Derived Equivalence Classification of the Gentle Two-Cycle Algebras

Grzegorz Bobiński ${ }^{1}$

Received: 29 September 2015 / Accepted: 26 December 2016 / Published online: 9 January 2017
© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract

We complete a derived equivalence classification of the gentle two-cycle algebras initiated in earlier papers by Avella-Alaminos and Bobiński-Malicki.

Keywords Gentle two-cycle algebra • Derived category • Derived equivalence
Mathematics Subject Classification (2010) 16G20 • 18E30

1 Introduction and the Main Result

Throughout the paper k denotes a fixed algebraically closed field. For a (finite-dimensional basic connected) algebra Λ one considers its (bounded) derived category $\mathcal{D}^{b}(\Lambda)$, which has a structure of a triangulated category. Derived categories seem to be a proper setup to do homological algebra. Derived categories appearing in representation theory of algebras have connections with derived categories studied in algebraic geometry (see for example [11, 24, 31]). Moreover, these categories serve as a source for constructions of categorifications of cluster algebras (this line of research was initiated by a fundamental paper by Buan, Marsh, Reineke, Reiten and Todorov [20]) and have links to theoretical physics (including famous Orlov's theorem [36]).

Algebras Λ^{\prime} and $\Lambda^{\prime \prime}$ are said to be derived equivalent if the categories $\mathcal{D}^{b}\left(\Lambda^{\prime}\right)$ and $\mathcal{D}^{b}\left(\Lambda^{\prime \prime}\right)$ are triangle equivalent. A study of derived categories (in particular derived equivalences) in the representation theory of algebras was initiated by papers of Happel [28,

[^0]29] and motivated by tilting theory, and is now an important direction of research (see for example $[3,10,13,15,16,18,19,21,25,30,32,34,35,37,38])$.

Gentle algebras were introduced by Assem and Skowroński [6] in their study of the algebras derived equivalent to the hereditary algebras of Euclidean type $\tilde{\mathbb{A}}$. Namely, they have proved that the algebras derived equivalent to the hereditary algebras of Euclidean type $\tilde{\mathbb{A}}$ are precisely the gentle one-cycle algebras which satisfy the clock condition. On the other hand, the algebras derived equivalent to the hereditary algebras of Dynkin type \mathbb{A} are precisely the gentle tree algebras [4]. Moreover, the gentle one-cycle algebras which do not satisfy the clock condition are precisely the discrete derived algebras, which are not locally finite [42]. The above motivates study of a derived equivalence classification for the gentle algebras. One should note that the class of gentle algebras is closed with respect to the derived equivalence [40].

By the above results the derived equivalence classes of the gentle algebras with at most one-cycle are known and they are distinguished by the invariant of Avella-Alaminos and Geiss [8]. It is natural to study as the next step a derived equivalence classification of the gentle two-cycle algebras. Here a gentle algebra Λ is called two-cycle if the number of edges in the Gabriel quiver of Λ exceeds by one the number of vertices in this quiver. Before formulating the main result of the paper we define some families of gentle two-cycle algebras.

By \mathbb{Z}, \mathbb{N} and \mathbb{N}_{+}we denote the sets of integers, nonnegative integers and positive integers, respectively. If i and j are integers, then $[i, j]$ denotes the set of integers l such that $i \leq l \leq$ j. For $p \in \mathbb{N}_{+}$and $r \in[0, p-1], \Lambda_{0}(p, r)$ is the algebra of the quiver

bound by $\alpha_{p} \beta, \alpha_{i} \alpha_{i+1}$ for $i \in[1, r]$, and $\gamma \alpha_{1}$. Moreover, for $p \in \mathbb{N}_{+}, \Lambda_{0}(p+1,-1)$ is the algebra of the quiver

bound by $\alpha_{p} \gamma$ and $\beta \delta$. Furthermore, for $p_{1}, p_{2} \in \mathbb{N}_{+}, p_{3}, p_{4} \in \mathbb{N}$, and $r_{1} \in\left[0, p_{1}-1\right]$, such that $p_{2}+p_{3} \geq 2$ and $p_{4}+r_{1} \geq 1, \Lambda_{1}\left(p_{1}, p_{2}, p_{3}, p_{4}, r_{1}\right)$ is the algebra of the quiver

bound by $\alpha_{i} \alpha_{i+1}$ for $i \in\left[p_{1}-r_{1}, p_{1}-1\right], \alpha_{p_{1}} \beta_{1}, \beta_{i} \beta_{i+1}$ for $i \in\left[1, p_{2}-1\right]$, and $\beta_{p_{2}} \alpha_{1}$. Finally, for $p_{1}, p_{2} \in \mathbb{N}_{+}, p_{3} \in \mathbb{N}, r_{1} \in\left[0, p_{1}-1\right]$, and $r_{2} \in\left[0, p_{2}-1\right]$, such that $p_{3}+r_{1}+r_{2} \geq 1, \Lambda_{2}\left(p_{1}, p_{2}, p_{3}, r_{1}, r_{2}\right)$ is the algebra of the quiver

bound by $\alpha_{i} \alpha_{i+1}$ for $i \in\left[p_{1}-r_{1}, p_{1}-1\right], \alpha_{p_{1}} \alpha_{1}, \beta_{i} \beta_{i+1}$ for $i \in\left[p_{2}-r_{2}, p_{2}-1\right]$, and $\beta_{p_{2}} \beta_{1}$.

The main aim of this paper is to prove the following theorem.
Theorem A The above defined algebras are representatives of the derived equivalence classes of the gentle two-cycle algebras. More precisely,
(1) if Λ is a gentle two-cycle algebra, then Λ is derived equivalent to one of the above defined algebras, and
(2) the above defined algebras are pairwise not derived equivalent.

Parts of Theorem A have been already proved in [17] (see also [7]). More precisely, the following claims have been proved there:
(1) If Λ is a gentle two-cycle algebra, then Λ is derived equivalent to an algebra from one of the families Λ_{0}, Λ_{1} and Λ_{2}.
(2) The algebras from different families are not derived equivalent.
(3) The algebras from family $\Lambda_{1}\left(\Lambda_{2}\right)$ are pairwise not derived equivalent.

Thus in order to prove Theorem A, we have to show the following.
Theorem B If $p^{\prime}, p^{\prime \prime} \in \mathbb{N}_{+}, r^{\prime} \in\left[-1, p^{\prime}-1\right], r^{\prime \prime} \in\left[-1, p^{\prime \prime}-1\right]$, and $\left(p^{\prime}, r^{\prime}\right) \neq(1,-1) \neq$ $\left(p^{\prime \prime}, r^{\prime \prime}\right)$, then the algebras $\Lambda_{0}\left(p^{\prime}, r^{\prime}\right)$ and $\Lambda_{0}\left(p^{\prime \prime}, r^{\prime \prime}\right)$ are not derived equivalent.

Partial versions of Theorem B have been obtained independently by Amiot [1] and Kalck [33]. In particular, Amiot has proved this result in the case when r 's are "small" relative to p 's (see Proposition 2.3 for a precise statement) by refining her earlier joint results with Grimeland on surface algebras [2]. The new ingredient of the paper is Corollary 3.2, which says that if $\Lambda\left(p, r^{\prime}\right)$ and $\Lambda\left(p, r^{\prime \prime}\right)$ are derived equivalent, then $\Lambda\left(p+1, r^{\prime}\right)$ and $\Lambda\left(p+1, r^{\prime \prime}\right)$ are derived equivalent. Using this and induction we reduce the situation to the setup of Amiot's result.

We note that one can replace derived equivalence by tilting-cotilting equivalence (see for example [6]) in Theorems A and B. Indeed, obviously if algebras are not derived equivalent, then they are not tilting-cotilting equivalent. On the other hand, every derived equivalence obtained in [17] is realized via a tilting-cotilting equivalence.

The paper consists of two sections. In Section 2 we recall necessary tools, including the invariant of Avella-Alaminos and Geiss, Auslander-Reiten quivers, (generalized APR) reflections, and behavior of derived equivalences under one-point coextensions. Next in

Section 3 we prove Theorem B. In the paper we use a formalism of bound quivers introduced by Gabriel [23]. For related background see for example [5].

The author would like to thank the referee for the remarks, which helped improve the paper significantly. The author was supported by the National Science Center Grant No. 2015/17/B/ST1/01731.

2 Preliminaries

2.1 Quivers and Their Representations

By a quiver Δ we mean a set Δ_{0} of vertices and a set Δ_{1} of arrows together with two maps $s=s_{\Delta}, t=t_{\Delta}: \Delta_{1} \rightarrow \Delta_{0}$, which assign to $\alpha \in \Delta_{1}$ the starting vertex $s \alpha$ and the terminating vertex $t \alpha$, respectively. We assume that all considered quivers Δ are locally finite, i.e. for each $x \in \Delta_{0}$ there is only a finite number of $\alpha \in \Delta_{1}$ such that either $s \alpha=x$ or $t \alpha=x$. A quiver Δ is called finite if Δ_{0} (and, consequently, also Δ_{1}) is a finite set. For technical reasons we assume that if Δ is a quiver, then $\Delta_{0} \neq \emptyset$ and Δ has no isolated vertices, i.e. there is no $x \in \Delta_{0}$ such that $s \alpha \neq x \neq t \alpha$ for each $\alpha \in \Delta_{1}$. In particular, $\Delta_{1} \neq \emptyset$.

Let Δ be a quiver. If $l \in \mathbb{N}_{+}$, then by a path in Δ of length l we mean every sequence $\sigma=\alpha_{1} \cdots \alpha_{l}$ such that $\alpha_{i} \in \Delta_{1}$ for each $i \in[1, l]$ and $s \alpha_{i}=t \alpha_{i+1}$ for each $i \in[1, l-1]$. In the above situation we put $s \sigma:=s \alpha_{l}$ and $t \sigma:=t \alpha_{1}$. Moreover, we call α_{1} and α_{l} the terminating and the starting arrows of σ, respectively. Observe that each $\alpha \in \Delta$ is a path in Δ of length 1 . Moreover, for each $x \in \Delta_{0}$ we introduce the path $\mathbf{1}_{x}$ in Δ of length 0 such that $s \mathbf{1}_{x}:=x=: t \mathbf{1}_{x}$. We denote the length of a path σ by $\ell(\sigma)$. If σ^{\prime} and $\sigma^{\prime \prime}$ are two paths in Δ such that $s \sigma^{\prime}=t \sigma^{\prime \prime}$, then we define the composition $\sigma^{\prime} \sigma^{\prime \prime}$ of σ^{\prime} and $\sigma^{\prime \prime}$, which is a path in Δ of length $\ell\left(\sigma^{\prime}\right)+\ell\left(\sigma^{\prime \prime}\right)$, in the obvious way (in particular, $\sigma \mathbf{1}_{s \sigma}=\sigma=\mathbf{1}_{t \sigma} \sigma$ for each path σ). A path σ_{0} is called a subpath of a path σ, if there exist paths σ^{\prime} and $\sigma^{\prime \prime}$ such that $\sigma=\sigma^{\prime} \sigma_{0} \sigma^{\prime \prime}$.

By a (monomial) bound quiver we mean a pair $\Lambda=(\Delta, R)$ consisting of a finite quiver Δ and a set R of paths in Δ, such that:
(1) $\ell(\rho)>1$ for each $\rho \in R$, and
(2) there exists $n \in \mathbb{N}_{+}$such that every path σ in Δ with $\ell(\sigma)=n$ has a subpath which belongs to R.

If $\Lambda=(\Delta, R)$ is a bound quiver, then by a path in Λ we mean a path in Δ which does not have a subpath from R. A path σ in Λ is said to be maximal in Λ if σ is not a subpath of a longer path in Λ. The lack of isolated vertices in Δ implies that $\ell(\sigma)>0$ for each maximal path σ in Λ.

By a representation V of a bound quiver $\Lambda=(\Delta, R)$ we mean a collection of finitedimensional vector spaces $V_{x}, x \in \Delta_{0}$, and linear maps $V_{\alpha}: V_{s \alpha} \rightarrow V_{t \alpha}, \alpha \in \Delta_{1}$, such that the induced map $V_{\rho}: V_{s \rho} \rightarrow V_{t \rho}$ is zero for every $\rho \in R$. If V and W are representations, then a homomorphism $f: V \rightarrow W$ is a collection of linear maps $f_{x}: V_{x} \rightarrow W_{x}, x \in \Delta_{0}$, such that $f_{t \alpha} V_{\alpha}=W_{\alpha} f_{s \alpha}$ for every arrow α in Δ. The category rep Λ of representations of Λ is an abelian category. We call bound quivers Λ^{\prime} and $\Lambda^{\prime \prime}$ derived equivalent (and write $\left.\Lambda^{\prime} \simeq_{\text {der }} \Lambda^{\prime \prime}\right)$, if the derived categories $\mathcal{D}^{b}\left(\operatorname{rep} \Lambda^{\prime}\right)$ and $\mathcal{D}^{b}\left(\operatorname{rep} \Lambda^{\prime \prime}\right)$ are triangle equivalent. We will usually write shortly $\mathcal{D}^{b}(\Lambda)$ instead of $\mathcal{D}^{b}(\operatorname{rep} \Lambda)$ if Λ is a bound quiver.

A connected bound quiver $\Lambda=(\Delta, R)$ is called gentle if the following conditions are satisfied:
(1) R consists of paths of length 2 ,
(2) for each $x \in \Delta_{0}$ there are at most two $\alpha \in \Delta_{1}$ such that $s \alpha=x$ and at most two $\alpha \in \Delta_{1}$ such that $t \alpha=x$,
(3) for each $\alpha \in \Delta_{1}$ there is at most one $\alpha^{\prime} \in \Delta_{1}$ such that $s \alpha^{\prime}=t \alpha$ and $\alpha^{\prime} \alpha \notin R$, and at most one $\alpha^{\prime} \in \Delta_{1}$ such that $t \alpha^{\prime}=s \alpha$ and $\alpha \alpha^{\prime} \notin R$,
(4) for each $\alpha \in \Delta_{1}$ there is at most one $\alpha^{\prime} \in \Delta_{1}$ such that $s \alpha^{\prime}=t \alpha$ and $\alpha^{\prime} \alpha \in R$, and at most one $\alpha^{\prime} \in \Delta_{1}$ such that $t \alpha^{\prime}=s \alpha$ and $\alpha \alpha^{\prime} \in R$.
Let $\Lambda=(\Delta, R)$ be a gentle bound quiver. Note that by condition (1) above a path $\alpha_{1} \ldots \alpha_{l}$ in Δ is a path in Λ if and only if $\alpha_{i} \alpha_{i+1} \notin R$ for all $i \in[1, l-1]$. We call a path $\alpha_{1} \ldots \alpha_{l}$ in Δ an antipath in Λ if $\alpha_{i} \alpha_{i+1} \in R$ for all $i \in[1, l-1]$. In particular, every path of length at most 1 is an antipath. Again we call an antipath ω maximal if ω is not a subpath of a longer antipath in Λ.

2.2 The Invariant of Avella-Alaminos and Geiss

Throughout this subsection $\Lambda=(\Delta, R)$ is a fixed gentle bound quiver.
By a permitted thread in Λ we mean either a maximal path in Λ or $\mathbf{1}_{x}$, for $x \in \Delta_{0}$, such that there is at most one arrow α with $s \alpha=x$, there is at most one arrow β with $t \beta=x$, and if such α and β exist, then $\alpha \beta \notin R$. Similarly, by a forbidden thread we mean either a maximal antipath in Λ or $\mathbf{1}_{x}$, for $x \in \Delta_{0}$, such that there is at most one arrow α with $s \alpha=x$, there is at most one arrow β with $t \beta=x$, and if such α and β exist, then $\alpha \beta \in R$.

Denote by \mathcal{P} and \mathcal{F} the sets of the permitted and forbidden threads in Λ, respectively. We define bijections $\Phi_{1}: \mathcal{P} \rightarrow \mathcal{F}$ and $\Phi_{2}: \mathcal{F} \rightarrow \mathcal{P}$. First, if σ is a maximal path in Λ, then we put $\Phi_{1}(\sigma):=\omega$, where ω is the unique forbidden thread such that $t \omega=t \sigma$ and either $\ell(\omega)=0$ or $\ell(\omega)>0$ and the terminating arrows of σ and ω differ. If $\mathbf{1}_{x}$, for $x \in \Delta_{0}$, is a permitted thread, there are two cases to consider. If there is an arrow β such that $t \beta=x$ (note that such β is uniquely determined), then $\Phi_{1}\left(\mathbf{1}_{x}\right)$ is the (unique) forbidden thread whose terminating arrow is β. Otherwise we put $\Phi_{1}\left(\mathbf{1}_{x}\right):=\mathbf{1}_{x}$. We define Φ_{2} dually. Namely, if ω is a maximal antipath, then $\Phi_{2}(\omega):=\sigma$, where σ is the permitted thread such that $s \sigma=s \omega$ and either $\ell(\sigma)=0$ or $\ell(\sigma)>0$ and the starting arrows of ω and σ differ. Now, let $x \in \Delta_{0}$ and $\mathbf{1}_{x}$ be a forbidden thread. If there is $\alpha \in \Delta_{1}$ such that $s \alpha=x$, then $\Phi_{2}\left(\mathbf{1}_{x}\right)$ is the permitted thread whose starting arrow is α. Otherwise, $\Phi_{2}\left(\mathbf{1}_{x}\right):=\mathbf{1}_{x}$. Finally, we put $\Phi:=\Phi_{1} \Phi_{2}: \mathcal{F} \rightarrow \mathcal{F}$.

Let \mathcal{F}^{\prime} be the set of arrows in Δ which are not subpaths of any maximal antipath in Λ (i.e. every antipath containing α can be extended to a longer antipath). For every $\alpha \in \mathcal{F}^{\prime}$ there exists uniquely determined $\alpha^{\prime} \in \mathcal{F}^{\prime}$ such that $\alpha \alpha^{\prime} \in R$. We put $\Phi^{\prime}(\alpha):=\alpha^{\prime}$. In this way we get a bijection $\Phi^{\prime}: \mathcal{F}^{\prime} \rightarrow \mathcal{F}^{\prime}$. In other words, \mathcal{F}^{\prime} is the set of arrows which lie on oriented cycles with full relations. Moreover, two arrows in \mathcal{F}^{\prime} belong to the same orbit with respect to the action of Φ^{\prime} if and only if they lie on the same oriented cycle with full relations.

The following result seems to be well-known, however we could not find a reference for it, hence we include its proof for completeness.

Proposition 2.1 Let $\Lambda=(\Delta, R)$ be a gentle bound quiver. Then gldim $\Lambda<\infty$ if and only if $\mathcal{F}^{\prime}=\emptyset$.

Proof For a vertex x of Δ we denote by S_{x} and P_{x} the simple and the projective representations of Λ at x, respectively. For $\alpha \in \Delta_{1}$ we denote by P_{α} the corresponding map $P_{t \alpha} \rightarrow P_{s \alpha}$.

Assume first $\mathcal{F}^{\prime}=\emptyset$ and fix $x \in \Delta_{0}$. Assume there are exactly two arrows α and β starting at x. Let $\alpha_{n} \cdots \alpha_{1}$ and $\beta_{m} \cdots \beta_{1}$ be the maximal antipaths, whose starting arrows are α and β, respectively (in particular, $\alpha_{1}=\alpha$ and $\beta_{1}=\beta$) - such antipaths exist, since $\mathcal{F}^{\prime}=\emptyset$. Then

$$
\left.\cdots \rightarrow P_{t \alpha_{2}} \oplus P_{t \beta_{2}} \xrightarrow{\left[\begin{array}{cc}
P_{\alpha_{2}} & 0 \\
0 & P_{\beta_{2}}
\end{array}\right]} P_{t \alpha_{1}} \oplus P_{t \beta_{1}} \xrightarrow{\left[P_{\alpha_{1}}\right.} \begin{array}{l}
\beta_{\beta_{1}}
\end{array}\right] S_{x} \rightarrow 0
$$

is a minimal projective presentation of S_{x}, so $\operatorname{pdim}_{\Lambda} S_{x}=\max \{n, m\}<\infty$. If there is only one arrow starting at x, then we have a degenerate version of the above. Finally, if there is no arrow starting at x, then $S_{x}=P_{x}$.

Now assume $\mathcal{F}^{\prime} \neq \emptyset$, choose $\alpha \in \mathcal{F}^{\prime}$, and put $\alpha_{i}:=\Phi^{\prime-i}(\alpha), i \in \mathbb{N}$. Then

$$
\cdots \rightarrow P_{t \alpha_{1}} \xrightarrow{P_{\alpha_{1}}} P_{t \alpha_{0}} \xrightarrow{P_{\alpha_{0}}} P_{s \alpha} \rightarrow \operatorname{Coker} P_{\alpha} \rightarrow 0
$$

is a minimal projective presentation of Coker P_{α}, so pdim ${ }_{\Lambda} \operatorname{Coker} P_{\alpha}=\infty$.

Let \mathcal{F} / Φ be the set of orbits in \mathcal{F} with respect to the action of Φ. For each $\mathcal{O} \in \mathcal{F} / \Phi$ we put $n_{\mathcal{O}}:=|\mathcal{O}|$ and $m_{\mathcal{O}}:=\sum_{\omega \in \mathcal{O}} \ell(\omega)$. Similarly, if $\mathcal{O} \in \mathcal{F}^{\prime} / \Phi^{\prime}$, then $n_{\mathcal{O}}:=0$ and $m_{\mathcal{O}}:=|\mathcal{O}|$. We define $\phi_{\Lambda}: \mathbb{N}^{2} \rightarrow \mathbb{N}$ by the formula:

$$
\phi_{\Lambda}(n, m):=\left|\left\{\mathcal{O} \in \mathcal{F} / \Phi \cup \mathcal{F}^{\prime} / \Phi^{\prime}:\left(n_{\mathcal{O}}, m_{\mathcal{O}}\right)=(n, m)\right\}\right| \quad(n, m \in \mathbb{N})
$$

Avella-Alaminos and Geiss have proved [8] that ϕ_{Λ} is a derived invariant, i.e. if Λ^{\prime} and $\Lambda^{\prime \prime}$ are derived equivalent gentle bound quivers, then $\phi_{\Lambda^{\prime}}=\phi_{\Lambda^{\prime \prime}}$.

For a function $\phi: \mathbb{N}^{2} \rightarrow \mathbb{N}$ we put $\|\phi\|:=\sum_{(n, m) \in \mathbb{N}^{2}} \phi(n, m)$. If Λ is a gentle bound quiver, then $\left\|\phi_{\Lambda}\right\|$ equals $|\mathcal{F} / \Phi|+\left|\mathcal{F}^{\prime} / \Phi^{\prime}\right|$. We will need the following observation.

Lemma 2.2 Let $\Lambda=(\Delta, R)$ be a gentle bound quiver such that $\left\|\phi_{\Lambda}\right\|=1$. Then $\mathcal{F}^{\prime}=\emptyset$, hence $\operatorname{gldim} \Lambda<\infty$. Moreover, if $\mathcal{O} \in \mathcal{F} / \Phi$, then $n_{\mathcal{O}} \neq m_{\mathcal{O}}$.

Proof Let \mathcal{O} be the unique element of $\mathcal{F} / \Phi \cup \mathcal{F}^{\prime} / \Phi^{\prime}$ (i.e. either $\mathcal{O}=\mathcal{F}$ or $\mathcal{O}=\mathcal{F}^{\prime}$). It follows from [15, Lemma 3.2], that $n_{\mathcal{O}}=2\left|\Delta_{0}\right|-\left|\Delta_{1}\right|$ and $m_{\mathcal{O}}=\left|\Delta_{1}\right|$. If $\mathcal{O}=\mathcal{F}^{\prime}$, then $n_{\mathcal{O}}=0$, hence $\left|\Delta_{1}\right|=2\left|\Delta_{0}\right|$. By condition (2) of the definition of a gentle bound quiver this means that for each $x \in \Delta_{0}$ there are exactly two arrows starting at x. Consequently, condition (4) of the definition implies that for each $\alpha \in \Delta_{1}$ there exists $\alpha^{\prime} \in \Delta_{1}$ such that $s \alpha^{\prime}=t \alpha$ and $\alpha^{\prime} \alpha \notin R$. Thus, there exist paths in Λ of arbitrary length, which contradicts condition (2) of the definition of a bound quiver. Consequently, $\mathcal{O}=\mathcal{F}$, hence $\mathcal{F}^{\prime}=\emptyset$.

Now assume $n_{\mathcal{O}}=m_{\mathcal{O}}$. Then $2\left|\Delta_{0}\right|-\left|\Delta_{1}\right|=\left|\Delta_{1}\right|$, i.e. $\left|\Delta_{0}\right|=\left|\Delta_{1}\right|$, hence Λ is a onecycle gentle bound quiver. However in this case $\left\|\phi_{\Lambda}\right\|=2$ (see [8, Section 7]), hence the claim follows.

2.3 Boundary Complexes

Let $\Lambda=(\Delta, R)$ be a gentle bound quiver. One defines the Auslander-Reiten quiver $\Gamma\left(\mathcal{D}^{b}(\Lambda)\right)$ of $\mathcal{D}^{b}(\Lambda)$ in the following way: the vertices of $\Gamma\left(\mathcal{D}^{b}(\Lambda)\right)$ are (representatives of) the isomorphism classes of the indecomposable complexes in $\mathcal{D}^{b}(\Lambda)$ and the number of arrows between vertices X and Y equals the dimension of the space of irreducible maps between X and Y.

Since the gentle bound quivers are Gorenstein (see [27]), the Auslander-Reiten translation τ (see [30]) is an autoequivalence on the subcategory of perfect complexes (i.e. complexes, which are quasi-isomorphic to bounded complexes of projective representations). In particular, if gldim $\Lambda<\infty$, then τ is an automorphism of $\mathcal{D}^{b}(\Lambda)$.

An indecomposable complex $X \in \mathcal{D}^{b}(\Lambda)$ is called boundary if X is perfect and there is only one arrow in $\Gamma\left(\mathcal{D}^{b}(\Lambda)\right)$ terminating at X. Equivalently, X is perfect and in the Auslander-Reiten triangle (see [30]) terminating at X the middle term is indecomposable.

The invariant of Avella-Alaminos and Geiss describes the action of the shift Σ on the components of $\Gamma\left(\mathcal{D}^{b}(\Lambda)\right)$ containing boundary complexes. We will use the following excerpt from their results in [8, Sections 5 and 6]. First, there exist homogeneous tubes in $\Gamma\left(\mathcal{D}^{b}(\Lambda)\right)$ if and only if there exists an orbit $\mathcal{O} \in \mathcal{F} / \Phi$ such that $n_{\mathcal{O}}=1=m_{\mathcal{O}}$. Let \mathcal{C} be the family of components of $\Gamma\left(\mathcal{D}^{b}(\Lambda)\right)$, which contain boundary complexes, but are not homogeneous tubes. If \mathcal{C} / Σ is the set of orbits in \mathcal{C} with respect to the action of Σ and \mathcal{X} is the set of orbits $\mathcal{O} \in \mathcal{F} / \Phi$ such that $\left(n_{\mathcal{O}}, m_{\mathcal{O}}\right) \neq(1,1)$, then $|\mathcal{C} / \Sigma|=|\mathcal{X}|$. In particular, if $|\mathcal{X}|=1$ and X and Y are boundary complexes, which do not lie in homogeneous tubes, then there exists $p \in \mathbb{Z}$ such that $\Sigma^{p} X$ and Y belong to the same component. If $\left\|\phi_{\Lambda}\right\|=1$, we have even more.

Lemma 2.3 Let Λ be a gentle bound quiver such that $\left\|\phi_{\Lambda}\right\|=1$. If X and Y are boundary complexes in $\mathcal{D}^{b}(\Lambda)$, then there exists an autoequivalence F of $\mathcal{D}^{b}(\Lambda)$ such that $F X=Y$.

Proof Assume first that Λ is derived equivalent to a hereditary algebra of Dynkin type \mathbb{A}, i.e. Λ is a gentle tree. In this case $\Gamma\left(\mathcal{D}^{b}(\Lambda)\right)$ is $\mathbb{Z} \mathbb{A}_{n}$ for some $n \in \mathbb{N}_{+}$(see [29, Section I.5]), hence the boundary complexes form two orbits with respect to the action of τ, which is an autoequivalence of $\mathcal{D}^{b}(\Lambda)$, since gldim $\Lambda<\infty$ by Lemma 2.2. Moreover, Σ interchanges these orbits, hence the claim follows in this case.

If Λ is one-cycle gentle bound quiver, then $\left\|\phi_{\Lambda}\right\|=2 \neq 1$ by [8, Section 7], hence we may assume Λ is not of polynomial growth by [39, Theorem 1.1]. Let \mathcal{O} be the unique element of $\mathcal{F} / \Phi \cup \mathcal{F}^{\prime} / \Phi^{\prime}$. Lemma 2.2 implies that $\mathcal{O} \in \mathcal{F} / \Phi$ and $\left(n_{\mathcal{O}}, m_{\mathcal{O}}\right) \neq(1,1)$. In particular, there are no homogeneous tubes in $\Gamma\left(\mathcal{D}^{b}(\Lambda)\right)$. Consequently, by the discussion above we know there exists $p \in \mathbb{Z}$ such that $\Sigma^{p} X$ and Y belong to the same component of $\Gamma\left(\mathcal{D}^{b}(\Lambda)\right)$. Moreover, [26, Theorem 2.6] implies that $\Sigma^{p} X$ and Y belong to the same τ orbit, i.e. there exists $q \in \mathbb{Z}$ such that $\tau^{q} \Sigma^{p} X=Y$. Finally, gldim $\Lambda<\infty$ by Lemma 2.2, hence τ is an autoequivalence of $\mathcal{D}^{b}(\Lambda)$, and the claim follows.

If σ is a path in Λ, then we have the corresponding (string) representation $M(\sigma)$ (see for example [22]). We have the following observation.

Lemma 2.4 Let Λ be a gentle bound quiver. If σ is a maximal path in Λ, then $M(\sigma)$ (viewed as a complex concentrated in degree 0) is a boundary complex in $\mathcal{D}^{b}(\Lambda)$.

Proof In the terminology of [14] (see also [12]) a projective presentation of $M(\sigma)$ is given by the complex which corresponds to the antipath $\Phi_{2}^{-1}(\sigma)$. In particular, this implies that $M(\sigma)$ is a perfect complex in $\mathcal{D}^{b}(\Lambda)$. Moreover, if one uses results of [14] in order to calculate the Auslander-Reiten triangle terminating at $M(\sigma)$, then one gets that its middle term is indecomposable. Alternatively, one may use the Happel functor [28, 29] and wellknown formulas (see for example [22,41]) for calculating the Auslander-Reiten triangles in the stable category of the category of representations of the repetitive category $\hat{\Lambda}$ of Λ. We leave details to the reader.

We formulate the following consequence.
Corollary 2.5 Let Λ^{\prime} and $\Lambda^{\prime \prime}$ be derived equivalent gentle bound quivers such that $\left\|\phi_{\Lambda^{\prime}}\right\|=$ $1=\left\|\phi_{\Lambda^{\prime \prime}}\right\|$. If σ^{\prime} and $\sigma^{\prime \prime}$ are maximal paths in Λ^{\prime} and $\Lambda^{\prime \prime}$, respectively, then there exists a derived equivalence $F: \mathcal{D}^{b}\left(\Lambda^{\prime}\right) \rightarrow \mathcal{D}^{b}\left(\Lambda^{\prime \prime}\right)$ such that $F\left(M\left(\sigma^{\prime}\right)\right)=M\left(\sigma^{\prime \prime}\right)$.

Proof Let $G: \mathcal{D}^{b}\left(\Lambda^{\prime}\right) \rightarrow \mathcal{D}^{b}\left(\Lambda^{\prime \prime}\right)$ be a derived equivalence. We know from Lemma 2.4 that $M\left(\sigma^{\prime}\right)$ and $M\left(\sigma^{\prime \prime}\right)$ are boundary complexes in $\mathcal{D}^{b}\left(\Lambda^{\prime}\right)$ and $\mathcal{D}^{b}\left(\Lambda^{\prime \prime}\right)$, respectively. Consequently, $G\left(M\left(\sigma^{\prime}\right)\right)$ and $M\left(\sigma^{\prime \prime}\right)$ are boundary complexes in $\mathcal{D}^{b}\left(\Lambda^{\prime \prime}\right)$. Thus, by Lemma 2.3, there exists an autoequivalence H of $\mathcal{D}^{b}\left(\Lambda^{\prime \prime}\right)$ such that $H\left(G\left(M\left(\sigma^{\prime}\right)\right)\right)=M\left(\sigma^{\prime \prime}\right)$. We take $F=H \circ G$.

2.4 One-point Coextensions

If Λ is a bound quiver and M is a representation of Λ, then one defines a bound quiver [M] Λ, called the one-point coextension of Λ by M (see for example [9]). However, usually [$M] \Lambda$ is not monomial, even if Λ is. Consequently, in the paper we only consider one-point coextensions of the form $[M(\sigma)] \Lambda$, where Λ is a gentle bound quiver and σ is a maximal path in Λ.

Let $\Lambda=(\Delta, R)$ be a gentle bound quiver and σ a maximal path in Λ. We define the one-point coextension $[M(\sigma)] \Lambda$ of Λ by $M(\sigma)$ as follows: $[M(\sigma)] \Lambda:=\left(\Delta^{\prime}, R^{\prime}\right)$, where
(1) Δ^{\prime} is obtained from Δ by adding a new arrow α starting at $t \sigma$ and terminating at a new vertex x;
(2) if there exists (necessarily unique) arrow α^{\prime} in Δ, which terminates at $t \sigma$, but is not the terminating arrow of σ, then $R^{\prime}:=R \cup\left\{\alpha \alpha^{\prime}\right\}$; otherwise, $R^{\prime}:=R$.

We write shortly $[\sigma] \Lambda$ instead of $[M(\sigma)] \Lambda$. One easily gets the following.
Lemma 2.6 Let Λ be gentle bound quiver. If σ is a maximal path in Λ, then $[\sigma] \Lambda$ is a gentle bound quiver.

Proof Exercise.
The following is a special version of the dual of Barot and Lenzing's [9, Theorem 1].
Proposition 2.7 Let σ^{\prime} and $\sigma^{\prime \prime}$ be maximal paths in gentle bound quivers Λ^{\prime} and $\Lambda^{\prime \prime}$, respectively. If there exists a triangle equivalence $F: \mathcal{D}^{b}\left(\Lambda^{\prime}\right) \rightarrow \mathcal{D}^{b}\left(\Lambda^{\prime \prime}\right)$ such that $F\left(M\left(\sigma^{\prime}\right)\right)=M\left(\sigma^{\prime \prime}\right)$, then $\left[\sigma^{\prime}\right] \Lambda^{\prime}$ and $\left[\sigma^{\prime \prime}\right] \Lambda^{\prime \prime}$ are derived equivalent.

Combining Proposition 2.7 with Corollary 2.5 we obtain.
Corollary 2.8 Let Λ^{\prime} and $\Lambda^{\prime \prime}$ be derived equivalent gentle bound quivers such that $\left\|\phi_{\Lambda^{\prime}}\right\|=$ $1=\left\|\phi_{\Lambda^{\prime \prime}}\right\|$. If σ^{\prime} and $\sigma^{\prime \prime}$ are maximal paths in Λ^{\prime} and $\Lambda^{\prime \prime}$, respectively, then $\left[\sigma^{\prime}\right] \Lambda^{\prime}$ and $\left[\sigma^{\prime \prime}\right] \Lambda^{\prime \prime}$ are derived equivalent.

2.5 Reflections

Let $\Lambda=(\Delta, R)$ be a gentle bound quiver. Let x be a vertex in Δ such that there is no $\alpha \in \Delta_{1}$ with $s \alpha=x=t \alpha$ and for each $\alpha \in \Delta_{1}$ with $s \alpha=x$ there exists $\beta_{\alpha} \in \Delta_{1}$ with
$t \beta_{\alpha}=x$ and $\alpha \beta_{\alpha} \notin R$. We define a bound quiver $\Lambda^{\prime}=\left(\Delta^{\prime}, R^{\prime}\right)$ in the following way: $\Delta_{0}^{\prime}=\Delta_{0}, \Delta_{1}^{\prime}=\Delta_{1}$,

$$
\begin{aligned}
& s_{\Delta^{\prime}} \alpha= \begin{cases}x & \text { if } t_{\Delta} \alpha=x, \\
s_{\Delta} \beta_{\alpha} & \text { if } s_{\Delta} \alpha=x, \\
s_{\Delta} \alpha & \text { otherwise },\end{cases} \\
& t_{\Delta^{\prime}} \alpha= \begin{cases}s_{\Delta} \alpha & \text { if } t_{\Delta} \alpha=x, \\
x & \text { if there exists } \beta \in \Delta_{1} \text { such that } \\
t_{\Delta} \alpha & t_{\Delta} \beta=x, s_{\Delta} \beta=t_{\Delta} \alpha \text { and } \beta \alpha \in R,\end{cases}
\end{aligned}
$$

and R^{\prime} consists of the following relations:

- $\alpha \beta$, where $\alpha \beta \in R$ and $t_{\Delta} \alpha \neq x \neq s_{\Delta} \alpha$,
- $\alpha \beta_{\alpha}$, where $\alpha \in \Delta_{1}$ and $s_{\Delta} \alpha=x$,
- $\alpha \beta$, where $\alpha, \beta \in \Delta_{1}$ are such that $t_{\Delta} \alpha=x$ and $\gamma \beta \in R$ for some $\gamma \in \Delta_{1}, \gamma \neq \alpha$, with $t_{\Delta} \gamma=x$.

The following pictures, where the relations are indicated by dots, illustrate the situation: if locally (in a neighbourhood of x) Δ has the form

then locally Δ^{\prime} has the form

In the above situation we say that Λ^{\prime} is obtained from Λ by applying the (generalized APR) reflection at x. The bound quiver Λ^{\prime} is derived equivalent to Λ (see [17, Section 1]).

We will need the following application of this operation, which is a special version of [17, Lemma 1.1].

Lemma 2.9 Let $\Lambda=(\Delta, R)$ be a gentle bound quiver such that Δ is of the form

for $p \in \mathbb{N}_{+}$. Assume that $\alpha_{i-1} \alpha_{i} \notin R$ and $\alpha_{i} \alpha_{i+1} \in R$ for some $i \in[2, p-1]$. Then Λ is derived equivalent to the gentle bound quiver $\Lambda^{\prime}:=\left(\Delta, R^{\prime}\right)$, where

$$
R^{\prime}:=\left(R \backslash\left\{\alpha_{i} \alpha_{i+1}\right\}\right) \cup\left\{\alpha_{i-1} \alpha_{i}\right\}
$$

Proof We obtain Λ^{\prime} from Λ by applying the reflection at $t \alpha_{i}$, hence Λ and Λ^{\prime} are derived equivalent by the discussion above.

In the above situation we say that Λ^{\prime} is obtained from Λ by a shift of the relation $\alpha_{i} \alpha_{i+1}$.

3 Proof of the Main Result

The aim of this section is to prove that the bound quivers $\Lambda_{0}(p, r), p \in \mathbb{N}_{+}, r \in[-1, p+1]$, $(p, r) \neq(1,-1)$, are pairwise not derived equivalent. Observe (see also [17, Lemma 3.1]) that $\left\|\phi_{\Lambda_{0}(p, r)}\right\|=1$. The following observation is crucial.

Lemma 3.1 Let $p \in \mathbb{N}_{+}$and $r \in[-1, p-1],(p, r) \neq(1,-1)$. If σ is a maximal path in $\Lambda_{0}(p, r)$, then $[\sigma] \Lambda_{0}(p, r)$ is derived equivalent to $\Lambda_{0}(p+1, r)$.

Proof If σ^{\prime} and $\sigma^{\prime \prime}$ are maximal paths in $\Lambda_{0}(p, r)$, then Corollary 2.8 implies that $\left[\sigma^{\prime}\right] \Lambda_{0}(p, r)$ and $\left[\sigma^{\prime \prime}\right] \Lambda_{0}(p, r)$ are derived equivalent. Thus it is enough to consider one particular σ.

First assume that $r \geq 0$ and let σ be the maximal path whose terminating arrow is β, i.e. $\sigma:=\beta \alpha_{1}$, if $r>0$, and $\sigma:=\beta \alpha_{1} \cdots \alpha_{p} \gamma$, if $r=0$. Then $[\sigma] \Lambda_{0}(p, r)$ is the quiver

bound by relations $\alpha_{p} \beta, \alpha_{i} \alpha_{i+1}$ for $i \in[1, r], \gamma \alpha_{1}$ and $\delta \gamma$. If we apply the reflection at the vertex denoted by $*$, then we obtain the quiver

bound by relations $\alpha_{p} \beta, \alpha_{i} \alpha_{i+1}$ for $i \in[1, r]$, and $\gamma \alpha_{1}$. Now we apply again the reflection at the vertex denoted by $*$ and obtain the quiver

bound by relations $\alpha_{p} \beta, \alpha_{i} \alpha_{i+1}$ for $i \in[1, r]$, and $\delta \gamma$. Finally we shift relations (see Lemma 2.9) r times and obtain (a bound quiver isomorphic to) $\Lambda_{0}(p+1, r)$.

We proceed similarly if $r=-1$. If $\sigma:=\beta \gamma$, then $[\sigma] \Lambda_{0}(p,-1)$ is the quiver

bound by relations $\alpha_{p} \gamma, \beta \delta$ and $\varepsilon \alpha_{1}$. By applying the reflection at the vertex denoted by $*$ we obtain $\Lambda_{0}(p+1,-1)$.

We have the following consequence of Lemma 3.1.
Corollary 3.2 Let $p \in \mathbb{N}_{+}$and $r^{\prime}, r^{\prime \prime} \in[-1, p-1]$, $\left(p, r^{\prime}\right) \neq(1,-1) \neq\left(p, r^{\prime \prime}\right)$. If $\Lambda_{0}\left(p, r^{\prime}\right)$ and $\Lambda_{0}\left(p, r^{\prime \prime}\right)$ are derived equivalent, then $\Lambda_{0}\left(q, r^{\prime}\right)$ and $\Lambda_{0}\left(q, r^{\prime \prime}\right)$ are derived equivalent for all $q \geq p$.

Proof By induction it is enough to prove that $\Lambda_{0}\left(p+1, r^{\prime}\right)$ and $\Lambda_{0}\left(p+1, r^{\prime \prime}\right)$ are derived equivalent provided $\Lambda_{0}\left(p, r^{\prime}\right)$ and $\Lambda_{0}\left(p, r^{\prime \prime}\right)$ are derived equivalent. Let σ^{\prime} and $\sigma^{\prime \prime}$ be maximal paths in $\Lambda_{0}\left(p, r^{\prime}\right)$ and $\Lambda_{0}\left(p, r^{\prime \prime}\right)$, respectively. Corollary 2.8 implies that $\left[\sigma^{\prime}\right] \Lambda_{0}\left(p, r^{\prime}\right)$ and $\left[\sigma^{\prime \prime}\right] \Lambda_{0}\left(p, r^{\prime \prime}\right)$ are derived equivalent. Since according to Lemma 3.1 $\left[\sigma^{\prime}\right] \Lambda_{0}\left(p, r^{\prime}\right) \simeq_{\operatorname{der}} \Lambda_{0}\left(p+1, r^{\prime}\right)$ and $\left[\sigma^{\prime \prime}\right] \Lambda_{0}\left(p, r^{\prime \prime}\right) \simeq_{\operatorname{der}} \Lambda_{0}\left(p+1, r^{\prime \prime}\right)$, the claim follows.

An important role in our proof is played by the following result due to Amiot [1, Corollary 4.4].

Proposition 3.3 Let $q \geq 3$ and $-1 \leq r^{\prime}, r^{\prime \prime} \leq \frac{q}{2}-1$. If $r^{\prime} \neq r^{\prime \prime}$, then the algebras $\Lambda_{0}\left(q, r^{\prime}\right)$ and $\Lambda_{0}\left(q, r^{\prime \prime}\right)$ are not derived equivalent.

Now we are ready to prove Theorem B.

Proof of Theorem B Let $p^{\prime}, p^{\prime \prime} \in \mathbb{N}, r^{\prime} \in\left[-1, p^{\prime}-1\right]$ and $r^{\prime \prime} \in\left[-1, p^{\prime \prime}-1\right]$ be such that $\left(p^{\prime}, r^{\prime}\right) \neq(1,-1) \neq\left(p^{\prime \prime}, r^{\prime \prime}\right)$. Obviously, $\Lambda_{0}\left(p^{\prime}, r^{\prime}\right)$ and $\Lambda_{0}\left(p^{\prime \prime}, r^{\prime \prime}\right)$ are not derived equivalent if $p^{\prime} \neq p^{\prime \prime}$ (e.g. they have different numbers of vertices). Thus assume that $p^{\prime}=p^{\prime \prime}$ and denote this common value by p. Choose $q \geq p$ such that $r^{\prime}, r^{\prime \prime} \leq \frac{q}{2}-1$. If $\Lambda_{0}\left(p, r^{\prime}\right)$ and $\Lambda_{0}\left(p, r^{\prime \prime}\right)$ are derived equivalent, then Corollary 3.2 implies that $\Lambda_{0}\left(q, r^{\prime}\right)$ and $\Lambda_{0}\left(q, r^{\prime \prime}\right)$ are derived equivalent as well. Consequently, $r^{\prime}=r^{\prime \prime}$ according to Proposition 3.3 and the claim follows.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Amiot, C.: The derived category of surface algebras: the case of torus with one boundary component. Algebr. Represent. Theory 19, 1059-1080 (2016)
2. Amiot, C., Grimeland, Y.: Derived invariants for surface algebras. J. Pure Appl. Algebra 220, 3133-3155 (2016)
3. Asashiba, H.: The derived equivalence classification of representation-finite selfinjective algebras. J. Algebra 214, 182-221 (1999)
4. Assem, I., Happel, D.: Generalized tilted algebras of type A_{n}. Comm. Algebra 9, 2101-2125 (1981)
5. Assem, I., Simson, D., Skowroński, A.: Elements of the representation theory of associative algebras. Vol. 1, London Mathematical Social Study Texts, p. x+458. Cambridge Univ. Press, Cambridge (2006)
6. Assem, I., Skowroński, A.: Iterated tilted algebras of type $\tilde{\mathbf{A}}_{n}$. Math. Z. 195, 269-290 (1987)
7. Avella-Alaminos, D.: Derived classification of gentle algebras with two cycles. Bol. Soc. Mat. Mexicana (3) 14, 177-216 (2008)
8. Avella-Alaminos, D., Geiss, Ch.: Combinatorial derived invariants for gentle algebras. J. Pure Appl. Algebra 212, 228-243 (2008)
9. Barot, M., Lenzing, H.: One-point extensions and derived equivalence. J. Algebra 264, 1-5 (2003)
10. Bastian, J.: Mutation classes of \tilde{A}_{n}-quivers and derived equivalence classification of cluster tilted algebras of type \tilde{A}_{n}. Algebra Number Theory 5, 567-594 (2011)
11. Beı̌linson, A.A.: Coherent sheaves on \mathbf{P}^{n} and problems in linear algebra. Funktsional. Anal. i Prilozhen. 12, 68-69 (1978) (Russian); English transl., Funct. Anal. Appl. 12, 214-216 (1978)
12. Bekkert, V., Merklen, H.A.: Indecomposables in derived categories of gentle algebras. Algebr. Represent. Theory 6, 285-302 (2003)
13. Białkowski, J., Holm, T., Skowroński, A.: Derived equivalences for tame weakly symmetric algebras having only periodic modules. J. Algebra 269, 652-668 (2003)
14. Bobiński, G.: The almost split triangles for perfect complexes over gentle algebras. J. Pure Appl. Algebra 215, 642-654 (2011)
15. Bobiński, G., Buan, A.B.: The algebras derived equivalent to gentle cluster tilted algebras. J. Algebra Appl. 11, 1250012, 26 pp. (2012)
16. Bobiński, G., Geiß, Ch., Skowroński, A.: Classification of discrete derived categories. Cent. Eur. J. Math. 2, 19-49 (2004)
17. Bobiński, G., Malicki, P.: On derived equivalence classification of gentle two-cycle algebras. Colloq. Math. 112, 33-72 (2008)
18. Bocian, R., Holm, T., Skowroński, A.: Derived equivalence classification of one-parametric self-injective algebras. J. Pure Appl. Algebra 207, 491-536 (2006)
19. Brüstle, T.: Derived-tame tree algebras. Compositio Math. 129, 301-323 (2001)
20. Buan, A.B., Marsh, R., Reineke, M., Reiten, I., Todorov, G.: Tilting theory and cluster combinatorics. Adv. Math. 204, 572-618 (2006)
21. Buan, A.B., Vatne, D.F.: Derived equivalence classification for cluster-tilted algebras of type A_{n}. J. Algebra 319, 2723-2738 (2008)
22. Butler, M.C.R., Ringel, C.M.: Auslander-Reiten sequences with few middle terms and applications to string algebras. Comm. Algebra 15, 145-179 (1987)
23. Gabriel, P.: Unzerlegbare Darstellungen. I. Manuscripta Math. 6, 71-103; correction, ibid. 6 (1972), 309 (1972)
24. Geigle, W., Lenzing, H.: A class of weighted projective curves arising in representation theory of finitedimensional algebras, Singularities, Representation of Algebras, and Vector Bundles, Lecture Notes in Math., vol. 1273, pp. 265-297. Springer, Berlin (1987)
25. Geiss, Ch.: Derived tame algebras and Euler-forms. Math. Z. 239, 829-862 (2002). With an appendix by the author and B. Keller
26. Geiss, Ch., de la Peña, J.A.: Auslander-Reiten components for clans. Bol. Soc. Mat. Mexicana (3) 5(2), 307-326 (1999)
27. Geiss, Ch., Reiten, I. In: Buchweitz, R.-O., Lenzing, H. (eds.): Gentle algebras are gorenstein, Representations of algebras and related topics, pp. 129-133. Fields Institute Communications, vol. 45, American Mathematical Society, Providence, RI (2005)
28. Happel, D.: On the derived category of a finite-dimensional algebra. Comment. Math. Helv. 62, 339-389 (1987)
29. Happel, D.: Triangulated Categories in the Representation Theory of Finite-dimensional Algebras, London Mathematical Society Lecture Note Series, vol. 119. Cambridge University Press, Cambridge (1988)
30. Happel, D.: Auslander-Reiten triangles in derived categories of finite-dimensional algebras. Proc. Amer. Math. Soc. 112, 641-648 (1991)
31. Hille, L., Perling, M.: Tilting bundles on rational surfaces and quasi-hereditary algebras. Ann. Inst. Fourier (Grenoble) 64, 625-644 (2014)
32. Holm, T.: Derived equivalence classification of algebras of dihedral, semidihedral, and quaternion type. J. Algebra 211, 159-205 (1999)
33. Kalck, M.: Gentle two-cycle algebras and stratifications of derived module categories (2015), preprint
34. Keller, B.: Deriving DG categories. Ann. Sci. École Norm. Sup. (4) 27, 63-102 (1994)
35. Koenig, S., Zimmermann, A.: Derived Equivalences for Group Rings. Lecture Notes in Math., vol. 1685, p. x+246. Springer, Berlin (1998). With contributions by B. Keller, M. Linckelmann, J. Rickard and R. Rouquier
36. Orlov, D.: Derived categories of coherent sheaves and triangulated categories of singularities, Algebra, Arithmetic, and Geometry: in Honor of Yu. I. Manin. Vol. II (Y. Tschinkel and Y. Zarhin, eds.), Progress Mathematics, vol. 270, pp. 503-531. Birkhäuser Boston, Inc., Boston, MA (2009)
37. Rickard, J.: Morita theory for derived categories. J. London Math. Soc. (2) 39, 436-456 (1989)
38. Rickard, J.: Derived categories and stable equivalence. J. Pure Appl. Algebra 61, 303-317 (1989)
39. Ringel, C.M.: The repetitive algebra of a gentle algebra. Bol. Soc. Mat. Mexicana (3) 3, 235-253 (1997)
40. Schröer, J., Zimmermann, A.: Stable endomorphism algebras of modules over special biserial algebras. Math. Z. 244, 515-530 (2003)
41. Skowroński, A., Waschbüsch, J.: Representation-finite biserial algebras. J. Reine Angew. Math. 345, 172-181 (1983)
42. Vossieck, D.: The algebras with discrete derived category. J. Algebra 243, 168-176 (2001)

[^0]: Presented by Henning Krause.

 Grzegorz Bobiński
 gregbob@mat.umk.pl

 1 Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland

