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Abstract Robust and cost effective methods for

estimating aboveground biomass of trees on farms are

necessary to understand the significance of this carbon

pool, identify climate change mitigation opportunities

and support smallholder farmers’ ability to capitalize

on the emerging green economy. Using a dataset of 72

destructively sampled trees and 855 non-destructively

sampled trees, we identified methodologically and

economically efficient strategies to construct allome-

tric equations and measure on-farm tree biomass. We

found that robust biomass estimates can be obtained

from measuring diameter at breast height (DBH)

alone. Inclusion of tree height, specific wood density,

and/or crown area in the allometric equation changed

the biomass estimates by only 1.3 %, though these

additional variables improved precision by reducing

the error from 7.8 % to between 4.8 and 7.0 %.

Research accuracy-to-cost trade-offs can be optimized

by building equations based on destructive

measurements of trees that span stem diameters found

in the landscape; equations based on only small or

large diameter trees result in poor estimates. Given (1)

the resources required to measure additional dendro-

metric parameters in the field (2) the potential to

introduce measurement errors that can propagate

through estimates at farm and landscape scales, and

(3) the need to quickly increase the amount of data

available at low cost, we recommend that allometric

equations for trees on farms be based solely on DBH

and that the sampling strategy capture the range of tree

sizes found in the landscape and future indirect

quantification should focus on diameter at breast

height as a predictor of biomass to save resources.
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Introduction

Trees are a critical component of the global carbon

(C) cycle. Forests account for 45 % of terrestrial

carbon stocks and deforestation is responsible for

17 % of annual radiative forcing (IPCC 2007). Carbon

quantification efforts typically take a forest-centric

perspective ignoring trees outside of forest bound-

aries. However, more than 45 % of farmland globally

has 10 % or greater tree-cover (Zomer et al. 2009) and
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C stocks in the biomass of these system ranges

between 3–18 Mg C ha-1 (Nair and Nair 2014).

Although the aboveground C stocks found in trees

on farms are less than forests, the aggregate C pool is

presumably significant due to the spatial extent of

farmland with some tree cover (Zomer et al. 2009).

Furthermore, increasing the area and density of trees

on farm accumulates more C in biomass and is an

important climate change mitigation strategy (Verchot

et al. 2007; Lal 2004), especially when it is done in a

way that can reduce competition and enhance com-

plementarity between trees and crops. Despite the

importance of the C in trees, there is a paucity of data

on C and biomass stored in trees on farms (de Foresta

et al. 2013). This research aims to establish cost-

effective and robust approach for monitoring C stocks

in trees on farms.

Estimating biomass of trees on farmland presents

unique challenges. Trees on farms typically show

greater phenotypic plasticity than trees inside of

forests. Human management such pruning and fertil-

ization and heterogeneous growing conditions can

change light and nutrient availability to produce

unpredictable tree architecture (Harja et al. 2012).

These irregular tree geometries may render available

allometric equations and data irrelevant because

allometric equations, by definition, rely on standard

tree growth patterns and architecture. Application of

equations based on trees inside forests may generate

biased estimates, as much as 20 % off, suggesting the

need to produce equations specific for trees on farms if

accurate accounting is desired (Kuyah et al. 2012a).

The requisite tree growth information for allometric

equation is best obtained by destructive sampling -

felling and weighing trees in the field (Brown 1997).

Costs and logistics associated with field measurements

always limit the number of destructive experiments,

the number of trees harvested, the parts of the tree

measured and the size of trees harvested. As a result,

allometric equations are often based on sample sizes of

30 or fewer trees of relatively small diameters (e.g.

less than 30 cm) or existing data not specifically

collected for the purpose. This is significant because

biomass estimates can be skewed if allometric equa-

tions (1) were derived from datasets based on smaller

diameter trees (2) do not include all tree components

such as branches and leaves, and (3) are applied under

environmental conditions for which they were not

developed (Brown 1997; Kuyah et al. 2012a). Such

cost-constrained research decisions define the value

and applicability of the generated allometric model.

The predictors included in the allometric model

may also introduce error or bias into biomass

estimates. Tree diameter (DBH) is the most widely

applied predictor of biomass and contained in virtually

all allometric equations that are not based solely on

remotely-sensed crown area (Gibbs et al. 2007).

Height, crown area, and wood density have been

reported to be useful supplements for improving the

accuracy of biomass equations based on DBH (Chave

et al. 2005; Ketterings et al. 2001; Kuyah et al. 2012a).

However, these additional measurements can be costly

and are prone to errors. Errors arising in the field

clearly propagate into misleading biomass estimates

for the subject population and subsequent studies that

apply existing equations.

The lack of robust and validated information and

methods of biomass for trees on farm limits the

evaluation of their functional role in the C cycle and

their climate change mitigation potential. Defining

optimal biomass estimation procedures and appropri-

ate equations and parameters for robust, consistent,

and low-cost quantification are necessary to improve

our understanding of trees on farm and the C cycle.

Such information will help rapidly increase the

volume and quality of data for trees on farms and is

vital for individuals, projects, and communities that

may benefit from emerging climate change mitigation

opportunities (e.g. Nationally Appropriate Mitigation

Actions) and timber markets by growing trees. Here,

we identify methodologically and economically effi-

cient biomass sampling procedures to provide robust

biomass estimates for agricultural landscapes.

Materials and methods

Study site

The study was conducted in three 100 km2 sites along

the altitudinal gradient in the Yala River basin in

Western Kenya (Lower Yala, Middle Yala and Upper

Yala). Each site consists of 10 9 10 km blocks, each

divided into 16 sub-blocks (clusters, 2.5 9 2.5 km)

with 10 plots in each cluster (Vågen et al. 2012). The

Lower Yala site is located in Siaya and Kisumu

Counties, latitude 0�10S; longitude 34�280E; the Mid-

dle Yala site is located in Vihiga and partly in
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Kakamega Counties, latitude 0�70N; longitude

34�490E; while the Upper Yala site is located in Uasin

Gishu District, 0�170N; longitude 35�200E. The mean

annual rainfall across in the basin ranges between

1,000 and 1,800 mm, received in two seasons. The

mean annual temperature is 21.9 �C in Lower Yala,

20.5 �C in Middle Yala and 16.7 �C in Upper Yala.

Dominant soil types along the River Yala basin

include Acrisols, Ferralsols and Nitisols (Jaetzold

et al. 2007). Figure 1 shows the location of the study

sites in the River Yala basin, with an altitudinal

gradient ranging of 1,200 m in the Lower Yala to

2,200 m in Upper Yala.

The three sites cross altitudinal, slope, precipita-

tion, and management gradients—from relatively

uniform topography with low precipitation managed

at low agricultural intensity to the opposite, high

intensity agriculture on slopes receiving more signif-

icant rainfall (Boye et al. 2008). Agricultural

expansion has reduced forest area and natural vege-

tation in the region to the point where now woody

vegetation exists as part of a complex agricultural

mosaic including: individual free standing exotic and

naturalized species (Eucalyptus, Acacia mearnsii)

near the homestead or intercropped, boundary plant-

ings around fields, and stands of mono-specific and

mixed indigenous species e.g. Markhamia lutea

(Glenday 2006; Henry et al. 2009).

Data collection

Trees used in the broader data of Kuyah et al. (2012a)

were used for this evaluation. The 72 trees selected for

destructive sampling (N = 72) and 855 trees invento-

ried for indirect biomass assessment (N = 855) were

measured in twenty-eight (30 9 30 m, 0.09 ha) plots

distributed throughout the three sites. The plots were

established on 28 of the 160 (16 9 10) randomized

Fig. 1 The location of the

three study sites in the Yala

River Watershed, Western

Kenya
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sample points within each of the 10 9 10 km sites. A

randomized sub-set of these points were used (15 % of

all previously existing sampling points in lower Yala,

30 % in the middle Yala and 15 % in the upper Yala,

Fig. 1). On each of those sampling points chosen

randomly, a 30 9 30 m plot was drawn where all trees

were inventoried (in situ) in addition to the destructive

sampling. Study plots were selected to capture the

diversity of tree species occurring in the landscape and

trees of the same species at various altitudes. Tree

diameter (DBH) ranged from 2.5 to 102 cm and were

categorized into six classes i.e. \10, 10–20, 20–30,

30–40, 40–50, and [50 cm. Trees felled and mea-

sured in each class were selected randomly from an

inventory list. When trees of larger DBH could not be

found in the plots via the inventory list, we intention-

ally harvested those outside the pre-selected plots, but

within the (10 9 10 km blocks) landscape. Destruc-

tive measurements of the 72 trees were the basis of the

accuracy and cost analyses when constructing allo-

metric equations. In addition, we inventoried all trees

with DBH C 2.5 cm within these 28 plots (N = 855)

and measured DBH, height, crown area and wood

density. We used these inventory measurements to

estimate landscape level biomass.

Destructive measurements

Tree diameter (DBH), height, and crown area were

measured prior to felling the 72 trees selected for

destructive measurements and for the additional 855

trees inventoried. Tree diameter (DBH) was measured

1.3 m above the ground. When trees growth showed

anomalies (e.g. fluting), conventional methods of

DBH estimation were used (West 2009). Tree height

was measured with a hypsometer and later validated

by measuring the length of felled trees. Crown areas

were estimated by establishing the crown edge with a

clinometer, length (l) and width (w) were measured

using orthogonal transects, and crown area was

calculated based on the measured diameters assuming

an ellipse shape, ca ¼ p� 1
2
� w

2

� �
(Kuyah et al.

2012b).

Destructively sampled trees were cut as closely to

the ground as possible with a chain saw. Branches

were detached from the stem and the leaves stripped

from the branches. The stem represents the main trunk

of the tree from the cut point at the base to the tip. All

woody parts arising from the stem were included as

branches while the foliage arising from branches was

included as leaves. Leaves of species such as acacia

and Cupressus lusitanica could not be detached

individually from the small branches and were

weighed together with smaller branches (less than

1 cm in diameter) as twigs. Tree components includ-

ing stems, branches, and leave were cut into weighable

sections, when necessary, and their fresh weight

determined on the site by balance (300 kg with

precision of 0.1 kg). To account for losses due to the

sectioning of components into smaller pieces, we

multiplied the wood density of the tree by the volume

of the chain saw gap. Leaves were weighed separately

from the branches in the field. Subsamples of all

components were taken to determine the dry weight to

estimate biomass. The fresh weight of subsamples of

the tree components was determined using a

3 ± 0.001 kg balance. The subsamples were oven

dried at 105 �C for approximately 24 h, until no

further changes in weight occurred.

Wood density was determined by coring about

50 % deep into the stem at 1.3 m using a carpenter’s

awl and 2.5 cm bit. The cored material was collected

from the hole with a spatula and their fresh weight

determined in the field. The width (w) and depth (d) of

the core were determined for calculation of the volume

v ¼ p� ðw
2
Þ2 � d of the core. Cored samples were

dried to a constant weight in a well-ventilated oven at

105 �C for 24 h. Wood density was then determined as

the ratio of the dry weight of the cored material to the

volume of the core. Species in the data whose wood

density values were not determined during biomass

sampling were given wood density values found in the

global wood density database (Chave et al. 2009a, b)

and African wood density database (Carsan et al.

2012).

Measurement costs

We calculated the costs associated with tree compen-

sation, labor, chain saw rental and transportation to the

sites for individual trees harvested (N = 72). Com-

pensation in Kenya Shilling (KES) at the rate of

$USD = KES85 was made for every tree cut depend-

ing on the size of the tree. A general range of \10 cm

trees at $1–3, 11–20 cm trees at $3–11, 21–30 cm

trees at $12–35, 31–40 trees at $35–60, 41–50 trees at
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$60–95 and $105–235 for trees with DBH over 50 cm

was agreed upon after consultation with selected

timber dealers in Kisumu, Kakamega and Eldoret.

These rates were slightly below the prevailing market

price, though it varied across the basin depending on

the tree species, the farmers’ plan (purpose of planting

the tree) and family needs at the moment. Indigenous

and fruit tree species attracted over three times the

price of regular exotic tree species, disregarding size.

Further, damage caused on crops or neighboring trees

after felling the selected tree was pre-determined

(arbitrarily) prior to felling trees. For every individual

tree cut, two Grevillea robusta trees were given out to

the farmer to plant. The aggregate cost of seedlings,

price of cut tree and payment for damaged constituted

the total compensation cost.

Operational costs included local car rental, chain

saw rental, fuel for car and saw, and labor multiplied

by the number of days per tree. Because a day’s

transport could facilitate work on several trees

depending on size, the cost of transport per tree was

calculated as a fraction (%) of the transport depending

on the average number of trees that could be

completed in a day. The cost of skilled and casual

laborers was calculated by multiplying their daily

wage by person’s labor days (the fraction of a day or

the number of days required to complete sampling a

tree of a given diameter). Skilled labor included three

field technicians (one who doubled as a driver), and a

laboratory technician who received and processed the

samples. The cost of equipment and other field related

costs, such as sensitization meetings (which include

payment to facilitate local leaders and farmers to

attend these meetings); consultative meetings with the

Kenyan Forest Service were not included. The cost for

developing the different allometric equations were

based on the cost of sampling trees included in the

equation, based on diameter distribution.

Allometric equation by Kuyah et al. (2012a), and

Brown (1997) and those built from three sets of data in

this study: (1) Equation 1 with 36 small diameter trees

only (DBH 2.5–30 cm) (2) Equation 2 with 36 large

diameter trees (DBH 31–102 cm) and (3) equation

with 36 trees with evenly distributed DBH

(2.5–102 cm) were used to evaluate landscape level

biomass predictions. Allometric equations were devel-

oped using least squares regression after log trans-

forming of the data. A correction factor (CF) was

calculated from the standard error of the estimate of the

regression (SEE), CF ¼ ExpðSEE=2Þ2 and used to

correct for bias introduced by log transformation of the

data (Sprugel 1983). These equations were also used to

establish the trade-off between accuracy and cost. The

equation by Kuyah et al. (2012a) assumes the whole

cost of destructively sampling of the 72 trees. No cost

is incurred by using tier II approach, where the two

equations by Brown (1997) were sourced from the

literature. Application of these equations to an inven-

tory of 855 trees measured across the landscape

provided variations in biomass estimates depending on

the methods applied in measurements, and the choice

of allometric equation. The equations were compared

using absolute biomass estimates, the mean rela-

tive error (MRE), mean square error (MSE), predicted

residual sum of squares (PRESS), and Fur-

nival’s Index (FI). The mean relative error (%) was

calculated using the formula MRE ¼ ðAGBPredicted�
AGBMeasuredÞ=AGBMeasuredÞ � 100. The MSE was cal-

culated as the average of the squared errors. PRESS

was calculated as the sums of squares of the

prediction residuals while FI was calculated as a

product of the square root of mean square error and

the inverse of the geometric mean of the derivative

of the natural logarithms of AGB, (ln(AGB)):
ffiffiffiffiffiffiffiffiffiffi
MSE
p

1

GEOMðlnðAGBÞ�1

� �
.

Results and discussion

We found that inclusion of height, wood density or

crown area in biomass equation changed biomass

estimates by a trivial amount, less than 1.2 Mg or

1.3 % of total biomass, from those obtained by using

the diameter alone equation (Table 1). The equation

with DBH and wood density was marginally better

than all the others in describing the current data i.e. has

smaller indices of model fit and predictive ability

(Table 1). Height on the other hand was not significant

and had large standard error, indicating that inclusion

of height does not increase model predictive ability of

diameter based equations. This suggests that allome-

tric equations relying on DBH alone create relatively

robust biomass estimates for trees on farm and the

additional resources (time, personnel and equipment)

necessary to measure height and crown area do not

compensate for the small increase in accuracy of the

biomass estimate. Furthermore, measurements of
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height and crown area can be subject to operator error.

Hypsometer readings can be hindered when measuring

total tree height on a steep slope or in a closed canopy.

Likewise, crown area measurements are subject to

operator decisions of where the crown edge lies and

can be impacted by overlapping trees. Thus, we

conclude that the *1.3 % of total biomass difference

between the various parameters is likely fungible

given the concerns over accuracy and the additional

time it takes to measure height and crown area. We

conclude that DBH alone is a robust proxy for trees in

this landscape, particularly because DBH only

equations are simpler, less costly and provide more

effective predictions (Sileshi 2014). The relevance for

other landscapes with other species, tree configuration

and environmental conditions will need to be tested

further but based on our data DBH seems to be a

promising low-cost proxy for ground-based

inventories.

The range of plant characteristics measured on the

trees by species and the characteristics of individual

trees harvested in each of the sites, including man-

agement influence are presented in Table 2 and

appendix 1 (in supplementary material), respectively.

Table 1 Coefficients of biomass estimation models (a, b and c) and biomass estimates determined from equation that includes

different parameters measured

Parameters Allometric coefficients Estimate

(Mg/ha)

Adj. R2 MRE MSE Furnivall’s

Index

PRESS AIC

A B C

DBH alone 0.091 2.472 36.4 0.977* 7.8 0.070 1.351 5.229 16.603

DBH and height 0.092 2.488 -0.028 35.9 0.977 7.0 0.071 1.360 5.358 18.603

DBH and wood density 0.225 2.341 0.730 36.5 0.984 4.8 0.049 1.132 3.769 -7.890

DBH and crown area 0.107 2.318 0.101 36.3 0.978 6.3 0.067 1.320 5.068 14.114

Indices of predictive ability of the models (MRE mean relative error) and model fit (MSE mean square error, Furnival’s index PRESS

predicted residual sum of squares, and AIC Akaike information criterion) are provided. Other than the model build with DBH, the

Adj. R2 (adjusted R2) refers to the coefficient of multiple correlation

* indicates that the value is R2 and not adjusted R2

Table 2 The range of plant characteristics (by species) measured on trees harvested in western Kenya for development of allometric

equations

Species Number of

trees

DBH (cm) Height (m) Crown area (m2) Aboveground biomass (kg)

Mean Min. Max. Mean Min. Max. Mean Min. Max. Mean Min. Max.

Acacia mearnsii 8 25.3 10.1 39.4 11.7 6.4 18.9 35.2 7.0 71.6 436.6 36.8 875.6

Combretum molle 1 39.8 39.8 13.9 13.9 49.9 49.9 669.6 669.6

Cupressus lusitanica 3 17.4 6.8 25.2 9.2 5.8 12.7 24.5 8.5 33.1 113.6 10.0 201.5

Eucalyptus camaldulensis 20 42.9 8.1 96.0 26.7 9.3 44.5 65.4 5.6 209.3 1365.7 11.9 7427.9

Eucalyptus grandis 6 12.4 6.6 24.0 11.2 6.6 15.1 8.9 1.5 17.7 50.5 7.6 159.0

Eucalyptus saligna 5 15.0 5.3 31.2 13.9 6.6 23.3 11.8 2.8 26.4 172.9 5.8 492.9

Ficus sp 1 73.0 73.0 14.4 14.4 73.9 73.9 1858.1 1858.1

Grevillea robusta 5 58.4 37.0 85.8 20.0 15.4 24.7 152.0 59.2 229.6 2708.2 658.4 5705.2

Jacaranda mimosifolia 2 67.8 50.0 85.5 20.8 19.6 22.0 136.2 82.9 189.5 3298.4 1167.6 5429.2

Mangifera indica 6 41.3 21.0 78.0 8.6 5.5 13.5 68.0 25.5 150.2 1219.2 210.1 3097.4

Markhamia lutea 7 14.2 3.2 33.4 9.1 4.2 13.8 9.9 0.4 23.8 75.4 2.8 263.5

Persia americana 2 16.0 12.2 19.8 8.2 6.9 9.6 17.2 12.1 22.3 79.2 42.7 115.6

Spathodea campanulata 1 8.2 8.2 6.0 6.0 4.9 4.9 7.7 7.7

Syzygium cordatum 2 92.8 83.4 102.2 36.0 35.3 36.6 236.4 186.2 286.5 10354.5 8481.9 12227.2

Syzygium cuminii 2 37.5 34.0 41.0 13.0 12.0 13.9 40.7 36.1 45.2 548.7 406.6 690.8

Trilepisium

madacascariensis

1 60.0 60.0 60.0 35.4 35.4 35.4 1675.7 1675.7 1675.7
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A scatter plot of aboveground biomass against DBH

for the 72 trees harvested is shown in Fig. 2. Irregular

forms of trees with deep indentations can lead to

overestimation of biometric attributes (Nogueira et al.

2006) and thus confound the use of DBH alone.

However, few fluted tree were encountered in the

farms surveyed. For one harvested tree, the DBH

measured along the flutes was greater, 73 cm com-

pared to the one measured conventionally, 60 cm.

DBH measurements from irregular shaped stems

significantly influence biomass estimates for a partic-

ular tree when incorrectly measured (Nogueira et al.

2006). This disparity is shown in the substantial

difference in biomass, 2.9 Mg from conventionally

measured DBH (a value close to the actual biomass,

3.1 Mg) and 4.7 Mg from DBH measured along the

flutes, when predicted using the equation by Kuyah

et al. (2012a). Despite the potential errors, fluted trees

occur infrequently in this landscape and on farms as

most trees are managed and planted trees rarely show

flutes. Consistent estimations are therefore expected

for trees in agricultural lands.

Greater deviations in the mean relative error, MRE

(from estimates by the DBH alone) were found in

biomass estimates of smaller diameter trees, while

greater differences in absolute values occurred in

estimates of larger diameter trees. This underscores

the difficulty in accurately estimating the biomass of

small trees due to the large biomass variability. Small

(immature) trees may not yet have a well-developed

root system, which renders their architecture more

vulnerable to (or at least dependent on) edaphic factors

such as nutrient and water supply. Trees typically

overcome such constrains as they grow. By contrast,

the variability of mature trees is caused by manage-

ment practices like selective harvesting of stems, e.g.

for poles, lopping of branches to provide fuel-wood,

pollarding to reduce light competition with crops, and

pruning (Appendix 1 in supplementary material). Such

management interventions alter biomass without

directly affecting DBH. Given the estimation chal-

lenges presented by trees of various age and size and

the relative accuracy and cost data (Table 3), we

recommend that studies with limited budgets aim to

harvest a well distribution sample across the relevant

age/DBH classes (equation 3, AGB ¼ 0:091�
DBH2:472).

Trade-offs between investment and accuracy were

demonstrated by constructing equations from limited

samples and applying them to the entire sample set

(Table 3). Application of the resulting equations to

trees of larger diameter than the ones used in

construction of the equation yielded poor estimates,
Fig. 2 A scatter plot of aboveground biomass against diameter

at breast height for the 72 trees harvested in western Kenya

Table 3 The cost of developing biomass equations with trees of different sizes, the respective mean relative error (MRE), and the

landscape level biomass estimates

Allometric equation Model Number

of trees

DBH (cm) Cost ($) MRE (%) Estimate

(Mg/ha)

Equation 1 Y ¼ Expf�2:399þ 2:4602� lnðDBHÞg 36 2.5–30 2424 6.3 35.2

Equation 2 Y ¼ Expf�2:904þ 2:5880� lnðDBHÞg 36 31–102 9430 8.2 35.7

Equation 3 Y ¼ Expf�2:405þ 2:4672� lnðDBHÞg 36 2.5–102 5737 7.2 35.8

Kuyah et al. (2012a) Y ¼ Expf�2:4033þ 2:4718� lnðDBHÞg 72 2.5–102 11853 7.8 36.4

Brown (1997) (dry forest) Y ¼ Expf�1:996þ 2:32� lnðDBHÞg 28 5–40 1.2 31.7

Brown (1997) (moist forest) Y ¼ Expf�2:134þ 2:53� lnðDBHÞg 59 58.3
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although the prediction equation error decreased

substantially above a sample size of 30 trees. While

the cost of sampling large trees and their scarcity in the

landscape may justify their absence from calibration

dataset for many equations, our study is consistent

with the observation that equations that lack input

from large diameter classes cannot be used to accu-

rately estimate the biomass held in large trees (Brown

1997). Disregarding equipment costs assuming they

are available, our equations reveal that 30 trees may

represent the minimum sample size necessary to

reduce error to below 10 % (Fig. 3). The costs related

to compensation due to damages and inaccessibility to

the plots can be mitigated by planning the study after

the cropping season and avoiding extreme rainy

season. Thus the cost of sampling increased as the

number and size of trees increased, as a function of

tree access, labor, and owner compensation cost.

Conclusion

The prevailing constraints of available biomass data

and the limitations of existing allometric equations

creates conditions where little can be said about either

the importance or opportunities for C sequestration

with trees on farm. We identified economically and

technically efficient measurement strategies that can

inform future destructive measurements of trees on

farms to strike the appropriate balance between

accuracy and cost necessary to provide robust esti-

mates of biomass in agricultural systems.
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(2005) Tree allometry and improved estimation of carbon

stocks and balance in tropical forests. Oecologia

145(1):87–99

Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne

AE (2009a) Towards a worldwide wood economics spec-

trum. Ecol Lett 12(4):351–366

Chave J, Coomes DA, Jansen S, Lewis SL, Swenson NG, Zanne

AE (2009b) Data from: towards a worldwide wood eco-

nomics spectrum. Dryad Data Repos. doi:10.5061/dryad.

234

de Foresta H, Somarriba E, Temu A, Boulanger D, Feuilly H,

Gauthier M (2013) Towards the Assessment of Trees

Outside Forests. Resources Assessment Working Paper

183. FAO Rome

Gibbs HK, Brown S, Niles JO, Foley JA (2007) Monitoring and

estimating tropical forest carbon stocks: making REDD a

reality. Environ Res Lett 2:13

Glenday J (2006) Carbon storage and emmision offset potential

in an East African tropical rainforest. For Ecol Manag

235:72–83

Harja D, Vincent Gg, Mulia R, Van Noordwijk M (2012) Tree

shape plasticity in relation to crown exposure. Trees

26:1275–1285

Fig. 3 Accuracy versus financial implication: the mean relative

error (error %) of equations derived from a limited number of

trees but applied to all 72 trees and the cost of sampling trees of

different sizes. The trees are ordered by increasing diameter at

breast height

132 Agroforest Syst (2015) 89:125–133

123

http://dx.doi.org/10.5061/dryad.234
http://dx.doi.org/10.5061/dryad.234


Henry M, Tittonell P, Manlay RJ, Bernoux M, Albrecht A,

Vanlauwe B (2009) Biodiversity, carbon stocks and

sequestration potential in aboveground biomass in small-

holder farming systems of western Kenya. Agric Ecosyst

Environ 129(1–3):238–252

IPCC (2007) Climate change 2007: The physical science basis.

Contribution of working group I to the fourth assessment

report of the intergovernmental panel on climate change.

Cambridge University Press, Cambridge

Jaetzold R, Schmidt H, Hornetz B, Shisanya C (2007) Farm

Management Handbook of Kenya vol. 2—Natural condi-

tions and farm management information. Part A West

Kenya, Subpart A1 Western Province. 2nd Edition. Min-

istry of Agriculture, Kenya, in Cooperation with the Ger-

man Agency for Technical Cooperation (GTZ), Nairobi,

Kenya

Ketterings QM, Coe R, Van Noordwijk M, Ambagau Y, Palm

CA (2001) Reducing uncertainty in the use of allometric

biomass equations for predicting above-ground tree bio-

mass in mixed secondary forests. For Ecol Manag

146:199–209

Kuyah S, Dietz J, Muthuria C, Jamnadassa R, Mwangi P, Coe R,

Neufeldt H (2012a) Allometric equations for estimating

biomass in agricultural landscapes: I. aboveground bio-

mass. Agric Ecosyst Environ 158:216–224

Kuyah S, Muthuri C, Jamnadass R, Mwangi P, Neufeldt H,

Dietz J (2012b) Crown area allometries for estimation of

aboveground tree biomass in agricultural landscapes of

western Kenya. Agrofor Syst 86(2):267–277

Lal R (2004) Soil carbon sequestration to mitigate climate

change. Geoderma 123(1–2):1–22

Nair PKR, Nair VD (2014) ‘Solid–fluid–gas’: the state of

knowledge on carbon-sequestration potential of agrofor-

estry systems in Africa. Curr Opin Environ Sustain

6:22–27

Nogueira EM, Nelson BW, Fearnside PM (2006) Volume and

biomass of trees in central Amazonia: influence of irregu-

larly shaped and hollow trunks. For Ecol Manag 227:14–21

Sileshi GW (2014) A critical review of forest biomass estima-

tion models, common mistakes and corrective measures.

For Ecol Manag 329:237–254

Sprugel DG (1983) Correcting bias in log transformed allome-

tric equations. Ecology 64(1):209–210
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