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Abstract
How to form effective coalitions is an important issue in multi-agent systems. Coalition 
Structure Generation ( ��� ) is a fundamental problem whose formalization can encom-
pass various applications related to multi-agent cooperation. ��� involves partitioning a 
set of agents into coalitions such that the social surplus (i.e., the sum of the values of all 
coalitions) is maximized. In traditional ��� , we are guaranteed that all coalitions will be 
successfully established, that is, the attendance rate of each agent for joining any coalition 
is assumed to be 1.0. Having the real world in mind, however, it is natural to consider the 
uncertainty of agents’ availabilities, e.g., an agent might be available only two or three 
days a week because of his/her own schedule. Probabilistic Coalition Structure Generation 
( ���� ) is an extension of ��� where the attendance type of each agent is considered. The 
aim of this problem is to find the optimal coalition structure which maximizes the sum of 
the expected values of all coalitions. In ���� , since finding the optimal coalition structure 
easily becomes intractable, it is important to consider approximation algorithms, i.e., to 
consider a trade-off between the quality of the returned solution and tractability. In this 
paper, a formal framework for ���� is introduced. Approximation algorithms for ���� 
called Bounded Approximation Algorithm based on Attendance Types ( ����� ) and 
Involved ����� ( ������ ) are then presented. We prove a priori bounds on the quality 
of the solution returned by ����� and ������ with respect to the optimum and perform 
experimental evaluations on a number of benchmarks.
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1  Introduction

Coalition Structure Generation ( ��� ) [1, 18, 23] is a key issue for various applications 
related to multi-agent cooperation, e.g., distributed vehicle routing [25], waste-water treat-
ment system [7], forming rescue groups in disaster areas [30] and multi-sensor networks 
[5]. ��� involves partitioning a set of agents into coalitions (where each coalition is a sub-
set of the available set of agents) such that the social surplus is maximized. A partition is 
also called a coalition structure. In traditional ��� , the value of a coalition is assumed 
to be given by a black box function called the characteristic function, and the value of a 
coalition structure is provided by the sum of the values of all coalitions. It is well-known 
that the ��� problem is equivalent to the complete set partitioning problem [33]. Various 
sophisticated algorithms have been proposed for the ��� problem, for instance, an any-
time algorithm with a worst-case guarantee [24], a dynamic programming based algorithm 
[33], search/dynamic programming based anytime algorithms [19, 22, 27], and a hybrid 
algorithm called ODP-IP which is a state-of-the-art algorithm that works by combining 
dynamic programming and anytime algorithms [14].

Let us consider the following simple scenario. There is a service company dispatch-
ing interpreters with three employees, Ali, Bob and Chan. Now, this service company has 
received seven job requests for simultaneous interpretation, each requiring some specific 
language skills. Table 1 shows the rewards of each job request.

Assume that you are the manager of this service company and want to assign employees 
to jobs such that the sum of the rewards is maximized. Then, this problem can be repre-
sented as an instance of the ��� problem. If you assign three employees Ali, Bob and Chan 
to job requests 1, 2 and 3 separately, the sum of the rewards obtained by the coalition struc-
ture {{Ali}, {Bob}, {Chan}} is $20 + $50 + $10 = $80 . When you assign Ali to request 1, 
and Bob and Chan to request 6, the social surplus is maximized. In this case, the coalition 
structure is {{Ali}, {Bob,Chan}} and the service company earns $20 + $100 = $120.

In what follows, we are interested in the uncertainty of agents’ attendances. In tradi-
tional ��� , one does need to worry about whether all coalitions will be established or not, 
i.e., the probability of each agent to join any coalition he is assigned to is assumed to be 
1.0. However, if we want to mimic the real world, it is natural to consider the uncertainty of 
agents’ availabilities. For instance, it might happen that an agent is only available on some 
days or the week or cannot commit in advance with certainty.

In our example of a service company, it is natural that the manager asks the three 
employees about their schedules before assigning them to jobs. Also, setting an exact prob-
ability of each agent to join a coalition is not realistic, e.g., when Ali thinks that he can 

Table 1   The employees 
necessary for completing a 
request and the associated reward

Request No. Employees needed Reward

1 {Ali} $ 20

2 {Bob} $ 50

3 {Chan} $ 10

4 {Ali,Bob} $ 70

5 {Ali,Chan} $ 60

6 {Bob,Chan} $ 100

7 {Ali,Bob,Chan} $ 110
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probably fit job request 1 into his schedule, he will report to the manager “I can prob-
ably work for request 1” but will not answer “I can work for it with probability 66% ”. 
Here, or more specifically in the experimental part, we assume that (1) each agent chooses 
in advance one of the following attendance types (including the probabilities/attendance 
rates) according to his/her own schedule1:

•	 Type 1: {available ( 90%)},
•	 Type 2: {probably available ( 70%)},
•	 Type 3: {unsure ( 50%)},
•	 Type 4: {probably not available ( 30%)},
•	 Type 5: {not available ( 10%)},

and (2) the ��� maker (e.g. the manager of the service company in our example) knows 
all the information about the agents’ types. Such simplification leads to a lack of generality 
in the sense that we allow the agents’ availabilities to be chosen only from a small set of 
possible types, while the ���� model allows for an infinite number of agent types. Still, it 
is arguably reasonable when considering applications, since allowing the agents/the ��� 
maker to be able to use the whole interval [0, 1] when setting the availability probabilities 
does not seem sensible, as already discussed above.

In this paper, the main focus is laid on the Probabilistic Coalition Structure Generation 
( ���� ) problem which is an extension of ��� where the availability type of each agent 
is considered. First, a formal framework for ���� which generalizes the one from [26] is 
introduced. The aim is to find a coalition structure that maximizes the sum of the expected 
values of all coalitions. Any such coalition structure will be called optimal. What exactly 
is meant under the term “expected value of a coalition” is an important issue here. In our 
framework, the expected value of a coalition is parameterized by the parameter k. If up to 
k agents are missing from a coalition, the contribution of the remaining agents can be read 
off from the characteristic function. If the number of missing agents is higher than k, we 
assume that the contribution of the remaining agents is 0, as their (sub)coalition differs 
too much from the coalition originally planned. Note that when k = n − 1 , any subset of 
the original coalition gives its contribution to the expected coalition value, and this corre-
sponds to Flexible ���� [26]. On the other hand, if k = 0 , the model corresponds to Cau-
tious ���� [26]. To illustrate the influence of k, let us consider the expected value of the 
coalition {Ali,Bob,Chan} for k = 1 (i.e., we allow one agent to be missing). The expected 
value is computed by taking into consideration the following cases (1) Ali, Bob and Chan 
are available, (2) Ali and Bob are available, (3) Ali and Chan are available and (4) Bob and 
Chan are available.

Furthermore, we present approximation algorithms for solving the ���� problem called 
Bounded Approximation Algorithm based on Attendance Types ( ����� ) and Involved 
Bounded Approximation Algorithm based on Attendance Types ( ������ ). In the ���� 
problem, since finding the optimal coalition structure becomes easily intractable, it is 
important to consider fast but approximate algorithms. The basic idea of the proposed 
algorithm ����� is that for a given parameter p̃ , (1) agents whose attendance probabil-
ity is below the parameter p̃ are placed into singleton coalitions, (2) an optimal coalition 
structure of the relaxed problem with the remaining agents is computed. On the other hand, 

1  How the agents decide which one of the offered types of probability/attendance rate they will choose is 
beyond the scope of this paper.
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������ has the following two steps: (1) agents are split into two sets such that one is the 
set of agents whose attendance probability is below the parameter p̃ and the other is the 
set of all the remaining agents, (2) optimal coalition structures of the two relaxed prob-
lems are computed. We also prove an upper bound on the error of the solution returned by 
����� and ������ with respect to the optimum. The error bound is a theoretical worst-
case bound that is obtained a priori, that is, before actually running the algorithm. Finally, 
the performances of ����� and ������ are evaluated on a number of benchmarks.

The rest of the paper is organized as follows. In Sect. 2, the Coalition Structure Genera-
tion ( ��� ) problem is briefly described. Section 3 introduces a formal framework for the 
Probabilistic Coalition Structure Generation ( ���� ) problem that will be used in the rest 
of the paper. In Sect. 4, approximation algorithms for the ���� problem called Bounded 
Approximation Algorithm based on Attendance Types ( ����� ) and Involved Bounded 
Approximation Algorithm based on Attendance Types ( ������ ) are presented, together 
with their approximation guarantees. In Sect. 5, ����� and ������ are evaluated on a 
number of benchmarks. Section 6 discusses related work, and, finally, Sect. 7 concludes the 
paper.

2 � Coalition structure generation

We briefly describe the Coalition Structure Generation ( ��� ) problem [1, 18, 23]. ��� 
involves partitioning a set of agents into coalitions such that the social surplus (i.e., the sum 
of the values of all coalitions) is maximized. Let us start with some preliminary definitions.

Let A = {a1, a2,… , an} be a finite set of agents. A coalition from A , denoted by C, is a 
non-empty subset of A . A coalition structure on A , denoted by CS , is a partition of A , that 
is, a jointly exhaustive set of pairwise disjoint coalitions from A . More formally, a coali-
tion structure on A is a finite set of coalitions satisfying the following two conditions: 

1.	 ∀i, j ∈ {1, 2,… ,m}, i ≠ j, Ci ∩ Cj = �,

2.	
⋃

Ci∈CS
Ci = A.

In other words, each agent belongs to exactly one coalition. Note that some agents may be 
alone in their coalitions. In our running example of a service company with three employ-
ees, there exist seven possible coalitions (i.e., {Ali} , {Bob} , {Chan} , {Ali,Bob} , {Ali,Chan} , 
{Bob,Chan} , {Ali , Bob, Chan} ) and the following five coalition structures:

The Coalition Structure Generation problem description is defined as follows:

Definition 1  (��� problem description) A coalition structure generation problem descrip-
tion is defined by a pair ��� = ⟨A, v⟩ where A = {a1, a2,… , an} is a set of agents and 
v ∶ 2A → ℝ is a function called the characteristic function.

The value of a coalition C, denoted by v(C), is given by the characteristic function v. 
The value of a coalition structure CS , denoted by V(CS) , is provided by the sum of the val-
ues of all coalitions, i.e.,

{{Ali}, {Bob}, {Chan}}, {{Ali}, {Bob,Chan}}, {{Bob}, {Ali,Chan}},

{{Chan}, {Ali,Bob}}, {{Ali,Bob,Chan}}.
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A coalition structure is said to be optimal, denoted by CS∗ , if it maximizes the social sur-
plus, that is, if it satisfies the following condition:

Example 1  (��� ) Consider the service company with three employees Ali, Bob and Chan 
introduced in the previous section. Assume that you are the manager of this service com-
pany and want to assign the employees to jobs such that the sum of the rewards from 
Table 1 is maximized. Then, this problem can be represented as an instance of the ��� 
problem: let ��� = ⟨A, v⟩ be a ��� problem description with A = {Ali,Bob,Chan} , and 
the function v is then characterized as follows:

Table 2 shows the rewards associated with all possible coalition structures. The optimal 
coalition structure in this example is CS∗ = {{Ali}, {Bob,Chan}} , and the obtained reward 
is V(CS∗) = v({Ali}) + v({Bob,Chan}) = $20 + $100 = $120 . As illustrated by this run-
ning example, the characteristic function v is supposed to be represented extensively, as the 
set of pairs {(C, v(C)) ∣ C ⊆ A and C ≠ �}.

The ��� problem is defined as follows:

Definition 2  (��� problem)

–	 Input A ��� problem description ��� = ⟨A, v⟩,
–	 Question Find an optimal coalition structure CS∗.

Let us now focus on the specific cases of the ��� problem, when the charac-
teristic function v is subadditive or superadditive. For a ��� problem description 
��� = ⟨A, v⟩ , the characteristic function v is said to be subadditive if for any coali-
tions Ci and Cj with Ci ∩ Cj = � , it holds that v(Ci) + v(Cj) ≥ v(Ci ∪ Cj) . Conversely, v 
is called superadditive if it holds that v(Ci) + v(Cj) ≤ v(Ci ∪ Cj) . It is well-known that in 
case v is subadditive, the coalition structure formed by singleton coalitions is optimal, 

(1)V(CS) =
∑

Ci∈CS

v(Ci).

∀CS, V(CS) ≤ V(CS∗).

v({Ali}) = 20, v({Bob}) = 50, v({Chan}) = 10,

v({Ali,Bob}) = 70, v({Ali,Chan}) = 60, v({Bob,Chan}) = 100,

v({Ali,Bob,Chan}) = 110.

Table 2   The obtained rewards of 
all possible coalition structures

Coalition structure Reward

{{Ali}, {Bob}, {Chan}} $ 80

{{Ali}, {Bob,Chan}} $ 120

{{Bob}, {Ali,Chan}} $ 110

{{Chan}, {Ali,Bob}} $ 80

{{Ali,Bob,Chan}} $ 110
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i.e., CS∗ = {{ai} | ai ∈ A} . For the superadditive case, the grand coalition is optimal, 
namely CS∗ = {A} [24].

3 � Probabilistic coalition structure generation

We now introduce the Probabilistic Coalition Structure Generation ( ���� ) problem, which 
will be in focus of this work. As opposed to the traditional ��� , where we are guaranteed 
that all coalitions will be established, we want to have the real world in mind. So, it is natu-
ral to consider the uncertainty of agents’ availabilities. ���� is an extension of ��� where 
exactly the attendance type of each agent is considered. The aim is to find an optimal coali-
tion structure that maximizes the sum of the expected values of all coalitions. Note that it 
is not a priori clear how one should arrive at the expected value of a coalition. Therefore, 
an important issue in ���� is how exactly the expected value of a coalition is computed. 
In our framework, the computation of the expected value depends on the parameter k. If up 
to k agents are missing from a coalition, the contribution of the remaining agents can be 
read off from the characteristic function. If the number of missing agents is higher than k, 
we assume that the contribution of the remaining agents is 0, as their (sub)coalition differs 
too much from the coalition originally planned. When k = n − 1 , any subset of the origi-
nal coalition gives its contribution to the expected coalition value, and this corresponds to 
Flexible ���� [26]. On the other hand, if k = 0 , the model corresponds to Cautious ���� 
[26].

In the experimental part, we in addition assume that (1) each agent chooses in advance 
one of the following attendance types (including the probabilities/attendance rates) accord-
ing to his/her own schedule:

–	 Type 1: {available ( 90%)},
–	 Type 2: {probably available ( 70%)},
–	 Type 3: {unsure ( 50%)},
–	 Type 4: {probably not available ( 30%)},
–	 Type 5: {not available ( 10%)},

and (2) the ��� maker (e.g. the manager of the service company in our example) knows all 
the information about the agents’ types.

The Probabilistic Coalition Structure Generation problem description is then defined as 
follows:

Definition 3  (���� problem description) A probabilistic coalition structure generation 
problem description is defined by a tuple ���� = ⟨A, v, f , k⟩ where A = {a1, a2,… , an} 
is a set of agents, v ∶ 2A → ℝ is a characteristic function, f ∶ A → [0, 1] is a function that 
gives the probability/attendance rate of each agent and k is an integer, 0 ≤ k ≤ n − 1.

Here, the participation of each agent a is a binary random variable that takes value 1 
with probability f(a) and value 0 with the remaining probability. Furthermore, we assume 
these random variables to be mutually independent, that is, the participation of one agent 
has no influence on those of other agents.

For a coalition C, let Ã ⊆ C be the set of absent agents where |Ã| ≤ k , 0 ≤ k ≤ n − 1 . 
For any such Ã , the coalition that remains after removing Ã from C is denoted by C ⧵ Ã , 
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and the value of this coalition is given by v(C ⧵ Ã) . The contribution of this coalition to the 
expected value of coalition C, denoted by vk

e
(C, Ã) , is

If |Ã| > k , then we define vk
e
(C, Ã) = 0.

Now, the expected value of a coalition C, denoted by ve,k(C) , is given by

Finally, the expected value of a coalition structure CS , denoted by Ve,k(CS) , is computed as 
the sum of the expected values of all coalitions, i.e.

A coalition structure is said to be optimal, denoted by CS∗
e,k

 , if it maximizes the sum of the 
expected values of all coalitions, i.e. if the following condition holds:

Example 1  (continued) Consider our running example of a service company with three 
employees. Assume that Ali reported Type 1 (i.e., {available ( 90%)}), Bob chose Type 3 
(i.e., {unsure ( 50%)}), and Chan selected Type 4 (i.e., {probably not available ( 30%)}). 
Moreover, the manager sets the parameter k = 1 , that is, he/she wants to maximize the 
expected value of a coalition structure where at most one employee may be absent from 
a coalition in order for the remaining agents to still have a positive contribution to the 
expected coalition value. The expected value of each coalition is then computed by using 
the rewards from Table 1 as in Eqs. (2) and (3):

Notice that when compared to Flexible ���� [26], the parameter k = 1 only has an influ-
ence on the expected value of the grand coalition in this example. All other coalitions have 
size of at most 2, such that if more than one agents is missing, the set of the remaining 
agents is empty, and the contribution of the empty set is 0, independently of k. Consider 
now the grand coalition (i.e., {Ali,Bob,Chan} ). The positive contributions to the expected 
value of the grand coalition are given as follows:

–	 Ali, Bob and Chan are available: 
v({Ali,Bob,Chan}) ⋅ f (Ali) ⋅ f (Bob) ⋅ f (Chan) = 110 ⋅ (0.9 ⋅ 0.5 ⋅ 0.3) = 14.85

–	 Ali and Bob are available: 
v({Ali,Bob}) ⋅ f (Ali) ⋅ f (Bob) ⋅ (1 − f (Chan)) = 70 ⋅ (0.9 ⋅ 0.5 ⋅ 0.7) = 22.05.

–	 Ali and Chan are available: 
v({Ali,Chan}) ⋅ f (Ali) ⋅ (1 − f (Bob)) ⋅ f (Chan) = 60 ⋅ (0.9 ⋅ 0.5 ⋅ 0.3) = 8.1

(2)vk
e
(C, Ã) = v(C ⧵ Ã) ⋅

∏
a∈C⧵Ã

f (a) ⋅
∏
a�∈Ã

(1 − f (a�)).

(3)ve,k(C) =
∑
Ã∈2C

vk
e
(C, Ã).

(4)Ve,k(CS) =
∑
C∈CS

ve,k(C).

∀CS, Ve,k(CS) ≤ Ve,k(CS
∗
e,k
).

ve,1({Ali}) = 18, ve,1({Bob}) = 25, ve,1({Chan}) = 3,

ve,1({Ali,Bob}) = 43, ve,1({Ali,Chan}) = 29.1, ve,1({Bob,Chan}) = 34,

ve,1({Ali,Bob,Chan}) = 46.5.
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–	 Bob and Chan are available: 
v({Bob,Chan}) ⋅ (1 − f (Ali)) ⋅ f (Bob) ⋅ f (Chan) = 100 ⋅ (0.1 ⋅ 0.5 ⋅ 0.3) = 1.5

The expected value of the grand coalition is then 
ve,1({Ali,Bob,Chan}) = 14.85 + 22.05 + 8.1 + 1.5 = 46.5.

Table 3 shows the expected values of all possible coalition structures for k = 1 . Com-
pared to the optimal coalition structure CS∗ = {{Ali}, {Bob,Chan}} in our ��� example, 
the optimal coalition structure here is CS∗

e,1
= {{Bob}, {Ali,Chan}} , and the expected 

value obtained by CS∗
e,1

 is Ve(CS
∗
e,1
) = ve,1({Bob}) + ve,1({Ali,Chan}) = 25 + 29.1 = 54.1.

The ���� problem is defined as follows:

Definition 4  (���� problem)

–	 Input A ���� problem description ���� = ⟨A, v, f , k⟩
–	 Question Find an optimal coalition structure CS∗

e,k
.

The ���� problem is a generalization of the ��� problem. In case the attendance rate 
of each agent is 1.0, that is, it is guaranteed that every agent will join any coalition he/she 
is assigned to, then the ���� problem reduces to the standard ��� problem. This fact is 
independent of the choice of parameter k, i.e., it holds for any k, 0 ≤ k ≤ n − 1.

Let us now focus on the special case of the ���� problem when the characteristic func-
tion v is subadditive and k = n − 1 . In that case, the analog of the result in the standard 
��� framework also holds in the ���� framework (which for k = n − 1 corresponds to 
Flexible ���� [26]). More precisely, if v is subadditive, the coalition structure formed by 
singleton coalitions is optimal (i.e., CS∗

e,n−1
= {{ai}|ai ∈ A} ) [26].

We now investigate the influence of the parameter k on the optimal solution in the ���� 
problem, when the characteristic function v is subadditive.

Proposition 1  Let ���� = ⟨A, v, f , k⟩ be a probabilistic coalition structure generation 
problem description. If v is subadditive, then the coalition structure formed by singleton 
coalitions is optimal for any k ∈ [0, n − 1] . More precisely,

Proof  Since v is subadditive, we know that for any C1,C2 ⊆ A such that C1 ∩ C2 = � , 
v(C1) + v(C2) ≥ v(C1 ∪ C2) . We want to compare ve,k(C1) + ve,k(C2) and ve,k(C1 ∪ C2) . 
Namely, if we prove that ve,k(C1) + ve,k(C2) ≥ ve,k(C1 ∪ C2) , the claim will follow. We 
know that

CS
∗
e,k

= {{ai}|ai ∈ A}, ∀k ∈ [0, n − 1].

Table 3   The expected values of 
all possible coalition structures 
when k = 1

Coalition structure Expected value

{{Ali}, {Bob}, {Chan}} $ 46

{{Ali}, {Bob,Chan}} $ 52

{{Bob}, {Ali,Chan}} $ 54.1

{{Chan}, {Ali,Bob}} $ 46

{{Ali,Bob,Chan}} $ 46.5
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Now, notice that for every C̃ ⊆ (C1 ∪ C2), |C̃| ≤ k , there exist exactly one C̃1 ⊆ C1 and 
exactly one C̃2 ⊆ C2 such that C̃ = C̃1 ∪ C̃2 . Then,

But now, since |C̃1| ≤ k and |C̃2| ≤ k , the two summands in the last expression of Eq. (6) 
must also appear as summands in ve,k(C1) and ve,k(C2) , respectively. This means that every 
summand in Eq. (5) is upper bounded by one summand of ve,k(C1) and one summand of 
ve,k(C2) . Therefore, we can conclude that ve,k(C1) + ve,k(C2) ≥ ve,k(C1 ∪ C2) . 	�  ◻

When v is superadditive, on the other hand, we cannot come to an immediate conclu-
sion that CS∗

e,k
= {A} . As a preliminary example, let us focus on the case when k = 0 , 

which corresponds to Cautious ���� [26]. Going back to our running example where 
v({Ali}) = 20 , v({Chan}) = 10 , v({Ali,Chan}) = 60 and f (Ali) = 0.9, f (Chan) = 0.3 , we 
see that v is superadditive on the domain consisting just of Ali and Chan. However, for 
k = 0 , we can easily check that ve,0({Ali}) = 20 ⋅ 0.9 = 18 , ve,0({Chan}) = 10 ⋅ 0.3 = 3 
and

meaning that superadditivity of v does not transfer to superadditivity of ve,0 , and the grand 
coalition is not an optimal coalition structure. We prove a more general statement in 
Proposition 2.

Proposition 2  For every k ∈ [0, n − 2] , there exists an instance of the ���� problem with 
problem description ���� = ⟨A, v, f , k⟩ such that v is superadditive and the grand coali-
tion is not an optimal solution.

Proof  Let n = |A| and f (ai) = p > 0,∀ai ∈ A . Furthermore, let v(C) = |C|
n
,∀C ⊆ A . Note 

that v is superadditive. Then,

(5)

ve,k(C1 ∪ C2) =
�

C̃ ⊆ (C1 ∪ C2)�C̃� ≤ k

⎛
⎜⎜⎝
v((C1 ∪ C2) ⧵ C̃) ⋅

�
c∈(C1∪C2)⧵C̃

f (c) ⋅
�
c�∈C̃

(1 − f (c�))

⎞
⎟⎟⎠
.

(6)

v((C1 ∪ C2) ⧵ C̃) ⋅
∏

c∈(C1∪C2)⧵C̃

f (c) ⋅
∏
c�∈C̃

(1 − f (c�))

= v((C1 ∪ C2) ⧵ (C̃1 ∪ C̃2) ⋅
∏

c∈(C1∪C2)⧵(C̃1∪C̃2)

f (c) ⋅
∏

c�∈C̃1∪C̃2

(1 − f (c�))

≤
(
v(C1 ⧵ C̃1) + v(C2 ⧵ C̃2)

)
⋅

∏
c∈(C1∪C2)⧵(C̃1∪C̃2)

f (c) ⋅
∏

c�∈C̃1∪C̃2

(1 − f (c�))

≤ v(C1 ⧵ C̃1) ⋅
∏

c∈C1⧵C̃1

f (c) ⋅
∏
c�∈C̃1

(1 − f (c�))

+ v(C2 ⧵ C̃2) ⋅
∏

c∈C2⧵C̃2

f (c) ⋅
∏
c�∈C̃2

(1 − f (c�)).

ve,0({Ali,Chan}) = 60 ⋅ 0.9 ⋅ 0.3 = 16.2 < 21 = ve,0({Ali}) + ve,0({Chan}),
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where the strict inequality follows from (1 − p)n−1 > 0,∀p > 0 . Since the coalition struc-
ture that consists of all singletons has a higher value than the grand coalition, we know that 
CS

∗
e,k

≠ {A},∀k ∈ [0, n − 2] . 	�  ◻

The case k = n − 1 needs to be treated separately, as it yields a different result, that is 
aligned with the one for superadditivity in the standard ��� framework.

Proposition 3  Let ���� = ⟨A, v, f , n − 1⟩ be a probabilistic coalition structure generation 
problem description. If v is superadditive, then the grand coalition is the optimal solution. 
More precisely,

Proof  Let CS = {C1,… ,Cm} be any coalition structure different from the grand coalition. 
The result follows by observing that for any realisation A ⊆ A of the set of the available 
agents, because of superadditivity of v, we know that

where Ai = Ci ∩ A . 	�  ◻

Finally, let us note that an instance of the ���� problem can be represented as a zero-
one integer program in the same way as for the ��� problem, if we know the ve,k values of 
all coalitions. For simplicity, we show the zero-one integer programming formulation of 
our running example for ���� . The objective function and the constraints are formalized 
as follows:

ve,k(A) =
∑

C ⊆ A

|C| ≤ k

v(A ⧵ C) ⋅
∏

c∈A⧵C

f (c) ⋅
∏
c�∈C

(1 − f (c�))

≤
∑

C ⊆ A

|C| ≤ n − 2

v(A ⧵ C) ⋅
∏

c∈A⧵C

f (c) ⋅
∏
c�∈C

(1 − f (c�))

=

n−2∑
i=1

(
n

i

)
pn−i(1 − p)i

= p ⋅ (1 − (1 − p)n−1)

< p

=
∑
ai∈A

ve,k({ai}),

CS
∗
e,n−1

= {{ai}|ai ∈ A}.

V({A}) = v(A) ≥ v(A1) +⋯ + v(Am) = V(CS),

(7)max (18 ⋅ a1 + 25 ⋅ a2 + 3 ⋅ a3 + 43 ⋅ a12 + 29.1 ⋅ a13 + 34 ⋅ a23 + 46.5 ⋅ a123),

(8)s.t a1 + a12 + a13 + a123 = 1,

(9)a2 + a12 + a23 + a123 = 1,
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Variables a1, a2,… , a123 represent all possible coalitions, e.g., a1 is the coalition {Ali} , 
and a123 represents the grand coalition (i.e., {{Ali,Bob,Chan}} ) and can take val-
ues 0 or 1 [Eq.  (11)]. Equation  (8) describes that Ali belongs to one of the coalitions 
{Ali}, {Ali,Bob}, {Ali,Chan}, {Ali,Bob,Chan} , and he cannot belong to more than one 
coalition simultaneously. Similarly, Eqs.  (9) and (10) show the constraints for Bob and 
Chan. Equation  (7) represents the objective function which maximizes the sum of the 
expected values of all coalitions, and each coefficient shows the expected value obtained by 
the corresponding coalition, e.g., 18 is the expected value of the coalition {Ali} and 46.5 is 
the expected value of the grand coalition.

4 � Bounded approximation algorithms

In this section, we present two approximation algorithms for solving the ���� problem 
called Bounded Approximation Algorithm based on Attendance Types ( ����� ) and 
Involved Bounded Approximation Algorithm based of Attendance Types ( ������ ). Even 
though our algorithms can be seen as simple heuristics, we term them algorithms as they 
offer a theoretical bound on the quality of the returned solutions.

Let us for a moment assume that we can get the ve,k function as input, instead of just 
the characteristic function v and parameter k. Even though this assumption saves a lot of 
computation that would be necessary to arrive at ve,k , still the input, i.e., the representation 
size, is exponential in the number of agents. Thus, it is important to consider approxima-
tion algorithms, i.e., to consider a trade-off between the quality of the returned solution 
and tractability. To this end, we prove an a priori upper bound on the error of the solution 
returned by both ����� and ������ , i.e., the error bound is obtained before actually 
running the algorithm.

4.1 � Approximation algorithm �����

����� has the following two phases: 

Phase 1:	 For a given parameter p̃ ∈ ℝ and the attendance rates of all agents, form singleton 
coalitions for every agent a whose attendance rate p is such that p ≤ p̃.

Phase 2:	 Find an optimal coalition structure of the relaxed ���� problem with the remaining 
agents.

The basic idea of ����� is that for a given parameter p̃ , the singleton coalition is formed 
for an agent who chooses the attendance type where the given probability/attendance rate 
is less than or equal to the parameter p̃ . Then, an optimal coalition structure of the relaxed 
problem with the remaining agents is computed. We denote the coalition structure on the 
subset of agents that remain after singletons are formed in Phase 1, which is obtained in 
Phase  2, by CS−

e,k
 and the coalition structure provided by ����� , which is a coalition 

structure on the whole set of agents, by CS+
e,k

.

(10)a3 + a13 + a23 + a123 = 1,

(11)a1, a2, a3, a12, a13, a23, a123 ∈ {0, 1}.
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Let us further explain how ����� computes an approximate solution by using our run-
ning example. We are given the attendance type (that includes the attendance rate) of each 
agent, i.e., f (Ali) = 0.9 (Type1: available), f (Bob) = 0.5 (Type 3: unsure), f (Chan) = 0.3 
(Type 4: probably not available), the parameter k = 1 , and the following expected values of 
coalitions:

Let p̃ = 0.3 , i.e., the manager does not count on agents who chose attendance Types 4 (i.e., 
probably not available ( 30% )) and 5 (i.e., not available ( 10%)). Since Chan reported attend-
ance Type 4, i.e., f (Chan) = 0.3 = p̃ , the singleton coalition is formed for Chan in Phase 1 
of ����� . Then, the relaxed ���� problem with the remaining agents (i.e., Ali and Bob) 
is solved in Phase 2 of �����. 2 That is, the coalitions which include Chan can be ignored 
in the simplified problem and only the following is still relevant:

Since the expected value of the coalition formed by Ali and Bob is equal to the 
sum of the expected values of singleton coalitions with Ali and Bob, that is, 
ve,1({Ali,Bob}) = 43 = ve,1({Ali}) + ve,1({Bob}) , the optimal coalition structures of the 
relaxed problem are {Ali,Bob} and {{Ali}, {Bob}} . The solutions obtained by ����� are 
CS

+1
e,1

= {{Chan}, {Ali,Bob}} and CS+2
e,1

= {{Ali}, {Bob}, {Chan}} . On this instance, there 
are two possible solutions, but their expected value is the same, namely, Ve(CS

+
e,1
) = 46.

4.2 � Quality guarantee of �����

We show that we can provide an upper bound on the error of the solution returned by 
����� a priori, i.e., the error bound is obtained before actually running the algorithm. Let 
us denote by Ca the set of all coalitions that contain agent a as a member, and let Ã be the 
set of agents whose probability is lower than or equal to a given parameter p̃ such that they 
form their own coalition in Phase  1. Furthermore, let rmax

a
= max{ve,k(C) |C ∈ Ca} , i.e., 

rmax
a

 is the maximal expected value of all coalitions which include agent a.

Lemma 1  Let ���� = ⟨A, v, f , k⟩ be a probabilistic coalition structure generation prob-
lem description. For an optimal coalition structure CS∗

e,k
 and a coalition structure CS−

e,k
 

obtained by ����� in Phase 2, the following inequality holds:

Proof  We prove the claim by induction on the size of Ã . In the base case, Ã = � . Then, 
since no agents are removed in Phase 1 of ����� , the whole instance is solved to optimal-
ity in Phase 2. This means that

ve,1({Ali}) = 18, ve,1({Bob}) = 25, ve,1({Chan}) = 3,

ve,1({Ali,Bob}) = 43, ve,1({Ali,Chan}) = 29.1, ve,1({Bob,Chan}) = 34,

ve,1({Ali,Bob,Chan}) = 46.5.

ve,1({Ali}) = 18, ve,1({Bob}) = 25, ve,1({Ali,Bob}) = 43.

(12)Ve,k(CS
∗
e,k
) − Ve,k(CS

−
e,k
) ≤

∑
ãi∈Ã

rmax

ãi
.

2  One can apply any complete algorithm in Phase 2 for finding an optimal coalition structure.
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On the other hand, 
∑

ãi∈Ã
rmax
ãi

= 0 , so

and inequality (12) holds.
Let us now assume that inequality (12) holds for all Ã such that |Ã| = � . More specifi-

cally, we assume that

Next, we consider the case where Ã = {ã1,… , ã
�
, ã

�+1} . We first observe the coa-
litions that form the expected optimal coalition structure CS∗

e,k
 and denote these by 

CS
∗
e,k

= {C∗1
e,k
,… ,C∗m

e,k
} . We also know that ã1 must be in one of these coalitions and 

without loss of generality we can assume that C∗1
e,k

= {ã1, b1,… , bq} . It might happen 
that bi = ãj for some i ∈ [q] , j ∈ [� + 1] ⧵ {1} but this does not influence the following 
inequalities:

where Ve,k(CS
−ã1
e,k

) denotes the optimal coalition structure on the set of agents A ⧵ {ã1} . The 
last inequality follows from the fact that {{b1},… , {bm}, C∗2

e,k
,… ,C∗m

e,k
} is a coalition struc-

ture over the agents in A ⧵ {ã1} and CS−ã1
e,k

 is an optimal such coalition structure. Now, we 
need to still remove agents ã2,… , ãn to reach Phase 2 of ����� and to be able to compare 
Ve,k(CS

∗
e,k
) with Ve,k(CS

−
e,k
) . However, by the induction hypothesis (13) on CS−ã1

e,k
 , we have

Thus, it holds that

which concludes the proof. 	� ◻

Ve,k(CS
∗
e,k
) = Ve,k(CS

−
e,k
).

Ve,k(CS
∗
e,k
) − Ve,k(CS

−
e,k
) = 0 ≤ 0 =

∑
ãi∈Ã

rmax

ãi

(13)Ve,k(CS
∗
e,k
) − Ve,k(CS

−
e,k
) ≤

�∑
i=1

rmax

ãi
, ∀Ã, |Ã| = �.

Ve,k(CS
∗
e,k
) = ve,k(C

∗1
e,k
) + ve,k(C

∗2
e,k
) +⋯ + ve,k(C

∗m
e,k
)

≤ rmax

ã1
+ ve,k(C

∗2
e,k
) +⋯ + ve,k(C

∗m
e,k
)

≤ rmax

ã1
+ ve,k({b1}) +⋯ + ve,k({bm}) + ve,k(C

∗2
e,k
) +⋯ + ve,k(C

∗m
e,k
)

≤ rmax

ã1
+ Ve,k(CS

−ã1
e,k

),

Ve,k(CS
−ã1
e,k

) − Ve,k(CS
−
e,k
) ≤

�+1∑
i=2

rmax

ãi

Ve,k(CS
∗
e,k
) ≤ rmax

ã1
+ Ve,k(CS

−ã1
e,k

)

≤ rmax

ã1
+

�+1∑
i=2

rmax

ã1
+ Ve,k(CS

−
e,k
)

≤

�+1∑
i=1

rmax

ãi
+ Ve,k(CS

−
e,k
),
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Theorem 1  Let ���� = ⟨A, v, f , k⟩ be a probabilistic coalition structure generation prob-
lem description. For an optimal coalition structure CS∗

e,k
 and any coalition structure CS+

e,k
 

obtained by ����� , the following holds:

Proof  By Lemma 1, it holds that

Now, by subtracting 
∑

ãi∈Ã
ve,k(ãi) from both sides, we get

	�  ◻

Let us now focus on a special case of the ���� problem in which we can give a better 
bound on the quality of the solution returned by �����.

Proposition 4  Let ���� = ⟨A, v, f , k⟩ be a probabilistic coalition structure generation 
problem description. In case the expected values of all coalitions satisfy subadditivity, i.e., 
ve,k is a subadditive function, the coalition structure CS+

e,k
 obtained by ����� is optimal, 

i.e., it holds that

Proof  In the case where ve,k is subadditive, the optimal coalition structure CS∗
e,k

 is formed 
by singletons. So, we just need to show that CS+

e,k
 has the form CS+

e,k
= {{ai}|ai ∈ A} . In 

Phase 1 of ����� , only singleton coalitions are formed, independently of ve,k . In Phase 2, 
since ve,k is subadditive, the optimal coalition structure CS−

e,k
 of the relaxed problem is 

formed by singleton coalitions. Thus, the solution CS+
e,k

 obtained by ����� is formed by 
singleton coalitions. 	�  ◻

4.3 � Approximation algorithm ������

Let us now try to give a better approximation algorithm for ���� by having a more 
involved approach to agents that have a low attandance rate. Instead of immediately form-
ing singleton coalitions, we will find an optimal coalition structure on the subset of such 
agents. We will do the same on the remaining set of agents (as in ����� ) and the final 
solution will be the union of these two optima.

������ has the following two phases: 

(14)Ve,k(CS
∗
e,k
) − Ve,k(CS

+
e,k
) ≤

∑
ãi∈Ã

(
rmax

ãi
− ve,k(ãi)

)
.

Ve,k(CS
∗
e,k
) − Ve,k(CS

−
e,k
) ≤

∑
ãi∈Ã

rmax

ãi
.

�
Ve,k(CS

∗
e,k
) − Ve,k(CS

−
e,k
)
�
−

�
ãi∈Ã

ve,k(ãi) ≤
�
ãi∈Ã

rmax

ãi
−

�
ãi∈Ã

ve,k(ãi)

Ve,k(CS
∗
e,k
) −

⎛⎜⎜⎝
Ve,k(CS

−
e,k
) +

�
ãi∈Ã

ve,k(ãi)

⎞⎟⎟⎠
≤

�
ãi∈Ã

�
rmax

ãi
− ve,k(ãi)

�

Ve,k(CS
∗
e,k
) − Ve,k(CS

+
e,k
) ≤

�
ãi∈Ã

�
rmax

ãi
− ve,k(ãi)

�
.

(15)CS
∗
e,k

= CS
+
e,k
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Phase 1:	 For a given parameter p̃ ∈ ℝ and the attendance rates of all agents, split the agents 
into two sets such that every agent a whose attendance rate p is such that p ≤ p̃ is in A1 
and all other agents are in A2.

Phase 2:	 Find optimal coalition structures of the two relaxed ���� problems on A1 and A2 
and output their union.

Going back to our running example, let us compare the solutions returned by ����� 
and ������ . Recall that the attendance types are given by f (Ali) = 0.9 (Type1: avail-
able), f (Bob) = 0.5 (Type 3: unsure), and f (Chan) = 0.3 (Type 4: probably not avail-
able). We still assume k = 1 , and the expected values of coalitions can be seen in Table 3. 
If we, as before, choose p̃ = 0.3 , then only Chan is placed in A1 . Previously we already 
found that the optimal solutions of the relaxed ���� problem on A2 = {Ali,Bob} are 
{Ali,Bob} and {{Ali}, {Bob}} . The optimal solution on A1 has to be {Chan} , as this 
is the only possible solution. Thus, the solutions obtained by ������ are identical to 
those obtained by ����� , i.e., {{Chan}, {Ali,Bob}} and {{Ali}, {Bob}, {Chan}} with 
an expected value of 46. Now, let us set p̃ = 0.5 . In this case A1 = {Bob,Chan} and 
the solutions returned by ������ and ����� do not necessarily coincide. Indeed, 
ve,1({Bob,Chan}) = 34 > 28 = ve,1({Bob}) + ve,1({Chan}) . Thus, the solution returned by 
������ is {{Ali}, {Bob,Chan}} and has expected value 52.

4.4 � Quality guarantee of ������

Lemma 2  Let ���� = ⟨A, v, f , k⟩ be a probabilistic coalition structure generation problem 
description. For an optimal coalition structure CS∗

e,k
 and a coalition structure CS+−

e,k
 on A2 

obtained by ������ in Phase 2, the following inequality holds:

Proof  Since A1 = Ã and CS+−
e,k

 returned by ������ is exactly the same as CS−
e,k

 returned 
by ����� , Lemma 1 proves the claim. 	�  ◻

Theorem 2  Let ���� = ⟨A, v, f , k⟩ be a probabilistic coalition structure generation prob-
lem description. For an optimal coalition structure CS∗

e,k
 and any coalition structure CS++

e,k
 

obtained by ������ , the following holds:

Proof  By Lemma  2, it holds that Ve,k(CS
∗
e,k
) − Ve,k(CS

+−
e,k

) ≤
∑

ãi∈Ã
rmax
ãi

 . The coalition 
structure CSA1

e,k
 obtained by ������ when dealing with the relaxed problem on A1 is in fact 

the optimal solution on A1 , so Ve,k(CS
A1

e,k
) ≥

∑
a∈A1

ve,k(a) . Then,

(16)Ve,k(CS
∗
e,k
) − Ve,k(CS

+−
e,k

) ≤
∑
a∈A1

rmax

a
.

(17)Ve,k(CS
∗
e,k
) − Ve,k(CS

++
e,k

) ≤
∑
a∈A1

(
rmax

a
− ve,k(a)

)
.
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	�  ◻

4.5 � Tightness of the quality guarantee

Next, we show that the bounds given by Theorems 1 and 2 are in fact tight, meaning that 
there is an instance for which (14) and (17) hold with equality.

Proposition 5  The quality guarantees for ����� and ������ given by Theorems  1 
and 2, respectively, are tight.

Proof  Let us construct an instance where A = {a1,… , an, b1,… , bn} and the char-
acteristic function is such that all subsets of the agent set have value 0, other than 
C ∈ {{a1, b1},… , {an, bn}} for which v(C) = 1 . Furthermore, let the attendance of any 
agent ai, i ∈ [n] be higher than p̃ and the attendance of any agent bi, i ∈ [n] be lower than p̃.

Then, both ����� and ������ will return a solution of value 0 for any k ∈ [n − 1] , 
while the optimum has value n. Additionally, the loss of the algorithms is exactly described 
by the term 

∑
ãi∈Ã

rmax
ãi

=
∑

a∈A1
rmax
a

 . In summary,

	�  ◻

5 � Experimental evaluation

In the experiments, ����� and ������ are evaluated on a number of benchmarks. We 
note that since this is the very first work that proposes non-complete algorithms for ���� , 
a comparison to existing algorithms from the literature is not possible. The only possible 
comparison is the one to the complete algorithm that solves the problem optimally, and 
this is, indeed, one of the benchmark used. In our experiments, ����� and ������ are 

Ve,k(CS
∗
e,k
) − Ve,k(CS

++
e,k

) = Ve,k(CS
∗
e,k
) −

(
Ve,k(CS

A1

e,k
) − Ve,k(CS

+−
e,k

)
)

=
(
Ve,k(CS

∗
e,k
) − Ve,k(CS

+−
e,k

)
)
− Ve,k(CS

A1

e,k
)

≤

(
Ve,k(CS

∗
e,k
) − Ve,k(CS

+−
e,k

)
)
−

∑
a∈A1

ve,k(a)

≤
∑
a∈A1

(rmax

a
− ve,k(a))

(18)n = n − 0 = Ve,k(CS
∗
e,k
) − Ve,k(CS

+
e,k
) = Ve,k(CS

∗
e,k
) − Ve,k(CS

++
e,k

)

(19)≤
∑
ãi∈Ã

(rmax

ãi
− ve,k(ãi)) =

∑
a∈A1

(rmax

a
− ve,k(a))

(20)=
∑
ãi∈Ã

rmax

ãi
=

∑
a∈A1

rmax

a
= n
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implemented in Python and all experiments are carried out on a 6 core running at 3.3GHz 
with 32GB of RAM.

As preliminary experiments, we first investigate the influence of the value k, i.e., the 
number of agents who may be absent from a coalition such that the remaining agents still 
give a contribution to the expected coalition value, on the runtime of ����� . We also look 
into the number of singleton coalitions in the optimal coalition structure, and also what 
are the agent types that tend to form singleton coalitions. Then, the quality of the solutions 
returned by ����� and ������ is evaluated with respect to the optimal solutions.

In order to compute optimal coalition structures, we used the CPLEX solver. The attend-
ance type of each agent was randomly chosen from Type 1: {available ( 90% )} to Type 5: 
{not available ( 10%)}. For each setting, 50 problem instances were generated, each based 
on one of the several probability distributions for the characteristic function v that are com-
monly used in the literature:

•	 (1) Uniform: v(C) = Uniform(0, |C|) [12]
•	 (2) Normal: v(C) = Normal(� = 10 ∗ |C|, �2 = 0.1) [21]
•	 (3) Modified uniform: v(C) = Uniform(0, 10 ∗ |C|) + a , where a = Uniform(0, 50) with 

probability 0.2 and a = 0 otherwise [28]
•	 (4) Modified normal: v(C) = Normal(10 ∗ |C|, 0.01) + a (a is as above) [20]
•	 (5) Beta: v(C) = |C| ∗ Beta(� = � = 0.5) [14]
•	 (6) Gamma: v(C) = |C| ∗ Gamma(k = � = 2) [14]

5.1 � Preliminary experiments

The influence of the value k is investigated. More precisely, we set p̃ = 0 and compare 
the runtime for finding an optimal coalition structure by varying the value k. Figure  1 
represents the average runtime of all distributions for different k (i.e., k = 0, 1, 2, 3, 4, 5 ). 
As one can see, we observed similar results for all distributions (1)–(6). When the num-
ber of agents is small, the influence of k on the runtime is not significant. However, the 
difference quickly becomes larger when the number of agents increases, e.g., in the case 
when the number of agents is 14 and the distribution is uniform, the average runtime is 
35.4 s for k = 1 and 809 s for k = 5 . The experimental results thus indeed confirmed what 
was expected, that is, the influence of k on the runtime becomes larger when the number 
of agents increases. This is the case, because it is necessary to consider �(

(|C|
k

)
) (which 

is equal to �(
(
n

k

)
) = �(nk) in the worst case) summands in Eq. (3) in order to compute 

the expected value for each coalition C. For instance, in our running example of a ser-
vice company dispatching interpreters with three employees, when we set k = 2 , it is 
required to consider 

(
3

0

)
 + 

(
3

1

)
 + 

(
3

2

)
 = 7 cases to compute the expected value for the coali-

tion {Ali,Bob,Chan} . That is, we consider the case where all employees are available, one 
of them might be absent, and two of them might be absent. However, in case the number 
of agents increases from 3 to 4, we need to consider 

(
4

0

)
 + 

(
4

1

)
 + 

(
4

2

)
 = 11 possible cases for 

computing the expected value for k = 2.
Next, we look into the number of singleton coalitions in the optimal coalition struc-

ture. Table  4 shows the average number of singletons in the optimal coalition struc-
ture CS∗

e,k
 where k ∈ [0, 5] for all considered distributions. We can see that the average 

number of singleton coalitions differs for different distributions. For the Normal case of 
Cautious ���� problems, i.e., for k = 0 , all of the agents form singleton coalitions in 
the optimum, while this is not the case with other considered distributions. Additionally, 
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the number of singletons formed drastically decreases when the parameter k changes 
from 0 to 1. For instance, for the Beta distribution it changes from 7.6 to 1.4 when the 
number of agents is 14. For all distributions we can see that there are few singleton coa-
litions in the optimal coalition structure when k ≠ 0.

Lastly, we analyze which agent types tend to form singleton coalitions in the optimal 
solution. More specifically, building upon the result of Table 4, we count the number 
of agents of each types that form a singleton coalition in the optimal coalition structure 
CS

∗
e,0

 . Figure  2 shows the ratio of each type among the agents that formed singleton 
coalitions in the optimum, where the number of agents is 14 and k = 0 . We observed 
that in most cases the agents with Type5, that is, the agents whose attendance rate is 
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Table 4   The average number of singletons in the optimal coalition structure CS∗
e,k

The smallest values in each row are written in bold

Uniform k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 Normal k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

n = 6 4 1.4 1.1 1.2 1.2 1.2 n = 6 6 2.2 1.9 2.1 2 2
n = 8 5.2 1.3 1.3 1.1 1.1 1.1 n = 8 8 2 2 1.9 2 2
n = 10 6.2 1.7 1.6 1.7 1.7 1.7 n = 10 10 2.7 2.6 2.7 2.6 2.7
n = 12 7.3 1.6 1.4 1.3 1.3 1.3 n = 12 12 3.2 3.3 3.3 3.4 3.4
n = 14 8.1 1.6 1.5 1.3 1.4 1.4 n = 14 14 3 3.5 3.7 3.7 3.7

Mod.U k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 Mod.N k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

n = 6 3.7 1.8 1.7 1.6 1.6 1.6 n = 6 4.4 1.6 1.4 1.4 1.4 1.4
n = 8 4.5 2 1.9 1.9 1.9 1.9 n = 8 6.1 2 1.7 1.8 1.8 1.8
n = 10 5.3 2.5 2.4 2.3 2.3 2.3 n = 10 6.6 2.4 2.1 2 2 2
n = 12 5.9 2.3 2.2 2.2 2.3 2.2 n = 12 7.8 2.7 2.3 2.2 2.2 2.2
n = 14 7.2 3.2 3.1 3 3 3 n = 14 8.6 2.8 2.4 2.4 2.4 2.4

Beta k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 Gamma k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

n = 6 3.7 1.2 1.1 1 1 1 n = 6 3.7 1.5 1.5 1.5 1.5 1.5
n = 8 4.9 1.6 1.5 1.5 1.5 1.5 n = 8 4.8 1.6 1.4 1.5 1.4 1.4
n = 10 5.3 1.4 1.4 1.3 1.3 1.3 n = 10 5.3 1.7 1.6 1.4 1.4 1.4
n = 12 6.7 1.4 1.4 1.4 1.4 1.4 n = 12 6.2 2 1.8 1.8 1.9 1.9
n = 14 7.6 1.4 1.2 1.3 1.2 1.2 n = 14 7.3 2.1 1.7 1.7 1.7 1.7

Fig. 2   The ratio of Types of agents of singleton coalitions where the number of agent is 14
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lowest, tend to form singletons in the optimal coalition structure. A notable exception is 
the Normal case. Since the optimal coalition structure completely consists of singleton 
coalitions in the Normal case (see Table 4), one cannot see a difference among types.

5.2 � Performance of the approximation algorithms

We set k = 1 and test the two algorithms, while using two different values of the parameter 
p̃ , 0.3 and 0.7, to see the needed computation time and the quality of the returned solutions 
with respect to the optima. In Table 5, (a) and (b) show the actual quality of the solution 
obtained by ����� , i.e.,

and ������ , i.e.,

in the experiments, respectively. On the other hand, (c) and (d) represent the theoretical a 
priori worst-case error bound on the solution quality for ����� , i.e.,

which is an upper bound on (21) by Theorem 1, and for ������ , i.e.,

which is an upper bound on (22) by Theorem 2, respectively. All of (a), (b), (c), (d) are 
always at least 1.0 and a value close to 1 is desirable.

From the results for (a) and (b), we can see that when p̃ = 0.3 , ����� and ������ 
have an observed approximation ratio of less than 1.05 in most cases. For instance, when 
the number of agents is 16, the result of (a) with the uniform distribution is 1.034, and the 
result of (b) is 1.019. However, when we set p̃ = 0.7 , in most cases we can see that the 
values obtained by ����� are more than 1.3, while the ones of ������ are less than 
1.2. For instance, when the number of agents is 12, the results of (a) and (b) with modified 
uniform distribution are 1.444 and 1.156, respectively. Regarding (c) and (d), we can see 
that the value (i.e., the a priori bound) increases gradually in all cases as the number of 
agents increases for both algorithms. For instance, with the uniform distribution the result 
of (c) for the parameter p̃ = 0.3 increases from 2.013 to 2.806 when the number of agents 
increases from 6 to 16, and the result of (d) for the parameter p̃ = 0.7 increases from 3.339 
to 5.255.

Figure  3 represents the average runtime of ����� and ������ for all distributions 
(1)–(6). The x-axis shows the number of agents and the y-axis represents the average runt-
ime. As one can see, we observed similar results for all distributions.
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Table 5   Solution quality of ����� ((a) and (c)) and ������ ((b) and (d)) with respect to the optimum (a 
value close to 1 is desirable)

#agents Quality Uniform Normal Mod.U Mod.N Beta Gamma

6 p̃ = 0.3 (a) 1.041 1.0007 1.058 1.051 1.039 1.076
(b) 1.032 1.0005 1.048 1.045 1.031 1.064
(c) 2.013 2.2455 2.012 2.041 1.948 2.058
(d) 2.004 2.2453 2.003 2.035 1.941 2.046

p̃ = 0.7 (a) 1.305 1.0029 1.340 1.206 1.360 1.456
(b) 1.097 1.0014 1.130 1.101 1.093 1.175
(c) 3.782 3.2347 3.483 3.213 4.075 4.065
(d) 3.339 3.2312 3.093 3.022 3.472 3.474

8 p̃ = 0.3 (a) 1.040 1.0006 1.052 1.052 1.046 1.083
(b) 1.027 1.0005 1.039 1.044 1.030 1.063
(c) 2.260 2.2968 2.048 2.217 2.252 2.428
(d) 2.244 2.2966 2.035 2.207 2.233 2.402

p̃ = 0.7 (a) 1.243 1.0037 1.428 1.191 1.339 1.440
(b) 1.083 1.0015 1.177 1.113 1.107 1.179
(c) 4.155 3.6866 3.803 3.363 4.533 4.729
(d) 3.750 3.6807 3.310 3.207 3.921 4.053

10 p̃ = 0.3 (a) 1.045 1.0007 1.042 1.042 1.041 1.047
(b) 1.032 1.0004 1.031 1.033 1.028 1.036
(c) 2.400 2.5803 2.415 2.230 2.482 2.482
(d) 2.382 2.5799 2.400 2.219 2.462 2.467

p̃ = 0.7 (a) 1.322 1.0032 1.343 1.312 1.362 1.457
(b) 1.090 1.0013 1.125 1.135 1.115 1.169
(c) 4.889 4.0777 4.241 3.993 5.233 5.596
(d) 4.207 4.0718 3.714 3.588 4.465 4.689

12 p̃ = 0.3 (a) 1.037 1.0008 1.064 1.049 1.051 1.053
(b) 1.024 1.0005 1.051 1.039 1.032 1.040
(c) 2.717 2.5808 2.454 2.370 2.816 2.709
(d) 2.694 2.5804 2.435 2.356 2.784 2.688

p̃ = 0.7 (a) 1.343 1.0035 1.444 1.311 1.359 1.546
(b) 1.106 1.0011 1.156 1.115 1.099 1.229
(c) 5.683 4.4160 4.643 4.296 5.707 6.256
(d) 4.857 4.4077 3.917 3.803 4.808 5.179

14 p̃ = 0.3 (a) 1.027 1.0006 1.051 1.043 1.045 1.083
(b) 1.016 1.0004 1.037 1.031 1.028 1.059
(c) 2.609 2.7148 2.536 2.426 2.682 3.053
(d) 2.593 2.7144 2.516 2.410 2.655 3.008

p̃ = 0.7 (a) 1.308 1.0035 1.364 1.315 1.370 1.652
(b) 1.091 1.0012 1.126 1.115 1.080 1.219
(c) 5.727 4.7264 4.666 4.504 6.117 7.328
(d) 4.944 4.7177 4.026 3.972 5.035 5.671
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When the parameter p̃ is 0.3 and the number of agents is small, the complete algo-
rithm, ����� and ������ can solve the problems very quickly. However, as the number 
of agents increases, the difference between the complete algorithm and the approximation 
algorithms becomes significant. For instance, when the number of agents is 16 and the 
distribution is uniform, the average runtime of ����� and ������ is 1.8 s and 2.1 s, 
respectively, while it is 593.3 s for the complete algorithm. The average runtime of ����� 
and ������ are very similar.

However, when the parameter p̃ is 0.7, we can see that the average runtime of ������ 
increases and the one of ����� decreases. For example, with uniform distribution the 
average runtime of ������ increases from 2.1 to 74.8 s when the parameter p̃ increases 
from 0.3 to 0.7, while the average runtime of ����� decreases from 1.8 to 0.1 s.

In total, the experimental results are not very surprising but instead confirm and make 
precise the natural intuition of what kind of impact on the performance should changing 
some of the parameters of our model and the algorithms’ parameter p̃ have. In summary, 
they reveal that (1) when the parameter p̃ is set to 0.3, the approximation ratio of ����� 
and ������ is less than 1.05 in most cases, and (2) when the parameter p̃ increases, 
����� can solve the problems faster than ������ , while ������ has a better solution 
quality than ����� . Therefore, the user can decide how to set the paremeter p̃ accord-
ing to his preference and if most of the agents have participation rates that are higher than 
p̃ , both algorithms have a very similar computation time, but the solution returned by 
������ is always at least as good as the solution returned by ����� . Furthermore, if 
many agents have participation probabilities smaller or equal to p̃ , the user chooses which 
algorithm to use according to whether his priority is to get an approximately optimal solu-
tion fast or he is more interested in the solution quality being as good as possible.

6 � Related work

Our work is most closely related to the probabilistic ��� model introduced in [26]. Our 
framework includes the two variants of probabilistic ��� from [26], namely Cautious and 
Flexible ���� , as special cases for values of parameter k = 0 and k = n − 1 , respectively. 

Table 5   (continued)

#agents Quality Uniform Normal Mod.U Mod.N Beta Gamma

16 p̃ = 0.3 (a) 1.034 1.0005 1.053 1.043 1.051 1.054

(b) 1.019 1.0003 1.038 1.033 1.028 1.035

(c) 2.806 2.6974 2.461 2.421 3.103 3.158

(d) 2.779 2.6970 2.441 2.406 3.057 3.119

p̃ = 0.7 (a) 1.320 1.0037 1.484 1.306 1.336 1.564

(b) 1.077 1.0010 1.145 1.109 1.073 1.192

(c) 6.215 4.9510 5.064 4.460 6.408 7.689

(d) 5.255 4.9404 4.137 3.938 5.342 6.097

The a posteriori approximation bound is shown in (a) and (b), while (c) and (d) show the a priori worst-case 
error bound



Autonomous Agents and Multi-Agent Systems (2020) 34:25	

1 3

Page 23 of 27  25

For the experiments, however, we restrict our attention to a limited number of attendance 
types, while in [26] there is no limitation placed on the number of types.

In coalition formation, which also includes ��� , many works have been devoted 
to the uncertainty of forming a coalition. Chalkiadakis and Boutilier [3] focused on the 
uncertainty of the types (capabilities) of the agents, and proposed a Bayesian reinforce-
ment learning framework for repeated coalition formation under type uncertainty. In this 
framework, the agents maintain and update beliefs about the types of others through the 
experience gained by repeated interaction, and through this process improve their ability 
to form useful coalitions. Compared to this work, we rather focus on the attendance type 
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Fig. 3   Runtime of ����� and ������ for p̃ = 0.3 and p̃ = 0.7 , while k = 1 . The x-axis shows the number 
of agents and the y-axis represents the computation time in seconds
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(i.e., the uncertainty of agents’ attendances), which is different from capability uncertainty. 
Also, the coalition values depend on the capabilities and the actions in the aforementioned 
work, while we compute them with the payoffs given by the characteristic function and the 
attendance rate of the attendance type.

Kraus et al. [11] worked on coalition formation under coalitional value uncertainty. In 
this framework, a set of tasks is given, and each task is performed by a different agent. The 
agents do not know the value of a task of another agent or the cost of performing it, but 
they know the overall payoff associated with performing a set of tasks and the capabilities 
of other agents. Faye et al. [8] worked on dynamic coalition formation in dynamic uncer-
tain environments. This work investigates dynamic, uncertain environments in which tasks 
may evolve during execution, and agents and resource availability may vary rapidly and 
unpredictably. None of those works actually considers the attendance rate of each agent. 
Also, how the coalition values are computed in ���� makes our model quite different from 
previous work.

Moreover, related to our work is the Team Formation Problem ( �� ) [15, 32]. �� is the 
problem of forming the best possible team to perform some tasks of interest, given limited 
resources. Nair and Tambe [15] worked on forming a team with the maximum expected 
value, under the constraint that it has all the required skills to accomplish the tasks of inter-
est. To give a comparison between the �� problem and the ��� problem, it is useful to 
keep in mind that ��� (and ���� ) is similar to the complete set partition problem [33], 
while �� is equivalent to the set cover problem [10]. Okimoto et al. [16, 17] worked on the 
robustness issue in team formation problems. In these papers, a set of agents and a set of 
tasks are given, and the aim is to form a team which is robust, i.e., which can achieve the 
given tasks even if some agents break down. The parameter k in ���� (i.e., the number of 
agents who may be absent from a coalition) has a somewhat similar role as the robustness 
considered in team formation.

In traditional ��� , since the value of each coalition is assumed to be given by a charac-
teristic function, the representation size is exponential in the number of agents [24, 25]. In 
order to solve this problem, several compact representation schemes for characteristic func-
tions have been proposed [4, 9, 29, 31], e.g., concise representation scheme based on agent 
types [31], marginal contribution nets (MC-nets) [9] and synergy coalition groups (SCGs) 
[4]. The attendance type used in this paper is based on the idea introduced in [31], where 
the authors consider a situation where multiple agents have similar capabilities/skills called 
recognizable types, and the number of possible types is small. In our work, we use this idea 
for the attendance rate of each agent.

7 � Conclusion

How to form a coalition is a major issue for many applications related to multi-agent coop-
eration. Coalition Structure Generation ( ��� ) involves partitioning a set of agents into 
coalitions such that the social surplus is maximized. Probabilistic Coalition Structure Gen-
eration ( ���� ) is an extension of ��� where the aim is to find an optimal coalition struc-
ture that maximizes the sum of the expected values of all coalitions. The contributions of 
this paper are as follows:

•	 A formal framework for the Probabilistic Coalition Structure Generation ( ���� ) is 
introduced where the attendance type of each agent is considered. This framework is a 
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generalization of the framework introduced in [26], namely it includes the Cautious and 
Flexible ���� treated in [26] as special cases.

•	 Approximation algorithms for solving the ���� problem called Bounded Approxima-
tion Algorithm based on Attendance Types ( ����� ) and Involved Bounded Approxi-
mation Algorithm based on Attendance Types ( ������ ) are presented. The charac-
teristics of these algorithms are as follows: (1) there is an upper bound on the error of 
the returned solution and this bound can be obtained a priori, and (2) one can use any 
complete algorithm for solving to optimality the relaxed problems in Phase 2 of both 
algorithms.

•	 The performances of ����� and ������ are evaluated on a number of benchmarks. 
Our experimental results revealed that (1) both algorithms can solve the ���� prob-
lems very quickly and provide high solution quality when the parameter p̃ is low, and 
(2) we can see a trade-off between these algorithms by varying the parameter p̃ , i.e., 
����� can solve the problems faster than ������ for larger p̃ , while ������ has the 
better solution quality.

Regarding future work, a potential direction is investigating concise representations of the 
characteristic function in ���� . Since the number of coalitions is exponential in the num-
ber of agents, it is reasonable to try to reduce the representation size of the characteristic 
function which provides the value of each coalition. One could try to apply the existing 
concise representations of the characteristic function from [4, 9, 29, 31] in our framework, 
and then try to solve large-scale problem instances.

Furthermore, what could be of interest is applying our ���� framework to real-world 
problems such as the nurse scheduling problem (NSP) [2] and the distributed vehicle rout-
ing problem [25]. Forming effective working groups by considering the nurses’s attend-
ances, amounts to solving the ���� problem. Also, drivers’ attendances in the vehicle 
routing problem can be represented in the ���� framework.

Lastly, our framework could potentially be extended to a dynamic setting in which 
the set of agents A may change over time. The objective here would be to apply such an 
extended framework to the distributed robot team reconfiguration problem [6].
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