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Abstract
We study the NP-hard Fair ConneCted distriCting problem recently proposed by Stoica 
et al. [AAMAS 2020]: Partition a vertex-colored graph into k connected components (sub-
sequently referred to as districts) so that in every district the most frequent color occurs at 
most a given number of times more often than the second most frequent color. Fair Con-
neCted distriCting is motivated by various real-world scenarios where agents of different 
types, which are one-to-one represented by nodes in a network, have to be partitioned into 
disjoint districts. Herein, one strives for “fair districts” without any type being in a domi-
nating majority in any of the districts. This is to e.g. prevent segregation or political domi-
nation of some political party. We conduct a fine-grained analysis of the (parameterized) 
computational complexity of Fair ConneCted distriCting. In particular, we prove that it 
is polynomial-time solvable on paths, cycles, stars, and caterpillars, but already becomes 
NP-hard on trees. Motivated by the latter negative result, we perform a parameterized 
complexity analysis with respect to various graph parameters including treewidth, and 
problem-specific parameters, including, the numbers of colors and districts. We obtain a 
rich and diverse, close to complete picture of the corresponding parameterized complexity 
landscape (that is, a classification along the complexity classes FPT, XP, W[1]-hard, and 
para-NP-hard).
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1 Introduction

Stoica et al. [48] recently introduced graph-based problems on fair (re)districting, employ-
ing “margin of victory” as the measure of fair representation. In their work, they performed 
theoretical and empirical studies; the latter clearly supporting the practical relevance of 
these problems. The main contribution of their work is certainly with respect to modeling 
and performing promising empirical studies (based on greedy heuristics). In this paper, 
we instead focus on the theoretical aspects, significantly extending their findings in this 
direction.

Dividing agents into groups is a ubiquitous task. Electoral districting is one of the prime 
examples: Voters are partitioned into voting districts, each electing its own representa-
tive.1 Another example emerges in education; in many countries, children are assigned to 
schools based on their residency. In such scenarios, the agents (in the settings above, voters 
or school children) are often placed on a (social or geographical) network. When assigning 
them to districts, it is natural to require that every district should be connected in the net-
work and meet some further criteria.

In districting, there are various objectives. What we study here can be interpreted as 
a “benevolent” counterpart of the well-studied gerrymandering scenario in voting theory. 
For gerrymandering, every voter is characterized by their projected vote in the upcoming 
election. The goal is then to find a partition of the voters into connected districts such that 
some designated alternative gains the majority in as many districts as possible. Following 
Stoica et al. [48], we consider an opposite objective. That is, we assume that some central 
authority wishes to partition the agents, which are of different types, into connected dis-
tricts that are fair, where a district is deemed fair if the margin of victory in the district 
is smaller than a given bound. The margin of victory of a district is the minimum number 
of agents whose deletion results in a tie between the two most frequent types in the dis-
trict. When it comes to school districts, sociodemographic attributes such as race, gender, 
and religion may be modeled. Here, a low margin of victory would be desirable because a 
majority of students sharing certain attributes may result in significant funding disparities 
between schools, as claimed by EdBuild [19] (see Stoica et al. [48] for a more extensive 
discussion). In electoral districting where agents’ types can represent their projected vote 
or ethnicity, a low margin of victory may foster competition among politicians, thereby 
motivating elected officials to do a great job. To illustrate that districts that are dominated 
by a certain ethnicity are a serious problem in particular in developing countries, we quote 
the two Noble price winners Banerjee and Duflo [4, pp. 251–252]

There is reason to be concerned that voting [in developing countries] is often based 
on ethnic loyalties, which means that the candidate from the largest ethnic group 
often wins, whatever his intrinsic merit. [...] [I]f voters choose based on ethnicity 
rather than on merit, the quality of candidates representing the majority group will 
suffer: These candidates don’t need to make much of an effort because the fact that 
they are from the “right” caste or ethnic group is sufficient to ensure that they are 
elected.

Banerjee and Duflo [5] even found evidence that in the 1980 s and 1990 s in North India 
elected official that belong to the (clearly) dominating caste group were significantly more 

1 One prominent example of electoral districting are the congressional districts in the United States: The 
US is divided into 435 congressional districts each electing one member of the House of Representatives. 
How these districts are drawn is the topic of an ongoing debate [13, 21, 27, 37].
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likely to be corrupt. This illustrates the practical importance of creating districts with a low 
margin of victory (in terms of ethnicity). The importance of this problem is further stressed 
by recent finding of Zhao et al. [50], who provided evidence that the 2021 Georgia Con-
gressional Districting Plan was designed in a way to have a high margin of victory in each 
district (thereby making elections in each district non-competitive and non-responsive to 
change in the preferences of voters).

In our work, we build upon the studies of Stoica et al. [48] to search for tractable special 
cases of fair districting over graphs. We focus on the Fair ConneCted distriCting (FCd) 
problem (a natural special case of Stoica et  al.’s Fair ConneCted regrouping problem). 
The input of FCd consists of a graph G = (V ,E) in which every vertex is assigned a color 
from a set C, and integers k, � , smin , and smax . The question is whether the vertex set of G 
can be partitioned into k connected districts, each containing between smin and smax verti-
ces, whose margin of victory is at most � . The difference to Fair ConneCted regrouping 
is that FCd does not impose any constraints to which districts an agent can be assigned.2

It is easy to see that FCd generalizes the known NP-hard perFeCtly BalanCed Con-
neCted partition problem [14, 18], which asks for a partition of a graph into two con-
nected components of the same size (see Proposition 1). This motivates a parameterized 
complexity analysis and the study of restrictions of the underlying graph in order to iden-
tify tractable special cases. Specifically, we analyze the computational complexity of FCd 
on specific graph classes and the parameterized complexity of FCd with respect to several 
problem-specific parameters (such as |C| and k) as well as several parameters measuring 
structural properties of the underlying graph (such as its treewidth or vertex cover number).

1.1  Related work

1.1.1  Relation to model studied by Stoica et al. [48]

Stoica et al. [48] introduced Fair ConneCted regrouping, which is a generalization of our 
FCd problem. Fair ConneCted regrouping differs from FCd in that, in Fair ConneCted 
regrouping, one is additionally given a function that specifies for each vertex to which 
district it can belong. They proved that Fair ConneCted regrouping is NP-hard even for 
only two colors and two districts. Moreover, Stoica et al. [48] considered two special cases 
of Fair ConneCted regrouping: Fair regrouping (omitting connectivity constraints) and 
Fair regrouping_X (omitting connectivity constraints and any restriction to which districts 
vertices can belong). They proved that Fair regrouping is NP-hard for three colors but in 
XP with respect to the number of districts. Turning to Fair regrouping_X, they showed 
that the problem is in XP with respect to the number of colors or districts, but left open the 
general complexity. Overall, our problem is a special case of Fair ConneCted regrouping, 
incomparable to Fair regrouping, and a generalization of Fair regrouping_X. Thus, there 
are no direct implications of the studies of Stoica et al. for our problem.

2 We mention that Stoica et al. [48] use a slightly different yet in most cases equivalent definition of mar-
gin of victory. See Sect.  1.1.1 for a detailed discussion. Clearly, there are also other fairness measures 
for assessing the fairness of districts different from the margin of victory, e.g., the difference between the 
occurrences of the most and least frequent color. While these are natural as well, our definition is particu-
larly appealing if each district may be only associated with its most frequent color if its margin of victory is 
too high. Notably, margin of victory is also a popular concept in other domains such as group identification 
[9], tournament solutions [12], and voting theory [17, 49].
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Moreover, our problem differs from the ones studied by Stoica et al. [48] in a slightly 
different definition of margin of victory. While we look at the number of vertices that need 
to be deleted to have a tied most frequent color, they examine the number of vertices that 
need to change their color such that the most frequent color changes. We chose our defini-
tion in order to be able to distinguish the case of two tied most frequent colors from the 
case where one color appears once more than the others (which both have margin of vic-
tory one in the model of Stoica et al. [48]). In all other cases, if m is the margin of victory 
in our definition, then the margin of victory in the definition of Stoica et al. [48] is ⌊m

2
⌋ . 

However, all our algorithmic results can be extended to the definition of Stoica et al. [48]. 
We expect that hardness results similar to ours can be obtained for their definition as well.

1.1.2  Further related work

Following up on the work of Stoica et  al. [48], Boehmer and Koana [10] analyzed the 
Fair regrouping and the Fair regrouping_X problem in more detail. Among others, they 
proved that Fair regrouping_X without size constraints is polynomial-time solvable while 
the NP-hard Fair regrouping problem without size constraints is polynomial-time solvable 
for two colors and fixed-parameter tractable with respect to the number of districts. In addi-
tion to the margin of victory, they also considered the maximum difference between the 
occurrences of two colors in a district as an additional fairness notion. Again, their results 
have no implications on the complexity of our FCd problem.

FCd is relevant in district-based elections, where voters are partitioned into districts and 
each district elects its own representative. Several papers have studied how to assign voters 
to districts so as to “fairly” reflect the political choices of voters [3, 34, 35, 43, 44]. Well-
studied in this context is gerrymandering, which can be regarded as a “malicious” counter-
part to our problem. In gerrymandering, the task is to partition a set of voters into districts 
obeying certain conditions such that a designated alternative wins in as many districts as 
possible. An intuitive strategy to solve this problem, which is not necessarily optimal [45], 
is to maximize the number of districts where the designated alternative wins only by a 
small margin (this is somewhat related to our problem.) Initially, gerrymandering has been 
predominantly studied from the perspective of social and political science [23, 28, 40]. 
More recently, different variants of gerrymandering have been considered from an algorith-
mic perspective [20, 38]. Notably, the study of gerrymandering over graphs, which is anal-
ogous to our problem, has recently gained significant interest [6, 15, 26, 29]. In particular, 
as done here for FCd, Bentert et al. [6], Gupta et al. [26], and Ito et al. [29] analyzed the 
complexity of gerrymandering on paths, cycles, and trees and studied the influence of the 
number of candidates/colors and the number of districts. A similar model for graph-based 
redistribution scenarios and political districting has been studied under the name “network-
based vertex dissolution” [7].

Partitioning agents of different types into balanced groups is conceptually closely 
related to studies of social segregation. In computer science, social segregation is, for 
instance, quite extensively studied in the context of Schelling’s segregation model [47]: 
While initially the work in this context was mostly concerned with the theoretical analysis 
of segregation patterns [8, 11], recently Schelling’s model has been approached from a 
game-theoretic perspective [1, 33].
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1.2  Contribution

Motivated by the NP-hardness of FCd (see Proposition 1), we conduct a parameterized 
complexity analysis of FCd and study restrictions of the underlying graph in order to iden-
tify tractable special cases. We investigate the influence of problem-specific parameters 
(the number |C| of colors, the number k of districts, and the margin of victory � ) and the 
structure of the underlying graph on the computational complexity of FCd.

The motivation for our refined complexity analysis is two-fold. First, analyzing special 
graph classes and types of graphs offers a better understanding of the complexity of FCD: 
Path, stars, and cycles form the building blocks of more complex graphs and thus under-
standing the problem on these graphs is vital for a further analysis.3 Moreover, real-world 
networks will usually have some structure. One specific use case for our algorithms might 
be sampling algorithms for “fair” districting plans. These sampling algorithms often work 
by pre-aggregating groups of voters, creating a spanning tree on the merged space, and 
then continuing by further merging adjacent groups [2, 16, 42]. Here, our analysis of FCD 
on trees and tree-like graphs might be useful. Second, considering the analysis of the influ-
ence of the number |C| of colors and the number k of districts, in most applications we 
can think of these two parameters are substantially smaller than the number of vertices, 
motivating to check whether FCD becomes tractable if one (or both) of these parameters 
are small. For instance, in their experiments, Stoica et al. [48] partitioned 50, 000 voters 
into 10 voting districts and 41 834 schoolchildren into 61 school districts with |C| = 7.

We show that FCd is NP-hard even if |C| = k = 2 and � = 0 but polynomial-time solv-
able on paths, cycles, stars, and caterpillars (for stars, our algorithm even runs in linear 
time). Subsequently, we extend our polynomial-time algorithms for paths and cycles to a 
polynomial-time algorithm for all graphs with a constant max leaf number ( mln ), which 
are basically graphs that consist of a constant number of paths and cycles (where the two 
endpoints of each path and one point from each cycle can be arbitrarily connected).

Remarkably, in our most involved hardness reduction, we show that FCd already 
becomes NP-hard and even W[1]-hard with respect to |C| + k on trees. However, when the 
number of colors or the number of districts is constant, FCd on trees becomes polynomial-
time solvable. In fact, we show that these results hold for some tree-like graphs as well. 
Herein, the tree-likeness of a graph is measured by one of three parameters, namely, the 
treewidth ( tw ), the feedback edge number ( fen ), and the feedback vertex number ( fvn ). 
More precisely, as our most involved algorithmic results, we establish polynomial-time 
solvability of FCd when the number of colors and the treewidth are constant. We achieve 
this with a dynamic programming approach on the tree decomposition of the given graph 
empowered by some structural observations on FCd. Moreover, we observe that there is a 
simple polynomial-time algorithm on graphs with a constant feedback edge number when 
there are a constant number of districts. On the other hand, we prove that FCd is NP-hard 
for two districts even on graphs with fvn = 1 (and tw = 2 ). Lastly, we show that FCd is 
polynomial-time solvable on graphs with a constant vertex cover number ( vcn ) and fixed-
parameter tractable with respect to the vertex cover number and the number of colors. A 

3 This also motivated a study of these graph classes for gerrymandering over graphs [6, 26, 29]. Moreover, 
initially, it is not at all clear that FCd is polynomial-time solvable on these graphs, as, for instance, gerry-
mandering over graphs is NP-hard even on paths [6, Theorem 1] That we establish that FCd is polynomial-
time solvable on paths also proves that FCd is sometimes easier than the corresponding gerrymandering 
over graphs problem.
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summary of our parameterized results can be found in Fig.  1. Notably, all our hardness 
results also hold without size constraints.

In our studies, we identify several sharp complexity dichotomies. For instance, FCd is 
polynomial-time solvable on trees with diameter at most three but NP-hard and W[1]-hard 
with respect to |C| + k on trees with diameter four. Similarly, FCd is NP-hard and W[1]-
hard with respect to |C| + k on graphs with pathwidth at least two but polynomial-time 
solvable on pathwidth-one graphs.

To summarize, we show that FCd without size constraints is NP-hard even in very 
restricted settings, e.g., on trees or if |C| = k = 2 and � = 0 . To make the problem tracta-
ble, one possibility is to significantly restrict the input graph, e.g., to consist of a constant 
number of paths and cycles, or to combine structural parameters of the given graph with 
the number |C| of colors or the number k of districts. For small |C| and k, the tractability 
of FCd extends to certain tree-like graphs and graphs with a small vertex cover number. 
In contrast to the parameters |C| and k, which have a strong influence on the complexity 
of FCd, the bound � on the margin of victory has only little impact as all hardness results 
already hold for � = 0 and all our algorithmic results hold for arbitrary �.

1.2.1  Organization

The remainder of this paper is structured as follows. In Sect. 2, we formally introduce FCd 
and the graph parameters we examine. In Sect. 3, we present some preliminary results on 
FCd mostly concerning NP-hardness. In Sect. 4, we then consider FCd on very special 
graph classes such as paths and cycles as well as on graphs that can be partitioned into 
a bounded number of those. In Sect. 5, we shift our attention to trees and graphs that are 
tree-like. Lastly, in Sect.  6, we analyze the influence of the vertex cover number on the 
complexity of FCd. We defer the proofs of two technical results (marked with ★ ) to the 
appendix.

Fig. 1  Overview of our parameterized complexity results. Each box represents one parameterization of 
FCd. An arc from parameter p to another parameter p′ indicates that p is upper-bounded by some function 
of p′ . For parameters in the red area (dotted), we prove that FCd is NP-hard even if the parameter is a con-
stant. For parameters in the orange area (dashed), we prove W[1]-hardness and present an XP-algorithm. 
For parameters in the yellow area (solid thick), we have an XP-algorithm but W[1]-hardness is unknown. 
The green area (solid) indicates fixed-parameter tractability (Color figure online)
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2  Preliminaries

For a, b ∈ ℕ , let [a, b] denote {a, a + 1,… , b − 1, b} and let [b] denote [1, b]. Throughout 
the paper, all graphs G = (V ,E) are undirected and have no self-loops or multi-edges. By 
convention, we will use n ∶= |V| . Given a graph G = (V ,E) and a vertex set V ′ ⊆ V  , let 
G[V �] be the graph G induced by the vertices from V ′.

2.1  Fair connected districting

Let C = {c1,… , c|C|} be the set of colors. We assume that each vertex v ∈ V  of the given 
graph has a color c ∈ C determined by a given coloring function col ∶ V → C . For a 
vertex set V ′ ⊆ V  , let �c(V

�) denote the number of vertices of color c in V ′ . Moreover, 
let �(V �) ∈ ℕ

|C| denote the vector in which the ith entry contains the number of vertices 
of color ci in V ′ , i.e, �i(V

�) = �ci
(V �) . For a vector x = (x1,… , xt) ∈ ℕ

t , let i∗
x
 denote an 

index with the largest entry in x , i.e., i∗
x
∈ argmax i∈[t]xi . The margin of victory MOV(x) 

of a vector x is defined as the difference between the largest and second largest entry in 
x , i.e., MOV(x) ∶= xi∗

x

−maxi∈[t]⧵{i∗
x
} xi . If t = 1 , then we set MOV(x) ∶= x1 . Accordingly, 

we define the margin of victory MOV(V �) of a vertex set V ′ ⊆ V  of colored vertices as 
MOV(V �) ∶= MOV(�(V �)) . For � ∈ ℕ , we call a vertex set V ′ �-fair if MOV(V �) ≤ � . We 
use the term district to refer to a vertex set V ′ ⊆ V  . We say that a color ci ∈ C is the jth 
most frequent color in a district V ′ if �i(V

�) is the jth largest entry in �(V �) (we break ties 
arbitrarily unless stated otherwise). We now present our central problem4:

Fair Connected Districting (FCD)

Input: A graph G = (V,E), a set C of colors, a function col : V →
C assigning each vertex one color from C, a number k ≤ |V |
of districts, a maximum margin of victory , and two integers
smax ≥ smin ≥ 1.

Question: Does there exist a partition of the vertices into k districts
(V1, . . . , Vk) such that, for all i ∈ [k], Vi is -fair, |Vi| ∈
[smin, smax], and G[Vi] is connected?

2.2  Graph parameters

We define several graph parameters for an undirected graph G = (V ,E) . The diameter 
of G is the maximum shortest distance between any pair of vertices. The max leaf number 
mln (G) (for a connected graph  G) is the maximum number of leaves over all spanning 
trees of G. A vertex set V ′ ⊆ V  is a vertex cover of G if G[V ⧵ V �] has no edge. A vertex 

4 Note that we chose to require that all districts are non-empty to be consistent with the closely related lit-
erature on gerrymandering over graphs [15, 29]. Moreover, our variant can easily be used to decide whether 
there exists a partitioning into at most k non-empty districts by simply iterating over all i ∈ [k] . For the 
reverse direction, this is not easily possible. For instance, consider a clique with two blue vertices and one 
green and one red vertex and � = 0 . Then, a partitioning into two non-empty �-fair districts is possible but 
not into any other number of non-empty districts.
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set V ′ ⊆ V  is a feedback vertex set if G[V ⧵ V �] is a forest. Analogously, an edge set E′ ⊆ E 
is a feedback edge set if (V ,E ⧵ E�) is a forest. The vertex cover number vcn (G) , feedback 
vertex number fvn (G) , and feedback edge number fen (G) is the size of a smallest vertex 
cover, feedback vertex set, and feedback edge set, respectively. A tree decomposition of a 
graph G = (V ,E) is a pair 

(
T , {Bx}x∈VT

)
 , where T = (VT ,ET ) is a rooted tree and Bx ⊆ V  for 

each x ∈ VT such that 

 (i) 
⋃

x∈VT
Bx = V ,

 (ii) for each edge {u, v} ∈ E , there is an x ∈ VT with u, v ∈ Bx , and
 (iii) for each v ∈ V  , the set of nodes x ∈ VT with v ∈ Bx induces a connected subtree in 

T.

The width of (T , {Bx}x∈VT
) is maxx∈VT

|Bx| − 1 . The treewidth tw (G) of G is the minimum 
width of all tree decompositions of G. The pathwidth pw (G) of G is defined analogously 
with the additional constraint that T is a path.

If G is clear from context, then we simply omit it and write mln , vcn , fvn , fen , tw , and 
pw , respectively. For all our parameterized algorithms with respect to one of these param-
eters, we assume that the corresponding structure is given as part of the input. For instance, 
in our algorithm parameterized by tw , we assume that we are given a tree decomposition of 
width tw. However, note that in all cases, the worst-case running time of our algorithms 
would not change if we compute the structure using known parameterized algorithms.

2.3  Parameterized complexity theory

A parameterized problem L consists of a problem instance I  and a parameter value k ∈ ℕ . 
Then L lies in XP with respect to k if there exists an algorithm deciding L in |I|f (k) time 
for some computable function f. Furthermore, L  is called fixed-parameter tractable with 
respect to k if there exists an algorithm deciding L in f (k)|I|O(1) time for a computable 
function f. The corresponding complexity class is called FPT. There is a hierarchy of com-
plexity classes for parameterized problems: FPT⊆ W[1] ⊆ W[2] ⊆ XP, where it is com-
monly believed that all inclusions are strict. Thus, if L is shown to be W[1]-hard, then the 
common belief is that it is not fixed-parameter tractable. For instance, computing a clique 
of size at least k in a graph is known to be W[1]-hard with respect to the parameter k. One 
can show that L is W[t]-hard, t ≥ 1 , by a parameterized reduction from a known W[t]-hard 
parameterized problem L′ . A parameterized reduction from L′ to L is a function that maps 
an instance (I�, k�) of L′ to an instance (I, k) of L such that (I�, k�) is a yes-instance for L′ if 
and only if (I, k) is a yes-instance for L. Moreover, we require that k is bounded in a func-
tion of k′ and that the transformation takes at most f (k�)|I|O(1) time for some computable 
function f. Finally, we say that a parameterized problem is para-NP-hard if it is NP-hard 
even for constant parameter values.
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3  Basic results on FCD

In this section, we make some basic observations on the computational complexity of 
FCd. First, we prove that FCd is para-NP-hard with respect to the combination |C| + k + � 
of all three problem-specific parameters. This strong general hardness result motivates the 
study of various restricted graph classes in subsequent sections.

The NP-hardness of FCd easily follows from the fact that it generalizes the perFeCtly 
BalanCed ConneCted partition problem, which is NP-hard on bipartite graphs [18]:

Perfectly Balanced Connected Partition
Input: A graph G = (V,E).
Question: Is there a partition (V1, V2) of the vertex set V such that G[V1]

and G[V2] are connected and |V1| = |V2|?

Consider the following polynomial-time many-one reduction: Given an instance 
G = (V ,E) of perFeCtly BalanCed ConneCted partition, construct an equivalent instance 
of FCd by coloring all vertices in G in the same color, setting k = 2 , � = |V|∕2 , smin = 1 , 
and smax = ∞ . Moreover, it is also possible to prove the NP-hardness for the case with 
� = 0 at the cost of introducing a second color:

Proposition 1 FCD is NP-hard even if G is bipartite, smin = 1 , smax = ∞ , and (i) |C| = 1 , 
k = 2 or (ii) � = 0 , |C| = 2, k = 2.

Proof To prove the second part, we present a polynomial-time reduction from perFeCtly 
BalanCed ConneCted partition to FCd. Notably perFeCtly BalanCed ConneCted parti-
tion is also NP-hard if we are given two vertices v1, v2 ∈ V  and the question is whether 
there is a partition (V1,V2) with v1 ∈ V1 and v2 ∈ V2 (in the hardness proof by Dyer and 
Frieze [18, Theorem 2.2], the vertex a always belongs to one partition and b to the other).

Construction. Given an instance (G = (V ,E), v1, v2) of perFeCtly BalanCed ConneCted 
partition with n ∶= |V| , we construct an instance of FCd: We set C = {c1, c2} , k = 2 , and 
� = 0 . We color all vertices of the given graph G in color c1 . Moreover, we modify G by 
introducing n new vertices of color c2 . We connect half of these vertices to v1 and the other 
half to v2.

Proof of Correctness. Let (V1,V2) be a solution to the FCd instance. As � = 0 and we 
require that both V1 and V2 need to be non-empty, it needs to hold that both districts contain 
vertices of both colors. Moreover, as both G[V1] and G[V2] are connected, all vertices of 
color c2 adjacent to v need to be in the same district as v

1
  (and similarly for v

2
 ). Thus, v

1
  

and v
2
 need to be in different districts, each consisting of n

2
 vertices of color c2 and n

2
 verti-

ces of color c1 . Thereby, after removing all vertices of color c2 , (V1,V2) is a solution to the 
given perFeCtly BalanCed ConneCted partition instance.

To prove the reverse direction, let (V1,V2) be a solution to the given perFeCtly Bal-
anCed ConneCted partition instance with v1 ∈ V1 and v2 ∈ V2 . Then, the FCd instance is 
a yes-instance, as it is possible to add the n

2
 vertices of color c2 attached to v1 to V1 and the n

2
 

vertices of color c2 attached to v2 to V2 to arrive at a solution to the FCd instance.   ◻
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Note that our results strengthen a result of Stoica et al. [48], who proved that FCd is 
NP-hard for |C| = 2 and k = 2 if we can additionally specify for each vertex the districts to 
which it can be assigned.

As our second basic result, using a simple dynamic programming approach, we show 
that an instance of FCd on a disconnected graph is polynomial-time solvable if FCd can 
be solved in polynomial time on its connected components. This will play a crucial role, 
e.g., in developing an XP-algorithm for the max leaf number (Theorem 1).

Proposition 2 Let G be a class of graphs such that FCD is polynomial-time solvable on any 
graph G ∈ G . Then, FCD is polynomial-time solvable on any graph from G′ , where G≃ is 
the class of graphs obtained by taking disjoint unions of graphs from G.

Proof Let G� ∈ G
� and let G1,… ,Gp ∈ G be the connected components of G′ . Clearly, 

every district is contained in the vertex set of Gi for some i ∈ [p] . We solve the problem 
using a simple subset-sum like dynamic programming algorithm. To this end, we introduce 
a table T[i, j] for i ∈ [p] and j ∈ [k] . An entry T[i, j] is true if one can partition the vertices 
of G1,… ,Gi into j connected �-fair districts respecting the size constraints. We also use a 
table H where H[i, j] for i ∈ [p] and j ∈ [k] is true if the vertex set of Gi can be partitioned 
into j connected �-fair districts respecting the size constraints. Note that H can be com-
puted in polynomial time by our initial assumption on G.

To initialize T, we set T[1, j] to H[1, j] for all j ∈ [k] . Subsequently, for increasing i > 1 , 
we update T as follows:

In the end, we return T[p, k]. This algorithm runs in O(p ⋅ k2) = O(n3) time (aside from the 
computation of H).   ◻

4  FCD on paths, cycles, and beyond

This section studies the computational complexity of FCd on simple graphs and graphs 
that can be partitioned into “few” paths and cycles. Specifically, in Sect. 4.1, we develop 
polynomial-time algorithms on paths, cycles, stars and caterpillars. Subsequently, in 
Sect. 4.2, we show that FCd is in XP when parameterized by the max leaf number, which 
generalizes polynomial-time solvability on paths and cycles.

4.1  Polynomial‑time algorithms for FCD on simple graph classes

We start by proving that FCd is cubic-time solvable on paths using a simple dynamic pro-
gramming approach.

Proposition 3 FCD on paths can be solved in O(k ⋅ n2) time.

T[i, j] =
⋁

j�, j�� ∈ [j]

j� + j�� = j

T[i − 1, j�] ∧ H[i, j��].
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Proof Let G =
(
{v1,… , vn}, {{vi, vi+1} ∣ i ∈ [n − 1]}

)
 be the input path. We first cre-

ate a table  A[i,  j], where A[i,  j] for i ≤ j ∈ [n] is true if and only if {vi,… , vj} is �-fair 
and |{vi,… , vj}| = j − i + 1 ∈ [smin, smax] . We then create a table T with entries T[i, t] for 
i ∈ [n] and t ∈ [k] . The meaning of an entry T[i, t] is that it is true if there is a partition of 
the vertices {v1,… , vi} into t paths (connected districts) that are all �-fair and respect the 
size constraints. Note that the input is a yes-instance if and only if T[n, k] is true.

We initialize table T by setting T[i, 1] for i ∈ [n] to A[1, i]. Subsequently, for t > 1 , we 
update the table using:

The reasoning behind this is that if we partition {v1,… , vi} into t districts, then there needs 
to be some j ∈ [i − 1] such that {vj+1, vj+2,… , vi} is one district in the solution. Thus, if 
T[i, t] is true, then there needs to be some j ∈ [i − 1] such that the vertices from {v1,… , vj} 
can be partitioned into t − 1 �-fair districts respecting the size constraints and the vertices 
{vj+1, vj+2,… , vi} form an �-fair district respecting the size constraints.

The table A can be filled in O(n2) time: for a fixed i ∈ [n] , we can com-
pute all A[i, n − j] for j ∈ [0, n − i] in linear time by starting for j = 0 with com-
puting �({vi,… , vn−j}) and, subsequently, for increasing  j > 1 compute 
�({vi,… , vn−j}) = �({vi,… , vn−j+1}) − �({vn−j+1}) (which can be done in constant time). 
It can be determined in O(1) time whether �({vi,… , vn−j}) is �-fair by additionally storing 
the number of occurrences of integers (which are at most n) in �({vi,… , vn−j}) . Addi-
tional bookmarking allows us to find the two largest entries in �({vi,… , vn−j}) in O(1) 
time. Moreover, the number of occurrences in �({vi,… , vn−j}) can be updated in O(1) 
time as we increase j. We set A[i, n − j] to true if and only if �({vi,… , vn−j}) is �-fair and 
smin ≤ n − i − j + 1 ≤ smax.

Note that table T consists of k ⋅ n entries. We spend O(n) time for every entry, resulting 
in an overall running time of O(k ⋅ n2) .   ◻

To solve FCd on cycles, we iterate over all vertices of the cycle as the starting point of 
the first district and split the cycle at this point to convert it into a path. Subsequently, we 
employ the algorithm from above, which results in a running time of O(k ⋅ n3):

Corollary 1 FCD on cycles is solvable in O(k ⋅ n3) time.

Next, we proceed to stars, for which we derive a precise characterization of yes-
instances. In fact, using a relatively involved analysis, we consider a more general prob-
lem, in which some set X containing the center vertex must belong to the same district, 
i.e., the vertex which is adjacent to all other vertices from the star. This proves useful in 
speeding up the algorithms to be presented in Propositions 5 and 7.

Proposition 4 (★ ) Let (G = (X ∪ Y ,E),C, col, k,�, smin, smax) be an FCD instance where 
G is a star with center vertex v ∈ X . Then, one can decide in linear time whether there is 
a partition of X ∪ Y  into k connected �-fair districts respecting smin and smax such that all 
vertices from X are part of the same district.

T[i, t] =
⋁

j∈[i−1]

T[j, t − 1] ∧ A[j + 1, i].



 Autonomous Agents and Multi-Agent Systems (2023) 37:13

1 3

13 Page 12 of 37

Proposition 4 directly implies that FCd is linear-time solvable on stars, even if the 
center vertex has a weight for each color, i.e., the center vertex represents multiple ver-
tices that all need to be put into one district.

Corollary 2 FCD is linear-time solvable on stars.

Lastly, we extend our polynomial-time algorithm for paths from Proposition 3 to cat-
erpillar graphs. A caterpillar graph is a tree where every vertex is either on a central 
path (spine) or a neighbor of a vertex on the central path.

Proposition 5 FCD on caterpillars can be solved in O(k ⋅ n3) time.

Proof Let G = (V ,E) be the given caterpillar, let (u1,… , up) denote the spine (central path) 
of G and let U = {u1,… , up} . Moreover, for i ∈ [p] , let Ui consist of ui and all vertices from 
V ⧵ U adjacent to ui . Note that each vertex from V ⧵ U is only adjacent to one vertex from 
U, as G is in particular a tree. We solve the problem by extending our algorithm for paths 
from Proposition 3.

As a first step, we introduce a table A[i, j, t] for i ≤ j ∈ [n] and t ∈ [k] . An entry A[i, j, t] 
is set to true if there is a partition (V1,… ,Vt) of 

⋃
i�∈[i,j] Ui� into t districts such that:

• V1 contains ui′ for every i� ∈ [i, j] , and
• Vt′ is �-fair, |Vt� | ∈ [smin, smax] , and G[Vt� ] is connected for every t� ∈ [t].

We can fill table A in O(k ⋅ n3) time using Proposition 4 for each A[i, j, t] (for this, it is nec-
essary to slightly restructure G[

⋃
i�∈[i,j] Ui� ] as a star G′ on 

⋃
i�∈[i,j] Ui� with ui as the center 

vertex and X = {ui,… , uj} ). Using A, we now apply dynamic programming. To this end, 
we introduce a table T[i, t] for i ∈ [n] and t ∈ [k] . Entry T[i, t] is set to true if it is possible 
to partition the vertices from 

⋃
j∈[i] Uj into t connected districts that are �-fair and respect 

the size constraints. We initialize the table by setting T[i, 1] to true if 
⋃

j∈[i] Uj is �-fair. 
Subsequently, for t > 1 , we update the table using:

The reasoning behind this equality is that in a partitioning of 
⋃

j∈[i] Uj into t districts, there 
needs to be some j ∈ [i − 1] such that there is one district containing vertices {uj+1,… , ui} . 
However, not all vertices from 

⋃
t∈[j+1,i] Ut need to be part of this district. In fact, because 

of the connectivity constraints, there is some t′′ such that one district contains vertices 
{uj+1,… , ui} and all but t�� − 1 vertices from 

⋃
t∈[j+1,i] Ut and t�� − 1 districts consist of a 

single vertex from 
⋃

t∈[j+1,i] Ut (such a partitioning respecting fairness and size constraints 
exists if and only if A[j + 1, i, t��] is true). The remaining t − t�� districts then consists of ver-
tices from 

⋃
t∈[j] Ut (such a partitioning respecting fairness and size constraints exists if and 

only if T[j, t�] is true). Table T has k ⋅ n entries each computable in O(k ⋅ n) time. This leads 
to an overall running time of O(k ⋅ n3) .   ◻

Note that a graph  G has pathwidth one ( pw (G) = 1 ) if and only if G is a disjoint 
union of caterpillars. By Proposition 2 and Proposition 5, it follows that FCd is 

T[i, t] =
⋁

j ∈ [i − 1] ∧ t�, t�� ∈ [t] ∶

t� + t�� = t

T[j, t�] ∧ A[j + 1, i, t��].
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polynomial-time solvable on all graphs with pathwidth one (we later show in Corollary 
4 that FCd is NP-hard on pathwidth-two graphs).

Corollary 3 FCD on a graph G with pw (G) = 1 is polynomial-time solvable.

4.2  An XP‑algorithm for mln

Now, we generalize the polynomial-time solvability on paths and cycles to a larger graph 
class. More precisely, we develop an XP-algorithm for the max leaf number ( mln ). Recall 
that the max leaf number of a connected graph G is the maximum number of leaves over 
all spanning trees of  G. Notably, any path or cycle has mln = 2 . In order to develop a 
polynomial-time algorithm for constant mln , we use the notion of branches. (See Fig. 2 for 
an illustration.)

Definition 1 A branch in a graph is either a maximal path in which all inner vertices have 
degree two or a cycle in which all but one vertex have degree two.

Using a classical theorem of Kleitman and West  [31], Eppstein  [22] showed that any 
graph has at most O(mln 2) branches. For notational brevity, we assume that every branch 
B that is a cycle has exactly one endpoint, namely, the vertex in B with degree at least three 
in G (if there is no such vertex in B, then we fix an arbitrary vertex as its endpoint).

Theorem 1 FCD can be solved in nO(mln 2) time.

Proof Let B be the set of all branches of the given graph G and let X be the set of all 
endpoints of all branches. Suppose that there is a solution V = (V1,… ,Vk) . Observe that 
there are naturally at most |X| subsets in V containing at least one vertex from X. Without 
loss of generality, assume that Vi contains at least one vertex from X for i ∈ [k�] for some 
k� ∈ [min(k, |X|)] , and let Xi = X ∩ Vi . Let us now consider the relationship between a dis-
trict Vi for i ∈ [k�] and a branch B = (v1,… , vl) ∈ B (where for all i ∈ [l − 1] , vi and vi+1 are 
adjacent in G and if B is a cycle, then v1 = vl ). Since Vi induces a connected subgraph in G, 
the following holds:

• If v1, vl ∉ Xi , then Vi and B are disjoint: Since Vi is connected and contains at least one 
vertex from X⧵{v1, vl} , Vi contains no “inner” vertices from B.

• If v1 ∈ Xi and vl ∉ Xi , then there is an integer j ∈ [l − 1] such that 
Vi ∩ {v1,… , vl} = {v1,… , vj} (for v1 ∉ Xi and vl ∈ Xi , the situation is symmetric).

• If v1, vl ∈ Xi for some i ∈ [k] , then there are two integers j, j� ∈ [l] such that 
Vi ∩ {v1,… , vl} = {v1,… , vj} ∪ {vl−j�+1,… , vl} . Note that Vi contains all vertices of B 
when j + j� = l.

Fig. 2  An illustration of a 
graph with four branches: 
(v

1
, v

2
, v

3
), (v

3
, v

5
), (v

3
, v

4
, v

6
, v

5
), (v

5
, v

7
, v

8
)



 Autonomous Agents and Multi-Agent Systems (2023) 37:13

1 3

13 Page 14 of 37

For all other districts Vi , i ∈ [k� + 1, k] , it holds that there is a branch (v1,… , vl) ∈ B with 
Vi ⊆ {v2,… , vl−1}.

Using these observations, our algorithm proceeds as follows. We iterate over all possible 
combinations of the following (note that the number of combinations is nO(|B|) = nO(mln 2)):

• An integer k� ∈ [min(k, |X|)].
• A partition X = (X1,… ,Xk� ) of X into k′ subsets.
• For every branch B = (v1,… , vl) ∈ B , two integers jB, j�B ∈ [l] with jB + j�

B
≤ l.

Using these guesses, we can exactly determine the districts intersecting X: For every 
i ∈ [k�] and every branch B = (v1,… , vl) ∈ B , we define Vi,B as follows:

• If v1, vl ∉ Xi , then Vi,B ∶= �.
• If v1 ∈ Xi and vl ∉ Xi , then Vi,B ∶= {v1,… , vjB} . Symmetrically, if v1 ∉ Xi and vl ∈ Xi , 

then Vi,B ∶= {vl−j�
B
+1,… , vl}.

• If v1, vl ∈ Xi , then Vi,B = {v1,… , vjB} ∪ {vl−j�
B
+1,… , vl}.

For i ∈ [k�] , let Vi ∶=
⋃

B∈B Vi,B . We check whether the set Vi is �-fair and respects the size 
constraints for every i ∈ [k�] . If there is a Vi that is not �-fair or violates the size constraints, 
then we proceed to the next combination. Otherwise, it remains to determine whether the 
vertices V ⧵

⋃
i∈[k�] Vi can be partitioned into k − k� �-fair districts that respect the size con-

straints. Since G[V ⧵
⋃

i∈[k�] Vi] is a disjoint union of paths as all endpoints of branches are 
contained in 

⋃
i∈[k�] Vi, this can be done in polynomial time by Propositions 2 and 3.   ◻

We leave it open whether FCd parameterized by mln is fixed-parameter tractable or 
W[1]-hard.

5  FCD on trees and tree‑like graphs

After having seen in Sect.  4 that FCd is polynomial-time solvable on paths, cycles, stars, 
and caterpillars, we now turn to trees. In Sect.  5.1, we prove that these polynomial-time 
results do not extend to trees. In particular, we prove that FCd on trees is NP-hard and 
W[1]-hard parameterized by |C| + k . We complement these hardness results with an XP-
algorithm for FCd on trees parameterized by |C| and another XP-algorithm for parame-
ter k. In fact, both XP-algorithms further extend to tree-like graphs: In Sect.  5.2, we prove 
that FCd parameterized by the treewidth of the given graph plus |C| is in XP. Subsequently, 
in Sects.  5.3 and 5.4, we consider the feedback edge number ( fen ) and the feedback vertex 
number ( fvn ), which are both alternative measures for the tree-likeness of a graph (the 
treewidth of a graph can be upper bounded in a function of fen and in a function of fvn ). 
Thus, the XP algorithm for tw + |C| extends to the parameter combinations fvn + |C| and 
fen + |C| , which is why we focus on the parameter combinations fvn + k and fen + k 
here. We prove that FCd parameterized by fen + k is in XP and we show that there is 
(presumably) no such result for the treewidth and the feedback vertex number ( fvn ) by 
showing that FCd is NP-hard even if fvn = 1 , tw = 2 , and k = 2.
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5.1  W[1]‑hardness on trees

In this subsection, we show that in contrast to paths, cycles, stars, and caterpillars, FCd on 
trees is NP-hard even without size constraints. Simultaneously, we show that FCd param-
eterized by the number k of districts and the number |C| of colors is W[1]-hard on trees. To 
this end, we present a parameterized reduction from the following version of grid tiling 
which is NP-hard and W[1]-hard with respect to t [41] (in this subsection, all indices are 
taken modulo t):

Grid Tiling
Input: A collection S of t2 (tile) sets Si,j ⊆ [m]× [m], i, j ∈ [t], where

each Si,j consists of n pairs and the first entries of all pairs
(tiles) from Si,j sum up to the same number X for all i, j ∈ [k]
and the second entries of all pairs from Si,j sum up to the same
number Y for all i, j ∈ [k]̧ .

Question: Can one choose one tile (xi,j, yi,j) ∈ Si,j for each i, j ∈ [t] such
that xi,j = xi+1,j and yi,j = yi,j+1?

Without loss of generality, we assume that n > 2.
The general idea of the reduction is as follows. Each solution to the constructed FCd 

instance has a center district. The center district contains some large number Z of vertices 
of two “dummy” colors c and c′ . The instance is constructed such that in every solution, 
vertices of any fixed color can appear at most Z times in the center district. By definition, 
each tile (x, y) belongs to one of t2 tile sets Si,j ∈ S . We construct a star Ti,j

x,y for each tile 
such that for each tile set Si,j ∈ S , all but exactly one star Ti,j

x,y need to be contained in the 
center district. Thus, the center district (respectively its complement) basically encodes a 
selection of one tile from each tile set. Moreover, we construct the FCd instance in such 
a way that for two stars from two “adjacent” tile sets the respective first or second entries 
of the tiles need to match; otherwise the number of vertices of some color in the central 
district will exceed Z.

5.1.1  Construction

Let (S, t,m, n,X, Y) be an instance of GRID TILING . We construct an instance of FCd as 
follows.

First of all, we set � = 0 , smin = 1 , smax = ∞ , and k = t2 + 1 . For each i, j ∈ [t] , we intro-
duce three distinct colors bi,j , di,j , and ci,j . Moreover, we introduce three distinct colors 
c, c′ , and c⋆ . Now, we fix some constants which we use later. Let W ∶= 5n(t2 + t) + 1 , 
Z ∶= 2(n − 1) ⋅ 5mW , f (i, j) ∶= i ⋅ t + j , and g(i, j) ∶= t2 + t + i ⋅ t + j . Note that this 
implies that W ≥ 2.5 ⋅ n ⋅ g(i, j) and W ≥ 2.5 ⋅ n ⋅ f (i, j) for all i, j ∈ [t].

We are now ready to construct the vertex-colored graph G = (V ,E) . We start by intro-
ducing a center vertex vcenter of color c⋆ . In a solution, we call the district containing vcenter 
the center district. We add Z vertices of color c and Z vertices of color c′ , all of which are 
only adjacent to vcenter.

For each i, j ∈ [t] and (x, y) ∈ Si,j , we construct a star Ti,j
x,y and connect its center to vcenter . 

We color the center of Ti,j
x,y in c⋆ . Moreover, Ti,j

x,y has the following leaves:
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• Z

2(n−1)
+W ⋅ x − f (i, j) vertices of color di,j,

• Z

2(n−1)
−W ⋅ x − f (i�, j) vertices of color di′,j for i� ∶= i + 1 mod k,

• Z

2(n−1)
+W ⋅ y − g(i, j) vertices of color bi,j,

• Z

2(n−1)
−W ⋅ y − g(i, j�) vertices of color bi,j′ for j� ∶= j + 1 mod k , and

• max(
Z

2(n−1)
+W ⋅ x − f (i, j),

Z

2(n−1)
+W ⋅ y − g(i, j)) vertices of color ci,j.

Observe that the constructed star Ti,j
x,y is 0-fair, as the number of occurrences of ci,j matches 

the number of occurrences of the otherwise most frequent color. This concludes the 
construction.

5.1.2  Proof of correctness

We start with a simple observation on the total number of vertices of some of the colors:

Observation 1 For each i, j ∈ [t] , it holds that �di,j
(V) =

n

n−1
Z − 2nf (i, j) and 

�bi,j
(V) =

n

n−1
Z − 2ng(i, j) . For all i, j ∈ [k] , it holds that �ci,j

(V) ≤ Z.

Proof For each i, j ∈ [t] , vertices of color di,j occur in 2n different stars, that is, in all stars 
corresponding to tiles from Si,j and Si−1,j . As the first entries of all tiles from Si,j and of all 
tiles from Si−1,j sum up to X, it follows that

The same reasoning applies for all colors bi,j proving that �bi,j
(V) =

n

n−1
Z − 2ng(i, j) . Lastly, 

for some i, j ∈ [t] , vertices of color ci,j appear only in stars corresponding to tiles from Si,j , 
each of them containing at most Z

2(n−1)
+W ⋅ m such vertices. Thus, the number of vertices 

of color ci,j is upper-bounded by n ⋅ ( Z

2(n−1)
+W ⋅ m) . As W ⋅ m =

1

8(n−1)
Z and n > 2 , this is 

smaller than Z from which �ci,j
(V) ≤ Z follows.   ◻

Using Observation 1, we now prove the forward direction of the correctness of the 
construction.

Lemma 1 If the given GriD TilinG instance is a yes-instance, then the constructed FCD 
instance is a yes-instance.

Proof Let S = {(xi,j, yi,j) ∈ Si,j ∣ i, j ∈ [t]} be a solution for the given grid tiling instance. 
From this we construct a solution of the FCd instance as follows. For each (xi,j, yi,j) ∈ S , 
we create a separate district and put into this district all vertices from the star Ti,j

x,y corre-
sponding to (xi,j, yi,j) . We put all other vertices in the center district. Note that this construc-
tion respects the given number k = t2 + 1 of districts and that all districts are by construc-
tion non-empty and connected.

�di,j
(V) =

∑

(x,y)∈Si,j

Z

2(n − 1)
+Wx − f (i, j) +

∑

(x,y)∈Si−1,j

Z

2(n − 1)
−Wx − f (i, j)

=

(
n

2(n − 1)
Z +WX − nf (i, j)

)
+

(
n

2(n − 1)
Z −WX − nf (i, j)

)

=
n

n − 1
Z − 2nf (i, j).
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It remains to argue that all created districts are 0-fair. Since every star is 0-fair by con-
struction, all non-center districts are 0-fair. For the center district, note that it contains Z 
vertices of color c and Z vertices of color c′ . Thus, it is sufficient to argue that there is no 
color such that the number of its occurrences in the center district exceeds Z. For color ci,j 
this directly follows from Observation 1. Next we consider color di,j for some i, j ∈ [t] . All 
stars with some vertices of color di,j are part of the center district, except for the one cor-
responding to (xi,j, yi,j) and the one corresponding to (xi−1,j, yi−1,j) . Since S is a solution, 
we have xi−1,j = xi,j . Consequently, exactly Z

n−1
− 2f (i, j) vertices of color di,j are excluded 

from the center district. Now it follows from Observation 1 that the number of vertices of 
color di,j in the center district is at most Z. An analogous argument also holds for bi,j for 
i, j ∈ [t] , which concludes the proof.   ◻

It remains to prove the correctness of the backward direction. To do this, we first 
observe that for every star, all of its vertices have to belong to the same district. Subse-
quently, we prove that the center district can contain at most Z vertices of each color. We 
then show that in order to respect this bound, for each tile set, exactly one star correspond-
ing to a tile from this set must be excluded from the center district. Again exploiting the 
fact that every color has at most Z occurrences in the center district, we show that those 
excluded tiles form indeed a solution to the given grid tiling instance. We start by observ-
ing that the vertices from one star need to be part of the same district.

Observation 2 For each tile (x, y) ∈ S , all vertices from the corresponding star need to be 
part of the same district in a solution to the constructed FCd instance.

Proof As we set � = 0 in the constructed FCd instance, there cannot exist a district con-
taining just a single vertex. Thus, all vertices from a star need to belong to the same district 
as the center of the star.   ◻

Using this observation, we make some more involved arguments dealing with the pos-
sible number of vertices of a color in the center district in a solution. In the following, let 
Vcenter denote the center district in a solution to the constructed FCd instance. We make 
this observation in order to ensure that no two different colors appear the same number of 
times and in particular more than Z times in the center district.

Lemma 2 For each i, j ∈ [t] , if �di,j
(Vcenter) ≥ Z , then the number α of stars Ti,j

x,y with some 
vertex of color di,j that are not part of the center district is at most two. In particular, it 
holds that �di,j

(Vcenter) = (
n

n−1
Z − 2nf (i, j)) − �(

Z

2(n−1)
− f (i, j)) +Wq for some 

q ∈ [−2m, 2m].

Proof Let us consider some i, j ∈ [t] . By Observation 2, for every star Ti,j
x,y , all the vertices 

from Ti,j
x,y are in Vcenter or no vertex from Ti,j

x,y is in Vcenter.
By construction, every star with some vertex of color di,j contains Z

2(n−1)
+W ⋅ x − f (i, j) 

vertices of this color for some x ∈ [−m,m] . So as there are n

n−1
Z − 2nf (i, j) vertices of color 

di,j (Observation 1), if � ≥ 3 , then the number of vertices of color di,j in the center district is 
at most Z −

Z

2(n−1)
+ 3mW . By the definition of Z this is smaller than Z.

Thus, we obtain � ≤ 2 . Since there are in total n

n−1
Z − 2nf (i, j) vertices of color di,j by 

Observation 2, the lemma holds.   ◻
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Analogously, we can prove similar bounds for the number of vertices of color bi,j for 
some i, j ∈ [t] in the center district.

Lemma 3 For each i, j ∈ [t] , if �bi,j
(Vcenter) ≥ Z , then the number α of stars Ti,j

x,y with some 
vertex of color bi,j that are not part of the center district is at most two. In particular, it 
holds that �bi,j

(Vcenter) = (
n

n−1
Z − 2ng(i, j)) − �(

Z

2(n−1)
− g(i, j)) +Wv for some 

v ∈ [−2m, 2m].

Using these two lemmas, we can now prove that there are at most Z vertices of the same 
color in the center district in a solution to the constructed FCd instance.

Lemma 4 For every color q, �q(Vcenter) ≤ Z.

Proof We claim that for two distinct colors q, q′ with 𝜒q(Vcenter),𝜒q� (Vcenter) > Z , it holds 
that �q(Vcenter) ≠ �q� (Vcenter) . The statement of the lemma directly follows from the claim, 
as Vcenter needs to be 0-fair.

Assume for a contradiction that 𝜒q(Vcenter) = 𝜒q� (Vcenter) > Z for some colors q ≠ q′ . 
Since there are at most Z vertices of color c, c′, c⋆, ci,j for i, j ∈ [t] , q and q′ are among the 
colors bi,j and di,j for i, j ∈ [t] . By Lemmas 2 and 3 and as it holds that 
�q(Vcenter) = �q� (Vcenter) , from this it follows that 
2nh(i, j) + a

(
Z

2(n−1)
− h(i, j)

)
+Wv = 2nh�(i�, j�) + a�

(
Z

2(n−1)
− h�(i�, j�)

)
+Wv� , for some 

a, a� ∈ {0, 1, 2} , v, v� ∈ [−2m, 2m] , h(i, j) ∈ {f (i, j), g(i, j)} , and 
h�(i�, j�) ∈ {f (i�, j�), g(i�, j�)} . Rewriting yields that 
(5m(a − a�) + v − v�)W = (2n − a�)h�(i�, j�) − (2n − a)h(i, j) . Since W is sufficiently large, 
the absolute value of the right-hand side does not exceed W. Thus, we have 
5m(a − a�) + v − v� = 0 and (2n − a)h(i, j) = (2n − a�)h�(i�, j�) . The first equation implies 
a = a� since v − v� ∈ [−4m, 4m] . Cancelling out 2n − a > 0 in the second equation, we 
obtain h(i, j) = h�(i�, j�) . Now we have q = q� , as f (ĩ, j̃) ≠ g(ĩ�, j̃�) for all ĩ, j̃, ĩ�, j̃� ∈ [t] , 
f (ĩ, j̃) = f (ĩ�, j̃�) only if ĩ = ĩ� and j̃ = j̃� , and g(ĩ, j̃) = g(ĩ�, j̃�) only if ĩ = ĩ� and j̃ = j̃� . We 
have reached a contradiction.   ◻

Using Lemma 4, we can prove that each solution to the constructed FCd instance 
induces a selection of one tile from each tile set in the given grid tiling instance:

Lemma 5 For each i, j ∈ [t] , exactly one star Ti,j
x,y for some (x, y) ∈ Si,j is not part of Vcenter.

Proof Lemma 2 and Lemma 4 imply that for each i, j ∈ [t] at least two stars containing ver-
tices of color di,j are not part of Vcenter . As each star Ti,j

x,y contains vertices of colors di,j and 
di+1,j and as there exist t2 non-center districts in the end, this means that for each i, j ∈ [t] 
exactly two stars containing vertices of this color are not part of Vcenter.

For the sake of contradiction, let us assume that there exists i, j ∈ [t] such that two stars 
corresponding to tiles (x, y), (x�, y�) ∈ Si,j are not part of Vcenter . This implies by our previous 
observation that all other stars containing vertices of color di+1,j need to belong to Vcenter . 
However, in this case, Z

n−1
−W(x + x�) − 2f (i, j) ≤

W

n−1
− 2W vertices of color di+1,j are not 

part of Vcenter . By Observation 1, this implies that the number of vertices of color di+1,j in 
Vcenter is at least Z + 2W − 2nf (i, j) . As W > n(t2 + t) , this number is greater than Z, contra-
dicting Lemma 4.   ◻
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Putting all pieces together, we are now ready to prove the correctness of the backward 
direction of the construction.

Lemma 6 If the constructed FCD instance is a yes-instance, then the given GriD TilinG 
instance is a yes-instance.

Proof Let V be a solution to the constructed FCd instance and let Vcenter ∈ V be the district 
containing vcenter . Lemma 5 implies that for each i, j ∈ [t] exactly one star corresponding to 
a tile from Si,j is not part of Vcenter . Let

be a set of all tiles corresponding to excluded stars (one for each i, j ∈ [t] ). We claim that S 
is a valid solution to the given grid tiling instance.

For the sake of contradiction, assume that this is not the case. That is, there either (a) 
exist i, j ∈ [t] such that xi,j ≠ xi−1,j or (b) exist i�, j� ∈ [t] such that yi�,j� ≠ yi

�,j�−1 . Let us start 
by assuming that (a) is the case. Note that it is possible to assume without loss of generality 
that xi,j < xi−1,j , as from the fact that there exists some xi,j ≠ xi−1,j it follows that there also 
exists some ĩ ∈ [t] such that xĩ,j < xĩ−1,j . The only stars containing vertices of color di,j that 
are not part of Vcenter are the star corresponding to (xi,j, yi,j) , which contains 

Z

2(n−1)
+W ⋅ xi,j − f (i, j) vertices of this color, and the star corresponding to (xi−1,j, yi−1,j) , 

which contains Z

2(n−1)
−W ⋅ xi−1,j − f (i, j) vertices of this color. This implies that at most 

Z

n−1
+W ⋅ (xi,j − xi−1,j) − 2f (i, j) ≤

Z

n−1
−W − 2f (i, j) vertices of this color are not part of 

Vcenter , where the inequality holds by our assumption that xi,j < xi−1,j . Combining this with 
Observation 1, it follows that the number of vertices of color di,j in Vcenter is at least 
Z +W − 2(n − 1)f (i, j) . By the definition of W, this is strictly greater than Z. Applying 
Lemma 4, we reach a contradiction.

The same argument can also be applied if (b) holds, which proves that S is a solution to 
the given grid tiling instance.   ◻

From Lemma 1 and Lemma 6 the correctness of the reduction follows. As our construc-
tion takes only polynomial time and |C| + k = 3t2 + 4 is bounded in a function of t, the NP-
hardness and the W[1]-hardness with respect to |C| + k of FCd on trees follows.

Theorem  2 FCD on trees is NP-hard and W[1]-hard with respect to |C| + k , even if 
smin = 1 and smax = ∞.

Recall that by Corollary 3, FCd can be solved in polynomial time on all graphs with 
pathwidth one (disjoint unions of caterpillars). Observe that the tree constructed in the 
reduction above has pathwidth two: Graph G′ obtained from G by deleting vcenter is a dis-
joint union of stars. Thus, G′ admits a path decomposition of width one. Placing vcenter into 
every bag yields a path decomposition of G of width two. This results in the following.

Corollary 4 FCD on graphs  G with pw (G) = 2 is NP-hard and W[1]-hard with respect 
to |C| + k , even if smin = 1 and smax = ∞.

To be more precise, we even get NP-hardness and W[1]-hardness with respect to |C| + k 
on a pathwidth one graph to which we add a single vertex and adjacent edges. Notably, this 

S ∶= {(xi,j, yi,j) ∈ Si,j ∣ i, j ∈ [t] ∧ Ti,j
x,y

is not part of Vcenter}
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result is tight in the sense that we have proved polynomial-time solvability on pathwidth-
one graphs in Corollary 3.

As the tree constructed in the previous reduction has diameter four (it consists of a 
center vertex and centers of stars attached to it), we conclude that FCd is computationally 
intractable even on trees with a small constant diameter:

Corollary 5 FCD is NP-hard and W[1]-hard with respect to |C| + k on trees with diameter 
four, even if smin = 1 and smax = ∞.

We will complement this result in Corollary 8 where we show that FCd is polynomial-
time solvable on trees with diameter at most three.

5.2  An XP‑algorithm for �� + |�|

Motivated by the hardness result from the previous subsection, we search for an XP-algo-
rithm for the parameters |C| and k for FCd on trees. We start by considering the parameter 
|C| here and the parameter k in the next two subsections. Specifically, we show that there 
exists an XP-algorithm for |C| on tree-like graphs—more precisely, we present an XP-algo-
rithm with respect to |C| + tw , where tw is the treewidth of the underlying graph.

Given a graph G = (V ,E) , a tree decomposition (T = (VT ,ET ), {Bx}x∈VT
) of G (as 

defined in the Preliminaries) is nice if each node x ∈ VT has one of the following types5: 

Leaf node.  A leaf of T with Bx = {v} for v ∈ V .
Introduce vertex v node.  An internal node of T with one child y ∈ VT such that 

Bx = By ∪ {v}.
Introduce edge {u, v} node.  An internal node of T with one child y ∈ VT such that 

u, v ∈ Bx = By.
Forget v node.  An internal node of T with one child y ∈ VT such that 

Bx = By⧵{v} for v ∈ By.
Join node.  An internal node of T with two children y ∈ VT and z ∈ VT 

such that Bx = By = Bz.

 We will implicitly assume that every introduce edge {u, v} node is labeled by {u, v} and 
that for each edge there is exactly one such node. Given a tree decomposition, a nice tree 
decomposition of equal width can be computed in linear time [32]. By applying dynamic 
programming on top of the nice tree decomposition of the given graph, we establish the 
following:

Theorem 3 (★ ) FCD can be solved in O(nO( tw ⋅|C|)) time.

Since a tree is of treewidth one, we have the following:

Corollary 6 FCD on trees can be solved in nO(|C|) time.

5 Note that in the following we refer to the elements of V as vertices and the elements of VT as nodes. We 
refer to the set Bx for a node x ∈ VT as a bag.
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5.3  An XP‑algorithm for fen + k

Having constructed a polynomial-time algorithm for constant |C| on trees and on graphs 
with a constant treewidth, we now consider the number k of districts as our parameter for 
FCd on trees. We show that there is a simple XP-algorithm with respect to k for FCd on 
trees, which naturally extends to an XP-algorithm with respect to fen + k , where fen is the 
number of edges that need to be deleted to make the given graph a tree:

Proposition 6 FCD can be solved in nO( fen+k) time.

Proof Suppose that there is a solution (V1,… ,Vk) . As for each i ∈ [k] , Vi is connected (for 
which at least |Vi| − 1 edges are needed), the number of edges whose endpoints both lie 
in the same district is at least 

∑k

i=1
(�Vi� − 1) = n − k . Since the input graph G = (V ,E) 

has at most n + fen − 1 edges (by the definition of fen ), it follows that there are at most 
(n + fen − 1) − (n − k) = fen + k − 1 edges whose endpoints belong to different districts. 
Accordingly, in our algorithm for each edge set E′ ⊆ E of size at most fen + k − 1 , we 
verify whether (V ,E ⧵ E�) has k connected components each of which being �-fair and 
respecting the size constraints. We return yes if this is the case for some subset of edges 
and no otherwise. Overall, it takes (n + fen − 1) fen+k−1 ⋅ nO(1) = nO( fen+k) time to do so.  
 ◻

As the treewidth of a graph is upper-bounded in a function of its feedback edge number, 
we can conclude from Theorem 3 that FCd parameterized by fen + |C| is in XP. However, 
Proposition 6 leaves it open whether there is an XP-algorithm for tw + k . We answer this 
question negatively in the next subsection.

5.4  NP‑hardness for ��� = � and k = 2

Having already considered the parameters treewidth and feedback edge number, we now 
consider a third way to measure the distance from a tree, the number of vertices to delete to 
make it a tree (feedback vertex number fvn ). As tw + 1 ≤ fvn , from Theorem 3 it follows 
that there is an XP-algorithm for fvn + |C| . We now prove that FCd is NP-hard even for 
fvn = 1 and k = 2 , in contrast to the result from the previous subsection, where we gave an 
nO( fen+k)-time algorithm. Notably, this NP-hardness result also excludes the existence of an 
XP-algorithm for tw + k unless P = NP:

Theorem 4 FCD is NP-hard for fvn = 1 and k = 2 , even if smin = 1 and smax = ∞.

The rest of the section is devoted to proving the theorem. We reduce from the NP-hard 
not-all-equal 3-sat problem [46] where the input is a set X of n boolean variables and 
a set Y of m  clauses over X such that each clause y ∈ Y  contains three different literals, 
and the question is whether there exists a truth assignment to the variables in X such that 
for each clause y ∈ Y  at least one literal is set to true and at least one literal is set to false. 
Notably, given an assignment fulfilling these constraints, the assignment that assigns all 
variables in X the opposite truth value also fulfills the constraints.

The general idea of the construction is that we introduce one vertex for each literal and 
that the two districts in the solution correspond to two opposite truth assignments of the 
variables from X that are both solutions of the not-all-equal 3-sat instance.
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5.4.1  Construction

Given an instance (X = {x1,… , xn}, Y = {y1,… , ym}) of not-all-equal 3-sat, we con-
struct an instance of FCd as follows. We add a color cx

i
 for each variable xi ∈ X and a 

color cy
j
 for each clause yj ∈ Y  . In addition, we add three colors c, c′ , and c′′ . Moreover, we 

set k = 2 , � = 0 , smin = 1 , and smax = ∞ . Let Z ∶= 2 ⋅ n ⋅ m + 1.
We start the construction of the vertex colored graph G = (V ,E) by introducing two 

central vertices v⋆
1
 and v⋆

2
 of color c. We will construct the instance in a way that these two 

vertices need to lie in different districts. For each central vertex v⋆
i
 , i ∈ {1, 2} , we introduce 

3Z vertices of color c′ and 3Z vertices of color c′′ and connect them to v⋆
i
.

Subsequently, for each variable xi ∈ X , we introduce two literal vertices vi and vi of 
color c and connect both these vertices to the two central vertices. For each literal vertex 
ṽi ∈ {vi, vi} , we introduce 3Z − i vertices of color cx

i
 and connect them to ṽi (these vertices 

make sure that the two literal vertices end up in different districts). For each clause yj ∈ Y  
in which xi occurs positively, we introduce Z + j vertices of color cy

j
 and connect them to vi . 

For each clause yj ∈ Y  in which xi occurs negatively, we introduce Z + j vertices of color cy
j
 

and connect them to vi (these vertices ensure that there is no clause in which all three literal 
vertices corresponding to literals from the clause lie in the same district). See Fig. 3 for a 
visualization of the construction.

We start by showing the forward direction of the correctness of the construction.

Fig. 3  Example of the hardness reduction from Theorem  4 for the not-all-equal 3-sat 
instance X = {x

1
, x

2
, x

3
} , Y = {y

1
= {x

1
, x

2
, x

3
}, y

2
= {x

1
, x

2
, x

3
}, y

3
= {x

1
, x

2
, x

3
}} . The district marked in 

red corresponds to the solution setting x
1
 to true and x

2
 and x

3
 to false
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Lemma 7 If the given noT-All-EquAl 3-SAT instance is a yes-instance, then the constructed 
FCD instance is a yes-instance.

Proof Let X′ ⊆ X be the set of variables set to true in a solution to the given not-all-
equal 3-sat instance. From this, we construct a solution (V1,V2) to the constructed FCd 
instance as follows. We include v⋆

1
 and all leaves attached to it in V1 . Moreover, we include 

in V1 the following vertices: vi and all leaves attached to it for all xi ∈ X� and vi and all 
leaves attached to it for all xi ∈ X ⧵ X� . We include all other vertices in V2.

It is easy to verify that V1 and V2 are both connected. We will show that V1 is 0-fair. By 
symmetry, an analogous argument will show that V2 is 0-fair. First, observe that V1 contains 
exactly 3Z vertices of color c′ and 3Z vertices of color c′′ . We show that 𝜒c̃(V1) ≤ 3Z for 
every color c̃ ∈ C . For color c, we have that 𝜒c(V1) ≤ 𝜒c(V) = n + 2 < 3Z . For each varia-
ble xi ∈ X , as the two corresponding literal vertices are part of different districts, we have 
that 𝜒cx

i
(V1) = 3Z − i < 3Z . For each clause yj ∈ Y  , as X′ is a solution, either one or two 

literal vertices corresponding to literals in yj and the attached leaves are part of V1 . Thus, 
the number of vertices of color cy

j
 in V1 is either Z + j or 2Z + 2j . As Z > 2m , it follows that 

𝜒c
y

j
(V1) < 3Z . Thus, both districts V1 and V2 are 0-fair.   ◻

It remains to prove the correctness of the backward direction of the reduction. For this, 
note that the FCd instance is constructed such that the two central vertices need to end up 
in different districts and for each xi ∈ X , the two literal vertices vi and vi need to end up in 
different districts. Thus, the two districts correspond to two inverse truth assignments. Sub-
sequently, we will prove that there is no clause in which all corresponding vertices are in 
the same district. This will show that the two truth assignments induced by the two districts 
are a solution to the given not-all-equal 3-sat instance.

We start by observing that all leaves need to lie in the same district as the vertex they 
are attached to.

Observation 3 In a solution to the constructed FCd instance, all leaves attached to a ver-
tex v ∈ V  need to lie in the same district as v.

Proof If a leaf is not in the same district as its neighbor, then the leaf needs to form its own 
district. However, this is not possible, as we require each district to be 0-fair.   ◻

Next, we show that indeed the two central vertices v⋆
1
 and v⋆

2
 always lie in different 

districts.

Observation 4 The two central vertices v⋆
1
 and v⋆

2
 cannot belong to the same district in any 

solution to the constructed FCd instance.

Proof Assume that v⋆
1
 and v⋆

2
 belong to the same district. By Observation 3, the other dis-

trict V ′ needs to consist of a single literal vertex vi or vi for some xi ∈ X and all leaves 
attached to it. The most frequent color appearing in V ′ is cx

i
 which occurs 3Z − i > 2Z times 

(by the definition of Z). The second most frequent color is either cy
j
 for some j ∈ [m] occur-

ring Z + j < 2Z times or c occurring once (by the definition of Z). Thus, the district cannot 
be 0-fair.   ◻
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To prove that, for each variable, the two corresponding literal vertices need to be part of 
different districts and that not all literal vertices corresponding to literals from a clause can 
lie in the same district, we prove that neither district can contain more than 3Z vertices of 
the same color.

Lemma 8 For any solution to the constructed FCD instance, no district contains more than 
3Z vertices of the same color.

Proof Assume that there exists a solution with a district V ′ containing more than 
3Z vertices of the same color. Since V ′ is 0-fair, there are two colors q and q′ with 
𝜒q(V

�) = 𝜒q� (V
�) > 3Z . We have 𝜒c(V

�) ≤ 𝜒(V) = n + 2 < 3Z and �c� (V
�) = �c�� (V

�) = 3Z 
by Observation 4. Thus, we have q, q� ∈ {cx

i
∣ xi ∈ X} ∪ {c

y

j
∣ yj ∈ Y}.

For xi ∈ X , there are two literal vertices each of which have 3Z − i leaves of color cx
i
 

attached to it. For yj ∈ Y  , there are three literal vertices each of which have Z + j leaves of 
color cy

j
 attached to it. It follows from Observation 3 that �cx

i
(V �) ∈ {0, 3Z − i, 6Z − 2i} for 

each xi ∈ X and that �c
y

j
(V �) ∈ {0, Z + j, 2Z + 2j, 3Z + 3j} for each yj ∈ Y  . Since i ≤ n , 

j ≤ m , Z = 2 ⋅ n ⋅ m + 1 , and �q(V
�) = �q� (V

�) for q, q� ∈ {cx
i
∣ xi ∈ X} ∪ {c

y

j
∣ yj ∈ Y} , it 

needs to hold that �q(V
�) = �q� (V

�) = 0 , which contradicts 𝜒q(V
�) = 𝜒q� (V

�) > 3Z .   ◻

Recalling that 3Z − i vertices of color cx
i
 are attached to each literal vertex correspond-

ing to xi ∈ X and that 6Z − 2i > 3Z , the next observation directly follows from the previ-
ous lemma and Observation 3.

Observation 5 Let (V1,V2) be a solution of the constructed FCd instance. Then, for each 
xi ∈ X , exactly one of the two corresponding literal vertices vi and vi is part of V1 and the 
other is part of V2.

We are now ready to prove the backward direction of the correctness of our construction.

Lemma 9 If the constructed FCD instance is a yes-instance, then the given noT-All-EquAl 
3-SAT instance is a yes-instance.

Proof Let (V1,V2) be a solution to the constructed FCd instance. From Observation 5, it 
follows that for each xi ∈ X , exactly one of vi and vi is part of V1 . Let � be the truth assign-
ment induced by V1 , i.e., � sets xi to true if vi ∈ V1 and xi to false if vi ∈ V1 . We claim that 
� is a solution to the given not-all-equal 3-sat instance. Firstly, for the sake of contra-
diction, assume that there exists a clause yj ∈ C containing only literals that are satisfied 
by � . However, by Observation 3, this implies that all vertices of color cy

j
 are part of V1 , 

contradicting Lemma 8 as there exist 3Z + 3j such vertices. Secondly, for the sake of con-
tradiction, assume that yj contains no literal satisfied by � . However, by Observation 3, this 
implies that all vertices of color cy

j
 are part of V2 , contradicting again Lemma 8. Conse-

quently, � is a solution.   ◻

Observing that {v⋆
1
} is a feedback vertex set of the constructed graph and that the con-

struction can be computed in polynomial time, Theorem 4 follows directly from Lemma 7 
and Lemma 9

From our reduction, we can further conclude that FCd is also para-NP-hard with respect 
to the treewidth plus the number k of districts.
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Corollary 7 FCD is NP-hard for tw = 2 and k = 2 , even if smin = 1 and smax = ∞.

6  FCD on graphs of bounded vertex cover number

Motivated by our hardness results for graphs with constant treewidth, we now turn to the 
size vcn of a minimum vertex cover, a parameter never smaller than the treewidth. In this 
section, we present two parameterized algorithms, namely, an XP-algorithm for vcn and an 
FPT-algorithm for vcn + |C| . Unfortunately, we were unable to settle whether FCd param-
eterized by vcn is W[1]-hard or fixed-parameter tractable. In contrast, we develop an FPT-
algorithm for the number of vertices with degree at least two (a parameter which is never 
smaller than vcn).

Both algorithms for vcn rely on the following lemma.

Lemma 10 Let S be a vertex cover of minimum size and V = (V1,… ,Vk) a solution to an 
FCD instance on a graph G. There are at most vcn districts in V that contain at least one 
vertex from S. Moreover, for every Vi ∈ V with S ∩ Vi ≠ � , there is a set Ji ⊆ Vi⧵S of at 
most |S ∩ Vi| − 1 vertices such that G[(S ∩ Vi) ∪ Ji] is connected.

Proof As each vertex is only contained in one district, the first part of the lemma follows 
from the definition of vcn . To prove the second part, fix some Vi ∈ V . Consider a mini-
mum spanning tree T = (Vi,F) of G[Vi] . Let Ji ⊆ Vi ⧵ S be the set of vertices of degree 
at least two in T. Let T � ∶= ((S ∩ Vi) ∪ Ji,F

�) be the result of deleting from T each ver-
tex v ∈ Vi ⧵ (S ∪ Ji) along with an edge incident to it. Observe that T ′ is connected and 
thus G[(S ∩ Vi) ∪ Ji] is connected, which contains T ′ as a subgraph. We show that 
|Ji| ≤ |S ∩ Vi| − 1 . As by the definition of Ji vertices from Ji are only adjacent to verti-
ces from S ∩ Vi and as every vertex from Ji has degree at least two in T and T ′ , we have 
|F′| ≥ 2|Ji| . We also have |F�| = |S ∩ Vi| + |Ji| − 1 since T ′ is a tree. Thus, we have 
|Ji| ≤ |S ∩ Vi| − 1 .   ◻

We first show that FCd parameterized by vcn is in XP using the following approach: We 
first guess how the vertex cover is partitioned into districts in the sought solution, which 
gives partial (not necessarily connected) districts. For every partial district, we then guess 
some vertices outside the vertex cover to include such that the partial district becomes con-
nected, the two most frequent colors, and how often they occur in the resulting district. 
The remaining problem can be reduced to the polynomial-time solvable (g ,   f)-FaCtor 
problem [25].

Theorem 5 FCD is solvable in nO( vcn ) time.

Proof Suppose there is a solution V = (V1,… ,Vk) to the given FCd instance. Let S be a 
vertex cover of minimum size and let I = V ⧵ S be the vertices outside the vertex cover. 
As in the proof of Theorem 6, our algorithm first tries all possibilities to fix some struc-
ture with respect to S. Then, we will construct an instance of the polynomial-time solv-
able (g ,  f)-FaCtor problem, which generalizes MaXiMuM MatChing, for each choice of the 
following:
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• An integer k� ≤ min(k, vcn ) . If � = 0 or smin ≥ 2 , then we consider only one choice for 
k′ , namely k� = k.

• A partition of S into k′ non-empty subsets S1,… , Sk� . There are at most vcn vcn such par-
titions.

• For every i ∈ [k�] , a set Ji ⊆ I of at most |Si| − 1 vertices such that G[Si ∪ Ji] is con-
nected and Ji ∩ Ji� = � for i ≠ i� ∈ [k�] . We can assume that |Ji| ≤ |Si| − 1 vertices are 
sufficient to make G[Si] connected by Lemma 10. The number of choices for Ji is at 
most 

∏
i∈[k�] n

�Si�−1 ≤ n vcn.
• For every i ∈ [k�] , a pair (ci, c�i) of colors, which have the largest numbers of occur-

rences in the sought Vi among all colors. There are at most |C|2 vcn choices for all pairs 
of colors.

• For every i ∈ [k�] , the numbers zci , zc′i of occurrences of color ci and c′
i
 , respectively, 

with zci − � ≤ zc�
i
≤ zci . Since zci ≤ n and zc′

i
≤ n , there are at most n2 vcn choices.

Since |C| ≤ n , there are at most nO( vcn ) choices. Let I� = I⧵
⋃

i∈[k�] Ji . Now the question is 
whether we can partition the vertices V into k districts (V1,… ,Vk) such that, for i ∈ [k�, k] , 
Vi consists of a single vertex from I′ , and for i ∈ [k�] , Si ∪ Ji ⊆ Vi , G[Vi] is connected, 
|Vi| ∈ [smin, smax] , �ci

(Vi) = zci , �c�
i
(Vi) = zc�

i
 and �c(Vi) ≤ �c�

i
(Vi) for all c ∈ C ⧵ {ci} . We 

reject the current combination, if for some i ∈ [k�] 𝜒ci
(Si ∪ Ji) > zci , 𝜒c�

i
(Si ∪ Ji) > zc�

i
 , 

𝜒c(Si ∪ Ji) > zc�
i
 for some c ∈ C⧵{ci} , or |Si ∪ Ji| > smax . Otherwise, to decide whether it is 

possible to distribute the vertices I′ to construct a partition respecting the above-described 
properties, we reduce to (g ,  f)-FaCtor, where given a graph H = (U,F) and two functions 
g, f ∶ V ↦ ℕ , the question is whether there is a subgraph H� = (U,F�) with F′ ⊆ F such 
that every vertex has at least g(v) and at most f(v) neighbors in H′.

We construct a bipartite graph H and f, g as follows. The left bipartition of H consists of 
all vertices v ∈ I� . For every i ∈ [k�] , we add the following vertices to the right bipartition:

• For each color c ∈ {ci, c
�
i
} , we add zc − �c(Si ∪ Ji) vertices (call them Ai ) and connect 

them via edges to all vertices v ∈ I� having color c in G which have at least one neigh-
bor in Si in G.

• For each color c ∈ C ⧵ {ci, c
�
i
} , we add zc�

i
− �c(Si ∪ Ji) vertices (call them Bc

i
 ) and con-

nect them via edges to all vertices v ∈ I� having color c in G which have at least one 
neighbor in Si in G. Let Bi ∶=

⋃
c∈C⧵{ci,c

�
i
} B

c
i
.

If smin = 1 , then we add a set A′ of k − k� vertices to the right bipartition and con-
nect them via edges to all vertices of I′ . For every vertex v introduce thus far, let 
f (v) = g(v) = 1 . Finally, for every i ∈ [k�] , add a vertex vi to the left side and let 
f (vi) = |Bi| −max(0, smin − |Ai ∪ Si ∪ Ji|) and g(vi) = |Bi| − smax + |Ai ∪ Si ∪ Ji| (if it does 
not hold that 0 ≤ g(vi) ≤ f (vi) , then we continue with the next combination). We connect vi 
to all vertices from Bc

i
.

If the constructed (g, f)-FaCtor instance is a yes-instance, we return yes; otherwise, we 
continue with the next combination. To see why the algorithm works correctly, suppose 
that there is a subgraph H� = (U,F�) of H such that the degree of every vertex v in H′ is 
in the range [g(v), f(v)]. From H′ , we can construct a solution of the given FCd instance 
by putting each vertex v ∈ I� into the district corresponding to the neighbor of v in H′ (if 
smin = 1 , then every vertex adjacent to some vertex from A′ forms a district of its own). 
Moreover, for all i ∈ [k�] , we add Si ∪ Ji to Vi . As all vertices from I′ have one neighbor in 
H′ , each vertex from I′ is assigned to a district. As all vertices from A have one neighbor in 
H′ , for i ∈ [k�] , it holds that �ci

= zci and �c�
i
= zc�

i
 and thus that the resulting districts are �
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-fair. Moreover, the number of neighbors of vi in H′ is between |Bi| − smax + |Ai ∪ Si ∪ Ji| 
and |Bi| −max(0, smin − |Ai ∪ Si ∪ Ji|) , implying that there are at least smin − |Ai ∪ Si ∪ Ji| 
and at most smax − |Ai ∪ Si ∪ Ji| vertices in Bi that adjacent to some vertex from I′ . Thus, 
the size of each district is in [smin, smax] .   ◻

Recall that FCd is NP-hard and W[1]-hard with respect to |C| + k on trees with diam-
eter four (Corollary 5). In contrast to this, since a tree of diameter at most three has a vertex 
cover of size at most two, by Theorem 5, the following holds.

Corollary 8 FCD is polynomial-time solvable on trees with diameter at most three.

Recall that we have shown in Corollary 5 that FCd is NP-hard on trees with diameter 
four.

Using a similar approach as for Theorem 5, we show that FCd is fixed-parameter trac-
table with respect to vcn + |C| . The overall idea is the following: We guess the partition of 
the vertex cover into the districts. We categorize vertices outside the vertex cover accord-
ing to their neighborhood and color. We formulate the resulting problem as an ILP whose 
number of variables only depends on vcn + |C| . Subsequently we employ Lenstra’s FPT-
algorithm for ILPs [30, 36] to obtain the following:

Theorem 6 FCD parameterized by vcn + |C| is fixed-parameter tractable.

Proof Suppose there is a solution V = (V1,… ,Vk) . Let S be a vertex cover of minimum 
size. Then the vertices I = V⧵S that are not part of the vertex cover form an independent 
set. Let k′ be the number of districts in V that contain at least one vertex of S. By Lemma 
10, we have k′ ≤ vcn . Assume without loss of generality that exactly for every i ∈ [k�] , 
Si ≠ ∅ where Si = S ∩ Vi . Then, for every i ∈ {k� + 1,… , k} , we have Vi = {v} where v is 
some vertex from I.

We say that a vertex v ∈ I has type (c, X) for c ∈ C and X ⊆ S if the color of v in G is 
c and its neighborhood is X. Let T  denote the set of all types (note that |T| = 2vcn

⋅ |C| ). 
For type T ∈ T  , let nT be the number of vertices of type T, and for type T with nT > 0 let 
vT ∈ I be an arbitrary vertex of type T. Our algorithm will construct an ILP instance for 
each choice of the following:

• An integer k′ ≤ vcn . If � = 0 or smin > 1 , then we consider only one choice for k′ , 
namely k� = k.

• A partition of S into non-empty subsets S1,… , Sk� . There are at most vcn vcn such parti-
tions.

• For every i ∈ [k�] , a set Ti of at most |Si| − 1 types such that G[Si ∪ Ji] is connected for 
Ji = {vT ∣ T ∈ Ti} . If |{i ∣ T ∈ Ti}| > nT for some T ∈ T  , then we reject the current 
combination. Note that we can assume that |Ti| ≤ |Si| − 1 vertices are sufficient to make 
G[Si] connected by Lemma 10. As there are at most 2vcn

⋅ |C| types, the number of 
choices for all Ti is at most 

∏
i∈[k�](2

vcn
⋅ �C�)�Si�−1 ≤ 2vcn 2

⋅ �C� vcn.
• For every i ∈ [k�] , a pair (ci, c�i) of colors, which have the largest numbers of occur-

rences in Vi among all colors. In the sought solution it holds that �ci
(Vi) ≥ �c�

i
(Vi) . 

There are at most |C|2 vcn choices for all pairs of colors.
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To decide on the distribution of the vertices from I, we now construct an ILP. For the ILP 
formulation, we introduce an integer variable xi,T for each i ∈ [k�] and T ∈ T  . The variable 
xi,T will indicate the number of vertices of type T that we put in Vi . Clearly, there are at 
most nT vertices for each type T ∈ T  that belong to one of V1,…Vk�:

Then for every i ∈ [k�] and T ∈ Ti , at least one vertex of type T is included in Vi to satisfy 
our previous guesses:

Further for every i ∈ [k�] , only vertices from I that are adjacent to a vertex from Si can be 
part of Vi . Thus, for all types T = (c,X) ∈ T  with X ∩ Si = � it holds that:

Moreover, there are exactly k − k� vertices which are contained in none of V1,… ,Vk� as 
they form their own districts:

For i ∈ [k�] and c ∈ C , let ni,c be the number of vertices of color c in Vi:

For every i ∈ [k�] , the following two constraints will ensure that the district Vi is �-fair.

Finally, for every i ∈ [k�] , the following imposes the size constraints:

For the running time, observe that we construct at most 2O( vcn 2)
⋅ |C| vcn ILP instances. 

Since each ILP instance uses at most vcn ⋅ 2vcn
⋅ |C| variables, it can be solved in 

f ( vcn + |C|) ⋅ nO(1) time for some computable function f due to a result of Lenstra [30, 
36].   ◻

It remains open whether FCd is fixed-parameter tractable or W[1]-hard with respect 
to vcn . However, we can prove fixed-parameter tractability with respect to the number of 
vertices with degree at least two. Neglecting connected components consisting of two ver-
tices, the set of vertices with degree at least two is always also a vertex cover; therefore, 
this parameter upper-bounds the vertex cover number in connected graphs on at least three 
vertices. The idea of the algorithm is to guess the partitioning of the degree-two vertices 
into the districts. Then, for each of these districts, there exists a set of degree-one vertices 
where each of these vertices either belongs to the district or needs to form its own. Lastly, 
we can distribute the degree-one vertices using Proposition 4.

∑

i∈[k�]

xi,T ≤ nT .

xi,T ≥ 1.

xi,T = 0.

∑

T∈T

(
nT −

∑

i∈[k�]

xi,T

)
= k − k�.

ni,c = 𝜒c(Si) +
∑

T∈T with T=(c,X) for some X⊆S

xi,T .

ni,c�
i
≤ ni,ci ≤ ni,c�

i
+ �, and ni,c�

i
≥ ni,c for all c ∈ C ⧵ {ci}.

smin ≤
∑

c∈C

ni,c ≤ smax.
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Proposition 7 Let p be the number of vertices with degree at least two. FCD is solvable in 
O(pp ⋅ k ⋅ n) time.

For the sake of simplicity, we assume that the graph does not contain connected com-
ponents of size two (we can deal with them easily separately). Let X ⊆ V  be the set of ver-
tices with degree at least two and Y = V ⧵ X be the set of degree-one vertices. We iterate 
over all combinations of the following:

• An integer k′ ≤ k . If � = 0 or smin > 1 , then we only consider k� = k.
• A partition of X into k′ non-empty subsets X1,… ,Xk� . There are at most pp such parti-

tions.

For i ∈ [k�] , let Yi ⊆ Y  be the set of vertices from Y that are adjacent to a vertex from Xi . 
If � = 0 or smin > 1 , then k� = k and hence we accept if ( X1 ∪ Y1,… ,Xk ∪ Yk ) is a solution 
and otherwise continue with the next combination.

Otherwise, we put all vertices from Xi in district Vi . Each vertex v ∈ Yi is either part of Vi 
or forms its own district. Thereby, for each i ∈ [k�] , we know by applying Proposition 4 an 
interval [�i, �i] for the number of �-fair districts respecting the size constraints in which the 
vertices Xi ∪ Yi can be partitioned or we know that no solution exists (in this case, we con-
tinue with the next combination). We now check whether the given k lies between 

∑
i∈[k�] �i 

and 
∑

i∈[k�] �i and return the answer.
As there exist pp partitions of X, the running time of the algorithm is O(pp ⋅ k ⋅ n).

7  Conclusion

We initiated a thorough study of the NP-hard Fair ConneCted distriCting (FCd) prob-
lem. We considered FCd on specific graph classes and analyzed the parameterized com-
plexity of FCd with a focus on the number of districts, the number of colors, and various 
graph parameters. We have shown that while FCd can be solved on simple graph classes in 
polynomial time (mostly using approaches based on dynamic programming), on trees it is 
already NP-hard and W[1]-hard with respect to the combined parameter number of colors 
plus number of districts. Nevertheless, for graph parameters such as the vertex cover num-
ber and the max leaf number, we developed XP-algorithms.

As to challenges for future research, we left open whether FCd is fixed-parameter trac-
table or W[1]-hard with respect to the vertex cover number or max leaf number. The former 
question is particularly intriguing because it is related to an open question of Stoica et al. 
[48] on the parameterized complexity of Fair regrouping with respect to the number of 
districts (which has been very recently partly solved by Boehmer and Koana [10]): Recall 
that the input of Fair regrouping is additionally endowed with a function f ∶ V → 2[k] 
with the requirement that every vertex v ∈ V  should belong to district Vi for some i ∈ f (v) 
(and that the connectivity requirement is dropped). Consider the FCd instance on the 
bipartite graph with bipartition (V, [k]), where there is an edge between i ∈ [k] and v ∈ V  
if and only if i ∈ f (v) . The vertex cover number of this graph is at most the number k of 
districts. Under certain constraints, FCd on this graph becomes essentially equivalent 
to Fair regrouping. Thus an algorithm for the vertex cover number for FCd would also 
shine further light on the complexity of Fair regrouping with respect to the number of 
districts. The latter question concerning the max leaf number is interesting because FCd 
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could turn out to be one of few problems that are in XP yet W[1]-hard with respect to the 
max leaf number. It would be also promising to consider additional graph parameters (such 
as cliquewidth, treedepth or sparsity related parameters like the maximum degree or the 
degeneracy) or to examine further graph classes (such as grids).

From a broader perspective, there are several natural extensions of FCd. For instance, 
as already suggested by Stoica et al. [48], there may be a function that specifies for each 
vertex a set of districts to which the vertex can belong.6 While all our hardness results still 
hold for this more complicated setting, it is open which of our algorithmic results can be 
adapted. Moreover, we did not study the generalization of FCd where each vertex has an 
integer weight for each color (such a study has been done in the context of gerrymander-
ing by Cohen-Zemach et al. [15] and Ito et al. [29]). Weighted FCd is motivated by the 
following application scenarios: First, in some settings we might be restricted to put a cer-
tain group of agents always in the same district (those can be combined into one vertex). 
Second, if each vertex represents a voter and the colors represent alternatives, then voters 
might want to give points to different alternatives (such as done in the context of positional 
scoring rules).

Lastly, one can modify the definition of FCd. For instance, as done, among others, by 
Lewenberg et al. [38] and Eiben et al. [20] in the context of gerryMandering and, among 
others, by Lu et  al.  [39] and Fotakis and Tzamos  [24] in the context of facility location 
problems, instead of placing agents on a social network, the agents may be placed in a met-
ric space. The task is then to place k ballot boxes in the space where each agent is assigned 
to the closest ballot box. The goal is again to make the resulting districts as fair as possible.

Appendix

Proof of proposition 4

proposition 4  (★ ). Let (G = (X ∪ Y ,E),C, col, k,�, smin, smax) be an FCd instance where 
G is a star with center vertex v ∈ X . Then, one can decide in linear time whether there is 
a partition of X ∪ Y  into k connected �-fair districts respecting smin and smax such that all 
vertices from X are part of the same district.

Proof In the following, we call a partition of the vertices in X ∪ Y  into k connected districts 
a solution if each district is �-fair, respects the size constraints, and all vertices from X 
are part of the same district to which we refer as the center district. Note that each solu-
tion consists of the center district and several districts consisting of a single vertex from Y. 
Hence, we may assume that smin = 1 . (For smin ≥ 2 , we can immediately conclude that 
there is no solution unless k = 1 , X ∪ Y  is �-fair, and |X ∪ Y| ∈ [smin, smax] .) We may also 
assume that |X| ≤ smax . We now describe a linear-time algorithm that decides whether a 
given FCd instance admits a solution.

6 However, it seems that in most applications where connectivity plays a crucial rule districts are “isomor-
phic” to each other, i.e., districts do not carry any particular meaning; for instance, when dividing a city into 
voting districts or people placed on a social network into teams for a competition. Thus, a priori, it is irrel-
evant for a vertex in which district it is put.
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We start with several special cases: For � = 0 , a solution exists if and only if 
MOV(X ∪ Y) = 0 , k = 1 , and |X ∪ Y| ≤ smax . If |C| = 1 , then all solutions containing k dis-
tricts are isomorphic, i.e., they contain k − 1 districts containing a single vertex and a sin-
gle district containing the remaining vertices. Thus, the given instance admits a solution if 
and only if |Y| ≥ k − 1 , � ≥ |Y ∪ X| − (k − 1) , and |Y ∪ X| − (k − 1) ≤ smax.

Let c1 ∈ C be the most frequent color in X ∪ Y  and c2 ∈ C be the second most frequent 
color in X ∪ Y  . If 𝜒c1

(X) > 𝜒c2
(X ∪ Y) + � , then the given instance has no solution because 

the center district cannot be �-fair.
Having dealt with several special cases separately, we now present a precise char-

acterization of yes-instances assuming that |C| > 1 , � > 0 , smin = 1 , |X| ≤ smax , and 
�c1

(X) ≤ �c2
(X ∪ Y) + � . Let c⋆

1
 be the most frequent color in X. Further, let c⋆

2
≠ c⋆

1
 

be the most frequent color in X among colors c′ such that 𝜒c� (X ∪ Y) ≥ 𝜒c⋆
1
(X) − � . 

Note that c⋆
2
 is always well-defined. If c⋆

1
≠ c1 , then by the definition of c1 it holds that 

𝜒c1
(X ∪ Y) ≥ 𝜒c⋆

1
(X ∪ Y) > 𝜒c⋆

1
(X) − � . On the contrary, if c⋆

1
= c1 , then, by our assump-

tion that �c1
(X) ≤ �c2

(X ∪ Y) + � , we have 𝜒c2
(X ∪ Y) ≥ 𝜒c⋆

1
(X) − �.

Let bl ∶= max(0,�c1
(X ∪ Y) − �c2

(X ∪ Y) − �) and bu ∶= max(0,𝜒c⋆
1
(X) − � − 𝜒c⋆

2
(X)) . 

Then, there is a solution if and only if k ∈ [bl + 1, |Y| + 1 − bu] and k > |X| + |Y| − smax.
We first prove the forward direction, i.e., that the existence of a solution implies that 

k ∈ [bl + 1, |Y| + 1 − bu] and k > |X| + |Y| − smax . For any solution, the center district 
contains at most �c2

(X ∪ Y) + � vertices of color c1 (otherwise it cannot be �-fair). Thus, 
at least �c1

(X ∪ Y) − �c2
(X ∪ Y) − � vertices of color c1 have to be part of a non-center 

district, which implies that k > bl . Next, we show that k ≤ |Y| + 1 − bu . The center district 
has at least 𝜒c⋆

1
(X) vertices of color c⋆

1
 . Since the center district is �-fair, it has at least 

𝜒c⋆
1
(X) − � vertices of color c for some color c ∈ C ⧵ {c⋆

1
} . As only �c(X) of the 𝜒c⋆

1
(X) − � 

vertices come from X, it follows that there are at least 𝜒c⋆
1
(X) − � − 𝜒c(X) vertices of 

color c from Y that are included in the center district. As c⋆
2
 is the most frequent color in 

X among all colors occurring at least cc⋆
1
(X) − � times, it follows that 𝜒c⋆

1
(X) − � − 𝜒c⋆

2
(X) 

minimizes the expression from the previous sentence. Using this, we can conclude that 
k ≤ |Y| + 1 − bu . Finally, we show that k > |X| + |Y| − smax . Since the center district con-
tains at most smax vertices, at least |X| + |Y| − smax vertices are not part of the center dis-
trict, which implies that k > |X| + |Y| − smax.

We now prove the backward direction, i.e., that k ∈ [bl + 1, |Y| + 1 − bu] 
and k > |X| + |Y| − smax imply the existence of a solution. First, we show that if 
k ∈ [bl, |Y| + 1 − bu] , ignoring the size constraints, a solution always exists. We do this 
by first constructing two “extreme” solutions where as many or as few vertices as possible 
are contained in the center district. Recall that by our assumption �c1

(X) ≤ �c2
(X ∪ Y) + � . 

So we have �c1
(Y) = �c1

(X ∪ Y) − �c1
(X) ≥ �c1

(X ∪ Y) − �c2
(X ∪ Y) − � , and hence 

�c1
(Y) ≥ bl . A solution consisting of bl + 1 districts exists: Put all vertices from  X ∪ Y  

in one district and move bl vertices of color c1 from Y each in their own district (this is 
always possible by our above observation). Let S be the center district in this solution. S 
is �-fair, as �c1

(S) ≥ �c2
(S) , �c1

(S) = �c1
(X ∪ Y) − bl ≤ �c2

(X ∪ Y) − � = �c2
(S) − � , and 

�c2
(S) ≥ �c(S) for all c ∈ C⧵{c1} . A solution consisting of |Y| + 1 − bu districts is also 

guaranteed to exist: Put the vertices of X and bu vertices of color c⋆
2
 from Y into the center 

district; put all remaining vertices from Y into their own district. Let S′ be the center district 
in this solution. S′ is �-fair, as 𝜒c⋆

1
(S) − � = 𝜒c⋆

1
(X) − � ≤ 𝜒c⋆

2
(X) + bu = 𝜒c⋆

2
(S) ≤ 𝜒c⋆

1
(S) . 

Note that from these two solutions, we can construct a solution consisting of k districts for 
arbitrary k ∈ [bl + 1, |Y| + 1 − bu] . For this, we start with the first solution and one by one 
move vertices from Y ∩ (S ⧵ S�) from the center district into their own district while main-
taining that the center district is �-fair. Such a vertex always exists: If there is a vertex v of 
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the most frequent color of the center district in Y ∩ (S ⧵ S�) , then we move v from S into its 
own district (removing v only increases the margin of victory by one if the center district 
is currently 0-fair and we have � > 0 ). Otherwise, we remove the remaining vertices from 
Y ∩ (S⧵S�) in an arbitrary order and put each into its own district (doing so results in an �
-fair center district, since otherwise S′ would not be �-fair). If k > |X| + |Y| − smax , then 
the above constructed solution for this k satisfies the size constraints as it consists of a 
center district containing |X| + |Y| − (k − 1) ≤ smax vertices where the inequality holds by 
our observation on k.   ◻

Proof of theorem 3

Theorem 3 ( ★ ). FCd can be solved in O(nO( tw ⋅|C|)) time.

Proof Suppose that we are given an instance I = (G,C, col, k,�, smin, smax) of FCd admit-
ting a solution V = {V1,… ,Vk} . Let (T = (VT ,ET ), {Bx}x∈VT

) be a tree decomposition of 
G.

For x ∈ VT , let Gx be the graph whose vertices and edges are those introduced in a node 
from the subtree of T rooted at x. Further, let Ux be the set of vertices in Gx . Our algorithm 
employs a dynamic programming method that traverses T from bottom to top.

Observe that each district Vi ∈ V from the solution is of one of the following three types 
with respect to each x ∈ VT : 

 (i) Vi ∩ Bx ≠ � , i.e., the district Vi overlaps with the vertices in the bag of x.
 (ii) Vi ∩ Bx = � and Vi ⊆ Ux , i.e., the district Vi is disjoint from Bx but fully contained in 

vertices from bags from the subtree rooted at x.
 (iii) Vi ∩ Bx = � and Vi ⊆ V⧵Ux , i.e., the district Vi is disjoint from Bx and does not contain 

any vertex occurring in a bag from the subtree rooted at x.

These three cases are exhaustive, as by definition of the tree decomposition, for each 
vertex, all nodes in which bags the vertex appears form a connected subgraph in T. Note 
that for each district Vi ∈ V of type (i), the induced subgraph Gx[Vi] can have multiple 
connected components, in which case G[Vi] includes some vertices or edges not in Gx.

For each x ∈ VT , we keep track of the following information: 

(1) the intersection of Bx and every Vi ∈ V of type (i),
(2) the intersection of Bx with the connected components of the subgraph Gx[Vi] for all 

districts Vi ∈ V of type (i),
(3) the number of occurrences of color c for every color c ∈ C in Vi ∩ Ux for every district 

Vi ∈ V of type (i), and
(4) the number of districts of type (ii).

We capture this information in the following variables: For each x ∈ VT , let (1) B be 
a partition of Bx , (2) D be a partition of Bx where each subset from D is contained in 
a subset of B , (3) � ∶ B → ℕ

|C| be some function, and (4) � ∈ ℕ be some integer with 
� ≤ k.



Autonomous Agents and Multi-Agent Systems (2023) 37:13 

1 3

Page 33 of 37 13

On an intuitive level, moving in the tree from the bottom to the top, we keep track of 
the number of “completed” districts (type (ii) districts). Moreover, for each “unfinished” 
district (type (i) district), we store its current color distribution (and thereby implicitly its 
current size of so far added vertices), and how the vertices from the current bag are distrib-
uted to the unfinished districts. Also, for each unfinished district, we keep track of which of 
its vertices from the current bag are already connected over vertices that have been added 
to the district and edges that have been introduced in the respective subtree. It is necessary 
to keep track of the connectivity of vertices from one district (stored in D ), as we need this 
information to ensure that we make the district connected by adding further vertices and 
edges to it further up in the tree. Moreover, we cannot directly infer it from B , as we cannot 
remember all vertices put in the districts so far.

It remains to formally describe the dynamic program we use. For all combina-
tions of the variables B , D , � , and � , we compute Ax(B,D, � , �) ∈ {0, 1} such that 
Ax(B,D, � , �) = 1 if and only if there is a partition of the vertices Ux into exactly |D| + � 
subsets (W1,… ,W|D|+�) with the following properties:

• For every i ∈ [|D| + �] , Gx[Wi] is connected.
• Exactly � subsets from (W1,… ,W|D|+�) are disjoint from Bx . Moreover, all of them 

are �-fair and respect the size constraints.
• For every subset Wi intersecting Bx , it holds that Wi ∩ Bx ∈ D.
• For every B ∈ B , it holds that � (B) =

∑
i∈[�D�+�],Wi∩B≠�

�(Wi).

From the subsets in the partitioning (W1,… ,W|D|+�) , � are �-fair connected districts of 
type (ii) with respect to x. The other |D| subsets are partly contained in Bx and restricted 
to Bx form the partition D describing the intersection of Bx with the connected compo-
nents of Gx[Vi] for districts Vi of type (i). Note that some of these |D| subsets may end up 
in the same district in the solution. Moreover, assuming that B corresponds to the inter-
sections of Bx and districts of type (i), it needs to hold that for each set in the intersec-
tion B ∈ B , � (B) is the distribution of colors in the union of all subsets Wi intersecting 
with B (these are the subsets that will finally end up being one district in the solution).

Observe that a given instance of FCd is a yes-instance if and only if there exists a parti-
tion Br of Br for the root r of T and a function �r such that for all B ∈ Br , �r(B) is �-fair and 
its L1-norm is in the range [smin, smax] and Ar(Br,Br, �r, k − |Br|) = 1.

We compute Ax(B,D, � , �) by traversing the nodes VT of the tree T from bottom to top. 
Depending on the type of the current node x ∈ VT , we apply one of the following five 
cases. In the following, let y ∈ VT (and z ∈ VT ) be the child node(s) of x if x has one (two) 
child node(s) in T.

Leaf node x.
For a leaf node x with Bx = {v} , we have Ax({v}, {v}, � , 0) = 1 if and only if 

� ({v}) = �({v}).
Introduce vertex v node x.
Note that v is isolated in Gx . Thus, Ax(B,D, � , �) = 0 if {v} is not contained in D . Oth-

erwise we have

where B
� = (B⧵{B}) ∪ {B⧵{v}} for B ∈ B with v ∈ B ( B� = B⧵{B} if B = {v} ), 

D
� = D ⧵ {{v}} , and � �(B�) = � (B) − �({v}) if B� = B⧵{v} (we assume that � �(�) is a zero 

vector here) and � �(B�) = � (B�) otherwise.

Ax(B,D, � , �) = Ay(B
�,D�, � �, �),
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Introduce edge {u, v} node x.
If u and v belong to distinct subsets of B , then we have Ax(B,D, � , �) = Ay(B,D, � , �) . 

We also have the same recurrence if u and v belong to the same subset of D . This is 
because in both cases the connected components of districts of type (i) in Gx do not change. 
Otherwise, we have

where 
⋁

 is over all partitions D′ of By from which D can be obtained by removing 
Du,Dv ∈ D

� with u ∈ Du and v ∈ Dv from D′ and adding Du ∪ Dv to D′.
Forget v node x.
We have two cases. In the first case, the district Vi ∈ V to which v belongs does not 

intersect Bx . This implies that Vi is now fully contained in Gx and becomes a district of type 
(ii). Then {v} should have been part of B and D for child y. Let us define

where 
⋁

 is over all functions � ′ such that � �(B) = � (B) for all B ∈ B , MOV(� �({v})) ≤ � , 
and smin ≤

∑
c∈C �

�
c
({v}) ≤ smax . Note that we also need to decrease � , as Vi is an additional 

district of type (ii) for the node x. In the other case, the district in which v is contained 
intersects Bx . In this case, it holds that

where 
⋁

 is over all partitions B′ and D′ of By such that B� = (B ⧵ {B}) ∪ (B ∪ {v}) 
and D� = (D⧵{D}) ∪ (D ∪ {v}) for some B ∈ B and D ∈ D . All in all, we have 
Ax(B,D, � , �) = A1

x
(B,D, � , �) ∨ A2

x
(B,D, � , �).

Join node x.
Note that two vertices u,w ∈ D for some D ∈ D can reach each other in Gx via connec-

tions in Gy and Gz . So we have

Here, 
⋁

 is over all Dy,Dz, �y, �z, �y, �z such that all the following hold:

• D are the connected components of the graph whose vertex set is Bx and edge set is 
{{u,w} ∣ (∃Dy ∈ Dy ∶ u,w ∈ Dy) ∨ (∃Dz ∈ Dz ∶ u,w ∈ Dz)}.

• �y(B) + �z(B) = � (B) − �(B) for every B ∈ B.
• �y + �z = �.

Now we examine the running time. Note that there are twO( tw ) partitions of Bx for every 
node  x of T. Since � (B) ∈ {0,… , n}|C| for every B ∈ Bx and x ∈ VT , there are at most 
nO( tw ⋅|C|) states for � . It is easy to see that the computation of all values takes nO( tw ⋅|C|) 
time.   ◻

Ax(B,D, � , �) = Ay(B,D, � , �) ∨
⋁

D�

Ay(B,D
�, � , �),

A1
x
(B,D, � , �) =

⋁

� �

(Ay(B ∪ {{v}},D ∪ {{v}}, � �, � − 1)),

A2
x
(B,D, � , �) =

⋁

B�,D�

Ay(B
�,D�, � , �),

Ax(B,D, � , �)

=
⋁

Dy ,Dz,�y,�z ,�y,�z

Ay(B,Dy, �y, �y) ∧ Az(B,Dz, �z, �z).
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