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Abstract In this article, we introduce the notion of representations of polyadic
groups and we investigate the connection between these representations and those
of retract groups and covering groups.
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1 Introduction

A non-empty set G together with an n-ary operation f : Gn → G is called an n-ary
groupoid and is denoted by (G, f ). We will assume that n > 2.

According to the general convention used in the theory of n-ary systems, the
sequence of elements xi, xi+1, . . . , x j is denoted by x j

i . In the case j < i it is the
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empty symbol. If xi+1 = xi+2 = . . . = xi+t = x, then instead of xi+t
i+1 we write

(t)
x . In this

convention f (x1, . . . , xn) = f (xn
1) and

f

⎛
⎝x1, . . . , xi, x, . . . , x︸ ︷︷ ︸

t

, xi+t+1, . . . , xn

⎞
⎠ = f

(
xi

1,
(t)
x , xn

i+t+1

)
.

An n-ary groupoid (G, f ) is called (i, j)-associative, if

f
(
xi−1

1 , f
(
xn+i−1

i

)
, x2n−1

n+i

) = f
(

x j−1
1 , f

(
xn+ j−1

j

)
, x2n−1

n+ j

)
(1.1)

holds for all x1, . . . , x2n−1 ∈ G. If this identity holds for all 1 � i < j � n, then we say
that the operation f is associative and (G, f ) is called an n-ary semigroup.

If, for all x0, x1, . . . , xn ∈ G and fixed i ∈ {1, . . . , n}, there exists an element z ∈ G
such that

f
(
xi−1

1 , z, xn
i+1

) = x0, (1.2)

then we say that this equation is i-solvable or solvable at the place i. If this solution is
unique, then we say that Eq. 1.2 is uniquely i-solvable.

An n-ary groupoid (G, f ) uniquely solvable for all i = 1, . . . , n, is called an n-ary
quasigroup. An associative n-ary quasigroup is called an n-ary group or a polyadic
group. In the binary case (i.e., for n = 2) it is a usual group.

Now, such and similar n-ary systems have many applications in different branches.
For example, in the theory of automata, (cf. [11]), n-ary semigroups and n-ary groups
are used, some n-ary groupoids are applied in the theory of quantum groups (cf. [15]).
Different applications of ternary structures in physics are described by R. Kerner
(cf. [13]). In physics there are used also such structures as n-ary Filippov algebras
(cf. [16]) and n-Lie algebras (cf. [18]).

The idea of investigations of such groups seems to be going back to E. Kasner’s
lecture [12] at the fifty-third annual meeting of the American Association for the
Advancement of Science in 1904. But the first paper concerning the theory of n-
ary groups was written (under inspiration of Emmy Noether) by W. Dörnte in
1928 (see [2]). In this paper Dörnte observed that any n-ary groupoid (G, f ) of the
form f (xn

1) = x1 ◦ x2 ◦ . . . ◦ xn ◦ b , where (G, ◦) is a group and b is its fixed element
belonging to the center of (G, ◦), is an n-ary group. Such n-ary groups, called b-
derived from the group (G, ◦), are denoted by derb (G, ◦). In the case when b is the
identity of (G, ◦) we say that such n-ary group is reducible to the group (G, ◦) or
derived from (G, ◦). But for every n > 2 there are n-ary groups which are not derived
from any group. An n-ary group (G, f ) is derived from some group iff it contains an
element e (called an n-ary identity) such that

f
(

(i−1)
e , x,

(n−i)
e

)
= x (1.3)

holds for all x ∈ G and i = 1, . . . , n.
It is worthwhile to note that in the definition of an n-ary group, under the

assumption of the associativity of the operation f , it suffices only to postulate the
existence of a solution of Eq. 1.2 at the places i = 1 and i = n or at one place i other
than 1 and n (cf. [17], p. 213). Other useful characterizations of n-ary groups one can
find in [3] and [6].
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From the definition of an n-ary group (G, f ), we can directly see that for every
x ∈ G, there exists only one z ∈ G satisfying the equation

f
(

(n−1)
x , z

)
= x. (1.4)

This element is called skew to x and is denoted by x. In a ternary group (n = 3)
derived from the binary group (G, ◦) the skew element coincides with the inverse
element in (G, ◦). Thus, in some sense, the skew element is a generalization of the
inverse element in binary groups. Dörnte proved (see [2]) that in ternary groups we
have f (x, y, z) = f (z, y, x) and x = x, but for n > 3 this is not true. For n > 3 there
are n-ary groups in which one fixed element is skew to all elements (cf. [4]) and n-ary
groups in which any element is skew to itself.

Nevertheless, the concept of skew elements plays a crucial role in the theory of
n-ary groups. Namely, as Dörnte proved (see also [6]), the following theorem is true.

Theorem 1.1 In any n-ary group (G, f ) the following identities

f
(

(i−2)
x , x,

(n−i)
x , y

)
= f

(
y,

(n− j)
x , x,

( j−2)
x

)
= y, (1.5)

f
(

(k−1)
x , x,

(n−k)
x

)
= x (1.6)

hold for all x, y ∈ G, 2 � i, j � n and 1 � k � n.

One can prove (cf. [3]) that for n > 2 an n-ary group can be defined as an algebra
(G, f,¯) with one associative n-ary operation f and one unary operation ¯ : x → x
satisfying for some 2 � i, j � n the identities (1.5). This means that a non-empty
subset H of an n-ary group (G, f ) is its subgroup iff it is closed with respect to the
operation f and x ∈ H for every x ∈ H.

Fixing in an n-ary operation f all inner elements a2, . . . , an−1 we obtain a new
binary operation

x ∗ y = f
(
x, an−1

2 , y
)
.

Such obtained groupoid (G, ∗) is called a retract of (G, f ). Choosing different
elements a1, . . . , an−1 we obtain different retracts. Retracts of n-ary groups are
groups. Retracts of a fixed n-ary group are isomorphic (cf. [8]). So, we can consider
only retracts of the form

x ∗ y = f
(

x,
(n−2)

a , y
)

.

Such retracts will be denoted by Reta(G, f ), or simply by Reta(G). The identity of
the group Reta(G) is a. One can verify that the inverse element to x has the form

x−1 = f
(

a,
(n−3)

x , x, a
)

. (1.7)

Binary retracts of an n-ary group (G, f ) are commutative only in the case when
there exists an element a ∈ G such that

f
(

x,
(n−2)

a , y
)

= f
(

y,
(n−2)

a , x
)
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holds for all x, y ∈ G. An n-ary group with this property is called semiabelian. It
satisfies the identity

f
(
xn

1

) = f
(
xn, xn−1

2 , x1
)

(1.8)

(cf. [3]).
One can prove (cf. [9]) that a semiabelian n-ary group is medial, i.e., it satisfies the

identity

f
(

f
(
x1n

11

)
, f

(
x2n

21

)
, . . . , f

(
xnn

n1

)) = f
(

f
(
xn1

11

)
, f

(
xn2

12

)
. . . , f

(
xnn

1n

))
. (1.9)

In such n-ary groups

f (x1, x2, x3, . . . , xn) = f (x1, x2, x3, . . . , xn) (1.10)

for all x1, . . . , xn ∈ G.
Any n-ary group can be uniquely described by its retract and some automorphism

of this retract. Namely, the following Hosszú-Gluskin Theorem (cf. [5] or [7]) is valid.

Theorem 1.2 An n-ary groupoid (G, f ) is an n-ary group if f

(1) on G one can def ine an operation · such that (G, ·) is a group,
(2) there exist an automorphism ϕ of (G, ·) and b ∈ G such that ϕ(b) = b,
(3) ϕn−1(x) = b · x · b−1 for every x ∈ G,
(4) f (xn

1) = x1 · ϕ(x2) · ϕ2(x3) · · · · · ϕn−1(xn) · b for all x1, . . . , xn ∈ G.

One can prove that (G, ·) = Reta(G, f ) for some a ∈ G. In connection with this
we say that an n-ary group (G, f ) is (ϕ, b)-derived from the group (G, ·).

The main aim of this article is to introduce representations of n-ary groups and to
investigate their main properties, with a special focus on ternary groups. Note that,
this is not the first attempt to study representations of n-ary groups, because there
are some other articles, with different point of views concerning representations on
n-ary groups, (cf. [1, 10, 17] and [19]). However, our method seems to be the most
natural generalization of the notion of representation from binary to n-ary groups.

2 Action of an n-ary Group on a Set

Suppose that (G, f ) is an n-ary group and A is a non-empty set. We say that (G, f )
acts on A if for all x ∈ G and a ∈ A corresponds a unique element x.a ∈ A such that

(i) f (xn
1).a = x1.(x2.(x3. . . . .(xn.a)) . . .) for all x1, . . . , xn ∈ G,

(ii) for all a ∈ A, there exists x ∈ G such that x.a = a,
(iii) the map a �→ x.a is a bijection for all x ∈ G.

For a ∈ A, we define the stabilizer Ga of a as follows

Ga = {x ∈ G : x.a = a} .
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Proposition 2.1 Ga is an n-ary subgroup of (G, f ).

Proof By condition (ii) of the above definition Ga is non-empty. Since for
x1, x2, . . . , xn ∈ Ga we have

f
(
xn

1

)
.a = x1. (x2. (x3. . . . . (xn.a)) . . .) = a,

f (xn
1) ∈ Ga. Hence Ga is closed with respect to the operation f .

Now if x ∈ Ga, then by Eq. 1.6 we obtain

a = x.a = f
(

x,
(n−1)

x
)

.a = x.(x. . . . .x.(x.a)) . . .) = x.a,

which implies x ∈ Ga. This completes the proof. ��

Proposition 2.2 If an n-ary group (G, f ) acts on a set A, then the relation ∼ def ined
on A by

a ∼ b ⇐⇒ ∃x ∈ G : x.a = b

is an equivalence relation.

Proof For each a ∈ A there is x ∈ G such that x.a = a, so a ∼ a. If a ∼ b for a, b ∈ A,
then z.a = b for some z ∈ G. Let y be the unique solution of the equation

f
(

y, z,
(n−2)

x
)

= x,

where x ∈ G is such that x.a = a. For this y we have y.b = a since

a = x.a = f
(

y, z,
(n−2)

x
)

.a = y.z.a = y.b .

Thus b ∼ a. Finally, let a ∼ b and b ∼ c. Then there are x, y, z ∈ G such that x.a = b ,

y.b = c and z.b = b . In this case for u = f (y,
(n−2)

z , x) we have

u.a = f
(

y,
(n−2)

z , x
)

.a = y.b = c,

which proves a ∼ c. ��

Theorem 2.3 The formula x.a = f (x, a,
(n−3)

x , x) def ines an action of an n-ary group
G on itself.

Proof The last condition of Theorem 1.2 can be written in the form

f
(
xn

1

) = x1 · ϕ (x2) · ϕ2(x3) · . . . · ϕn−2(xn−1) · b · xn.

Thus x = (ϕ(x) · ϕ2(x) · . . . · ϕn−2(x) · b)−1. Consequently

x.a = x · ϕ(a) · ϕ
(
x−1) . (2.1)
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Hence

y.(x.a) = y · ϕ(x) · ϕ2(a) · ϕ2 (
x−1) · ϕ(y)−1

= y · ϕ(x) · ϕ2(a) · ϕ
(
(y · ϕ(x))−1) .

Iterating this procedure we obtain

x1.(x2.(x3 . . . .(xn.a)) . . .)

=x1 ·ϕ(x2)·ϕ2(x3)·. . .·ϕn−1(xn)·ϕn(a)·ϕ
((

x1 ·ϕ(x2)·ϕ2(x3)·. . .·ϕn−1(xn)
)−1

)
.

Since ϕn(a) = b · ϕ(a) · b−1 from the above we obtain

x1.(x2.(x3 . . . .(xn.a)) . . .) = f
(
xn

1

) · ϕ(a) · ϕ
(

f
(
xn

1

)−1
)

.

This by Eq. 2.1 gives f (xn
1).a = x1.(x2.(x3 . . . .(xn.a)) . . .). ��

Proposition 2.4 In semiabelian n-ary groups the relation

a ∼ b ⇐⇒ ∃x ∈ G : f
(

x, a,
(n−3)

x , x
)

= b

is a congruence.

Proof Indeed, by Proposition 2.2 it is an equivalence relation. To prove that it is

a congruence let ai ∼ bi, i.e., f (xi, ai,
(n−3)

xi , xi) = bi for some xi ∈ G and all i =
1, . . . , n. Then

f
(
b n

1

) = f
(

f
(

x1, a1,
(n−3)
x1 , x1

)
, f

(
x2, a2,

(n−3)
x2 , x2

)
, . . . , f

(
xn, an,

(n−3)
xn , xn

))
,

which by the mediality and Eq. 1.10 gives

f
(
b n

1

) = f

⎛
⎜⎝ f

(
xn

1

)
, f

(
an

1

)
, f

(
xn

1

)
, . . . , f

(
xn

1

)
︸ ︷︷ ︸

n−3

, f
(
xn

1

)
⎞
⎟⎠ .

Thus f (an
1) ∼ f (b n

1). ��

Remark 2.5 The formula (2.1) says that in n-ary groups b -derived from a group (G, ·)
the above relation coincides with the conjugation in (G, ·). Thus in non-semiabelian
n-ary groups it may not be a congruence.

Elements belonging to the same equivalence class are called conjugate. The
equivalence classes are called conjugate classes of an n-ary group G and have the
form

ClG(a) =
{

f
(

x, a,
(n−3)

x , x
)

: x ∈ G
}

.

As a simple consequence of Eqs. 1.9 and 1.10 we obtain
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Proposition 2.6 In semiabelian n-ary group the set containing all elements of G
conjugated with elements of a given n-ary subgroup also is an n-ary subgroup.

For a ∈ G, we define the centralizer of a, as follows

CG(a) =
{

x ∈ G : f
(

x, a,
(n−3)

x , x
)

= a
}

.

From Theorem 1.1 it follows that in n-ary groups b -derived from a group (G, ·) the
centralizer of any a ∈ G coincides with the centralizer of a in (G, ·).

Proposition 2.7 For every x ∈ CG(a) and every 0 � i, j, k � n − 2 such that i + j +
k = n − 2 we have

f
(

(i)
x, a,

( j)
x , x,

(k)
x

)
= f

(
(i)
x, x,

( j)
x , a,

(k)
x

)
= a.

Proof For every x ∈ CG(a), we have f (x, a,
(n−3)

x , x) = a. Multiplying this equation
on the left by x and on the right by x, . . . , x, x (n − 2 elements), we obtain

f
(

x, f
(

x, a,
(n−3)

x , x
)

,
(n−3)

x , x
)

= f
(

x, a,
(n−3)

x , x
)

= a,

which in view of the associativity of the operation f and Eq. 1.6 gives

f
(

x, x, a,
(n−4)

x , x
)

= a.

Repeating this procedure we obtain

f
(

(i)
x, a,

(n−i−2)
x , x

)
= a

for every 1 � i � n − 2. Theorem 1.1 completes the proof. ��

3 G-modules and Representations

All vector spaces in this section are defined over the field of complex numbers and
have finite dimension.

Definition 3.1 Suppose that an n-ary group G acts on a vector space V and we have

(1) x.(λv + u) = λx.v + x.u,
(2) ∃p ∈ G ∀v ∈ V : p.v = v.

Then we call (V, p), or simply V, a G-module.

Notions, such as G-submodule, G-homomorphism, irreducibility and so on, are
defined by the ordinary way.

Definition 3.2 A map � : G → GL(V) with the property

�
(

f
(
xn

1

)) = �(x1)�(x2) . . . �(xn)
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is a representation of G, provided that ker � is non-empty. The function

χ(x) = Tr �(x)

is called the corresponding character of �.

Remark 3.3 If V is a G-module, then � defined by

�(x)(v) = x.v

is a representation of G. The converse is also true.

Example 3.4 Let A be an arbitrary binary group with a normal subgroup H. Let
a ∈ A \ H be an involution. Then G = aH with the operation

f (x, y, z) = xyz

is a ternary group. If � is an ordinary representation of A with the property
a ∈ ker �, then, clearly � is also a representation of G. For example, suppose A =
GLn(C) and H = SLn(C). Let a = diag(−1, 1, . . . , 1) and define G = aH. Then,
every representation of A in which a ∈ ker � is also a representation of a ternary
group G.

Example 3.5 For any subgroup H of an ordinary group A and any element a ∈
Z (A) \ H with the order n we define on G = aH an n-ary operation by

f (x1, x2, . . . , xn) = ax1x2 . . . xn.

This operation is associative, because a ∈ Z (A). Also, G is closed under this opera-
tion, since o(a) = n. So, G is an n-ary group. Any A-representation � with a ∈ ker �

is also a G-representation.

Example 3.6 The set G = Zn with the ternary operation

f (x, y, z) = x − y + z (mod n)

is, by Theorem 1.2, a ternary group. We want to classify all representations of G.
Let � : G → GLm(C) be any representation. Then we have

�( f (x, y, z)) = �(x)�(y)�(z),

equivalently,

�(x − y + z) = �(x)�(y)�(z).

We have

�(x + y) = �(x)�(0)�(y), �(x − y) = �(x)�(y)�(0).

Suppose A = �(0). We have

�(x + y) = �(x)A�(y).
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It is easy to see that A2 = I. Now, define �′(x) = A�(x). Then

�′(x + y) = �′(x)�′(y),

and so, �′ is an ordinary representation of (Zn,+). Hence, every representation of
the ternary group G is of the form �(x) = A�′(x), where A is an involution and �′
is an ordinary representation of (Zn,+).

Similarly, we can classify all representations of ternary groups of the form G =
(A, f ), where A is an ordinary abelian group and

f (x, y, z) = x − y + z.

Theorem 3.7 (Maschke) Let G be a f inite n-ary group. Then every G-module is
completely reducible.

Proof Let (V, p) be a G-module and W ≤G V. Suppose V = W ⊕ X, where X is
just a subspace. Let ϕ : V → W be the corresponding projection. Define a new map
θ : V → V as

θ(v) = 1
|G|

∑
x∈G

x.ϕ(x.v).

It is easy to see that

θ(x.v) = x.p. . . . .p.θ(v) = x.θ(v).

So θ is a G-homomorphism and hence its kernel is a G-submodule. For all w ∈ W,
we have θ(w) = w and so θ2 = θ . Now, we have V = W ⊕ ker θ . ��

Remark 3.8 Any G-module (V, p) is also an ordinary Retp(G)-module, because

(x ∗ y).v = f
(

x,
(n−2)

p , y
)

.v = x.p. . . . .p.y.v = x.y.v.

From now on, we will assume that e ∈ G is an arbitrary fixed element. For all
p ∈ G, we have Rete(G) ∼= Retp(G) and further the isomorphism is given by the
following rule

h(x) = f
(

(n−2)
e , x, p

)
.

By Ĝ we denote the binary group Rete(G). If (V, p) is a G-module, then we can
define a Ĝ-module structure on V by x ◦ v = h(x).v. So, we have

x ◦ v = f
(

(n−2)
e , x, p

)
.v = e. . . . .e.x.p.v.

But, we have p.v = p.p. . . . .p.v = f (p ,
(n−1)

p ).v = p.v = v. Hence

x ◦ v = e. . . . .e︸ ︷︷ ︸
n−2

.x.v.
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Now, every G-module is also a Ĝ-module, but the converse is not true in general.
During this article, we will give some necessary and sufficient conditions for a Ĝ-
module to be also a G-module. The next proposition is the first condition of this type.

Proposition 3.9 Let V be a Ĝ-module. Then V is a G-module if f

∀x2, . . . , xn−1 ∈ G ∀v : f
(
e, xn−1

2 , e
)
.v = x2.x3. . . . .xn−1.v.

Proof We have

f
(
xn

1

) = f
(

f
(

x1,
(n−2)

e , e
)

, xn
2

)

= f
(

x1,
(n−2)

e , f
(
e, xn

2

))

= x1 ∗ f
(
e, xn

2

)

= x1 ∗ f
(

e, xn−1
2 , f

(
e,

(n−2)
e , xn

))

= x1 ∗ f
(
e, xn−1

2 , e
) ∗ xn.

So, the equality

f
(
xn

1

)
.v = x1.x2. . . . .xn−1.xn.v

holds, iff

f
(
e, xn−1

2 , e
)
.v = x2.x3. . . . .xn−1.v

for all x2, . . . , xn−1 and v. ��

Remark 3.10 Suppose that V is a G-module in which the corresponding representa-
tion is �. We know that V is also a Ĝ-module. The corresponding representation of
this last module is

�̂(x) = �(e) . . . �(e)︸ ︷︷ ︸
n−2

�(x).

Because in Ĝ, the identity element is e, we have

�̂(e) = id.

So �(e)n−2�(e) = id and hence

�(e) = �(e)2−n.

In the sequel, the corresponding character of �̂, will be denoted by χ̂ .

Proposition 3.11 Suppose that � is a representation of G with the character χ . Then
χ is constant on the conjugate classes of G.
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Proof Indeed, for every b ∈ ClG(a) we have

�(b) = �

(
f
(

x, a,
(n−3)

x , x
))

= �(x)�(a)�(x)n−3�(x),

so

χ(b) = Tr
(
�(x)�(a)�(x)n−3�(x)

)

= Tr
(
�(x)�(a)�(e)n−2�(e)�(x)n−3�(x)

)

= Tr
(
�(a)�(e)n−2�(e)�(x)n−3�(x)�(x)

)

= Tr
(

�(a)�(e)n−2�

(
f
(

e,
(n−3)

x , x, x
)))

= Tr
(
�(a)�(e)n−2�(e)

)

= Tr �(a)

= χ(a).

This completes the proof. ��

Proposition 3.12 Suppose that � : (G, f ) → GL(V) is a representation of the f inite
n-ary group (G, f ) with the corresponding character χ . Let

ker χ = {x ∈ G : χ(x) = dim V}.
Then ker χ = ker �.

Proof Let dim V = m. It is clear that ker � ⊆ ker χ . Moreover, for each x ∈ G of
order k we have

�(x)mk = �(x).

Hence �(x) is a root of the polynomial Tmk−1 − 1. But, this polynomial has distinct
roots in C, so �(x) can be diagonalized, i.e.,

�(x) ∼ diag(ε1, . . . , εm),

where all εi are roots of unity. Now, we have

χ(x) = ε1 + · · · + εm.

If χ(x) = m, then εi = 1 for all i. Hence �(x) = id and so x ∈ ker �. This completes
the proof. ��

In the next proposition, we obtain the explicit form of the character χ̂ .

Proposition 3.13 Let χ be a character of an n-ary group (G, f ). Then for any p ∈
ker χ we have

χ̂ (x) = χ

(
f
(

(n−2)
e , x, p

))
.
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Proof We know that χ is a character of Retp(G). On the other hand there is an
isomorphism

h : Rete(G) → Retp(G),

where h(x) = f (
(n−2)

e , x, p ). So, the composite map χ ◦ h is a character of Rete(G).
Let � be the corresponding representation of χ . Now, we have

χ(h(x)) = Tr
(
�(e)n−2�(x)�(p)

)

= Tr
(
�(e)n−2�(x)

)

= Tr �̂(x).

Hence χ̂(x) = χ( f (
(n−2)

e , x, p )). ��

Remark 3.14 Now, for any irreducible character χ of an n-ary group (G, f ), we have
an ordinary irreducible character χ̂ of the binary group Ĝ = Rete(G). So, we obtain
the following orthogonality relation for the irreducible characters of G:

1
|G|

∑
x∈G

χ1

(
f
(

(n−2)
e , x, p1

))
χ2

(
f
(

(n−2)
e , x, p2

))
= δχ̂1,χ̂2 ,

where p1 ∈ ker χ1 and p2 ∈ ker χ2 are arbitrary elements.

Proposition 3.15 If a representation 	 : Rete(G, f ) → GL(V) is also a representation
of the n-ary group (G, f ), then

	(x) = 	(x)2−n

for every x ∈ G.

Proof Indeed, f (
(n−1)

x , x) = x implies 	(x)n−1	(x) = 	(x), which gives 	(x) =
	(x)2−n. ��

Corollary 3.16 Let (G, f ) be a ternary group. Then a representation 	 : Rete(G, f ) →
GL(V) is also a representation of (G, f ) if f

	(x) = 	(x)−1

for every x ∈ G.

Proof From Proposition 3.9 it follows that 	 : Rete(G, f ) → GL(V) is a representa-
tion of a ternary group (G, f ) iff it satisfies the identity

	 ( f (e, x, e )) = 	(x).
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If 	(x) = 	(x)−1 holds for all x ∈ G, then, in view of Eq. 1.7, for all x ∈ G we have

	( f (e, x, e )) = 	
(

f
(

e, x, e
))

= 	
(
x−1) = 	 (x)−1 = 	(x).

Hence 	 is a representation of (G, f ).
The converse statement is a consequence of Proposition 3.15. ��

Remark 3.17 We can use the above proposition to obtain some deeper results in the
case when G has a central element. Note that, according to [8], an n-ary group (G, f )
has a central element iff it is b -derived from a binary group (G, ·) and b ∈ Z (G, ·).
Obviously, in this case Z (G, f ) = Z (G, ·).

Proposition 3.18 Let e be a central element of an n-ary group (G, f ) = derb (G, ·).
Then a representation 	 : Rete(G) → GL(V) is a representation of (G, f ) if f

	
(
x2x3 . . . xne2−n) = 	(x2)	(x3) . . . 	(xn)

for all x2, . . . , xn ∈ G.

Proof Since (G, f ) = derb (G, ·) the binary operation in Rete(G, f ) has the form

x ∗ y = f
(

x,
(n−2)

e , y
)

= xyen−2b .

For a representation 	 of Rete(G, f ), we have

	(x ∗ y) = 	(x)	(y). (3.1)

Now, for 	 to be a representation of (G, f ), it is necessary and sufficient that

	
(

f
(
xn

1

)) = 	(x1x2 . . . xnb) = 	(x1)	(x2) . . . 	(xn).

If we replace in Eq. 3.1, y by x2 . . . xne2−n, we obtain

	(x1x2 . . . xnb) = 	(x1)	
(
x2 . . . xne2−n) .

So 	 is a representation of (G, f ), iff

	
(
x2x3 . . . xne2−n) = 	(x2)	(x3) . . . 	(xn)

for all x2, . . . , xn ∈ G. ��

In an n-ary group (G, f ) = derb (G, ·) we have x = x2−nb−1. Hence, comparing the
above result with Proposition 3.15 we obtain

Corollary 3.19 Let e be a central element of an n-ary group (G, f ) = derb (G, ·). If a
representation 	 : Rete(G) → GL(V) is a representation of (G, f ), then 	(x2−nb−1) =
	(x)2−n for every x ∈ G.



42 W.A. Dudek, M. Shahryari

In the case of ternary groups, by Corollary 3.16, we obtain stronger result.

Corollary 3.20 Let (G, f ) = derb (G, ·) be a ternary group. Then a representation 	 :
Rete(G, f ) → GL(V) is also a representation of (G, f ), if f 	((b x)−1) = 	(x)−1 for
every x ∈ G.

Proposition 3.21 Let e be a central element of an ternary group (G, f ) = derb (G, ·).
Then a character χ of Rete(G, f ) is a character of (G, f ) if f for all x ∈ G we have
χ(x̄) = χ(x).

Proof Let 	 : Rete(G, f ) → GL(V) be a representation corresponding to χ . If χ is
a character of (G, f ), then 	 is also a representation of (G, f ) and so 	(x̄) = 	(x)−1.

Hence we have χ(x̄) = χ(x).
Conversely, if χ(x̄) = χ(x) holds for all x ∈ G, then in particular χ(e) = χ(ē). Thus

χ(e) = χ(ē) because χ(e) is real. Now, for all x ∈ G, we have x ∗ x̄ = f (x, e, x̄) =
f (e, x, x̄) = e, so χ(x ∗ x̄) = χ(e) = χ(ē). Hence,

x ∗ x̄ ∈ ker χ = ker 	.

This shows that 	(x−1) = 	(x̄) and so 	 is a representation of G. Hence χ is also a
character of G. ��

Proposition 3.22 Let e be a central element of a ternary group (G, f ) = derb (G, ·). If
χ is a common character of (G, f ) and Rete(G, f ), then χ̂ = χ .

Proof We have χ(ē) = χ(e), so χ(e) is real, and hence χ(e) = χ(ē). So e ∈ ker χ .
Now, suppose p = e. Then

χ̂(x) = χ ( f (e, x, p̄)) = χ( f (e, x, ē)) = χ( f (x, e, ē)) = χ(x),

which completes the proof. ��

In the remaining part of this section, we try to answer the problem: when �̂1 ∼ �̂2?
We give an answer to this question for n-ary groups with some central elements.

Proposition 3.23 For an n-ary group (G, f ) with a central element e the following
assertions are true:

(1) Let (V, p) be a G-module and h : V → V be a Ĝ-homomorphism. Then h is also
a G-homomorphism.

(2) Let (V1, p1) and (V2, p2) be two G-modules and h : V1 → V2 be a Ĝ-
homomorphism. Then h is a G-homomorphism, if f h(e.v) = e.h(v).
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(3) Let (V1, p1) and (V2, p2) be two G-modules and h : V1 → V2 be a Ĝ-
homomorphism. Then h is a G-homomorphism, if f p1.h(v) = h(v) for every
v ∈ V1.

(4) Let (V1, p1) and (V2, p2) be two G-modules and

V1 ∼=Ĝ V2.

Then V1 ∼=G V2, if f for all u ∈ V2, p1.u = u.

Proof

(1) In view of x ∗ y = f (x,
(n−2)

e , y), for a G-module (V, p), we have

h(e.v) = h
(

f
(

(n−1)
e , e

)
.v

)

= h
(

f
(

f
(

(n−1)
e , e

)
,

(n−1)
p

)
.v

) )

= h
(

f
(

f
(

e,
(n−2)

p , e
)

,
(n−2)

e , p
)

.v

) )

= h
(

f
(

e,
(n−2)

p , e
)

◦ v

)

= f
(

e,
(n−2)

p , e
)

◦ h (v)

= f
(

f
(

e,
(n−2)

p , e
)

,
(n−2)

e , p
)

.h (v)

= f
(

e,
(n−2)

p , f
(

e,
(n−2)

e , p
))

.h (v)

= f
(

e,
(n−1)

p
)

.h (v)

= e.p. . . . .p.h(v)

= e.h(v).

Now for all x ∈ G, we have h(x ◦ v) = x ◦ h(v), so

h(e. . . . .e︸ ︷︷ ︸
n−2

.x.v)) = e. . . . .e.x.h(v).

Hence

e. . . . .e︸ ︷︷ ︸
n−2

.h(x.v) = e. . . . .e.x.h(v).
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Since the map u �→ e.u is bijection, we have h(x.v) = x.h(v).
(2) The proof of this part is just as the above.
(3) Suppose h is a G-homomorphism. Then p1.h(v) = h(p1.v) = h(v) for every

v ∈ V1.
Conversely, assume that for all v ∈ V1 holds p1.h(v) = h(v). Then

h(e.v) = h

⎛
⎜⎝ f

(
(n−1)

e , e
)

. p1. . . . .p1︸ ︷︷ ︸
n−2

.v

⎞
⎟⎠

= h

⎛
⎜⎝e. . . . .e︸ ︷︷ ︸

n−1

.e. p1. . . . .p1︸ ︷︷ ︸
n−2

.v

⎞
⎟⎠

= h

⎛
⎝ f

(
e,

(n−2)
p1 , e

)
. e. . . . .e︸ ︷︷ ︸

n−2

.v

⎞
⎠

= h
(

f
(

e,
(n−2)
p1 , e

)
◦ v

)

= f
(

e,
(n−2)
p1 , e

)
◦ h (v)

= f
(

e,
(n−2)
p1 , e

)
. e. . . . .e︸ ︷︷ ︸

n−2

.h (v)

= f
(

e,
(n−2)
p1 , e

)
. e. . . . .e︸ ︷︷ ︸

n−2

.p1.h (v)

= f
(

f
(

e,
(n−2)
p1 , e

)
,

(n−2)
e , p1

)
.h (v)

= f
(

e,
(n−2)
p1 , f

(
e,

(n−2)
e , p1

))
.h (v)

= f
(

e,
(n−1)
p1

)
.h (v)

= e.h(v).

(4) Let h : V1 → V2 be a G-isomorphism. Then h is also a Ĝ-homomorphism, and
hence p1.h = h. Because h is onto, we obtain p1.u = u, for all u ∈ V2.
Conversely, suppose p1.u = u, for all u ∈ V2. Let h : V1 → V2 be a Ĝ-
isomorphism. Then p1.h = h, and so h is a G-isomorphism.

��

Proposition 3.24 Let (G, f ) be an n-ary group with a central element and let �1, �2 :
G → GL(V) be two representations of (G, f ), such that �̂1 ∼ �̂2. Then �1 ∼ �2, if f
ker �1 = ker �2.
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Proof Let p ∈ ker �1 = ker �2. We define two G-modules V1 and V2, as follows: V1

is the vector space V with the action x.v = �1(x)(v), V2 is the vector space V with
the action x.v = �2(x)(v). Then �̂1 ∼ �̂2 implies

V1 ∼=Ĝ V2,

and p.u = u, for all u ∈ V2. So, V1 ∼=G V2. This proves �1 ∼ �2.
Conversely, let �1 ∼ �2. Hence, we have V1 ∼=G V2. By the previous proposition,

for p ∈ ker �1 and u ∈ V2, we have p.u = u. Thus �2(p) = id. Therefore, ker �1 =
ker �2. ��

Corollary 3.25 Let �1 and �2 be two representations of an n-ary group (G, f ) with a
central element e. If �̂1 ∼ �̂2, then �1 ∼ �2 if f �1(e) ∼ �2(e).

Proof By the above proposition, �1 ∼ �2, iff ker �1 = ker �2. But, we have

ker �1 =
{

x ∈ G : �̂1(x) = �1(e)n−2
}

,

ker �2 =
{

x ∈ G : �̂2(x) = �2(e)n−2
}

.

Hence �1 ∼ �2, iff �1(e)n−2 ∼ �2(e)n−2. But we have �1(e)n−2 = �1(e)−1 and simi-
larly for �2. So �1 ∼ �2, iff �1(e)−1 ∼ �2(e)−1. ��

Remark 3.26 In the last two propositions and Corollary 3.25 the assumption that e is
a central element can be replaced by the assumption that the n-ary group (G, f ) is
semiabelian.

4 Connection with the Representations of the Covering Group

According to Post’s Coset Theorem (cf. [17] or [14]) for any n-ary group (G, f ) there
exists a binary group (G∗, ·) and its normal subgroup H such that G∗�H � Zn−1

and G ⊆ G∗ and

f
(
xn

1

) = x1 · x2 · x3 · . . . · xn

for all x1, . . . , xn ∈ G.
The group (G∗, ·) is called the covering group for (G, f ). We know several

methods of a construction of such group. The smallest covering group has the form
G∗

a = G × Zn−1, where

〈x, r〉·〈y, s〉 =
〈

f∗
(

x,
(r)
a , y,

(s)
a , a,

(n−2−r�s)
a

)
, r � s

〉
,

r � s = (r + s + 1)(mod (n − 1)) and a ∈ G an arbitrary but fixed element. The sym-
bol f∗ means that the operation f is used one or two times (depending on the value
s and t). Clearly fixing various element a of G, we obtain various groups but all these
groups are isomorphic (cf. [14]).



46 W.A. Dudek, M. Shahryari

The element 〈a, n − 2〉 is the identity of the group (G∗
a, ·). The inverse element has

the form

〈x, t〉−1 =
〈

f∗
(

a,
(n−2−t)

a , x,
(n−3)

x , a,
(t+1)

a
)

, k
〉
,

where k = (n − 3 − t)(mod (n − 1)).
The set G is identified with the subset {〈x, 0〉 : x ∈ G}. Every retract of (G, f ) is

isomorphic to the normal subgroup

H = {〈x, n − 2〉 : x ∈ G}.
Suppose that V is a G∗

a-module. Then for x1, . . . , xn ∈ G we have

x1.x2.x3. . . . .xn.v = 〈x1, 0〉 . 〈x2, 0〉 . 〈x3, 0〉 . . . . . 〈xn, 0〉 .v

=
〈

f
(

x1, x2, a,
(n−3)

a
)

, 1
〉
. 〈x3, 0〉 . . . . . 〈xn, 0〉 .v

=
〈

f
(

f
(

x2
1, a,

(n−3)
a

)
, a, x3, a,

(n−4)
a

)
, 2

〉
. . . . . 〈xn, 0〉 .v

=
〈

f
(

x2
1, f

(
a,

(n−2)
a , x3

)
, a,

(n−4)
a

)
, 2

〉
. . . . . 〈xn, 0〉 .v

=
〈

f
(

x3
1, a,

(n−4)
a

)
, 2

〉
. . . . . 〈xn, 0〉 .v

...

= 〈
f
(
xn

1

)
, 0

〉
.v

= f
(
xn

1

)
.v

So, we obtain

Proposition 4.1 Let (G∗
a, ·) be the covering group for an n-ary group (G, f ). Then for

a G∗
a-module V to be a G-module it is necessary and suf f icient that

∃p ∈ G ∀v ∈ V : p.v = v.

Hence, we proved

Proposition 4.2 Let (G∗
a, ·) be the covering group for an n-ary group (G, f ). A

representation 	 of G∗
a is a representation of G, if f ker 	 ∩ G �= ∅. If 	 is irreducible

G∗-representation, then it is also irreducible as a representation of G.

Now, suppose (V, p) is a G-module. For the covering group (G∗
p, ·) of (G, f ) we

can define an action of G∗
p on V as

〈x, k〉.v = x.v.
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Then, it can be easily verified that V is a G∗
p-module. But, we know that G∗

a
∼= G∗

p,
so let h : G∗

a → G∗
p be any isomorphism. For any x ∈ G∗

a, define x.v = h(x).v. Hence
V becomes a G∗

a-module. Further, if W is a G-submodule of G, then it is also a G∗
p-

submodule and so a G∗
a-submodule. Hence, we proved

Theorem 4.3 There is a bijection between the set of all irreducible representations of
(G, f ) and the set of all irreducible representations of G∗

a with kernels not disjoint
from G.

5 Normal Subgroups in Polyadic Groups

In this section, we show that the representation theory of n-ary groups reduces to the
representation theory of binary groups. For this we introduce the concept of normal
n-ary subgroup.

Definition 5.1 An n-ary subgroup H of an n-ary group (G, f ) is called normal if

f
(

(n−3)
a , a, h, a

)
∈ H

for all h ∈ H and a ∈ G. A normal subgroup H �= G containing at least two elements
is called proper. If G has no any proper normal subgroup, then we say that it is simple.
If H = G is the only simple subgroup of G, then we say it is strongly simple.

Definition 5.2 For any n-ary subgroup H of an n-ary group (G, f ) we define the
relation ∼H on G, by

a ∼H b ⇐⇒ ∃x, y ∈ H : b = f
(

a,
(n−2)

x , y
)

.

Lemma 5.3 a ∼H b ⇐⇒ ∃x2, . . . , xn ∈ H : b = f
(
a, xn

2

)
.

Proof Indeed, if b = f (a, xn
2) for some x2, . . . , xn ∈ H, then, in view of Theorem 1.1,

for every x ∈ H we have

b = f
(
a, xn

2

) = f
(

a, f
(

(n−2)
x , x, x2

)
, xn

3

)
= f

(
a,

(n−2)
x , y

)
,

where y = f (x, xn
2) ∈ H, so a ∼H b . The converse is obvious. ��

Now it is easy to see that such defined relation is an equivalence on G. The
equivalence class of G, containing a is denoted by aH and is called the left coset
of H with the representative a. By Lemma 5.3 it has the form

aH =
{

f
(

a,
(n−2)

x , y
)

: x, y ∈ H
}

= {
f
(
a, hn

2

) : h2, . . . , hn ∈ H
}
.

The n-ary group (G, f ) is partitioned by cosets of H.

Proposition 5.4 If H is a f inite n-ary subgroup of (G, f ), then for all a ∈ G, we have
|aH| = |H|.
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Proof By Theorem 1.2, for an n-ary group (G, f ) there is a binary group (G, ·), ϕ ∈
Aut(G, ·) and an element b ∈ G such that

f
(
xn

1

) = x1 · ϕ(x2) · ϕ2(x3) . . . · ϕn−1(xn) · b ,

for all x1, . . . , xn ∈ G. So, we have

aH = {
a · ϕ(x2) · ϕ2(x3) . . . · ϕn−1(xn) · b : x2, . . . , xn ∈ H

}
.

But, clearly this set is in one-one correspondence with the set
{
ϕ(x2) · ϕ2(x3) . . . · ϕn−1(xn) · b : x2, . . . , xn ∈ H

}
,

which does not depend on a. So, we have |aH| = |H|. ��

On the set G/H = {aH : a ∈ G} we introduce the operation

fH (a1 H, a2 H, . . . , an H) = f
(
an

1

)
H.

Proposition 5.5 If H is a normal n-ary subgroup of (G, f ), then (G/H, fH) is an n-ary
group derived from the group RetH(G/H).

Proof First we show that the operation fH is well-defined. For this let ai H = bi H
for some ai, bi ∈ G, i = 1, 2, . . . , n. Then

b 1 = f
(
a1, xn

2

)
, b 2 = f

(
a2, yn

2

)
, . . . , b n = f

(
an, zn

2

)

for some xi, yi, . . . , zi ∈ H
Now, using Theorem 1.2 we obtain

f
(
b n

1

) = f
(

f
(
a1, xn

2

)
, f

(
a2, yn

2

)
, . . . , f

(
an, zn

2

))

= f
(

f
(

a1, xn−1
2 , f

(
(n−2)
a2 , a2, xn

))
, f

(
a2, yn

2

)
, . . . , f

(
an, zn

1

))

= f
(

f
(
a1, xn−1

2 , a2
)
, f

(
f
(

(n−3)
a2 , a2, xn, a2

)
, yn

2

)
, . . . , f

(
an, zn

n

))

= f
(

f
(
a1, xn−1

2 , a2
)
, f

(
wn, yn

2

)
, . . . , f

(
an, zn

1

))

= f
(

f
(

a1, xn−2
2 , f

(
(n−2)
a2 , a2, xn−1

)
, a2

)
, f

(
wn, yn

2

)
, . . . , f

(
an, zn

2

))

= f
(

f
(

a1, xn−2
2 , a2, f

(
(n−3)
a2 , a2, xn−1, a2

))
, f

(
wn, yn

2

)
, . . . , f

(
an, zn

2

))

= f
(

f
(
a1, xn−2

2 , a2, wn−1
)
, f

(
wn, yn

2

)
, . . . , f

(
an, zn

2

))

...

= f
(

f
(
a1, a2, w

n−1
3

)
, f

(
wn, yn

2

)
, . . . , f

(
an, zn

2

))
,

where wi = f (
(n−3)
a2 , a2, xi, a2) ∈ H.
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Repeating this procedure for a3, a4 and so on, we obtain

f
(
b n

1

) = f
(

f
(
an

1

)
, hn

2

)
.

This means that the operation fH is well-defined.
It is easy to verify that (G/H, fH) is an n-ary group. Using the above procedure it

is not difficult to see that H is the identity of G/H. Hence the n-ary group G/H is
derived from the group RetH(G/H). ��

Now, we return to the representations, again. Consider a representation � :
(G, f ) → GL(V). It is easy to see that ker � is a normal subgroup of G. Let H be a
normal n-ary subgroup of (G, f ) such that H ⊆ ker �. Then, there is a representation
�̄ : G/H → GL(V) such that

�̄(aH) = �(a).

Conversely, from every representation of G/H, we obtain a representation of G. On
the other hand, G/H is of reduced type, and hence its representations are the same
as the ordinary representations of RetH(G/H). So, we proved,

Proposition 5.6 There is a bijection between ordinary representations of RetH(G/H)

and the set of representations of G with the property H ⊆ ker �.

Proposition 5.7 A simple n-ary group which is not strongly simple is b-derived from
an abelian group or it is reducible to a non-abelian group.

Proof Suppose H = {p} is a normal n-ary subgroup of (G, f ). Then we have

f (p, p, . . . , p) = p, p = p, ∀x ∈ G : f
(

(n−3)
x , x, p, x

)
= p.

Hence

f
(

p, xn
2

) = f
(

f
(

(n−2)
x2 , x2, p

)
, xn

2

)

= f
(

x2, f
(

(n−3)
x2 , x2, p, x2

)
, xn

3

)

= f
(
x2, p, xn

3

)
.

This shows that p is a central element and, according to [8], the n-ary group (G, f )
is b -derived from a binary group (G, ·). Hence, Z (G, f ) = Z (G, ·) is a normal n-ary
subgroup of (G, f ). But G has no proper normal subgroups, so there are two cases:

(1) Z (G, ·) = G and so (G, f ) is b -derived from an abelian group,
(2) Z (G, ·) is singleton and hence b = 1. In this case (G, f ) is reducible to a non-

abelian group (G, ·).
��
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Remark 5.8 To find representations of an n-ary group (G, f ), we have four cases, as
follow,

(1) only H = G is a normal subgroup of (G, f ), (in this case (G, f ) has only trivial
representation),

(2) (G, f ) is b -derived from an abelian group,
(3) (G, f ) = der(G, ·), (in this case representations of (G, f ) are the same as the

representations of (G, ·)),
(4) (G, f ) has proper normal n-ary subgroups, (in this case, if we know the set of

normal n-ary subgroups of (G, f ), then we obtain all its representations from
representations of the groups RetH(G/H)).

Finally, summarizing results of this section, we have the following theorem:

Theorem 5.9 Representation theory of n-ary groups, reduces to the following three
problems,

a) representations of b-derived n-ary groups from abelian groups,
b) determining all normal n-ary subgroup,
c) representation theory of ordinary groups.

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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