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Abstract We complete a derived equivalence classification of the gentle two-cycle algebras
initiated in earlier papers by Avella-Alaminos and Bobiński–Malicki.
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1 Introduction and the Main Result

Throughout the paper k denotes a fixed algebraically closed field. For a (finite-dimensional
basic connected) algebra � one considers its (bounded) derived category Db(�), which has
a structure of a triangulated category. Derived categories seem to be a proper setup to do
homological algebra. Derived categories appearing in representation theory of algebras have
connections with derived categories studied in algebraic geometry (see for example [11, 24,
31]). Moreover, these categories serve as a source for constructions of categorifications of
cluster algebras (this line of research was initiated by a fundamental paper by Buan, Marsh,
Reineke, Reiten and Todorov [20]) and have links to theoretical physics (including famous
Orlov’s theorem [36]).

Algebras �′ and �′′ are said to be derived equivalent if the categories Db(�′) and
Db(�′′) are triangle equivalent. A study of derived categories (in particular derived equiv-
alences) in the representation theory of algebras was initiated by papers of Happel [28,
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29] and motivated by tilting theory, and is now an important direction of research (see for
example [3, 10, 13, 15, 16, 18, 19, 21, 25, 30, 32, 34, 35, 37, 38]).

Gentle algebras were introduced by Assem and Skowroński [6] in their study of the
algebras derived equivalent to the hereditary algebras of Euclidean type Ã. Namely, they
have proved that the algebras derived equivalent to the hereditary algebras of Euclidean
type Ã are precisely the gentle one-cycle algebras which satisfy the clock condition. On
the other hand, the algebras derived equivalent to the hereditary algebras of Dynkin type
A are precisely the gentle tree algebras [4]. Moreover, the gentle one-cycle algebras which
do not satisfy the clock condition are precisely the discrete derived algebras, which are not
locally finite [42]. The above motivates study of a derived equivalence classification for the
gentle algebras. One should note that the class of gentle algebras is closed with respect to
the derived equivalence [40].

By the above results the derived equivalence classes of the gentle algebras with at most
one-cycle are known and they are distinguished by the invariant of Avella-Alaminos and
Geiss [8]. It is natural to study as the next step a derived equivalence classification of the
gentle two-cycle algebras. Here a gentle algebra � is called two-cycle if the number of
edges in the Gabriel quiver of � exceeds by one the number of vertices in this quiver.
Before formulating the main result of the paper we define some families of gentle two-cycle
algebras.

By Z, N and N+ we denote the sets of integers, nonnegative integers and positive integers,
respectively. If i and j are integers, then [i, j ] denotes the set of integers l such that i ≤ l ≤
j . For p ∈ N+ and r ∈ [0, p − 1], �0(p, r) is the algebra of the quiver

bound by αpβ, αiαi+1 for i ∈ [1, r], and γα1. Moreover, for p ∈ N+, �0(p + 1, −1) is the
algebra of the quiver

bound by αpγ and βδ. Furthermore, for p1, p2 ∈ N+, p3, p4 ∈ N, and r1 ∈ [0, p1 − 1],
such that p2 + p3 ≥ 2 and p4 + r1 ≥ 1, �1(p1, p2, p3, p4, r1) is the algebra of the quiver
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bound by αiαi+1 for i ∈ [p1 − r1, p1 − 1], αp1β1, βiβi+1 for i ∈ [1, p2 − 1], and βp2α1.
Finally, for p1, p2 ∈ N+, p3 ∈ N, r1 ∈ [0, p1 − 1], and r2 ∈ [0, p2 − 1], such that
p3 + r1 + r2 ≥ 1, �2(p1, p2, p3, r1, r2) is the algebra of the quiver

bound by αiαi+1 for i ∈ [p1 − r1, p1 − 1], αp1α1, βiβi+1 for i ∈ [p2 − r2, p2 − 1], and
βp2β1.

The main aim of this paper is to prove the following theorem.

Theorem A The above defined algebras are representatives of the derived equivalence
classes of the gentle two-cycle algebras. More precisely,

(1) if � is a gentle two-cycle algebra, then � is derived equivalent to one of the above
defined algebras, and

(2) the above defined algebras are pairwise not derived equivalent.

Parts of Theorem A have been already proved in [17] (see also [7]). More precisely, the
following claims have been proved there:

(1) If � is a gentle two-cycle algebra, then � is derived equivalent to an algebra from one
of the families �0, �1 and �2.

(2) The algebras from different families are not derived equivalent.
(3) The algebras from family �1 (�2) are pairwise not derived equivalent.

Thus in order to prove Theorem A, we have to show the following.

Theorem B If p′, p′′ ∈ N+, r ′ ∈ [−1, p′−1], r ′′ ∈ [−1, p′′−1], and (p′, r ′) �= (1,−1) �=
(p′′, r ′′), then the algebras �0(p

′, r ′) and �0(p
′′, r ′′) are not derived equivalent.

Partial versions of Theorem B have been obtained independently by Amiot [1] and Kalck
[33]. In particular, Amiot has proved this result in the case when r’s are “small” relative
to p’s (see Proposition 2.3 for a precise statement) by refining her earlier joint results with
Grimeland on surface algebras [2]. The new ingredient of the paper is Corollary 3.2, which
says that if �(p, r ′) and �(p, r ′′) are derived equivalent, then �(p+1, r ′) and �(p+1, r ′′)
are derived equivalent. Using this and induction we reduce the situation to the setup of
Amiot’s result.

We note that one can replace derived equivalence by tilting-cotilting equivalence (see for
example [6]) in Theorems A and B. Indeed, obviously if algebras are not derived equivalent,
then they are not tilting-cotilting equivalent. On the other hand, every derived equivalence
obtained in [17] is realized via a tilting-cotilting equivalence.

The paper consists of two sections. In Section 2 we recall necessary tools, including
the invariant of Avella-Alaminos and Geiss, Auslander–Reiten quivers, (generalized APR)
reflections, and behavior of derived equivalences under one-point coextensions. Next in
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Section 3 we prove Theorem B. In the paper we use a formalism of bound quivers introduced
by Gabriel [23]. For related background see for example [5].

The author would like to thank the referee for the remarks, which helped improve the
paper significantly. The author was supported by the National Science Center Grant No.
2015/17/B/ST1/01731.

2 Preliminaries

2.1 Quivers and Their Representations

By a quiver � we mean a set �0 of vertices and a set �1 of arrows together with two
maps s = s�, t = t� : �1 → �0, which assign to α ∈ �1 the starting vertex sα and
the terminating vertex tα, respectively. We assume that all considered quivers � are locally
finite, i.e. for each x ∈ �0 there is only a finite number of α ∈ �1 such that either sα = x

or tα = x. A quiver � is called finite if �0 (and, consequently, also �1) is a finite set.
For technical reasons we assume that if � is a quiver, then �0 �= ∅ and � has no isolated
vertices, i.e. there is no x ∈ �0 such that sα �= x �= tα for each α ∈ �1. In particular,
�1 �= ∅.

Let � be a quiver. If l ∈ N+, then by a path in � of length l we mean every sequence
σ = α1 · · · αl such that αi ∈ �1 for each i ∈ [1, l] and sαi = tαi+1 for each i ∈ [1, l − 1].
In the above situation we put sσ := sαl and tσ := tα1. Moreover, we call α1 and αl the
terminating and the starting arrows of σ , respectively. Observe that each α ∈ � is a path in
� of length 1. Moreover, for each x ∈ �0 we introduce the path 1x in � of length 0 such
that s1x := x =: t1x . We denote the length of a path σ by 	(σ ). If σ ′ and σ ′′ are two paths
in � such that sσ ′ = tσ ′′, then we define the composition σ ′σ ′′ of σ ′ and σ ′′, which is a
path in � of length 	(σ ′) + 	(σ ′′), in the obvious way (in particular, σ1sσ = σ = 1tσ σ for
each path σ ). A path σ0 is called a subpath of a path σ , if there exist paths σ ′ and σ ′′ such
that σ = σ ′σ0σ

′′.
By a (monomial) bound quiver we mean a pair � = (�,R) consisting of a finite quiver

� and a set R of paths in �, such that:

(1) 	(ρ) > 1 for each ρ ∈ R, and
(2) there exists n ∈ N+ such that every path σ in � with 	(σ ) = n has a subpath which

belongs to R.

If � = (�,R) is a bound quiver, then by a path in � we mean a path in � which does not
have a subpath from R. A path σ in � is said to be maximal in � if σ is not a subpath of a
longer path in �. The lack of isolated vertices in � implies that 	(σ ) > 0 for each maximal
path σ in �.

By a representation V of a bound quiver � = (�,R) we mean a collection of finite-
dimensional vector spaces Vx , x ∈ �0, and linear maps Vα : Vsα → Vtα , α ∈ �1, such that
the induced map Vρ : Vsρ → Vtρ is zero for every ρ ∈ R. If V and W are representations,
then a homomorphism f : V → W is a collection of linear maps fx : Vx → Wx , x ∈ �0,
such that ftαVα = Wαfsα for every arrow α in �. The category rep � of representations of
� is an abelian category. We call bound quivers �′ and �′′ derived equivalent (and write
�′ 	der �′′), if the derived categories Db(rep �′) and Db(rep �′′) are triangle equivalent.
We will usually write shortly Db(�) instead of Db(rep �) if � is a bound quiver.

A connected bound quiver � = (�,R) is called gentle if the following conditions are
satisfied:
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(1) R consists of paths of length 2,
(2) for each x ∈ �0 there are at most two α ∈ �1 such that sα = x and at most two

α ∈ �1 such that tα = x,
(3) for each α ∈ �1 there is at most one α′ ∈ �1 such that sα′ = tα and α′α �∈ R, and at

most one α′ ∈ �1 such that tα′ = sα and αα′ �∈ R,
(4) for each α ∈ �1 there is at most one α′ ∈ �1 such that sα′ = tα and α′α ∈ R, and at

most one α′ ∈ �1 such that tα′ = sα and αα′ ∈ R.

Let � = (�,R) be a gentle bound quiver. Note that by condition (1) above a path
α1 . . . αl in � is a path in � if and only if αiαi+1 �∈ R for all i ∈ [1, l − 1]. We call a path
α1 . . . αl in � an antipath in � if αiαi+1 ∈ R for all i ∈ [1, l − 1]. In particular, every path
of length at most 1 is an antipath. Again we call an antipath ω maximal if ω is not a subpath
of a longer antipath in �.

2.2 The Invariant of Avella-Alaminos and Geiss

Throughout this subsection � = (�,R) is a fixed gentle bound quiver.
By a permitted thread in � we mean either a maximal path in � or 1x , for x ∈ �0, such

that there is at most one arrow α with sα = x, there is at most one arrow β with tβ = x,
and if such α and β exist, then αβ �∈ R. Similarly, by a forbidden thread we mean either
a maximal antipath in � or 1x , for x ∈ �0, such that there is at most one arrow α with
sα = x, there is at most one arrow β with tβ = x, and if such α and β exist, then αβ ∈ R.

Denote by P and F the sets of the permitted and forbidden threads in �, respectively.
We define bijections �1 : P → F and �2 : F → P . First, if σ is a maximal path in
�, then we put �1(σ ) := ω, where ω is the unique forbidden thread such that tω = tσ

and either 	(ω) = 0 or 	(ω) > 0 and the terminating arrows of σ and ω differ. If 1x , for
x ∈ �0, is a permitted thread, there are two cases to consider. If there is an arrow β such
that tβ = x (note that such β is uniquely determined), then �1(1x) is the (unique) forbidden
thread whose terminating arrow is β. Otherwise we put �1(1x) := 1x . We define �2 dually.
Namely, if ω is a maximal antipath, then �2(ω) := σ , where σ is the permitted thread such
that sσ = sω and either 	(σ ) = 0 or 	(σ ) > 0 and the starting arrows of ω and σ differ.
Now, let x ∈ �0 and 1x be a forbidden thread. If there is α ∈ �1 such that sα = x, then
�2(1x) is the permitted thread whose starting arrow is α. Otherwise, �2(1x) := 1x . Finally,
we put � := �1�2 : F → F .

Let F ′ be the set of arrows in � which are not subpaths of any maximal antipath in � (i.e.
every antipath containing α can be extended to a longer antipath). For every α ∈ F ′ there
exists uniquely determined α′ ∈ F ′ such that αα′ ∈ R. We put �′(α) := α′. In this way we
get a bijection �′ : F ′ → F ′. In other words, F ′ is the set of arrows which lie on oriented
cycles with full relations. Moreover, two arrows in F ′ belong to the same orbit with respect
to the action of �′ if and only if they lie on the same oriented cycle with full relations.

The following result seems to be well-known, however we could not find a reference for
it, hence we include its proof for completeness.

Proposition 2.1 Let � = (�,R) be a gentle bound quiver. Then gldim � < ∞ if and only
if F ′ = ∅.

Proof For a vertex x of � we denote by Sx and Px the simple and the projective repre-
sentations of � at x, respectively. For α ∈ �1 we denote by Pα the corresponding map
Ptα → Psα .
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Assume first F ′ = ∅ and fix x ∈ �0. Assume there are exactly two arrows α and β

starting at x. Let αn · · · α1 and βm · · · β1 be the maximal antipaths, whose starting arrows
are α and β, respectively (in particular, α1 = α and β1 = β) – such antipaths exist, since
F ′ = ∅. Then

· · · → Ptα2 ⊕ Ptβ2

[
Pα2 0
0 Pβ2

]
−−−−−−−→ Ptα1 ⊕ Ptβ1

[
Pα1 Pβ1

]
−−−−−−−→ Sx → 0

is a minimal projective presentation of Sx , so pdim� Sx = max{n, m} < ∞. If there is only
one arrow starting at x, then we have a degenerate version of the above. Finally, if there is
no arrow starting at x, then Sx = Px .

Now assume F ′ �= ∅, choose α ∈ F ′, and put αi := �′−i (α), i ∈ N. Then

· · · → Ptα1

Pα1−−→ Ptα0

Pα0−−→ Psα → Coker Pα → 0

is a minimal projective presentation of Coker Pα , so pdim� Coker Pα = ∞.

Let F/� be the set of orbits in F with respect to the action of �. For each O ∈ F/�

we put nO := |O| and mO := ∑
ω∈O 	(ω). Similarly, if O ∈ F ′/�′, then nO := 0 and

mO := |O|. We define φ� : N2 → N by the formula:

φ�(n,m) := |{O ∈ F/� ∪ F ′/�′ : (nO,mO) = (n, m)}| (n, m ∈ N).

Avella-Alaminos and Geiss have proved [8] that φ� is a derived invariant, i.e. if �′ and �′′
are derived equivalent gentle bound quivers, then φ�′ = φ�′′ .

For a function φ : N2 → N we put ‖φ‖ := ∑
(n,m)∈N2 φ(n, m). If � is a gentle bound

quiver, then ‖φ�‖ equals |F/�| + |F ′/�′|. We will need the following observation.

Lemma 2.2 Let � = (�,R) be a gentle bound quiver such that ‖φ�‖ = 1. Then F ′ = ∅,
hence gldim � < ∞. Moreover, if O ∈ F/�, then nO �= mO .

Proof Let O be the unique element of F/� ∪ F ′/�′ (i.e. either O = F or O = F ′). It
follows from [15, Lemma 3.2], that nO = 2|�0| − |�1| and mO = |�1|. If O = F ′, then
nO = 0, hence |�1| = 2|�0|. By condition (2) of the definition of a gentle bound quiver
this means that for each x ∈ �0 there are exactly two arrows starting at x. Consequently,
condition (4) of the definition implies that for each α ∈ �1 there exists α′ ∈ �1 such that
sα′ = tα and α′α �∈ R. Thus, there exist paths in � of arbitrary length, which contradicts
condition (2) of the definition of a bound quiver. Consequently, O = F , hence F ′ = ∅.

Now assume nO = mO . Then 2|�0| − |�1| = |�1|, i.e. |�0| = |�1|, hence � is a one-
cycle gentle bound quiver. However in this case ‖φ�‖ = 2 (see [8, Section 7]), hence the
claim follows.

2.3 Boundary Complexes

Let � = (�,R) be a gentle bound quiver. One defines the Auslander–Reiten quiver
�(Db(�)) of Db(�) in the following way: the vertices of �(Db(�)) are (representatives
of) the isomorphism classes of the indecomposable complexes in Db(�) and the number
of arrows between vertices X and Y equals the dimension of the space of irreducible maps
between X and Y .
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Since the gentle bound quivers are Gorenstein (see [27]), the Auslander–Reiten transla-
tion τ (see [30]) is an autoequivalence on the subcategory of perfect complexes (i.e. com-
plexes, which are quasi-isomorphic to bounded complexes of projective representations). In
particular, if gldim � < ∞, then τ is an automorphism of Db(�).

An indecomposable complex X ∈ Db(�) is called boundary if X is perfect and there
is only one arrow in �(Db(�)) terminating at X. Equivalently, X is perfect and in the
Auslander–Reiten triangle (see [30]) terminating at X the middle term is indecomposable.

The invariant of Avella-Alaminos and Geiss describes the action of the shift � on
the components of �(Db(�)) containing boundary complexes. We will use the following
excerpt from their results in [8, Sections 5 and 6]. First, there exist homogeneous tubes in
�(Db(�)) if and only if there exists an orbit O ∈ F/� such that nO = 1 = mO . Let C
be the family of components of �(Db(�)), which contain boundary complexes, but are not
homogeneous tubes. If C/� is the set of orbits in C with respect to the action of � and X is
the set of orbits O ∈ F/� such that (nO, mO) �= (1, 1), then |C/�| = |X |. In particular,
if |X | = 1 and X and Y are boundary complexes, which do not lie in homogeneous tubes,
then there exists p ∈ Z such that �pX and Y belong to the same component. If ‖φ�‖ = 1,
we have even more.

Lemma 2.3 Let � be a gentle bound quiver such that ‖φ�‖ = 1. If X and Y are boundary
complexes in Db(�), then there exists an autoequivalence F of Db(�) such that FX = Y .

Proof Assume first that � is derived equivalent to a hereditary algebra of Dynkin type A,
i.e. � is a gentle tree. In this case �(Db(�)) is ZAn for some n ∈ N+ (see [29, Section I.5]),
hence the boundary complexes form two orbits with respect to the action of τ , which is an
autoequivalence of Db(�), since gldim � < ∞ by Lemma 2.2. Moreover, � interchanges
these orbits, hence the claim follows in this case.

If � is one-cycle gentle bound quiver, then ‖φ�‖ = 2 �= 1 by [8, Section 7], hence
we may assume � is not of polynomial growth by [39, Theorem 1.1]. Let O be the unique
element of F/� ∪ F ′/�′. Lemma 2.2 implies that O ∈ F/� and (nO,mO) �= (1, 1). In
particular, there are no homogeneous tubes in �(Db(�)). Consequently, by the discussion
above we know there exists p ∈ Z such that �pX and Y belong to the same component
of �(Db(�)). Moreover, [26, Theorem 2.6] implies that �pX and Y belong to the same τ -
orbit, i.e. there exists q ∈ Z such that τq�pX = Y . Finally, gldim � < ∞ by Lemma 2.2,
hence τ is an autoequivalence of Db(�), and the claim follows.

If σ is a path in �, then we have the corresponding (string) representation M(σ) (see for
example [22]). We have the following observation.

Lemma 2.4 Let� be a gentle bound quiver. If σ is a maximal path in�, thenM(σ) (viewed
as a complex concentrated in degree 0) is a boundary complex in Db(�).

Proof In the terminology of [14] (see also [12]) a projective presentation of M(σ) is given
by the complex which corresponds to the antipath �−1

2 (σ ). In particular, this implies that
M(σ) is a perfect complex in Db(�). Moreover, if one uses results of [14] in order to
calculate the Auslander–Reiten triangle terminating at M(σ), then one gets that its middle
term is indecomposable. Alternatively, one may use the Happel functor [28, 29] and well-
known formulas (see for example [22, 41]) for calculating the Auslander–Reiten triangles
in the stable category of the category of representations of the repetitive category �̂ of �.
We leave details to the reader.
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We formulate the following consequence.

Corollary 2.5 Let�′ and�′′ be derived equivalent gentle bound quivers such that ‖φ�′ ‖ =
1 = ‖φ�′′ ‖. If σ ′ and σ ′′ are maximal paths in �′ and �′′, respectively, then there exists a
derived equivalence F : Db(�′) → Db(�′′) such that F(M(σ ′)) = M(σ ′′).

Proof Let G : Db(�′) → Db(�′′) be a derived equivalence. We know from Lemma 2.4
that M(σ ′) and M(σ ′′) are boundary complexes in Db(�′) and Db(�′′), respectively. Con-
sequently, G(M(σ ′)) and M(σ ′′) are boundary complexes in Db(�′′). Thus, by Lemma 2.3,
there exists an autoequivalence H of Db(�′′) such that H(G(M(σ ′))) = M(σ ′′). We take
F = H ◦ G.

2.4 One-point Coextensions

If � is a bound quiver and M is a representation of �, then one defines a bound quiver
[M]�, called the one-point coextension of � by M (see for example [9]). However, usually
[M]� is not monomial, even if � is. Consequently, in the paper we only consider one-point
coextensions of the form [M(σ)]�, where � is a gentle bound quiver and σ is a maximal
path in �.

Let � = (�,R) be a gentle bound quiver and σ a maximal path in �. We define the
one-point coextension [M(σ)]� of � by M(σ) as follows: [M(σ)]� := (�′, R′), where

(1) �′ is obtained from � by adding a new arrow α starting at tσ and terminating at a new
vertex x;

(2) if there exists (necessarily unique) arrow α′ in �, which terminates at tσ , but is not
the terminating arrow of σ , then R′ := R ∪ {αα′}; otherwise, R′ := R.

We write shortly [σ ]� instead of [M(σ)]�. One easily gets the following.

Lemma 2.6 Let � be gentle bound quiver. If σ is a maximal path in �, then [σ ]� is a
gentle bound quiver.

Proof Exercise.

The following is a special version of the dual of Barot and Lenzing’s [9, Theorem 1].

Proposition 2.7 Let σ ′ and σ ′′ be maximal paths in gentle bound quivers �′ and �′′,
respectively. If there exists a triangle equivalence F : Db(�′) → Db(�′′) such that
F(M(σ ′)) = M(σ ′′), then [σ ′]�′ and [σ ′′]�′′ are derived equivalent.

Combining Proposition 2.7 with Corollary 2.5 we obtain.

Corollary 2.8 Let�′ and�′′ be derived equivalent gentle bound quivers such that ‖φ�′ ‖ =
1 = ‖φ�′′ ‖. If σ ′ and σ ′′ are maximal paths in �′ and �′′, respectively, then [σ ′]�′ and
[σ ′′]�′′ are derived equivalent.

2.5 Reflections

Let � = (�,R) be a gentle bound quiver. Let x be a vertex in � such that there is no
α ∈ �1 with sα = x = tα and for each α ∈ �1 with sα = x there exists βα ∈ �1 with
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tβα = x and αβα �∈ R. We define a bound quiver �′ = (�′, R′) in the following way:
�′

0 = �0, �′
1 = �1,

s�′α =
⎧⎨
⎩

x if t�α = x,

s�βα if s�α = x,

s�α otherwise,

t�′α =

⎧⎪⎪⎨
⎪⎪⎩

s�α if t�α = x,

x if there exists β ∈ �1 such that
t�β = x, s�β = t�α and βα ∈ R,

t�α otherwise,

and R′ consists of the following relations:

• αβ, where αβ ∈ R and t�α �= x �= s�α,
• αβα , where α ∈ �1 and s�α = x,
• αβ, where α, β ∈ �1 are such that t�α = x and γβ ∈ R for some γ ∈ �1, γ �= α,

with t�γ = x.

The following pictures, where the relations are indicated by dots, illustrate the situation: if
locally (in a neighbourhood of x) � has the form

then locally �′ has the form

In the above situation we say that �′ is obtained from � by applying the (generalized APR)
reflection at x. The bound quiver �′ is derived equivalent to � (see [17, Section 1]).

We will need the following application of this operation, which is a special version of
[17, Lemma 1.1].

Lemma 2.9 Let � = (�,R) be a gentle bound quiver such that � is of the form
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for p ∈ N+. Assume that αi−1αi �∈ R and αiαi+1 ∈ R for some i ∈ [2, p − 1]. Then � is
derived equivalent to the gentle bound quiver �′ := (�,R′), where

R′ := (R \ {αiαi+1}) ∪ {αi−1αi}.

Proof We obtain �′ from � by applying the reflection at tαi , hence � and �′ are derived
equivalent by the discussion above.

In the above situation we say that �′ is obtained from � by a shift of the relation αiαi+1.

3 Proof of the Main Result

The aim of this section is to prove that the bound quivers �0(p, r), p ∈ N+, r ∈ [−1, p+1],
(p, r) �= (1, −1), are pairwise not derived equivalent. Observe (see also [17, Lemma 3.1])
that ‖φ�0(p,r)‖ = 1. The following observation is crucial.

Lemma 3.1 Let p ∈ N+ and r ∈ [−1, p − 1], (p, r) �= (1, −1). If σ is a maximal path in
�0(p, r), then [σ ]�0(p, r) is derived equivalent to �0(p + 1, r).

Proof If σ ′ and σ ′′ are maximal paths in �0(p, r), then Corollary 2.8 implies that
[σ ′]�0(p, r) and [σ ′′]�0(p, r) are derived equivalent. Thus it is enough to consider one
particular σ .

First assume that r ≥ 0 and let σ be the maximal path whose terminating arrow is β, i.e.
σ := βα1, if r > 0, and σ := βα1 · · ·αpγ , if r = 0. Then [σ ]�0(p, r) is the quiver

bound by relations αpβ, αiαi+1 for i ∈ [1, r], γα1 and δγ . If we apply the reflection at the
vertex denoted by ∗, then we obtain the quiver

bound by relations αpβ, αiαi+1 for i ∈ [1, r], and γα1. Now we apply again the reflection
at the vertex denoted by ∗ and obtain the quiver
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bound by relations αpβ, αiαi+1 for i ∈ [1, r], and δγ . Finally we shift relations (see Lemma
2.9) r times and obtain (a bound quiver isomorphic to) �0(p + 1, r).

We proceed similarly if r = −1. If σ := βγ , then [σ ]�0(p,−1) is the quiver

bound by relations αpγ , βδ and εα1. By applying the reflection at the vertex denoted by ∗
we obtain �0(p + 1, −1).

We have the following consequence of Lemma 3.1.

Corollary 3.2 Let p ∈ N+ and r ′, r ′′ ∈ [−1, p − 1], (p, r ′) �= (1,−1) �= (p, r ′′). If
�0(p, r ′) and �0(p, r ′′) are derived equivalent, then �0(q, r ′) and �0(q, r ′′) are derived
equivalent for all q ≥ p.

Proof By induction it is enough to prove that �0(p + 1, r ′) and �0(p + 1, r ′′) are
derived equivalent provided �0(p, r ′) and �0(p, r ′′) are derived equivalent. Let σ ′ and
σ ′′ be maximal paths in �0(p, r ′) and �0(p, r ′′), respectively. Corollary 2.8 implies that
[σ ′]�0(p, r ′) and [σ ′′]�0(p, r ′′) are derived equivalent. Since according to Lemma 3.1
[σ ′]�0(p, r ′) 	der �0(p + 1, r ′) and [σ ′′]�0(p, r ′′) 	der �0(p + 1, r ′′), the claim
follows.

An important role in our proof is played by the following result due to Amiot [1, Corollary
4.4].

Proposition 3.3 Let q ≥ 3 and−1 ≤ r ′, r ′′ ≤ q
2 −1. If r ′ �= r ′′, then the algebras �0(q, r ′)

and �0(q, r ′′) are not derived equivalent.

Now we are ready to prove Theorem B.

Proof of Theorem B Let p′, p′′ ∈ N, r ′ ∈ [−1, p′ − 1] and r ′′ ∈ [−1, p′′ − 1] be such that
(p′, r ′) �= (1, −1) �= (p′′, r ′′). Obviously, �0(p

′, r ′) and �0(p
′′, r ′′) are not derived equiv-

alent if p′ �= p′′ (e.g. they have different numbers of vertices). Thus assume that p′ = p′′
and denote this common value by p. Choose q ≥ p such that r ′, r ′′ ≤ q

2 −1. If �0(p, r ′) and
�0(p, r ′′) are derived equivalent, then Corollary 3.2 implies that �0(q, r ′) and �0(q, r ′′)
are derived equivalent as well. Consequently, r ′ = r ′′ according to Proposition 3.3 and the
claim follows.
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40. Schröer, J., Zimmermann, A.: Stable endomorphism algebras of modules over special biserial algebras.

Math. Z. 244, 515–530 (2003)
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