 0 C

0 C 0

⎞

⎠

A short calculation shows that

CR(R0) =
⎧
⎨

⎩

⎛

⎝
a 0 0
0 b 0
0 0 a

⎞

⎠
∣
∣
∣ a, b ∈ C

⎫
⎬

⎭
= Z(R0).

Another short calculation shows that R0 has two non-trivial ideals;

I =
⎛

⎝
0 0 0
0 C 0
0 0 0

⎞

⎠ and J =
⎛

⎝
C 0 C

0 0 0
C 0 C

⎞

⎠ .

We notice that R1IR1 ⊆ J and R1JR1 ⊆ I . Thus, R is graded simple. Using Proposition 6
we retrieve a well-known fact: the matrix ring R = M3(C) is simple. Notice, however, that
R = M3(C) is not Z/2Z-controlled.

6.1 Open Questions

We shall now present some open questions which require further investigation.

Remark 5 Let R be a strongly G-graded ring. If Re is a division ring, then it follows almost
immediately from the definition of a strongly G-graded ring that R is a G-crossed product.
We notice that, if G is finite, then the assumption on Re can be slightly relaxed. In fact, if
Re is a simple and artinian ring, then R is a G-crossed product (see e.g. [14, Lemma 1.1]).

It is easy to find examples of G-crossed products on which Theorem 3 can be applied.
Unfortunately, the literature does not seem to provide any example of a general strongly
G-graded ring (not a G-crossed product) satisfying the conditions of Theorem 3. Based on
this, and in light of the above remark, we ask the following question.

Question 1 LetR be a stronglyG-graded ring for whichRe is a simple ring. IsR necessarily
a G-crossed product?

If the answer to Question 1 is negative, then a natural follow-up question reads as follows.

Question 2 Let R be a strongly G-graded ring which is G-controlled. Is R necessarily a
G-crossed product?

We want to know whether Van Oystaeyen’s result (Theorem 3) can be generalized to
situations when Re is not necessarily simple and ask the following.

Question 3 Let R be a strongly G-graded ring. Suppose that R is graded simple and that
CR(Re) = Z(Re) holds. Is R necessarily simple?
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Remark 6 Notice that Question 3 is known to have an affirmative answer in (at least) the
following three cases:
1. Re is simple (see Proposition 5);
2. Re is commutative (see [11, Theorem 6.6]);
3. G is a hypercentral group (see Proposition 6).
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