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Abstract The main purpose of this paper is to study the finite-dimensional solvable Lie
algebras described in its title, which we call minimal non-N . To facilitate this we investi-
gate solvable Lie algebras of nilpotent length k, and of nilpotent length≤ k, and extreme Lie
algebras, which have the property that their nilpotent length is equal to the number of con-
jugacy classes of maximal subalgebras. We characterise the minimal non-N Lie algebras in
which every nilpotent subalgebra is abelian, and those of solvability index ≤ 3.
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1 Introduction

Let L be a Lie algebra, and let L(0) = L, L(i+1) = [L(i), L(i)] be its derived series. Recall
that L is solvable if there exists r such that L(r) = 0; the smallest such r is called the
derived length of L. Similarly, L1 = L, Li+1 = [Li, L] is the lower central series of L; L is
nilpotent of nilpotency index r if Lr+1 = 0 but Lr �= 0. Throughout, L will denote a finite-
dimensional solvable Lie algebra over a field F . The symbol ‘⊕’ will denote an algebra
direct sum, whilst ‘+̇’ will denote a direct sum of the underlying vector space structure
alone. If U is a subalgebra of L we define UL, the core (with respect to L) of U , to be the
largest ideal of L contained in U . We say that U is core-free in L if UL = 0.
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We denote the nilradical of L by N(L). We define the upper nilpotent series of L by

N0(L) = 0, Ni(L)/Ni−1(L) = N(L/Ni−1(L)) for i = 1, 2, . . .

The nilpotent length, n(L), of L is the smallest integer n such that Nn(L) = L.
We define the nilpotent residual, γ∞(L), of L be the smallest ideal of L such that

L/γ∞(L) is nilpotent. Clearly this is the intersection of the terms of the lower central series
for L. Then the lower nilpotent series for L is the sequence of ideals �i(L) of L defined by
�0(L) = L, �i+1(L) = γ∞(�i(L)) for i ≥ 0. First we note that this series has the same
length as that of the upper nilpotent series.

Lemma 1.1 Suppose that r is the smallest integer such that Nr(L) = L, and that s is the
smallest integer such that �s(L) = 0. Then

(i) �s−i (L) ⊆ Ni(L) for i = 0, . . . , r;
(ii) �i(L) ⊆ Nr−i (L) for i = 0, . . . , s; and
(iii) r = s.

Proof

(i) Clearly �s−1(L) is a nilpotent ideal of L and so �s−1(L) ⊆ N1(L). Suppose that
�s−k(L) ⊆ Nk(L) for some k ≥ 1. then

�s−k−1(L) + Nk(L)

Nk(L)

is a nilpotent ideal of L/Nk(L) and so is contained in Nk+1(L)/Nk(L). Hence
�s−k−1(L) ⊆ Nk+1(L), and the result follows.

(ii) Clearly �1(L) ⊆ Nr−1(L). Suppose that �k(L) ⊆ Nr−k(L) for some k ≥ 1. Then

�k(L) + Nr−k−1(L)

Nr−k−1(L)
∼= �k(L)

�k(L) ∩ Nr−k−1(L)

is nilpotent, whence �k+1(L) ⊆ Nr−k−1(L), and the result follows.
(iii) From (i) we have that �s−r (L) ⊆ Nr(L), so s −r ≥ 0; from (ii) we see that �s(L) ⊆

Nr−s(L), so r − s ≥ 0. Thus r = s.

Although the upper and lower nilpotent series have equal lengths, n say, we do not
necessarily have that �n−i (L) = Ni(L) for i = 0, . . . , n, as the following example shows.

Example 1.1 Let L be the metabelian Lie algebra over C with basis x1, x2, x3, x4 and non-
zero products [x1, x2] = x3, [x1, x3] = x3, [x1, x4] = x4, [x2, x3] = x4. Then N1(L) =
Cx2 + Cx3 + Cx4, N2(L) = L, �1(L) = Cx3 + Cx4, �2(L) = 0.

From now on we choose to work with the upper nilpotent series. In Section 2 we investi-
gate properties of this series, particularly its relationship to maximal subalgebras, and of Lie
algebras with nilpotent length k or ≤ k. In considering factor algebras, a complication arises
because, unlike the situation in group theory, there are solvable Lie algebras L in which, for
an ideal I of L, N(I) may not be contained in N(L). To overcome this obstacle we intro-
duce the notions of nilregular and strongly nilregular subalgebras of L; in particular, it is
shown that if a maximal subalgebra of L has a strongly nilregular core, its nilpotent length
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is at most one less than that of L. The section concludes with a fundamental decomposition
theorem for Lie algebras with a given nilpotent length.

In Section 3 we introduce the class of extreme Lie algebras in which Ni(L)/φi(L)

is a chief factor for each i = 1, . . . , n(L). These are characterised in relation to the
decomposition result from the previous section and described explicitly in two special cases.

The final section then considers the algebras in the title of the paper. By considering
their relationship to extreme Lie algebras the minimal non-N Lie algebras in which every
nilpotent subalgebra is abelian, and those of solvability index ≤ 3, are characterised. The
last result is that a homomorphic image of a minimal non-N Lie algebra is minimal non-N
if it has a complemented minimal ideal.

Much of this is inspired by corresponding work in group theory in [5] and [4], but there
are significant differences encountered in the Lie case.

2 Properties of the Upper Nilpotent Series

The Frattini subalgebra of L, φ(L), is the intersection of the maximal subalgebras of L.
Since L is solvable, this is an ideal of L ([2, Lemma 3.4]). The Frattini series of L is given
by

φi(L)/Ni−1(L) = φ(L/Ni−1(L)) for i = 1, 2, . . .

Lemma 2.1 Let B be an ideal of L with B ⊆ φ(L). Then Ni(L/B) = Ni(L)/B and
φi(L/B) = φi(L)/B for every i = 1, 2, . . . , n(L).

Proof We have N(L)/B = N(L/B), by [1, Theorem 5], and φ(L)/B = φ(L/B), by
[8, Proposition 4.3]. Suppose that Nk(L)/B = Nk(L/B) and φk(L)/B = φk(L/B). Then
B ⊆ φk+1(L) and

Nk+1(L/B)

Nk(L/B)
= N

(
L/B

Nk(L)/B

)
= Nk+1(L)/B

Nk(L)/B
,

whence Nk+1(L)/B = Nk+1(L/B). Similarly,

φk+1(L/B)

Nk(L/B)
= φ

(
L/B

Nk(L)/B

)
= φk+1(L)/B

Nk(L)/B
,

which yields that φk+1(L)/B = φk+1(L/B).

Lemma 2.2 If A is an ideal of L with Nr−1(L) ⊆ A ⊆ Nr(L), then n(L/A) = n(L) − r

or n(L) − r + 1.

Proof Put Ki/A = Ni(L/A). Then it is easy to see that Ki/Ki−1 = N(L/Ki−1), and a
straightforward induction argument shows that

Nr−1(L) ⊆ A ⊆ Nr(L) ⊆ K1 ⊆ Nr+1(L) ⊆ . . . ⊆ Kn(L)−r ⊆ Nn(L)(L).

IfKn(L)−r = Nn(L)(L)we have n(L/A) = n(L)−r; otherwise, n(L/A) = n(L)−r+1.

Lemma 2.3 Let M be a maximal subalgebra of the solvable Lie algebra L. Then

(i) Ni(L) ∩ M ⊆ Ni(M);
(ii) Ni(M)L ⊆ Ni(L);
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(iii) if Ni(L) ⊆ M then Ni(M)L = Ni(L);
(iv) if k is the smallest positive integer such that Nk(L) �⊆ M then Nk(M)L = Nk(L) ∩

M; and
(v) if N(L) ⊆ M then N(M) acts nilpotently on L.

Proof (i) This is a straightforward induction proof.
(ii) It is easy to see that this holds for i = 1. So suppose it holds for i < k (k ≥ 2). Then

there is an r ∈ N such that (Nk(M)L)r ⊆ Nk(M)r ⊆ Nk−1(M), so (Nk(M)L)r ⊆
Nk−1(M)L ⊆ Nk−1(L) by the inductive hypothesis. Thus Nk(M)L ⊆ Nk(L) and
the result follows by induction.

(iii) This follows from (i) and (ii).
(iv) Suppose that k is the smallest positive integer such that Nk(L) �⊆ M . Then L =

Nk(L) + M and Nk−1(L) ⊆ M , so φk(L) ⊆ M . Moreover, N2
k ⊆ φk(L) ⊆ M ,

by Lemma 2.1 and [8]. It follows that Nk(L) ∩ M is an ideal of L and hence that
Nk(L) ∩ M ⊆ Nk(M)L. The reverse inclusion follows as in (ii).

(v) Let N(L) ⊆ M . We show that N(M) acts nilpotently on L. Suppose not, and let
L = L0+̇L1 be the Fitting decomposition of L relative to N(M). Then L0 = M and
[N(L), L1] ⊆ M ∩ L1 = 0. Hence L1 ⊆ CL(N(L)) ⊆ N(L), giving L = M , a
contradiction.

In general, over a field of characteristic p > 0, N(L) is not a characteristic ideal of L.
The best known example is due to Jacobson and first appeared in [7]; however, it is not
solvable. We shall see next that N(L) is characteristic in L whenever φ(L) is. First we need
some lemmas.

Lemma 2.4 Let L be a Lie algebra over a field of characteristic p > 2, let I be an abelian
ideal of L and let D be a derivation of L. Then I + D(I) ⊆ N(L).

Proof This follows easily from [6, Theorem 1].

Lemma 2.5 Let I be a characteristic ideal of L, and let D be a derivation of L. Then
D̄ : L/I → L/I : x + I �→ D(x) + I is a derivation of L/I .

Proof This is easy to check.

Proposition 2.6 Let L be a φ-free Lie algebra over a field of characteristic p > 2. Then
N(L) is a characteristic ideal of L.

Proof Since L is φ-free, N(L) = A1⊕ . . .⊕Ar , where A1, . . . , Ar are the minimal abelian
ideals of L, by [8, Theorem 7.4]. But D(Ai) ⊆ N(L) for all D ∈ Der(L) and i = 1, . . . , r ,
whence the result.

Corollary 2.7 Let L be a Lie algebra over a field of characteristic p > 2, and suppose that
φ(L) is characteristic in L. Then N(L) is characteristic in L.
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Proof This follows easily from Lemma 2.5 and Proposition 2.6.

However, there are solvable Lie algebras L in which N(L) is not a characteristic ideal,
as the following example shows.

Example 2.1 Let L be the four-dimensional Lie algebra with basis x1, x2, x3, x4 and non-
zero products [x4, x2] = x1, [x3, x1] = x1 and [x3, x2] = x2 over a field F of characteristic
2. Then N(L) = Fx1+Fx2+Fx4 and if D(x1) = x2, D(x2) = 0, D(x3) = 0, D(x4) = x3
then the extension of D to L by linearity is a derivation of L. Clearly, D(N(L)) = Fx2 +
Fx3. Note that φ(L) = Fx1, so this leaves open the question of whether Proposition 2.6
holds over a field of characteristic 2.

If we form the split extension X = Fd+̇L, where [d, x] = D(x) for all x ∈ L, then L is
an ideal of X, but N(L) is not.

Consequently, we shall need the following result from [12].

Proposition 2.8 Let I be a nilpotent subideal of a Lie algebra L over a field F . If F has
characteristic zero, or has characteristic p and L has no subideal with nilpotency class
greater than or equal to p − 1, then I ⊆ N , where N is the nilradical of L.

Let L be a Lie algebra over a field F and let U be a subalgebra of L. We call the largest
integer r such that Nr(L) ⊆ U the compatibility index of U . As in [13], if F has characteris-
tic p > 0, we will callU nilregular if the nilradical ofU has nilpotency class less than p−1.
If U has compatibility index r , we say that U is strongly nilregular if Nk(U)/Nk−1(U) has
nilpotency class less than p − 1 for k = 1, . . . , r . If F has characteristic zero we regard
every subalgebra of L as being nilregular. Then we have the following result.

Proposition 2.9 If I is a nilregular ideal of L then N(I) ⊆ N(L).

Proof This is [13, Proposition 2.1].

We shall callL primitive if it has a core-free maximal subalgebra. It is said to be primitive
of type 1 if it has a unique minimal ideal that is abelian; since L is solvable this is the only
type that can occur here (see [11]). If B is an ideal of L and U/B is a subalgebra of L/B,
the centraliser of U/B in L is CL(U/B) = {x ∈ L : [x, U ] ⊆ B}.

Proposition 2.10 Let L be a solvable Lie algebra over a field F , and let M be a maxi-
mal subalgebra of L of compatibility index r . If ML is strongly nilregular, then Ni(M) =
Ni(ML) = Ni(L) for i = 1, . . . , r .

Proof First we show that if ML is nilregular then N(M) = N(ML) = N(L). We have that
N(M) acts nilpotently on L, by Lemma 2.3 (v). Now L/ML is primitive of type 1, and so
L/ML = A/ML+̇M/ML, where A/ML is the unique minimal ideal of L/ML and is self-
centralising, by [11, Theorem 1.1]. Since L = A + M , we have that A + N(M) is an ideal
of L, and so [A, N(M)]+ML = [A, A+N(M)]+ML = ML or A, since A/ML is a chief
factor of L.
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The former implies that [A, N(M)] ⊆ ML, whence

N(M) + ML

ML

⊆ CL/ML

(
A

ML

)
= A

ML

.

Thus N(M) ⊆ A ∩ M ⊆ ML.
The latter gives that [A,N(M)] + ML = A. But then an easy induction shows that

A ⊆ A (adN(M))r + ML for every r ∈ N, whence A = ML since N(M) acts nilpotently
on L. But this is impossible, so N(M) ⊆ ML.

It follows that N(M) ⊆ N(ML) and hence N(M) ⊆ N(L), by Proposition 2.9. Hence
N(M) = N(ML) = N(L).

So suppose now that Nk(M) = Nk(ML) = Nk(L) for some 1 ≤ k < r . Then
(M/Nk(L))L = ML/Nk(ML) is nilregular, so, by the above,

N

(
M

Nk(M)

)
= N

(
M

Nk(L)

)
= N

(
ML

Nk(ML)

)
= N

(
L

Nk(L)

)
,

whence
Nk+1(M)

Nk(M)
= Nk+1(ML)

Nk(ML)
= Nk+1(L)

Nk(L)

and Nk+1(M) = Nk+1(ML) = Nk+1(L). The result follows by induction.

Note that the above result is not true for all maximal subalgebras, as is shown in the next
example.

Example 2.2 Let X be as in Example 2.1. Then M = Fd + Fx1 + Fx2 and L are both
maximal subalgebras ofX of compatibility index 1. However,N(L) �= N(X) = Fx1+Fx2,
and MX = Fx1 + Fx2, so N(ML) = ML �= M = N(M).

Let N (k), N (≤ k) denote the classes of Lie algebras of nilpotent length k and of nilpo-
tent length ≤ k respectively. Of course, over a field of characteristic zero, every Lie algebra
L ∈ N (≤ 2). However, over a field of characteristic p > 0 it is easy to construct Lie
algebras L ∈ N (k) for any k ∈ N.

A class H of finite-dimensional solvable Lie algebras is called a homomorph if H con-
tains, along with an algebra L, all epimorphic images of L. A homomorph H is called a
formation if L/A, L/B ∈ H implies that L/A ∩ B ∈ H, where A, B are ideals of L. A
formationH is said to be saturated if L/φ(L) ∈ H implies that L ∈ H.

Proposition 2.11 The classN (≤ k) is saturated formation for each k ≥ 1.

Proof It is shown that N (1) is a saturated formation in [2, Lemma 3.7]. Suppose that it
holds for k = r . Then N (≤ r + 1) is clearly a homomorph. Suppose that L/A, L/B ∈
N (≤ r + 1). Let S/A = N(L/A) and T/B = N(L/B). Then L/S, L/T ∈ N (≤ r),
so L/S ∩ T ∈ N (≤ r). But there exist m, n ∈ N such that Sm ⊆ A and T n ⊆ B, so
(S ∩ T )m+n ⊆ A ∩ B. Hence L/A ∩ B ∈ N (≤ r + 1), andN (≤ r + 1) is a formation.

Suppose now that L/φ(L) ∈ N (≤ r + 1). Then N(L/φ(L)) = N(L)/φ(L), by [8,
Theorem 6.1], so L/N(L) ∈ N (≤ r) and L ∈ N (≤ r + 1). It follows that N (≤ r + 1) is
saturated.

Corollary 2.12 Let L ∈ N (k) have more than one minimal ideal. Then there is at least one
minimal ideal A of L such that L/A ∈ N (k).
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Proof If A1, . . . , An are minimal ideals of L, where n > 1, and L/Ai ∈ N (≤ k − 1) for
all 1 ≤ k ≤ n, then L ∈ N (≤ k − 1), by Proposition 2.11.

Proposition 2.13 Let L be a solvable Lie algebra over a field F . If M is a maximal
subalgebra ofL for whichML is strongly nilregular, then n(M) = n(L)−i where i ∈ {0, 1}.

Proof Let r be the compatibility index of M . Then L = M + Nr+1(L) and L/Nr+1(L) ∼=
M/M ∩ Nr+1(L) = M/Nr+1(M)L, by Lemma 2.3 (iv). Now Nr(L) = Nr(M) by
Proposition 2.13, so Nr(M) ⊆ Nr+1(M)L ⊆ Nr+1(M). It follows from Lemma 2.2 that
n(M/Nr+1(M)L) = n(M) − r − 1 or n(M) − r . Hence n(L) − r − 1 = n(M) − r − 1 or
n(M) − r , which gives the result.

Lemma 2.14 LetL ∈ N (n). Then we can writeL = Nk(L)+Uk , whereUk is a subalgebra
of L, Nk(L) ∩ Uk ⊆ φ(Uk) = φk+1(L) ∩ Uk , Uk ⊆ Uk−1 for each k = 1, . . . , n. Moreover,
N(Uk) = Nk+1(L) ∩ Uk for each k = 0, . . . , n − 1.

Proof Put U0 = L. Then L = N1(L) + U1 for some subalgebra U1 of L with N(L) ∩
U1 ⊆ φ(U1), by [8, Lemma 4.1]. Having constructed Uj we construct Uj+1 such that
Uj = Nj+1(L) ∩ Uj + Uj+1 and Nj+1(L) ∩ Uj+1 ⊆ φ(Uj+1), which we can do, by
using [8, Lemma 4.1] again. Now, it is easy to see inductively that L = Nk(L) + Uk ,
Nk(L) ∩ Uk ⊆ φ(Uk) and Uk ⊆ Uk−1 for each k = 1, . . . , n. Furthermore

φk+1(L) ∩ Uk

Nk(L) ∩ Uk

∼= Nk(L) + φk+1(L) ∩ Uk

Nk(L)
= φk+1(L)

Nk(L)

= φ

(
L

Nk(L)

)
∼= φ

(
Uk

Nk(L) ∩ Uk

)
= φ(Uk)

Nk(L) ∩ Uk

,

so φ(Uk) = φk+1(L) ∩ Uk .
Clearly Nk(L) + N(Uk) ⊆ Nk+1(L) so N(Uk) ⊆ Nk+1(L) ∩ Uk . But also, there is a

natural number r such that

(Nk+1(L) ∩ Uk)
r ⊆ Nk(L) ∩ Uk ⊆ φ(Uk),

so Nk+1(L) ∩ Uk/φ(Uk) is nilpotent. It follows from [8, Theorem 6.1] that Nk+1(L) ∩ Uk

is a nilpotent ideal of Uk , so Nk+1(L) ∩ Uk ⊆ N(Uk) and equality results.

Next we have a fundamental decomposition result.

Theorem 2.15 L ∈ N (n) if and only if there are nilpotent subalgebras Bi of L for i =
1, . . . , n such that

(i) Ni(L) = B1 + . . . + Bi for i = 1, . . . , n,
(ii) L = B1 + . . . + Bn,
(iii) [Bi, Bj ] ⊆ Bi for 1 ≤ i ≤ j ≤ n, and
(iv) Ni(L) ∩ Ui ⊆ φ(Ui) = φi+1(L) ∩ Ui , where Ui = Bi+1 + . . . + Bn, for i =

1, . . . , n − 1.

Proof Let L ∈ N (n), Ui be as in Lemma 2.14 and put Bi = N(Ui−1), where U0 = L.



742 D.A. Towers

(i) Clearly B1 = N1(L). Suppose that B1 + . . . + Bk = Nk(L). Then

B1 + . . . + Bk+1 = Nk(L) + N(Uk) = Nk(L) + Nk+1(L) ∩ Uk = Nk+1(L).

(ii) B1 + . . . + Bn = Nn(L) = L.
(iii) [Bi, Bj ] = [N(Ui),N(Uj )] ⊆ [N(Ui), Ui] ⊆ N(Ui) = Bi .
(iv) We have Uk = Uk+1 + Nk+1(L) ∩ Uk = Uk+1 + N(Uk) = Uk+1 + Bk+1. Hence

Ui = Ui+1+Bi+1 = Ui+2+Bi+2+Bi+1 = · · · = Bi+1+· · ·+Bn, andNi(L)∩Ui ⊆
φ(Ui) from Lemma 2.14.

The converse is clear.

3 Extreme Lie Algebras

The Lie algebra L is monolithic if it has a unique minimal ideal A, the monolith of L. If B

is an ideal of L and A/B is a minimal ideal of L/B we say that A/B is a chief factor of L.
The series

{0} = A0 ⊂ A1 ⊂ . . . ⊂ An = L

is called a chief series if Ai/Ai−1 is a chief factor of L for each 1 ≤ i ≤ n.

Lemma 3.1 Let L be a Lie algebra such that N(L)/φ(L) is a chief factor of L. Then L has
at most one complemented minimal ideal, and if A is one such, then φ(L/A) = φ2(L)/A.

Proof If φ(L) = 0, then N(L) is the monolith and the result follows easily from [8, The-
orems 7.3 and 7.4]. So assume that φ(L) �= 0 and let A be a complemented minimal ideal
of L. Then A �⊆ φ(L), so A + φ(L) = N(L). Let M be a maximal subalgebra of L, and
suppose that φ2(L) �⊆ M . Then N(L) �⊆ M , so L = M + N(L) = M + A + φ(L), giv-
ing M + A = L. Thus A �⊆ M . It follows that every maximal subalgebra of L/A contains
φ2(L)/A. Put T/A = φ(L/A). Then φ2(L) ⊆ T .

LetM/N(L) be a maximal subalgebra ofL/N(L) and suppose that (T +N(L))/N(L) �⊆
M/N(L). Then M + T + N(L) = M + T = L. But now T �⊆ M , so φ(L/A) �⊆ M ,
whence A �⊆ M . It follows that L = M + A = M , a contradiction. Hence φ2(L)/N(L) =
φ(L/N(L)) ⊇ (T + N(L))/N(L), which yields that T = φ2(L).

Now suppose that B is another minimal ideal of L with B �= A. Then

B ∼= (A + B)/A ⊆ N2(L)/A = N(L/A),

by the above. It follows that N2(L) ⊆ CL(B). Suppose that B �⊆ φ(L). Then, as before,
we have that B + φ(L) = N(L) and hence that B ∼= N(L)/φ(L). But CL(N(L)/φ(L)) =
N(L), by [8, Theorem 7.4], since N(L/φ(L)) = N(L)/φ(L). This yields that N(L) =
CL(B), a contradiction. Hence B ⊆ φ(L) and L has, at most, one complemented minimal
ideal.

We call L extreme if Ni(L)/φi(L) is a chief factor of L for each i = 1, 2, . . . , n(L).

Lemma 3.2 Every factor algebra of an extreme Lie algebra is extreme.

Proof Let B be an ideal of the extreme Lie algebra L. Suppose first that B ⊆ φ(L). Then
Ni(L/B)/φi(L/B) is a chief factor of L/B for each i, by Lemma 2.1, and L/B is extreme.



Minimal non-N Lie algebras 743

So suppose that B �⊆ φ(L). Then φ(L/B) = φ2(L)/B, by Lemma 3.1, and the result again
follows.

We say that the chief factor A/B is complemented if there is a maximal subalgebra M of
L such that L = A+M and A∩M = B. We define c(L) to be the number of complemented
chief factors in a chief series for L. This is independent of the particular chief series chosen,
by [11, Theorem 2.3].

Let x ∈ L and let ad x be the corresponding inner derivation of L. If F has characteristic
zero suppose that (ad x)n = 0 for some n; if F has characteristic p suppose that x ∈ I

where I is a nilpotent ideal of L of class less than p. Put

exp(ad x) =
∞∑

r=0

1

r! (ad x)r .

Then exp(ad x) is an automorphism of L. We call the group I(L) generated by all such
automorphisms the group of inner automorphisms of L. Two subsets U, V are conjugate in
L if U = α(V ) for some α ∈ I(L).

Then we have the following characterisation of extreme Lie algebras.

Theorem 3.3 Let L be a solvable Lie algebra. Then the following statements are equiva-
lent:

(i) L is extreme;
(ii) n(L) = m(L), the number of conjugacy classes of maximal subalgebras of L;
(iii) n(L) = c(L); and
(iv) if B is an ideal of L, then L/B has at most one complemented minimal ideal.

Proof (i) ⇒ (ii) : Let L be extreme and consider the series

0 ⊂ φ1(L) ⊂ N1(L) ⊂ . . . ⊂ φi(L) ⊂ Ni(L) ⊂ . . . .

There is a unique conjugacy class of maximal subalgebras of L complement-
ing the chief factorNi(L)/φi(L) for each i = 1, 2, . . . , n(L), by [1]. But each
maximal subalgebra of L must complement one of the complemented chief
factors in the above series, and must, therefore, belong to one of these n(L)

conjugacy classes. Hence n(L) = m(L).
(ii) ⇒ (iii) : We use induction on the dimension of L. Suppose that L is a Lie algebra

satisfying n(L) = m(L) and assume that the implication holds for Lie alge-
bras of smaller dimension than that of L. If φ(L) �= 0, we have n(L/φ(L)) =
n(L) = m(L) = m(L/φ(L), and so, by induction, n(L) = n(L/φ(L)) =
m(L/φ(L)) = c(L/φ(L)) = c(L).

So suppose that φ(L) = 0. Then N(L) = Asoc(L) and each of the r (say)
minimal ideals in Asoc(L) is complemented, by [8, Theorem 7.4 and Lemma
7.2]. It follows that n(L) = m(L) ≥ m(L/N(L)) + r ≥ n(L) − 1+ r . Hence
r = 1 and, by induction, c(L) = 1+ c(L/N(L)) = 1+ n(L/N(L)) = n(L).

(iii) ⇒ (i) : This follows from the fact that there is at least one complemented chief factor
A/B satisfying φi(L) ≤ B < A ≤ Ni(L) for each i = 1, 2, . . . , n(L).

(i) ⇔ (iv) : If L is extreme, then so is L/B, by Lemma 3.2. Hence L/B has at most one
complemented minimal ideal, by Lemma 3.1.
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Conversely, suppose that L satisfies (iv) and consider L/φi(L). Since
Ni(L)/φi(L) is the direct sum of complemented minimal ideals of L/φi(L),
as above, it follows that Ni(L)/φi(L) is a chief factor of L/φi(L). Hence L

is extreme.

Lemma 3.4 Let L be an extreme Lie algebra.

(i) If L is nilpotent, then dimL = 1.
(ii) If L ∈ N (n) then Nn−1(L) = �1(L) = Lk has codimension one in L, for all k ≥ 2.

Proof (i) Since L is nilpotent, φ(L) = L2, and so dimL/L2 = 1. The result follows.
(ii) This follows from Lemma 3.2 and (i).

Theorem 3.5 The Lie algebra L ∈ N (n) is extreme if and only if L has the decomposition
given in Theorem 2.15, dimBn = 1 and N(Uk)/φ(Uk) is a chief factor of Uk for each
k = 0, . . . , n − 1.

Proof We have that

Nk+1(L)

φk+1(L)
= Nk+1(L) ∩ Uk + Nk(L)

φk+1(L) ∩ Uk + Nk(L)
∼= (Nk+1(L) ∩ Uk + Nk(L))/Nk(L)

(φk+1(L) ∩ Uk + Nk(L))/Nk(L)

∼= Nk+1(L) ∩ Uk/Nk(L) ∩ Uk

φk+1(L) ∩ Uk/Nk(L) ∩ Uk

∼= Nk+1(L) ∩ Uk

φk+1(L) ∩ Uk

= N(Uk)

φ(Uk)
.

Also dimBn = 1 by Lemma 3.4 (ii).

If S is a subalgebra of L, we will denote by S the image of S under the canonical
homomorphism from L onto L/φ(L). We have the following characterisation of those Lie
algebras L ∈ N (≤ 2) that are extreme, which includes all extreme Lie algebras over a field
of characteristic zero.

Corollary 3.6 Let L ∈ N (≤ 2). Then L is extreme if and only if one of the following holds.

(i) dimL = 1; or
(ii) L = A+̇U where A = N(L) is the monolith of L and U is a one-dimensional

subalgebra of L which acts irreducibly on A.

Proof This is just the cases n = 1, 2 in Theorem 3.5.

Corollary 3.7 Let L be supersolvable. Then L is extreme if and only if one of the following
holds.

(i) dimL = 1; or
(ii) L/φ(L) is the two-dimensional non-abelian Lie algebra.

Proof Let L be supersolvable and extreme. Then dimN(L) = 1 and so
dimL/CL(N(L)) = 1. But N(L) = N(L), so CL(N(L)) ⊆ N(L). It follows that
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dim(L/N(L)) ≤ 1 and L ∈ N (≤ 2). But now either dimL = 1 or L = A+̇U where
dimA = dimU = 1, by Theorem 3.5. In the latter case dimL = 2 and L cannot be abelian.

Conversely, if dim(L/φ(L)) ≤ 2 then L/φ(L) is supersolvable, and so L is supersolv-
able, by [1, Theorem 6]. Clearly L is also extreme in each of cases (i) and (ii).

Example 3.1 It is easy to check that every three-dimensional Lie algebra as described in
Corollary 3.7 has a basis x, y, z with non-zero products [x, y] = y + z, [x, z] = αz for
some 0 �= α ∈ F . Moreover, no two of these with different values of α are isomorphic.

4 Minimal Non-N Algebras

If X is a class of Lie algebras, we say that L is minimal non-X if every proper subalgebra
of L, but not L itself, belongs to X . We say that L is minimal non-N if it is minimal non-
N (≤ k) for some k; in other words, if its nilpotent length is greater than that of any of its
proper subalgebras. Over a field of characteristic zero a Lie algebra can only be minimal
non-N (1) and these are described in [9].

Lemma 4.1 Let L be minimal non-N (≤ k − 1) and let M be a maximal subalgebra of L.
Then

(i) L2 = Nk−1(L) has codimension one in L;
(ii) if Ni(M) �⊆ Nk−1(L) then Nk−1(L) ∩ Ni(M) has codimension one in Ni(M) for

i = 1, . . . , k − 1; and
(iii) if N(L) ⊆ M then N(M) ⊆ Nk−1(L).

Proof (i) Let M be a maximal subalgebra of L containing Nk−1(L). Since L/Nk−1(L)

is nilpotent, M is an ideal of L and has codimension one in L. But Nk−1(M)L =
Nk−1(L), by Lemma 2.3 (ii), so, if Nk−1(L) �= M , then M has nilpotent length k,
contradicting the fact that it is minimal non-N (k). Hence M = Nk−1(L).

Now let M be any maximal subalgebra containing L2, so M is an ideal of codi-
mension one inL. We haveM∩Ni(L) = Ni(M)L for each i = 1, . . . k−1 by Lemma
2.3 (i) and (ii). It follows that M ∩ Nk−1(L) = Nk−1(M)L = M , so M ⊆ Nk−1(L),
whence M = Nk−1(L) = L2.

(ii) Suppose Ni(M) �⊆ Nk−1(L). Then L = Nk−1(L) + Ni(M), so

L

Nk−1(L)
∼= Ni(M)

Nk−1(L) ∩ Ni(M)
,

whence the result.
(iii) Let N(L) ⊆ M . Then N(M) acts nilpotently on L, by Lemma 2.3 (v). If N(M) �⊆

Nk−1(L) then L = Nk−1(L) + N(M) and L/Nk−2(L) is nilpotent, a contradiction.

In group theory, every minimal non-N (k) group is extreme, and so a natural question
is whether this holds for Lie algebras. We show next that this is ‘usually’ the case for Lie
algebras. We call a classH of Lie algebras a semi-homomorph if, for all L ∈ H,

(i) L/N(L) ∈ H; and
(ii) if A is an ideal of L and A ⊆ φ(L), then L/A ∈ H.
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Lemma 4.2 Let H be the class of Lie algebras L in which all maximal subalgebras of L

have strongly nilregular cores. ThenH is a semi-homomorph.

Proof (i) Let M/N(L) be a maximal subalgebra of L/N(L). Clearly we have that
(M/N(L))L/N(L) = ML/N(L) and ML/N(L) has compatibility index one less than
that of ML, r − 1 say. Then

Ni(ML/N(L))

Ni−1(ML/N(L))
∼= Ni+1(ML)

Ni(ML)
,

which has nilpotency class < p − 1 for i = 1, . . . , r − 1, since ML is strongly
nilregular. Hence M/N(L) has a strongly nilregular core.

(ii) Let M/A be a maximal subalgebra of L/A. Then (M/A)L/A = ML/A. Also,
Ni(L/A) = Ni(L)/A, by Lemma 2.1, so ML/A has the same compatibility index as
ML, r say. Also Ni(M) = Ni(ML) = Ni(L) for i = 1, . . . , r , by Proposition 2.10.

We claim that Ni(ML/A) = Ni(ML)/A for each i = 1, . . . , n(ML). Put Ki/A =
Ni(ML/A), so Ki+1/Ki = N(ML/Ki). Then K1 is a subideal of L, A ⊆ K1 ∩ φ(L)

and K1/A is nilpotent, so K1 is nilpotent, by [8, Theorem 6.1]. It follows that K1 ⊆
N(ML) and N(ML/A) = N(ML)/A. Hence

K1 ⊆ N(ML) ⊆ K2 ⊆ . . . ⊆ Ki ⊆ Ni(ML) ⊆ Ki+1 ⊆ Ni+1(L) ⊆ . . .

and Ki+1/Ki ⊆ Ni+1(L)/Ki = Ni+1(ML)/Ki for i = 1, . . . , r − 1. It follows that
Ni+1(ML/A) = Ki+1/A ⊆ Ni+1(L)/A. The reverse inclusion is clear and the claim
is established.

Now we have that

Ni(ML/N(L))

Ni−1(ML/N(L))
∼= Ni(ML)

Ni−1(ML)
,

which has nilpotency class < p − 1 for i = 1, . . . , r , since ML is strongly nilregular.
Hence M/N(L) has a strongly nilregular core.

A solvable primitive algebra has a unique minimal, self-centralising, ideal A such that
L = A+̇U (see [11]). We shall say that a class of Lie algebrasH has the primitive quotient
property if, for every primitive algebra L in H with minimal ideal A, L/A is minimal
non-N .

Theorem 4.3 Let H be a semi-homomorph with the primitive quotient property, and let
L ∈ H be a Lie algebra which is minimal non-N (≤ n). Then

(i) L is extreme; and
(ii) L/N(L) is minimal non-N (≤ n − 1).

Proof (i) We use induction on dimL. Suppose first that φ(L) �= 0. Let A be a min-
imal ideal of L contained in φ(L). Then n(L/A) = n(L), so L/A is minimal
non-N . By the inductive hypothesis, L/A, and hence L is extreme. So suppose that
φ(L) = 0. If there are at least two minimal ideals then there is at least one, A say,
such that n(L/A) = n(L), by Corollary 2.12. But then L = A+̇M for some maximal
subalgebra M of L, and n(M) = n(L/A) = n(L), a contradiction.
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Thus there is a unique minimal ideal A = N(L), L is primitive and n(L/A) =
n(L) − 1. Since H has the primitive quotient property, L/A is minimal non-N .
Moreover, sinceH is a semi-homomorph, L/A, and thus L, is extreme, by induction.

(ii) Consider the series

0 ⊂ φ1(L) ⊂ N1(L) ⊂ . . . ⊂ φi(L) ⊂ Ni(L) ⊂ . . . ,

and letM be a maximal subalgebra ofL containingN1(L). ThenM must complement
one of the complemented chief factorsNk(L)/φk(L) for some 2 ≤ k ≤ n in the above
series. But then L = Nk(L) + M , M ∩ Nk(L) = φk(L) and Ni(M) = Ni(L) for i =
1, . . . , k−1, by Lemma 2.3. Thus n(M)−k+1 = n(M/Nk−1(L)) = n(L/Nk(L)) =
n(L) − k, whence n(M/N1(L)) = n(M) − 1 = n(L) − 2 = n(L/N1(L)) − 1 and
L/N1(L) is minimal non-N (n − 1).

Corollary 4.4 Let L be a Lie algebra in which all maximal subalgebras have strongly
nilregular cores and which is minimal non-N (≤ n). Then L is extreme and L/N(L) is
minimal non-N (≤ n − 1).

Proof LetH be the class of Lie algebras whose maximal subalgebras have strongly nilreg-
ular cores. Then H is a semi-homomorph, by Lemma 4.2. Let L be a primitive algebra in
H with minimal ideal A = N(L), and let M be a maximal subalgebra containing A. Then
N(M) = A by Proposition 2.10, so L/A is minimal non-N (≤ n − 1) and H satisfies the
primitive quotient property. The result now follows from Theorem 4.3.

A Lie algebra L is called an A-algebra if all of its nilpotent subalgebras are abelian.
These arise in the study of constant Yang–Mills potentials and in relation to the problem of
describing residually finite varieties. The structure of solvable Lie A-algebras was studied
in some detail in [10]. In the case of an A-algebra the lower nilpotent series and the derived
series coincide ([10, Lemma 2.3]), and so the terms “derived length” and “nilpotent length”
are identical.

Corollary 4.5 If L is an A-algebra which is minimal non-N (≤ n), then L is extreme and
L/N(L) is minimal non-N (≤ n − 1).

Proof Let H be the class of A-algebras. Then H is a semi-homomorph, by [10, Lemma
2.1 (iii)]. Let L ∈ H be primitive with minimal ideal A = N(L) and let M be a maximal
subalgebra containing A. Then N(M) is abelian and so [N(M), A] = 0, giving N(M) ⊆
CL(A) = A. It follows that N(M) = A and soH has the primitive quotient property.

Corollary 4.6 Let L be minimal non-N (≤ 2) and have solvability index ≤ 3. Then L is
extreme and L/N(L) is minimal non-N (≤ 1).

Proof Let H be the class of Lie algebras of solvability index ≤ 3. Then H is clearly a
semi-homomorph. Let L ∈ H be primitive with minimal ideal A = N(L) and let M be
a maximal subalgebra containing A. If L has solvability index ≤ 2 it is clear that L/A is
minimal non-N , so assume that L has index 3.
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We have L(1) = N2(L), by Lemma 4.1 (i) and L(2) ⊆ N(L) = A, so N2(L)/A is
abelian. Now N(M) ⊆ N2(L) by Lemma 4.1 (iii), and so

[N2(L),N(M)] ⊆ N2(L)2 ⊆ A ⊆ M.

Then either M �= N2(L) or L = N2(L) + M , in which case N(M) is an ideal of L and
N(M) = A. In either case M/A is nilpotent and so H has the primitive quotient property.

Example 4.1 Note that there are extreme Lie algebras which are not minimal non-N . For
example, let L be the Lie algebra over any field F with basis x, y, z with non-zero products
[x, y] = y + z, [x, z] = z. Then φ(L) = Fz and N(L) = Fy + Fz, so L is extreme.
However, if M = Fx + Fz then n(M) = 2 = n(L).

Next we seek to characterise the algebras considered in Corollaries 4.5 and 4.6. We can
characterise the A-algebras that are also minimal non-N as follows.

Theorem 4.7 Let L be a Lie A-algebra of derived length n + 1 over a field F . Then L is
minimal non-N if and only if the following hold.

(i) L = An+̇An−1+̇ . . . +̇A1+̇Fx where Ai is an abelian subalgebra of L for each
1 ≤ i ≤ n;

(ii) L(i) = An+̇An−1+̇ . . . +̇Ai for each 1 ≤ i ≤ n;
(iii) [Ai,Aj ] ⊆ Aj for j > i;
(iv) Ai is an irreducible L/L(i+1)-module for each 0 ≤ i ≤ n; and
(v) Nn−i+1(L) = L(i) for each 0 ≤ i ≤ n.

Proof Suppose first that L is minimal non-N . Since L is an A-algebra of derived length
n + 1, L = An+̇An−1+̇ . . . +̇A1+̇A0 and L(i) = An+̇An−1+̇ . . . +̇Ai , where Ai is an
abelian subalgebra of L for each 0 ≤ i ≤ n, by [10, Corollary 3.2]. But dimA0 = 1,
by Lemma 4.1 (i), so A0 = Fx for some x ∈ L. This gives (i) and (ii). The decom-
position in (i) follows from the splitting of a Lie A-algebra over each term in its derived
series ([10, Theorem 3.1]), so L = An+̇Bn, where An = L(n), Bn = An−1+̇Bn−1, where
An−1 = B

(n−1)
n , and so on. But now [Ai,Aj ] ⊆ L(j) ∩ Bj+1 ⊆ Aj if j > i, giving (iii).

A straightforward induction argument shows that Ai ⊆ Nn−i−1 for 0 ≤ i ≤ n. We
now establish (iv) and (v) by induction on n. Then (iv) clearly holds for i = 0, and (v)
holds for i = 0 by Lemma 4.1 (i), so suppose that they hold for all i ≥ k (k ≥ 0). Then
Nn−k+1(L) = L(k) = An+̇ . . . +̇Ak and L(k+1) = An+̇ . . . +̇Ak+1 ⊆ Nn−k(L). It follows
that Nn−k(L) = L(k+1) by the irreducibility of Ak and the fact that Nn−k(L) �= Nn−k+1(L)

(since L has nilpotent length n + 1).
Also φn−k(L) ⊆ L(k+1) = Nn−k(L), and Nn−k(L)/φn−k(L) is irreducible, since

L is extreme, by Theorem 4.3. Hence M = φn−k(L)+̇Ak+̇ . . . +̇A1+̇Fx is a maximal
subalgebra of

Ak+1+̇Ak+̇ . . . +̇A1+̇Fx ∼= L/L(k+2) = L/Nn−k−1(L).

But L/Nn−k−1(L) is minimal non-N (k + 1), by Theorem 4.3 (ii), so M ∈ N (k + 1). It
follows that N(M) = φn−k(L)+̇Ak , so [φn−k(L),Ak] = 0. But Ak is a Cartan subalgebra
of Ak+1+̇Ak , by [10, Theorem 3.1], so φn−k(L) = 0 and Ak is an irreducible L/L(k+1)-
module. This establishes (iv) and (v).



Minimal non-N Lie algebras 749

Conversely, suppose that (i)-(v) hold and let M be a maximal subalgebra of L. Clearly
L ∈ N (n + 1). Let i be the smallest integer such that L(i) �⊆ M . Then L(i)/L(i+1) is
a minimal ideal of L/L(i+1), so M/L(i+1) complements L(i)/L(i+1) in L/L(i+1). Hence
M(i) ⊆ M ∩ L(i) ⊆ L(i+1). But n(L(i+1)) < n − i + 1 by (v). Hence n(M) < n + 1 and L

is minimal non-N .

Recall the following result from [3].

Theorem 4.8 ([3, Theorem 4]) Let L be solvable and φ-free. Then L is minimal non-
(nilpotent-by-abelian) if and only if F has characteristic p > 0 and L = A+̇B, where A is
the unique minimal ideal of L, dimA ≥ 2, A2 = 0, and either B = M+̇Fx, where M is
a minimal ideal of B such that M2 = 0 (type I), or B is the three-dimensional Heisenberg
algebra (type II). Moreover, if p ≥ 3 then dimA is divisible by p.

Then we have the following characterisation of the algebras of solvability index 3 which
are minimal non-N (2).

Theorem 4.9 Let L be a solvable Lie algebra of solvability index 3. Then L is minimal
non-N (2) if and only if it is minimal non-(nilpotent-by-abelian) of type I.

Proof Let L be minimal non-N (2), and denote the image of a subalgebra S of L under the
natural homomorphism onto L/φ(L) by L. Then L = N(L)+̇U where U is a subalgebra
of L, by [8, Theorems 7.3 and 7.4]. Moreover, U = A+̇Fx where A is abelian, N2(L) =
N(L) + A and L/N(L) is minimal non-nilpotent, by Corollary 4.6. It follows from [9,
Theorem 2.1] that N2(L)/N(L) is irreducible. Now U is a maximal subalgebra of L, so
U ∈ N (2), which yields that N(U) = A and U is nilpotent-by-abelian.

Let M be any maximal subalgebra of L. Then either M ∼= U or N(L) ⊆ M . Suppose
that N(L) ⊆ M . Then M = N2(L) or L = N(L) + Fx. In either case M is nilpotent-
by-abelian. Hence L is minimal non-(nilpotent-by-abelian). It is of type I, since otherwise
L ∈ N (2).

Conversely, suppose that L is minimal non-(nilpotent-by-abelian) of type I. Then L has
solvability index 3 and the maximal subalgebras of L are nilpotent-by-abelian, as in the
paragraph above. Clearly L itself is not nilpotent-by-abelian.

Lie algebras as described in Theorem 4.9 do exist over every field of characteristic p > 0,
as is shown in [3]; over an algebraically closed field they are minimal non-supersolvable
([3, Theorem 5]). Finally we show that a homomorphic image of a minimal non-N Lie
algebra is minimal non-N if it has a complemented minimal ideal.

Theorem 4.10 If L is a minimal non-N Lie algebra in which all maximal subalgebras
have nilregular cores, and A/B is a complemented chief factor of L, then L/B is minimal
non-N .

Proof Suppose there is a chief series of L through A and B in which A/B is the kth com-
plemented factor, where 1 ≤ k ≤ c(L). If k = 1, then B ⊆ φ(L) and so n(L/B) = n(L),
in which case L/B is minimal non-N because L is.
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So let k > 1 and assume that the theorem holds for the (k − 1)th complemented factor
C/D. Without loss of generality we may assume that D = 0. Then A/B is the second
complemented factor in some chief series of L. It follows from Theorem 4.3 that L and
L/N(L) are extreme, and so every chief series of L has only one complemented chief
factor below N(L), by Theorem 3.3. If N(L) ∩ A �⊆ B then N(L) ∩ A/N(L) ∩ B is a
complemented chief factor of L and L would have a chief series with two complemented
chief factors below N(L), a contradiction. Hence N(L) ∩ A ⊆ B.

Let n = n(L). Then L/A and L/B are both extreme, by Lemma 3.2 and so

n(L/B) = c(L/B) = n − 1 and n(L/A) = c(L/A) = n − 2,

by Theorem 3.3. Let M/B be a maximal subalgebra of L/B. We have B �⊆ φ(L) and
N(L)/φ(L) is a chief factor of L, so M ⊇ φ(L)+B ⊇ N(L). But L/N(L) is minimal non-
N , by Theorem 4.3, so n(M/N(L)) ≤ n − 2. It follows that Nn−2(M) ⊆ N(L) ∩ A ⊆ B,
whence n(M/B) ≤ n − 2 < n(L/B) and L/B is minimal non-N , as claimed.
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