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Abstract
Let M = G/H be a compact, simply connected, Riemannian homogeneous space, where G
is (almost) effective and H is a simpleLie group. In this paper, we first classify all G-naturally
reductive metrics on M , and then all G-geodesic orbit metrics on M .
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1 Introduction

A Riemannian manifold (M, g) is called a geodesic orbit manifold (or a manifold with
homogeneous geodesics, or a GO manifold) if any geodesic of M is an orbit of a 1-
parameter subgroup of the full isometry group of (M, g) (without loss of generality, one
can replace the full isometry group by its connected identity component). A Riemannian
manifold (M = G/H , g), where H is a compact subgroup of the Lie group G and g is a
G-invariant Riemannian metric on M , is called a G-geodesic orbit space (or a space with G-
homogeneous geodesics, or a G-GO space) if any geodesic of M is an orbit of a 1-parameter
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subgroup of the group G. Hence, a Riemannianmanifold (M, g) is a geodesic orbit manifold,
if it is a geodesic orbit space with respect to its full isometry group. This terminology was
introduced in [24] by O. Kowalski and L. Vanhecke who initiated the systematic study of
such spaces.

The GO property which plays the central role in this paper is a very general geometric
phenomenon: it is extensively studied in Riemannian, Lorentzian and general pseudo-
Riemannian settings, in Finsler geometry (see recent papers [13, 39, 40] and bibliographies
therein), in affine geometry [12], and even for finite metric spaces [8]. In all these cases, is
not hard to see that the GO property implies homogeneity, but is much stronger than just
homogeneity.

The class of (Riemannian) geodesic orbit spaces includes (but is not limited to) symmetric
spaces, weakly symmetric spaces [4, 37, 41], normal and generalized normal homogeneous
spaces, naturally reductive spaces [10], Clifford–Wolf homogeneous manifolds [6] and δ-
homogeneous manifolds [5]. For the current state of knowledge in the theory of geodesic
orbit spaces and manifolds, we refer the reader to the book [7] and the papers [2, 16, 30] and
the bibliographies therein.

Let (M = G/H , g) be a homogeneous Riemannian space and let g = h⊕p be an Ad(H)-
invariant decomposition, where g is the Lie algebra of G, h is the Lie algebra of H and p

is identified with the tangent space of M at eH . The Riemannian metric g is G-invariant
and is determined by an Ad(H)-invariant inner product (·, ·) on p. The metric g is called
naturally reductive if an Ad(H)-invariant complement p can be chosen in such a way that
([X , Y ]p, X) = 0 for all X , Y ∈ p, where the subscript p denotes the p-component. In this
case, we say that the (naturally reductive) metric g is generated by the pair (p, (·, ·)). For
comparison, on the Lie algebra level, g is geodesic orbit if and only if for any X ∈ p (with
any choice of p), there exists Z ∈ h such that ([X + Z , Y ]p, X) = 0 for all Y ∈ p [24,
Proposition 2.1]. It immediately follows that any naturally reductive space is a G-geodesic
orbit space; the converse is false when dim M ≥ 6. Clearly, the property of being naturally
reductive depends on the choice of the group G (the choice of the presentation M = G/H );
both enlarging and reducing G may result in gaining or losing this property. In this paper, the
presentation M = G/H (and hence the group G) will be fixed, and so “naturally reductive”
will always mean “G-naturally reductive,” unless explicitly stated otherwise.

Our setup in this paper is as follows. Let M = G/H be a compact, connected, simply
connected, Riemannian homogeneous space, with G acting almost effectively (this means
that any normal subgroup of G contained in H is discrete). We classify all the G-GO metrics
on M , both naturally reductive and not, under the assumption that H is a simple Lie group
(that is, any normal proper subgroup of H is discrete). Note that H is then closed (compact)
and connected and G is connected. Moreover, the fundamental group of H must be finite,
and since G is compact (and hence reductive), with a finite fundamental group (from the
exact sequence of the fibration H → G → G/H ), G must be a compact semisimple Lie
group.

We first characterize naturally reductive metrics on G/H . Let g = ⊕N
i=1gi , N ≥ 1,

be a decomposition of g into simple ideals. The inclusion h ↪→ g followed by the linear
projection g → gi relative to this decomposition defines a projection of h to each of gi ,
which is a homomorphism of Lie algebras. As h is simple, every such homomorphism is
either trivial or injective. Relabel the ideals gi in such a way that

g =
⊕N0

i=1
gi ⊕

⊕N1

i=N0+1
gi ⊕

⊕N

i=N1+1
gi ,
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where 0 ≤ N0 ≤ N1 ≤ N , N0 < N , and the projection of h to gi is trivial for i = 1, . . . , N0,
is injective, but not surjective for i = N0 +1, . . . , N1, and is bijective for i = N1+1, . . . , N
(so that gN1+1, . . . , gN are isomorphic to h). Denote by 〈·, ·〉i minus the Killing form on gi ,
for i = 1, . . . , N0. For i = N0 + 1, . . . , N , denote by 〈·, ·〉i the (negative) multiple of the
Killing form on gi normalized in such a way that its restriction to the projection of h to gi

equals minus the Killing form on h.

Theorem 1 Let M = G/H be a compact, connected, simply connected, Riemannian homo-
geneous space, where G is almost effective and H is a simple Lie group. An invariant metric
on M is (G-)naturally reductive if and only if it is generated by a pair (p, (·, ·)) such that, in
the above notation,

(a) either p = ⊕i 	= jgi is an ideal in g, for some j ∈ {N1+1, · · · , N } (so that g j is isomorphic
to h), and (·, ·) is an ad(p)-invariant inner product on p, that is, (·, ·) = ∑

i 	= j βi 〈·, ·〉i ,
where βi > 0.

(b) or p is the orthogonal complement to h ⊂ g relative to an ad(g)-invariant quadratic form
Q = ∑N

i=1 γi 〈·, ·〉i on g and (·, ·) = Q|p, where

(i) either γi > 0 for all i = 1, . . . , N,
(ii) or there exists j ∈ {N1 + 1, . . . , N } such that γ j < 0 and γi > 0 for all i 	= j , and∑N

i=N0+1 γi < 0.

Remark 1 Note that all the metrics from (a) are reducible when N > 2; this is not necessarily
true for metrics in (b). Also note that if g contains no simple ideals isomorphic to h, then
any naturally reductive metric is normal which means that it is the restriction to p of a
bi-invariant (ad(g)-invariant) metric on g; a normal metric is always naturally reductive.
Theorem 1 generalizes the result of [29, Theorem 1] for Ledger–Obata spaces. In fact, a
Ledger–Obata space is the homogeneous space G/H with N1 = 0 in our notation.

The classification of G-GO metrics which are not naturally reductive is given in the
following theorem.

Theorem 2 Let M = G/H be a compact, connected, simply connected, Riemannian homo-
geneous space, where G is almost effective and H is a simple Lie group. Suppose M is a
G-GO space. Then either M is (G-)naturally reductive, or one of the following is true.

(A) If M is an irreducible Riemannian manifold, then G is simple and M belongs to the
following list, up to a finite cover (the corresponding metrics are given in Table 1).

(1) SO(9)/Spin(7);
(2) SO(10)/Spin(7);
(3) SO(11)/Spin(7);
(4) E6/Spin(10);
(5) SU(n + p)/SU(n), n ≥ 2, 1 ≤ p ≤ n − 1;
(6) SO(2n + 1)/SU(n), n ≥ 3;
(7) SO(4n + 2)/SU(2n + 1), n ≥ 2;
(8) Sp(n + 1)/Sp(n), n ≥ 1;
(9) SU(2n + 1)/Sp(n), n ≥ 2;

(10) Spin(8)/G2;
(11) SO(9)/G2.

(B) If M is reducible, then it is the Riemannian product of one of the spaces in (A) and a
compact semisimple Lie group with a bi-invariant metric.

123



7 Page 4 of 34 Annals of Global Analysis and Geometry (2023) 63 :7

Note that many of the spaces in (A) already appeared in the literature. For example, the
spaces (1), (8) and (5) with p = 1 are spheres with a GO metric [31]; the spaces (1), (4), (9),
(10) and (5) with p = 1 are weakly symmetric [38]; the spaces (1), (4), (7), (10) and (5) with
p = 1 are GO spaces with exactly two irreducible isotropy components [9].1. Moreover, the
space (6) with n even (and several others from our list) is fibered over a compact symmetric
space, with the GO metric having the property that its restriction to the tangent space of the
fiber is proportional to the restriction of the Killing form on G (so that the tangent space of the
fiber at eH is an eigenspace of the metric endomorphism—see Sect. 2.1) [35]. It should be
noted that theGOmetrics on the spaces (6) with n even andwith n odd are very different—see
the details in Table 1; in particular, in the odd case, a nontrivial algebraic condition has to be
satisfied.

We note that in the other “extremal” case, when the isotropy subgroup is abelian, any GO
metric is naturally reductive by the result of [33].

The paper is organized as follows. In Sect. 2,we provide the necessary backgroundmaterial
and also give a detailed description of the GO metrics on the spaces listed in Theorem 2(A)
(see Table 1). In Sect. 3, we prove Theorem 1. In the rest of the paper, we give the proof
of Theorem 2. The proof is based on the study of different types of submodules in the
decomposition of p: trivial, large and adjoint modules are considered in Sect. 4, and tiny
modules, in Sect. 5 (we refer to Sect. 2 for unexplained terminology).

The authors would like to thank the anonymous reviewers for their valuable comments
and suggestions.

2 Preliminaries

2.1 Generalities

Throughout the paper, we will adopt the assumptions of Theorem 1 and Theorem 2 (although
some notions and facts below do not require all of them). Namely, we work with a compact,
connected, simply connected, Riemannian homogeneous space M = G/H , where the Lie
group G acts almost effectively, and H is a simple Lie group. As we noted above, H is then
compact and connected and G is a compact, connected, semisimple Lie group.

Let g be the Lie algebra of G and h ⊂ g the Lie algebra of H . Denote by 〈·, ·〉 minus the
Killing form on g. Throughout the paper, “orthogonal” means “orthogonal relative to 〈·, ·〉”
unless otherwise is explicitly stated. Let g = h ⊕ p be an Ad(H)-reductive decomposition
(one possibility is to take p as the orthogonal complementm to h in g). Then p can be naturally
identified with the tangent space TeH (G/H), and the Riemannian metric g is determined by
some positive 〈·, ·〉-symmetric Ad(H)-equivariant endomorphism A : p → p by the formula
geH (X , Y ) = 〈AX , Y 〉, for X , Y ∈ p. We call A the metric endomorphism.

We have the following fact [1, Proposition 1], [32, Proposition 2].

Lemma 1 A homogeneous Riemannian manifold (M = G/H , g) with a semisimple group
G and an Ad(H)-reductive decomposition g = h⊕p is a G-geodesic orbit space if and only
if for any X ∈ p there exists Z ∈ h such that

[X + Z , AX ] = 0. (1)

1 The paper [9] is based on the classification in [11], which omits five cases given in [18] and the case
E8/Spin(9) given in [25, Remark 6.1] But it is easy to check that the results of [9] still hold after taking these
cases into account.
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Note that the claim of the lemma does not depend on a particular choice of p; in particular,
one can take p to be the orthogonal complement m to h. In the assumptions of the lemma,
we call any map Z : p → h such that [X + Z(X), AX ] = 0 for all X ∈ p, a geodesic graph.
In general, a geodesic graph may not be unique, but if it at all exists (that is, if M is a G-GO
space), then it can be chosen Ad(H)-equivariant.

In the proof of Theorem 2, we choose and fix p to be the orthogonal complement m to
h in g. Let α1, . . . , αm > 0 be the (distinct) eigenvalues of the metric endomorphism A,
and let m1, . . . ,mm be the corresponding eigenspaces. Each mi is an H -module and the
decomposition m = m1 ⊕ m2 ⊕ · · · ⊕ mm is orthogonal and Ad(H)-invariant. Since H is
connected, a submodule of m is Ad(H)-irreducible (respectively, Ad(H)-invariant) if and
only if it is ad(h)-irreducible (respectively, ad(h)-invariant).

We can further decompose every submodule mi in the decomposition m = ⊕m
i=1mi into

an orthogonal sum of irreducible modules. Labelling them through we get the orthogonal
decomposition

m = ⊕p
r=1nr (2)

into irreducible h-modules nr each of which lies in some mi . Note that at least one of the
modules nr is nontrivial, as G acts almost effectively (here and below, by a trivial module
we mean a module on which the group/algebra acts trivially).

We call an H -module n ⊂ m large if the principal stationary subgroup of the action of
Ad(H) on n is discrete. On the level of Lie algebras, n is large if for some X ∈ n (and then
for all X in an open and dense subset of n), the centralizer zh(X) in h is trivial. In the context
of GO spaces, if m is large (in particular, if one of its submodules is large), then by (1) the
geodesic graph Z is uniquely determined on an open, dense subset.

An H -module is called small if it is not large. Clearly a trivial module is always small; the
adjoint module is also small. Irreducible small modules for compact simple and semisimple
(real) Lie groups are given in [20, Table 1 and 2] (for the classification in the complex case
we refer the reader to [14, 15]). In the case of simple groups, the list in [20] includes the
adjoint representations, the standard representations of the classical groups, the “defining”
representations of the exceptional groups, two infinite series and five low-dimensional mod-
ules of the classical groups. Note that a small module can be the sum of more than one
nontrivial irreducible submodules (see also [17, Section 3]). We call a module tiny if it is
small, irreducible, nontrivial and not adjoint; tiny modules are listed in Table 2.

The GO condition imposes strong restrictions on the decompositions of m into the
eigenspaces of A and on the decomposition (2).

Lemma 2 ([30, Section 5]). In the assumptions of Theorem 2 (and in the above notation),
we have the following.

(a) For any X ∈ mi , Y ∈ m j , with i 	= j , there exists Z ∈ h such that [X , Y ] =
αi

αi −α j
[Z , X ] + α j

αi −α j
[Z , Y ]. So for i 	= j , we have [mi ,m j ] ⊂ mi ⊕ m j , and, in

the notation of (2), if nr ⊂ mi , ns ⊂ m j , then [nr , ns] ⊂ nr ⊕ ns .
(b) For any X ∈ mi , Y ∈ m j , with i 	= j , there exist Z1 ∈ zh(X), Z2 ∈ zh(Y ) such that

[X , Y ] = [Z2, X ] + [Z1, Y ].
(c) Consequently, any two large modules mi ,m j with i 	= j commute. Furthermore if mi is

large, then for any nr ⊂ mi in the decomposition (2) we have [m⊥
i , nr ] ⊂ nr .

(d) If X , Y ∈ mi satisfy [h, X ] ⊥ Y , then [X , Y ] ∈ mi .

Remark 2 Note that the last inclusion in Lemma 2(a) is a very powerful fact which will
be used in many places in the proofs below (see also Remark 4). Moreover, it defines an
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Table 2 Tiny modules

Group Representation dim type Stationary

SO(n), n ≥ 5 standard, Rn n r SO(n − 1)

SU(n), n ≥ 3 standard, Cn 2n c SU(n − 1)

Sp(n), n ≥ 2 standard, Hn 4n q Sp(n − 1)

SU(n), n ≥ 5 s : SO(2n)/U(n) n(n − 1) c SU(2)[
n
2 ]

Sp(n), n ≥ 3 s : SU(2n)/Sp(n) (n − 1)(2n + 1) r Sp(1)n

SU(6) s : E6/SU(6)SU(2) 40 q T 2

Spin(7) spin 8 r G2

Spin(9) spin, s : F4/Spin(9) 16 r Spin(7)

Spin(10) spin, s : E6/Spin(10)SO(2) 32 c SU(4)

Spin(12) spin, s : E7/Spin(12)SU(2) 64 q SU(2)3

G2 standard, O ∩ 1⊥ 7 r SU(3)

F4 s : E6/F4 26 r Spin(8)

E6 s : E7/E6SO(2) 54 c Spin(8)

E7 s : E8/E7SU(2) 112 q Spin(8)

Ad(H)-equivariant homomorphism nr × ns → nr ⊗ ns , for all r 	= s. So in particular, if
the irreducible decomposition of the H -module nr × ns contains no modules isomorphic
to either nr or ns , we get [nr , ns] = 0. It could have simplified some of the arguments if a
classification of such pairs of modules would be known (for our purposes, we can assume
that at least one of the modules is small), but we were not able to find it in the literature; in
many cases in Sect. 5, we use this condition for individual pairs of modules.

2.2 The table

In the above notation, we give an explicit description of the GO metrics in Theorem 2(A) in
the table below (for the proofs, see Lemma 5(g) and Sect. 5).

In the table, the direct sum always means the orthogonal direct sum; note that in many
cases, the modules mi (the eigenspaces of the metric endomorphism A) are reducible. The
condition on the eigenvalues of A in the last column in all but one case simply says that
for any positive α1, . . . , αm , the resulting metric is GO, and that it is naturally reductive
only when A is a multiple of the identity (so that the metric is normal); the only exception
is case (61): the eigenvalues of the metric endomorphism A of a GO metric on the space
SO(2n + 1)/SU(n), where n ≥ 3 is odd, have to satisfy a certain algebraic condition.

The dimension of the space of GO metrics which are not naturally reductive in all the
cases except two is 2 (but note that in case (61), A has three eigenspaces). The exceptions
are case (9) where the dimension is 3 and A can have two or three eigenspaces, and case (10)
where A has two eigenspaces which are isomorphic as h-modules, and so the dimension of
the space of GO metrics is again 3 (any invariant metric is GO [41]).

2.3 Natural reductivity

It is easy to see that in the assumptions of Lemma 1, the space (M = G/H , g) is naturally
reductive if there exists anAd(H)-reductive decomposition g = h⊕p such that [X , AX ] = 0.
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It follows that any G-naturally reductive space is GO; the converse is true when dim M ≤
4, but is false starting from dimension 5. More precisely, in [24] the authors constructed
examples of G-GO spaces of dimension 5 which are not naturally reductive but can made
be such by choosing a different transitive isometry group acting on M ; further, in dimension
6 there are examples of GO spaces which are not naturally reductive, for any choice of a
transitive isometry group.

The following fact, which is a stronger version of [24, Proposition 2.10] (see also [34]),
will be useful to detect whether a GO space is naturally reductive, without the necessity to
produce a specific p.

Lemma 3 Suppose a homogeneous Riemannian manifold (M = G/H , g) is a G-geodesic
orbit space. Then (M, g) is naturally reductive if and only if for some (and then for any)
Ad(H)-reductive decomposition g = h ⊕ p, there is a geodesic graph Z : p → h which is
linear.

Proof The claim will follow from [24, Proposition 2.10] if we can show that the existence of
a linear geodesic graph implies the existence of a linear Ad(H)-equivariant geodesic graph.
This is similar to the fact that a geodesic graph can be always chosen Ad(H)-equivariant
(see the paragraph after Lemma 1 in Sect. 1).

Suppose we have a linear geodesic graph Z : p → h. It is easy to see that for any h ∈ H ,
the map X �→ Adh Z(Adh−1 X) is also a geodesic graph. But a convex linear combination
of geodesic graphs is also a geodesic graph. Integrating the latter expression over H by
the Haar measure μ such that μ(H) = 1, we obtain an Ad(H)-equivariant geodesic graph
X �→ Z ′(X) := ∫

H Adh Z(Adh−1 X)dμ(h). Note that Z ′ is linear as Z is such. ��

3 Naturally reductive spaces. Proof of Theorem 1

In this section, we prove Theorem 1 following the approach in [29, Section 3] (which corre-
sponds, in our notation, to the special case N1 = 0).

Suppose p is an ad(h)-invariant complement to h in g. Then the space q = [p, p] + p is
an ideal in g.

By [21, Theorem 4], if a naturally reductive metric is generated by a pair (p, (·, ·)), then
there is a (unique) ad(q)-invariant, non-degenerate quadratic form Q on q such that

Q(p, q ∩ h) = 0 and Q|p = (·, ·). (3)

The converse is also true: if Q is an ad(q)-invariant, non-degenerate quadratic form which
satisfies the first equation of (3) and whose restriction to p is positive definite, then that
restriction defines a naturally reductive metric; this follows from ad(q)-invariancy of Q and
from the fact that q is complemented in g by an ideal.

We clearly have q + h = g, and so in the notation of Sect. 1, there are only two possible
cases.

In the first case, we have q = ⊕N−1
i=1 gi (up to relabelling the modules gN1+1, . . . , gN ),

and then the (linear) projection of h ⊂ g to gN is an isomorphism (so in particular, N1 < N ).
Then q∩h = 0 and g = q⊕h, and so p = q, an ideal. Furthermore, Q = (·, ·) by the second
equation of (3) and has the form given in (a).

In the second case, q = g. The quadratic form Q is ad(g)-invariant, and so we have
Q = ∑N

i=1 γi 〈·, ·〉i , with γi 	= 0. Then by (3) the space p is the Q-orthogonal complement to
h in g. Note that N − N0 ≥ 2, for if N = N0 + 1, we get h = gN and then p = q = ⊕N−1

i=1 gi .

123



Annals of Global Analysis and Geometry (2023) 63 :7 Page 9 of 34 7

We need to choose γi in such a way that the restriction of Q to p is positive definite. Clearly,
for i = 1, . . . , N0 we have gi ⊂ p, and so γi > 0. Similarly, we must have γi > 0 for
i = N0 + 1, . . . , N1, as every such gi contains a nonzero vector Q-orthogonal to h. The
restriction of Q to p will obviously be positive definite if γi > 0 for all i = N1 + 1, . . . , N ;
then Q itself is positive definite and so the metric (·, ·) is normal; this gives case (b)(i).
Suppose Q is indefinite. If γ j , γk < 0 for some j, k ∈ {N1 + 1, . . . , N }, j 	= k, then Q
is negative definite on the Q-orthogonal complement to h in g j ⊕ gk . It therefore remains
to consider the case when γ j < 0 for exactly one j ∈ {N1 + 1, . . . , N }. Up to relabelling
we can assume that j = N and so γi > 0 for all i < N . Identify the images of the (linear)
projections of h to gi , i = N0 + 1, . . . , N , with h (recall that each of these projections is an
isomorphism on its image and that every inner product 〈·, ·〉i is normalized in such a way that
the corresponding projection is a linear isometry). Then the restriction of Q to p is positive
definite if and only if for any YN0+1, . . . , YN ∈ h such that

∑N
i=N0+1 γi Yi = 0 and not all Yi

are zeros, we have
∑N

i=N0+1 γi‖Yi‖2 > 0 (where the norm is computed relative to minus the

Killing form on h). Equivalently,
∑N−1

i=N0+1 γi‖Yi‖2 + γ −1
N ‖ ∑N−1

i=N0+1 γi Yi‖2 > 0 when at
least one of Yi is nonzero. Taking YN0+1 = · · · = YN−1 	= 0 we obtain a necessary condition
γN + ∑N−1

i=N0+1 γi < 0. But this condition is also sufficient, as from
∑N−1

k=N0+1 γk < −γN

we obtain
(∑N−1

k=N0+1
γk

)( ∑N−1

i=N0+1
γi‖Yi‖2 + γ −1

N ‖
∑N−1

i=N0+1
γi Yi‖2

)

≥
(∑N−1

k=N0+1
γk

)( ∑N−1

i=N0+1
γi‖Yi‖2

)
−

∥∥∥
∑N−1

i=N0+1
γi Yi

∥∥∥
2 ≥ 0,

by the Cauchy–Schwarz inequality, with the equality only possible when YN0+1 = · · · =
YN−1 and

∑N−1
i=N0+1 γi Yi = 0, that is, when all Yi are zeros. This gives the condition in (b)(ii)

and completes the proof.

Remark 3 Using Theorem 1, one can easily write down the inner product and the metric
endomorphism A on the orthogonal complement m to h in g. Note that first every γi , i =
N0 + 1, . . . , N1, has to be re-scaled by the ratio of the restriction of the Killing form of gi to
the projection of h to gi and the Killing form of h.

4 G-GO spaces. Trivial, large and adjoint modules

In this section, we study trivial, large and adjoint modules in the decomposition of m. In
the next section, we will complete the proof of Theorem 2 by a case-by-case study of tiny
modules.

Throughout both sections (in particular, in all the Lemmas and the Propositions), we adopt
the assumptions of Theorem 2 and we use the terminology and the notation introduced in
Sect. 2.

Recall that M = G/H is a compact, connected, simply connected, Riemannian homo-
geneous space, with G acting almost effectively and H being a simple Lie group. Then G
is compact, connected and semi-simple and H is compact and connected. We denote by
〈·, ·〉 minus the Killing form on g and consider the orthogonal decomposition g = h ⊕ m,
where the h-module m is identified with the tangent space of M at eH . The metric on M is
defined by themetric endomorphism A whose eigenspacesmi , i = 1, . . . , m, are orthogonal
h-modules with corresponding eigenvalues αi > 0. We will use Lemmas 1 and 3 to check
when M is a G-GO space and when M is not naturally reductive, respectively.
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Our strategy is to consider the decomposition of m = ⊕m
i=1mi into the eigenspaces mi

of A together with the “finer” decomposition (2). In this section, we will first study the
trivial modules which may occur in (2). Next we show that if at least one module in the
decomposition (2) is either large or adjoint, then any G-GO metric is naturally reductive
(with two irreducible exceptions, SU(3)/SU(2) and Sp(2)/Sp(1)). Our main tools will be
Lemma 1, Lemma 2 and Lemma 3. It will therefore follow that a G-GO space may be not
naturally reductive only when all the modules in the decomposition (2) are either trivial or
tiny (recall that this means that the module is irreducible, nontrivial, not adjoint, and that its
generic element has a nontrivial centralizer in h). We will then use the classification of such
modules given in [20, Table 1] to complete the proof of Theorem 2.

Wecan assume thatm > 1, as otherwise themetric is normal and hence naturally reductive.
Another easy but useful observation is as follows.

Lemma 4 In the assumptions of Theorem 2, suppose that one of the eigenspaces of A contains
a nonzero ideal of g. Then M is the Riemannian product of a compact, simply connected Lie
group with a bi-invariant metric and a compact, connected, simply connected homogeneous
space M̂ = Ĝ/H. Moreover, M is a G-GO space ( respectively, G-naturally reductive) if
and only if M̂ is a Ĝ-GO space (respectively, Ĝ-naturally reductive).

Proof We can assume that in the presentation M = G/H both G and H are simply connected
(by replacing, if necessary, G by its universal cover and H by the identity component of its
full preimage under the covering map). It is sufficient to prove the lemma when the ideal is
simple. Let g = ⊕N

l=1gl be the decomposition of g into simple ideals and suppose gk ⊂ mi

for some i = 1, . . . , m. Denote ĝ = g⊥
k and m̂ = g⊥

k ∩ m. We compute the linear holonomy
algebra of M using the construction in [22]. Extend the metric endomorphism A to the
operator C on gwhich is symmetric relative to 〈·, ·〉 and is defined by C|m = A and C|h = 0.
For Z ∈ g define DZ : m → m by DZ (Y ) = [Z , Y ]m, for Y ∈ m, where the subscript
m denotes the m-component. Then by [22, Theorem 2.3], the linear holonomy algebra of
M = G/H is the Lie algebra generated by all the operators on m of the form

�Z = DZ + C−1DZ C − C−1DC Z , Z ∈ g.

(note that C−1 is only applied to elements of m). As gk ⊂ g is an ideal and is C-invariant,
we obtain that �Z (gk) ⊂ gk , for all Z ∈ g, and so the linear holonomy algebra preserves
the orthogonal decomposition m = m̂⊕ gk . As M is simply connected, it is the Riemannian
product M̂ × Mk , where the tangent spaces to M̂ and Mk at eH are m̂ and gk , respectively.
Now gk is an ideal orthogonal to (and hence commuting with) h and the restriction of A
to gk is a multiple of the identity. It follows that Mk is the simply connected, compact Lie
group with the Lie algebra gk and with a bi-invariant metric. Furthermore, h ⊂ ĝ and so
H ⊂ Ĝ, where Ĝ is the compact, simply connected Lie group with the Lie algebra ĝ. Then
M̂ = Ĝ/H , with the metric defined (relative to minus the Killing form of ĝ) by the metric
endomorphism Â which is the restriction of A to m̂.

Now if M is a G-GO space, then M̂ is Ĝ-GO (and the converse is also true). One way to
see that is to define the geodesic graph Ẑ : m̂ → h (see Lemma 1) by restricting a geodesic
graph Z : m → h to m̂ and using the fact that [h, gk] = [m̂, gk] = 0. By Lemma 3, this also
implies that if M is naturally reductive, then M̂ also is (relative to Ĝ). ��
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4.1 Trivial modules

For every eigenvalue αi of A, denote by ti the maximal h-trivial submodule ofmi , andm′
i its

orthogonal complement inmi . Let t = ⊕m
i=1ti andm

′ = ⊕m
i=1m

′
i . We will need the following

lemma (note that statement (d) is well known [27]).

Lemma 5 In the assumptions of Theorem 2, suppose the metric is GO. In the above notation,
we have the following.

(a) The submodules ti are commuting, reductive ideals of the subalgebra t = zg(h) ⊂ g.
(b) For any i = 1, . . . , m, we have [t,m′

i ] ⊂ m′
i . The restrictions of adt and adh commute

on every m′
i . Moreover, adti respects any irreducible decomposition of m′

j if j 	= i , and
the decomposition of m′

i into the sums of isomorphic modules.
(c) If an irreducible submodule n ⊂ m′ is adT -invariant for T ∈ t, then either [T , n] = 0

or (ad2T )|n = λ id|n for some λ < 0. In the latter case, [n, n] ⊥ n.
(d) The Lie algebra of skew-symmetric operators on an irreducible module nwhich commute

with the restriction of adh to n is either trivial, or is isomorphic to one of so(2) or so(3);
then the module n is said to be of real, complex or quaternionic type, respectively. In
particular, the adjoint module is of real type.

Suppose additionally that no eigenspace mi contains a nonzero ideal of g (cf. Lemma 4).
Then we have the following.

(e) [T ,m′] 	= 0, for any nonzero T ∈ t.
(f) If no irreducible module nr in the decomposition (2) is adjoint, then g is simple.
(g) If no more than one irreducible module nr in the decomposition (2) is nontrivial, then

either the metric is normal, or M is one of the following spaces:

SO(4n + 2)/SU(2n + 1), n ≥ 2, SU(n + 1)/SU(n), n ≥ 2,

E6/Spin(10), Sp(n + 1)/Sp(n), n ≥ 1.

The spaces in (g) are spaces of cases (7), (5) with p = 1, (4) and (8) of Theorem 2(A),
respectively (cf. [9, Theorem 2]).

Remark 4 As a side remark we note that assertion (b) combined with Lemma 2(a) imposes
further restrictions on the brackets of nontrivial irreducible submodules of m (similar to
the second statement in (c)). For example, if n1 and n2 are irreducible submodules lying
in different eigenspaces mi and m j of A and adt acts nontrivially on n1 ⊕ n2, then either
[n1, n2] ⊂ n1 or [n1, n2] ⊂ n2.

Proof (a) Clearly t is the centralizer of h and hence is a subalgebra in g. Furthermore, by
Lemma 2(b) we have [ti , t j ] = 0 for i 	= j and by Lemma 2(d), [ti , ti ] ⊂ mi ∩ t = ti .

(b) By Lemma 2(a) we have [ti ,m′
j ] ⊂ m′

j for i 	= j , and moreover, irreducible h-
submodules of m′

j are ad(ti )-invariant. Furthermore, [m′
i , ti ] ⊂ m′

i by Lemma 2(d)
and from the fact that ti is a subalgebra. The restrictions of adt and adh clearly commute
on every m′

i ; then by Schur’s Lemma, adti preserves the isotopic components of m′
i .

(c) The first statement is obvious, asn is irreducible and (ad2T )|n is a symmetric operator com-
muting with adh by (b). To prove the second statement, consider the three-form ω ∈ 
3n

defined by ω(X , Y , Z) = 〈[X , Y ], Z〉 for X , Y , Z ∈ n. Then Ad(exp(π(−λ)−1/2T ))

acts on n as −id|n and leaves ω invariant, so ω = 0.
(d) Both statements are well known.
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(e) Suppose the centralizer k of m′ in t is nontrivial. Then by (b), k is an ideal in t and
hence also in g, as [k, h ⊕ m′] = 0. Then k ∩ ti , i = 1, . . . , m, is an ideal of g by (a).
As k ∩ ti ⊂ mi , it must be zero by our assumption. It follows that [k, ti ] = 0, for all
i = 1, . . . , m, and so k lies in the centre of g contradicting the fact that g is semisimple.

(f) Letg = ⊕N
l=1gl be the decomposition ofg into simple ideals.Ash is simple, the projection

of h to each of them is either a monomorphism or trivial, and it is nontrivial for at least
one l, say for l = N . If the projection to any other ideal gl , l < N , is also nontrivial,
then m contains an adjoint module, and hence so does (2). Otherwise, h ⊂ gN and so
g′ = ⊕N−1

l=1 gl lies in m and is a trivial h-module. Then g′ ⊂ t by (a) and so m′ ⊂ gN . It
follows that [g′,m′] = 0, and therefore g′ = 0 by (e).

(g) If all the modules in (2) are trivial (that is, if m is a trivial module), then say t1 = m1 is
an ideal of g by (a), a contradiction. Let n = n1 ⊂ m1 be the only nontrivial irreducible
module. Then m = n ⊕ t, and so by (b), (e) and (d), we have dim t ∈ {0, 1, 3}.
If t = 0, thenm = n = m1 and so themetric is normal. If dim t = 1, themodule t cannot lie

inm1 (otherwise the metric is normal), som has exactly two irreducible submodules,m1 = n

and m2 = t2 = R. By (e) and (d), the module n is not adjoint, and so g is simple by (f).
Consulting the classification in [9, Theorem 2]we find that the spaces M for which h is simple
and one of the irreducible submodules inm is one-dimensional are SO(4n + 2)/SU(2n + 1)
for n ≥ 2, SU(n + 1)/SU(n) for n ≥ 2 and E6/Spin(10).

Now suppose dim t = 3. Then by (b), (e) and (d), t is a subalgebra isomorphic to so(3)
and so by (a) it is a single ideal ti . That ideal cannot lie in m1 (as otherwise the metric
is normal) and so we have m = m1 ⊕ m2, where m1 = n and m2 = t2. Similar to the
above, g is simple and t2 acts on n nontrivially. But then h′ = h ⊕ t2 is a subalgebra of g
and (g, h′) is a symmetric pair by (c). Examining the list in [35, Theorem 4.1], we find that
M = Sp(n + 1)/Sp(n), n ≥ 1. ��

4.2 Largemodules

Recall that a module (not necessarily irreducible) is said to be large if it contains an element
whose centralizer in h is trivial. It is clear that the set of such elements in a large module is
open and dense and that a module is large if its submodule is large. Moreover, from (1) it
follows that a geodesic graph is uniquely defined on an open, dense subset of a large module.
As usual, we adopt the assumptions of Theorem 2 and use the notation of Sect. 2.

We start with the following technical fact.

Lemma 6 Suppose a module n := n1 ⊂ mi in the decomposition (2) is nontrivial and that
its orthogonal complement n′ = ⊕p

r=2nr in m is a large module. Denote by U ⊂ n′ the (open
and dense) set of those elements whose centralizer in h is trivial. Then the restriction of a
geodesic graph Z to the subset U × n is uniquely determined and there exist a unique linear
map L : n′ → h and a unique map � : U → Lin(n, h) such that for all X ∈ U, Y ∈ n, we
have

Z = Z(X + Y ) = L X + �(X)Y . (4)

Moreover, for all X ∈ U and Y ∈ n, we have

[�(X)Y , Y ] = 0, (5)

[AX , X ] = [L X , X ], (6)

αi [L X , Y ] + [�(X)Y , AX ] = [AX − αi X , Y ]. (7)
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Proof Let X ∈ U ⊂ n′, Y ∈ n. Applying equation (1) to X + Y , we get

[Z(X + Y ), AX ] + αi [Z(X + Y ), Y ] + [X , AX ] + [Y , AX − αi X ] = 0. (8)

Note that the geodesic graph X + Y �→ Z(X + Y ) is uniquely defined on U × n. Let F be
the restriction of Z to U . Taking Y = 0 in (8), we obtain

[F(X), AX ] + [X , AX ] = 0, (9)

for X ∈ U , and so [Z(X+Y )−F(X), AX ]+αi [Z(X+Y ), Y ]+[Y , AX−αi X ] = 0 from (8).
Projecting this equation to n′, we obtain [Z(X +Y )− F(X), AX ]+πn′ [Y , AX −αi X ] = 0,
where πn′ : m → n′ is the orthogonal projection (the fact that [Y , AX − αi X ] ∈ m follows
from Lemma 2(a), as AX −αi X ⊥ mi ). From the fact that the second term is linear in Y and
that Z(X+Y ) and F(X) are uniquely determinedwefind that the element Z(X+Y )−F(X) ∈
h depends linearly on Y , for every X ∈ n′. Therefore, there exists a map � : U → Lin(n, h)
such that for all X ∈ U, Y ∈ n, we have Z(X + Y ) = F(X) + �(X)Y . Substituting into (8)
and using (9), we obtain [�(X)Y , AX ] + αi [F(X) + �(X)Y , Y ] + [Y , AX − αi X ] = 0.
Considering the left-hand side, for every fixed X ∈ U , as a polynomial in Y we obtain
(5). To prove (6) and (7), it remains to show that the map F : U → h is in fact linear.
Projecting the latter equation to n we find [F(X), Y ] + πn[Y , α−1

i AX − X ] = 0, and so
[F(X1 + X2) − F(X1) − F(X2), Y ] = 0, for all Y ∈ n and for all X1, X2 ∈ U such that
X1 + X2 ∈ U . But the centralizer of n in h is an ideal which must be trivial, as h is simple
and n is a nontrivial module. It follows that F(X1 + X2) = F(X1) + F(X2), for an open,
dense set of pairs (X1, X2) ∈ n′ × n′. The fact that F is homogeneous of degree 1 in X ∈ U
follows from (9). Therefore, there exists a linear map L : n′ → h whose restriction to U
coincides with F . ��

Note that from (7) it follows that the map � : U → Lin(n, h) is analytic on U : relative
to some bases for n and h, the entries of its matrix are given by rational functions of X ∈ U
[23]. We also note that as Z is unique, it is Ad(H)-equivariant, which implies that L is a
homomorphism of h-modules. In particular, if n′ contains no adjoint submodules, then L = 0
by Schur’s Lemma, and then [AX , X ] = 0, for all X ∈ n′, by (6) (this implies that all the
modules mi ∩ n⊥ and m j , j 	= i pairwise commute).

Furthermore, we have the following useful fact.

Lemma 7 Suppose the decomposition (2) contains nontrivial modulesn1 	= n2 whose orthog-
onal complements are both large. Then the metric is naturally reductive.

Proof Denote q = ⊕p
r=3nr . Let Ur ⊂ nr ⊕ q, r = 1, 2, be the sets of elements whose

centralizer in h is trivial. Each of the subsets Ur is open and dense in nr ⊕ q. For r = 1, 2,
let U ′

r be the set of those elements X ∈ q for which there exists an open and dense subset
Vr ,X ⊂ nr such that for all Yr ∈ Vr ,X we have Yr + X ∈ Ur . Note that both U ′

1 and U ′
2 are

open and dense in q, as also is the set U ′ = U ′
1 ∩ U ′

2. By Lemma 6, for r = 1, 2, there exist
linear maps Lr : nr ⊕ q → h and maps �r : Ur → Lin(nr , h) such that for any X ∈ U ′ and
any Y1 ∈ V1,X , Y2 ∈ V2,X , the geodesic graph is given by

Z = L1(X + Y2) + �1(X + Y2)Y1 = L2(X + Y1) + �2(X + Y1)Y2, and (10)

α1[L1(X + Y2), Y1] + [�1(X + Y2)Y1, A(X + Y2)] = [(A − α1id)(X + Y2), Y1], (11)

where the latter equations follows from (7) and we assume that n1 ⊂ m1 and n2 ⊂ m j (note
that we can have j = 1). Projecting (11) to q, we get [�1(X + Y2)Y1, AX ] = πq[(A −
α1id)X , Y1] (note that πq[(A − α1id)Y2, Y1] = (α j − α1)πq[Y2, Y1] = 0, by Lemma 2 (a)).
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Furthermore, by (5) [�1(X + Y2)Y1, Y1] = 0. From the last two equations, it follows that
for any X ∈ U ′, Y1 ∈ V1,X and any Y ′

2, Y ′′
2 ∈ V2,X we have [�1(X + Y ′

2)Y1 − �1(X +
Y ′′
2 )Y1, A(X + Y1)] = 0. As X + Y1 ∈ Ur and adh commutes with A, we obtain �1(X +

Y ′
2)Y1 = �1(X + Y ′′

2 )Y1. Therefore, there exists a map 1 : U ′ → Lin(n1, h) such that
�1(X + Y2)Y1 = 1(X)Y1, for all X ∈ U ′ and all Y1 ∈ V1,X , Y2 ∈ V2,X . Similarly, there
exists a map 2 : U ′ → Lin(n2, h) such that �2(X + Y1)Y2 = 2(X)Y2, for all X ∈ U ′ and
all Y1 ∈ V1,X , Y2 ∈ V2,X . Substituting into (10), we get Z = L1X + L1Y2 + 1(X)Y1 =
L2X + L2Y1 + 2(X)Y2 which now holds for all X ∈ U ′ and all Y1 ∈ n1, Y2 ∈ n2. Thus,
L1X = L2X and (1(X) − L2)Y1 = 0, for all X ∈ U ′ and all Y1 ∈ n1. Therefore, we have
Z = L1X + L1Y2 + L2Y1, for all X + Y1 + Y2 ∈ m, and so the metric is naturally reductive
by Lemma 3. ��

The following proposition effectively reduces the list of possible irreducible modules
which may appear in the decomposition (2) to a finite number of candidates, for every given
group H .

Proposition 1 If one of the irreducible modules in the decomposition (2) is large, then either
the metric is naturally reductive or M is the Riemannian product of one of the spaces
SU(3)/SU(2) or Sp(2)/Sp(1) and a compact, simply connected Lie group with a bi-invariant
metric.

Proof By Lemma 4, we can assume that no mi contains a nonzero ideal of g. Otherwise,
that ideal would be a trivial module, and so by factoring it out we would not lose a large
module in decomposition (2). By Lemma 5(g), we can assume that at least two modules in
the decomposition (2) are nontrivial (one can easily check that all the irreducible modules
in the corresponding decompositions are small except for in the two cases given in the
proposition). Furthermore, by Lemma 7, we can assume that the decomposition (2) has
exactly two nontrivial modules, one of them being large and another one, small. Denote them
by n and n′, respectively.

We first suppose n′ is the adjoint module. Then by Lemma 6 applied to n′ we obtain that for
an open, dense subsetU ⊂ (n′)⊥∩m, amap� : U → Lin(n′, h) and a linearmap L : U → h,
the geodesic graph is given by Z = L X + �(X)Y for all X ∈ U, Y ∈ n′. Moreover, by (5)
we have [�(X)Y , Y ] = 0, for all X ∈ U, Y ∈ n′. As n′ is the adjoint module, there exists
a linear isomorphism ι : h → n′ such that for all V1, V2 ∈ h we have [V1, ιV2] = ι[V1, V2]
(see 4.3). For X ∈ U define an endomorphism PX ∈ End(h) by PX V = �(X)ιV . Then
for all V ∈ h, we have [PX V , V ] = 0, and so by [26, Theorem 5.28], PX commutes with
all adV , V ∈ h. As the adjoint module is of real type, PX = f (X)idh, for some function
f : U → R, so that �(X)Y = f (X)ι−1Y , for all Y ∈ n′. Choosing X1, X2 ∈ U such that
X1 + X2 ∈ U and the intersection of Span(X1, X2) with the trivial submodule of m is zero
(the set of such pairs (X1, X2) is open end dense in U ×U) we find from (7) that the function
f is locally a constant, say c ∈ R. Then Z = L X + cι−1Y on an open subset ofm, hence on
the whole m and so the metric is naturally reductive by Lemma 3.

We can therefore assume that n′ is a tiny module. As m contains no adjoint modules,
the algebra g is simple by Lemma 5(f). Furthermore, assuming that both n and n′ lie in the
samemi and applying Lemma 6 to n′ we obtain that on the right-hand side of (7), the vector
AX −αi X lies in a trivial submodule ofm orthogonal tomi , and so [AX −αi X , Y ] ∈ n′, by
Lemma 2(a). Projecting (7) to (n′)⊥, we obtain [�(X)Y , AX ] = 0, and so �(X)Y = 0, for
all X ∈ U ⊂ (n′)⊥ and all Y ∈ n′. Then Z = L X which implies that the metric is naturally
reductive (note that in fact Z = L = 0—see the comment before Lemma 7).
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We can therefore assume that n and n′ lie in different eigenspaces of A. We have m =
n⊕ n′ ⊕ t, where t is trivial, and so h⊕ t is a subalgebra of g having exactly two irreducible
isotropy modules, n and n′ (by Lemma 5(b)). Moreover, by Lemma 1, the restriction of
A to n ⊕ n′ gives a GO metric on the space G/(H K ), where K is the centralizer of H
in G (the Lie algebra of K is t). That metric is not normal, as n and n′ lie in different
eigenspaces of A. Since G is simple, by examining the list in [9, Theorem 2] we get the
following candidates for M (we have omitted the spaces in Lemma 5(g), as for them only
one submodule in m is nontrivial): Spin(8)/G2, SO(9)/G2, SO(2n + 1)/SU(n) (n ≥ 2),
SO(9)/Spin(7), SU(n + p)/SU(n) (n ≥ 3, 2 ≤ p ≤ n − 1), SU(2n + 1)/Sp(n) (n ≥ 2).
All these spaces are perfectly goodGO spaces and they appear in the list in Theorem 2(A), but
from the decompositions given in Table 1 one can see that for each of them, all the nontrivial
submodules of m are tiny (and are listed in Table 2). This contradicts the assumption that n
is large. ��

4.3 Adjoint modules

For any adjoint module s ⊂ m, there is a well-defined linear bijections ι : h → s such that
for all U , V ∈ h,

[U , ιV ] = ι[U , V ]. (12)

Lemma 8 The direct sum of the adjoint module and a nontrivial module is a large module.

Proof Suppose s is the adjoint module and n is an irreducible, nontrivial module. Identifying
s with h via ι as in (12), we see that it is sufficient to find two elements X ∈ h, Y ∈ n

whose centralizers have trivial intersection. This latter condition means that the rank of the
linear system [Z , X ] = [Z , Y ] = 0 in the variable Z is maximal (equals dim h); the set of
pairs (X , Y ) for which it is not is Zariski closed in the complexification hC × nC, and so it
is sufficient to construct X ∈ hC, Y ∈ nC whose centralizers in hC have trivial intersection.
To do that, take X to be regular and denote c ⊂ hC the Cartan subalgebra defined by X . Let
γ be the dominant weight of nC. Then every element of its orbit under the action of the Weyl
group W of hC on c∗ is also a weight of nC. Furthermore, the orbit W(γ ) spans c∗ as hC

is simple. Take Y to be a linear combination of nonzero vectors Yg ∈ Vg(γ ), for all g ∈ W ,
where Vg(γ ) is the weight space corresponding to the root g(γ ). Now the centralizer of X is
c, but no nonzero vector from c centralizes Y . ��

Furthermore, we have the following proposition.

Proposition 2 If one of the irreducible modules in the decomposition (2) is adjoint, then the
metric is naturally reductive.

Proof Suppose the decomposition (2) contains an adjoint module s. In the assumption that
the metric is GO but not naturally reductive, by Lemma 8, Lemma 7 and Lemma 5(g) we can
assume that exactly one other module n in (2) is nontrivial, so thatm = s⊕ n⊕ t, where t is
trivial. By Proposition 1, we can assume that such n is small. Furthermore, we can assume
that m contains no simple ideals of g. For if ga ⊂ m is a simple ideal of g, then h lies in the
sum of other ideals of g, and so ga is a trivial h-module. But then by Lemma 5(a) it entirely
lies in one of the eigenspaces mi and we can factor it out by Lemma 4.

We first assume that both s and n lie in the same eigenspace m1 of A. Then m2 is a
nonzero, trivial module. Take a nonzero T ∈ m2. As s is of real type we have [T , s] = 0.
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Take X = S + N + T , where S ∈ s, N ∈ n. By (1), there exists Z ∈ h such that

0 = [Z + X , AX ] = α1[Z , S] + α1[Z , N ] + (α2 − α1)[N , T ],
As [T , n] ⊂ n by Lemma 5(b) the latter equation gives [Z , S] = 0 and [Z , N ] = (1 −
α−1
1 α2)[T , N ]. Let c ⊂ h be a Cartan subalgebra and let V ∈ c be a regular vector. Taking

S = ιV we obtain that Z ∈ c by (12). By Lemma 5(e), (c), we can assume, up to scaling,
that the restriction of (1 − α−1

1 α2) adT to n is an almost Hermitian structure, and then by
Lemma 5(b), the restriction of adh to n is a subalgebra of su(n) (it lies in u(n), the centralizer
of (adT )|n and hence in su(n) as h is simple). Then (adc)|n is an abelian subalgebra of
su(n) which lies in a Cartan subalgebra c′ of su(n). But then choosing a unitary basis for
n we find that the equation [Z , N ] = (1 − α−1

1 α2)[T , N ] is equivalent to the fact that for
x ∈ C

n (2n = dim n), there is a real, diagonal n × n matrix D with Tr D = 0 such that
iDx = ix , which is false for a generic x ∈ C

n , a contradiction.
Now suppose s and n lie in different eigenspaces of A. The homogeneous space M̂ =

G/(H K ) where K is the connected subgroup of G whose Lie algebra is t has exactly two
irreducible components in its isotropy representations (note that t acts separately on s and
on n by Lemma 5(b)), and moreover, the restriction of A to s ⊕ n defines a GO metric on
M̂ which is not normal. By [9, Proposition 1], we can have one of three cases (note that g
must be semisimple and no ideal of it is allowed to be orthogonal to h). In the first case,
g = h⊕ h⊕ h and h ⊂ g is the diagonal (then t = 0). Then M is a Ledger–Obata space and
the metric is naturally reductive by [9, Proposition 3] (see also [29, Proposition 1]; in fact,
any invariant metric on the Ledger–Obata space H3/H is naturally reductive, even without
imposing the GO condition). In the second case, the algebra g is simple. Examining the
cases in [9, Theorem 2], we find that in neither of themm contains an adjoint module. In the
third case, we have g = g1 ⊕ g2, where g1, g2 are simple ideals, with both projections h1
and h2 from h to g1 and to g2 respectively being isomorphic to h, and with g1 = h1. Then
g2 = h2 ⊕ n ⊕ t, the algebra h ⊂ g is the diagonal in h1 ⊕ h2, and the adjoint module s is
its orthogonal complement in h1 ⊕ h2. Note that then [s, n] ⊂ n, and moreover, the action
of s on n coincides with that of h, that is, [S, N ] = [ι−1S, N ], for S ∈ s, N ∈ n (note that
ι is defined up to scaling and we can take it to be a linear isometry). Up to relabelling, we
have s ⊂ m1, n ⊂ m2. Suppose T ∈ t j , the trivial submodule of m j , j = 1, 2, . . . , m.
Then (1) with X = S + N + T , S ∈ s, N ∈ n, gives that there exists Z ∈ h such that
α1[Z , S] + α2[Z , N ] + (α2 − α1)[S, N ] + (α2 − α j )[T , N ] = 0 (we used the fact that
[T , s] = 0). Set V = ι−1S ∈ h. Then [S, N ] = [V , N ], and so the GO condition is
equivalent to

[Z , V ] = 0, [α2Z + (α2 − α1)V , N ] = (α j − α2)[T , N ]. (13)

If (α j − α2)T 	= 0, we argue as in the previous paragraph: by Lemma 5(e), (c), (α j −
α2)(adT )|n is a nonzero multiple of an almost Hermitian structure on n, and then for a regular
V ∈ h, from the first equation of (13), Z lies in the Cartan subalgebra defined by V which
lies in a Cartan subalgebra of su(n). But then the second equation of (13) cannot be satisfied
with a generic N ∈ n, a contradiction. It now follows from Lemma 5(a) that t = t2 ⊂ m2,
and then (13) is satisfied with Z(S + N + T ) = (α1α

−1
2 − 1)V = (α1α

−1
2 − 1)ι−1S. So the

metric is naturally reductive by Lemma 3. ��

5 G-GO spaces. Tinymodules

Now we are in a position to complete the proof of Theorem 2.
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In the assumptions of Theorem 2, we assume that the GO metric is not naturally reductive.
Summarizing the results of the previous sections, we can additionally assume the following:

• all nontrivial modules in the decomposition (2) are tiny, and there are at least two of them
(by Propositions 1 and 2 and Lemma 5(g));

• there are not “too many” of them: there is no more than one nontrivial module whose
complement is large (by Lemma 7);

• no mi contains an ideal of g by Lemma 4;
• g is simple (by Lemma 5(f));
• and finally, note that no GO metric constructed below is naturally reductive, unless it is

normal (by Propositions 2 and Remark 1).

The list of tiny modules from [20, Table 1] is given in Table 2. Note that some simple
groups (e.g., SU(2) and E8) have no tiny representations, while some others may have up
to three. We also note that in this table, the groups in the first column act effectively; this
means that we will also need to consider almost effective, but not effective actions, like
say for the first row, the representations of the Spin(n) on R

n . In the second column, for
representations coming from the s-representations of compact symmetric spaces, we give
those spaces. The fourth column indicates the type: real, complex or quaternionic; the fifth,
the principal stationary subgroup.

In the rest of the proof, we consider the groups in Table 2 one-by-one. Our strategy, for
every individual group, will be first to consider all the possible decompositions (2); there will
be afinite number of them: the nontrivial submodules are controlled by the above assumptions,
and the trivial ones, by Lemma 5. Some of those caseswill be then sorted out by the dimension
count, as gmust be simple. The remaining ones, when there are only two nontrivial modules,
can be reduced to the classification in [9, Theorem 2] (in particular, if the trivial submodule
t ⊂ m is zero, this classification applies directly). For the small number of remaining cases,
we consider possible “distributions” of the modules in the decomposition (2) among the
eigenspaces mi , i = 1, . . . , m, of the metric endomorphism A (note that m ≥ 2) using
Lemma 2, the decompositions of the tensor products and the external squares into irreducible
modules and the classification of compact irreducible symmetric spaces. If no contradiction
is reached up to this point, we apply the GO criterion from Lemma 1 to determine the GO
metric; then we identify the corresponding space from the list in Theorem 2(A) (and in
Table 1).

Throughout this section, we use the notation introduced earlier (in Sects. 2 and 4.1 ); the
direct sum of a ≥ 0 copies of a module n is abbreviated to an.

5.1 Types B and D: H = SO(n), Spin(n), n ≥ 5

5.1.1 SO(n), n ≥ 5

From Table 2, there is only one tiny module, Rn , the standard one. It follows that in the
decomposition (2), all the modules are either standard or trivial. Letm1 = a1Rn ⊕ t1, m2 =
a2Rn⊕t2 be two eigenspaces of A, wherea1, a2 ≥ 0 and t1, t2 are trivial.Wehave [t1, t2] = 0
by Lemma 5(a), and then for any n1 = R

n ⊂ m1, n2 = R
n ⊂ m2, we have [t1, n2] =

[t2, n1] = 0 by Lemma 5(b) and (d) and [n1, n2] = 0 as the irreducible decomposition of
R

n ⊗R
n contains no module Rn . It follows that [m1,m2] = 0. Therefore all the modulesmi

pairwise commute, and so the metric is naturally reductive (we can take Z = 0 in (1)).
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5.1.2 Spin(7)

From Table 2, there are only two tiny modules, the 8-dimensional module s for the spin
representation and the 7-dimensional module R7 for the standard representation of SO(7). If
there are no spin modules, we have a representation of SO(7) and then any GO metric must
be naturally reductive as we have shown above. We therefore assume that there is at least
one spin module. We claim that the sum of any four modules each of which is either spin or
standard (and at least one is spin) is large. Indeed, if we have four spinmodules, then choosing
a generic element in one of them we get the stationary subgroup G2 represented onR8 as the
automorphism group of the algebra of octonions O. As any three non-associating octonions
generateO,we obtain that the stationary subgroupof a generic quadruple of elements is trivial.
Next, suppose we have one standard module R7 and three spin modules. Then the stationary
subgroup of a nonzero element from R

7 is Spin(6) = SU(4), and its representation on each
of the spin modules is the standard representation of SU(4) on C

4 = R
8. The stationary

subgroup of a generic triple of elements is trivial. Next, suppose we have two standard R
7

modules and two spin modules. Then the stationary subgroup of a generic pair of elements
fromR

7 is Spin(5) = Sp(2), and its representation on each of the spinmodules is the standard
representation of Sp(2) on H

2 = R
8. The stationary subgroup of a generic pair of elements

is again trivial. Finally, if we have three standard R
7 modules and one spin module, the

stationary subgroup of a generic triple of elements fromR
7 is Spin(4) = Sp(1)×Sp(1), and

its representation on the spin module is the sum of the two standard representations of Sp(1)
on H = R

4. The stationary subgroup of a generic element in R
8 (the sum of two elements

from each copy of H) is again trivial.
Up to relabelling, the decomposition (2) takes the form m = ⊕q

r=1nr ⊕ t, where t is
a trivial module, and from among the modules nr , for r = 1, . . . , q , we have s ≥ 1 spin
modules and a ≥ 0 standard R

7 modules, with s + a = q . By Lemma 7 and the arguments
above, we can assume that q ≤ 4, and by Lemma 5(g), that q ≥ 2. We will consider several
cases depending on the value of q ∈ {2, 3, 4} and the “distribution” of nontrivial modules
among the eigenspaces mi . For i = 1, . . . , m, we have mi = sis ⊕ aiR

7 ⊕ ti , where ti are
trivial modules. We have s = ∑m

i=1 si , a = ∑m
i=1 ai , with s ≥ 1 and 2 ≤ q(= s + a) ≤ 4.

Note that m > 1 (otherwise the metric is normal). As both the spin module and the standard
module are of real type, Lemma 5(a), (b) implies that each ti commutes with all m j , j 	= i ,
and may not commute withm′

i only whenm
′
i contains at least two isomorphic modules. Then

by Lemma 5(e) we obtain that for no i = 1, . . . , m, the module mi can be trivial (so that
ai + si > 1, for all i = 1, . . . , m), and that ti can only be nonzero when either si > 1 or
ai > 1, and in that case, ti is isomorphic to a subalgebra of so(si ) ⊕ so(ai ).

The above argument shows that if q = 2, thenm contains no trivial submodules (for if both
nontrivial submodules lie in the samem1, thenm = m1). Then by the result of [9, Theorem 2],
we get the GO space M = Spin(9)/Spin(7) in Theorem 2(A)(1), withm = m1 ⊕m2, where
m1 is the spin module and m2 is the standard module.

Assume that q = 3 or q = 4. Furthermore, we have the following irreducible decompo-
sitions of Spin(7) modules:

s ⊗ s = R ⊕ R
7 ⊕ so(7) ⊕ . . . , R

7 ⊗ R
7 = R ⊕ so(7) ⊕ . . . , s ⊗ R

7 = s ⊕ . . . ,(14)

where so(7) is the adjoint module and the dots denote the sums of irreducible large modules
(these modules cannot occur in the decomposition of g viewed as the Spin(7) module). It
then follows from Lemma 2(a) that any two spin modules lying in different eigenspaces
mi ,m j , i 	= j , commute. Therefore, if m contains no standard submodules R7, then any
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two different eigenspaces mi commute and hence the metric is normal. We can therefore
further assume that a ≥ 1.

As g must be simple, from the dimension count and the above conditions we obtain the
following list of candidates (where s j are spin modules).

(i) q = 4, g = f4, and n1 = s1, n2 = s2, n3 = s3, n4 = R
7.

(ii) q = 4, g = f4, and m1 = s1 ⊕ s2 ⊕ t1, n3 = R
7, n4 = R

7, where t1 = so(2).
(iii) q = 4, g = f4, and m1 = R

7 ⊕ R
7 ⊕ t1, n3 = s1, n4 = s2, where t1 = so(2).

(iv) q = 4, g = so(11) or g = sp(5), and m1 = s1 ⊕ s2 ⊕ s3 ⊕ t1, m2 = R
7, where

t1 = so(3).
(v) q = 3, g = so(10), and m1 = s1 ⊕ s2 ⊕ t1, m2 = R

7, where t1 = so(2).

Note that in cases (i, ii) and (iii) the irreducible submodules nr may lie either in the same
or in different eigenspaces mi .

By Lemma 2(a), (d) and from (14), we find that the sum h′ of h = so(7) and all the trivial
and all the standard submodules of m is a subalgebra of g (not necessarily simple) and that
its orthogonal complement p (which is the sum of all the spin submodules of m) satisfies
[p, p] ⊂ h′. It follows that (g, h′) is a symmetric pair, and additionally dim(g/h′) is a multiple
of 8.

In particular, if g = f4, the classification in [19] shows that there is only one such pair,
(g, h′) = (f4, so(9)), which corresponds to the Cayley projective plane. We immediately see
that case (i) is not possible by the dimension count. Case (ii) is also not possible, because
from Lemma 5(b), t1 would lie in the centre of h′ = so(9) which is trivial. In case (iii), we
have h′ = h⊕R

7 ⊕R
7 ⊕ t1 = so(9) (note that t1 acts nontrivially on R7 ⊕R

7). Moreover,
the modules s1 and s2 commute—this follows from Lemma 2(a) and (14) if they lie in two
different eigenspaces of the metric automorphism A, and from Lemma 2(d) and (14) if they
lie in the same eigenspace. But this is a contradiction as no two linear independent vectors
in the tangent space of the Cayley projective plane may commute (as elements of f4), since
otherwise the sectional curvature of the two-plane spanned by them would equal zero.

We now separately consider two remaining cases.
(iv) In this case, h ⊕ R

7 = so(8) and t1 lies in the centre of h′. There is no symmetric
pair (g, h′) = (sp(5), so(8)⊕ so(3)), and so g = so(11) giving the symmetric pair (g, h′) =
(so(11), so(8) ⊕ so(3)). The corresponding homogeneous space is SO(11)/Spin(7), where
Spin(7) ⊂ SO(8) ⊂ SO(8) × SO(3). It is an S7-fibration over the Stieffel manifold
SO(11)/SO(8) with a normal metric (the construction is similar to that in [35, Section 2],
but with the non-symmetric base).

By Lemma (1), the GO condition is equivalent to the fact that for any Xr ∈ sr , r = 1, 2, 3,
and T ∈ t1, Y ∈ R

7, there exists Z ∈ h such that

0 = [X1 + X2 + X3 + T + Y + Z , α1(X1 + X2 + X3 + T ) + α2Y ]
= (α1 − α2)[Y , X1 + X2 + X3 + T ] + α2[Z , Y ] + α1[Z , X1 + X2 + X3 + T ]
= α1[Z + (1 − α2α

−1
1 )Y , X1] + α1[Z + (1 − α2α

−1
1 )Y , X2]

+ α1[Z + (1 − α2α
−1
1 )Y , X3] + α2[Z , Y ].

By (14) and Lemma 2(a), the four terms on the right-hand side belong to s1, s2, s3 and R
7,

respectively, and so the GO condition is equivalent to the existence of Z ∈ h such that

[Z , Y ] = 0, [Z + (1 − α2α
−1
1 )Y , Xr ] = 0, for r = 1, 2, 3. (15)

Now if Y = 0, one can take Z = 0. If Y 	= 0, then from the first equation, Z belongs to
the stationary subalgebra so(6) = su(4) ⊂ so(7) of Y . Identifying three modules s1, s2, s3
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with a single spin module s via an isomorphism we see that relative to some unitary basis
for s = C

4, the operator (adY )|s is proportional to the multiplication by i, and the action
of su(4) commutes with it. Then (15) is equivalent to [Z , Xr ] = μiXr , r = 1, 2, 3, where
μ ∈ R, μ 	= 0. It is sufficient to show that a required Z ∈ su(4) exists for X1, X2, X3

unitary orthonormal. Extending {X1, X2, X3} to a unitary basis {X1, X2, X3, X4} we can
take Z ∈ su(4) such that (adZ )|s = diag(μi, μi, μi,−3μi) relative to this basis. It follows
that the metric is GO; it is not naturally reductive unless it is normal. This gives space (3) in
Theorem 2(A).

(v) In this case, h ⊕ R
7 = so(8) and t1 lies in the centre of h′. We obtain the sym-

metric pair (g, h′) = (so(10), so(8) ⊕ so(2)). The corresponding homogeneous space is
SO(10)/Spin(7), where Spin(7) ⊂ SO(8) ⊂ SO(8) × SO(2), which is an S7-fibration over
the Stieffel manifold SO(10)/SO(8)with a normal metric. The fact that the metric is GO, can
be established by repeating the arguments for the previous case, with obvious modifications.
This is the space (2) in Theorem 2(A).

5.1.3 Spin(8)

From Table 2, any tiny Spin(8)-module is obtained by projecting from Spin(8) to SO(8) and
then representing it on R

8. The action of the group S3 of outer automorphisms of Spin(8)
gives three possible ways of making such projection which results in three non-isomorphic
representations of Spin(8) on R

8 which we refer to as R8
i , i = 1, 2, 3. It follows that in the

decomposition (2), every module is either one of R8
1, R

8
2, R

8
3 or trivial.

Our argument is similar to that in Sect. 5.1.1. Let m1 and m2 be two eigenspaces of A,
and let t1 ⊂ m1, t2 ⊂ m2 be their corresponding trivial submodules. Let n1 ⊂ m1, n2 ⊂ m2

be tiny nontrivial submodules; each of them is isomorphic to one of R8
i , i = 1, 2, 3. Then

[t1, t2] = 0 by Lemma 5(a), and [t1, n2] = [t2, n1] = 0 by Lemma 5(b) and (d), as all three
modules R8

i , i = 1, 2, 3, are of real type. Moreover, for any i = 1, 2, 3, the irreducible
decomposition of R8

i ⊗ R
8
i contains no module R8

j , j = 1, 2, 3, which implies that for no

i, j ∈ {1, 2, 3}, the irreducible decomposition of R8
i ⊗ R

8
j contains any of the modules R8

i

or R8
j . It follows that [n1, n2] = 0. Therefore, all the modules mi pairwise commute, and so

the metric is naturally reductive (we can take Z = 0 in (1)).

5.1.4 Spin(9)

From Table 2, there are only two tiny modules, the 16-dimensional module s for the spin
representation and the 9-dimensional module R9 for the standard representation of SO(9).
Then in the decomposition (2), all the modules nr are either spin or standard or trivial. We
have the following irreducible decompositions of Spin(9) modules:

s ⊗ s = R ⊕ R
9 ⊕ so(9) ⊕ . . . , 
2s = so(9) ⊕ . . . ,

R
9 ⊗ R

9 = R ⊕ so(9) ⊕ . . . , s ⊗ R
9 = s ⊕ . . . ,

(16)

where so(9) is the adjoint module and dots denote the sums of irreducible large modules
(these modules cannot occur in the decomposition of g viewed as the Spin(9) module). Let
m1 and m2 be two eigenspaces of the metric endomorphism A and let ti , i = 1, 2, be the
(maximal) trivial submodule of mi . Suppose si ⊂ mi , i = 1, 2, are spin submodules and
(R9)i ⊂ mi , i = 1, 2, are standard submodules. Then by Lemma 2(a) and (16) we have
[s1, s2] = 0 and [(R9)1, (R

9)2] = 0, and by Lemma 5(a), [t1, t2] = 0. Furthermore, as both
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the spin and the standard modules are of real type, Lemma 5(b) gives [t1, s2 ⊕ (R9)2] =
[t2, s1 ⊕ (R9)1] = 0. Finally, from Lemma 2(a) and (16) we get [(R9)1, s2] ⊂ s2, which
gives a homomorphism from (R9)1 to 
2s2. But this must be trivial by (16), which implies
that [(R9)1, s2] = 0 and similarly, [(R9)2, s1] = 0. It follows that [m1,m2] = 0. Therefore
all the modules mi pairwise commute, and so the metric is naturally reductive.

5.1.5 Spin(10)

From Table 2, there are only two tiny modules, the 32-dimensional module s for the spin
representation and the 10-dimensional moduleR10 for the standard representation of SO(10).
If m contains no spin modules, we can take H = SO(10) and then any GO metric must be
naturally reductive by 5.1.1.We can therefore assume thatm contains at least one spinmodule,
and moreover, at least one other nontrivial module, by Lemma 5(g).

Wefirst show that the sumof two spinmodules is large. The spin representation comes from
the s-representation: it is the representation of Spin(10) on the tangent space of the symmetric
space Q = E6/Spin(10)SO(2). This symmetric space has rank 2, with the restricted root
system of type BC2; there are 6 roots: ε1 and ε2 of multiplicity 8 each, ε1 ± ε2 of multiplicity
6 each and 2ε1 and 2ε2 of multiplicity 1 each [36, Table 1]. The stationary subalgebra k(0)
of a regular element of a maximal abelian subalgebra a ⊂ q = To Q is su(4) ⊕ so(2). By
[28, Lemma 2.25(a)], for every 6-dimensional root space q(λ), λ = ε1 ± ε2, the subalgebra
spanned by [q(λ), q(λ)] is an ideal of k(0) isomorphic to so(6), and it acts as the standard
representation of so(6)onq(λ). By [28,Corollary 2.26(a)], for every 8-dimensional root space
q(λ), λ = ε1, ε2, the subalgebra spanned by [q(λ), q(λ)] is an ideal of k(0) isomorphic to
su(4), and it acts as the standard representation of su(4) on q(λ). It is easy to see that the
stationary subalgebra in k(0) of the element X+ + X− + Y1 + Y2, where X± ∈ q(ε1 ± ε2)

and Yr ∈ q(εr ), r = 1, 2, are generic vectors, is trivial. Therefore the sum of two copies of
s is a large module.

We next show that the sum of s and three copies of R10 is large. Indeed, the stationary
subgroup of a triple of linear independent elements of R10 is Spin(7) ⊂ Spin(10). Then
s is the sum of four 8-dimensional irreducible Spin(7) submodules, and so is large by the
argument in 5.1.2.

We can therefore assume by Lemma 7 that the decomposition (2) takes either the form
m = s1 ⊕ s2 ⊕ t, where t is a trivial module, or the form m = s ⊕ aR10 ⊕ t, where t is a
trivial module and 1 ≤ a ≤ 3.

In the first case, as s is of complex type, we find by Lemma 5 that t is isomorphic to either
a subalgebra of u(2) if s1 and s2 lie in the same eigenspace mi , or of u(1) ⊕ u(1), if they lie
in different eigenspaces. The dimension count shows that, in any case, 109 ≤ dim g ≤ 113,
but there are no simple Lie algebras of such dimensions, a contradiction.

In the second case, if a = 1, as s is of complex type and R10 is of real type, we obtain by
Lemma 5 that t is isomorphic to a subalgebra of u(1). Then dim g ∈ {87, 88}. Similarly, if
a = 3, we obtain that t is isomorphic to a subalgebra of u(1)⊕ so(3), and so 107 ≤ dim g ≤
111. But in both cases, there are no simple Lie algebras of such dimensions. For a = 2, t is
isomorphic to a subalgebra of u(1)⊕so(2), and from the dimension count, the only candidate
for g is su(10). But Spin(10) cannot be a subgroup of SU(10) as Spin(10) has no faithful
real representation on R20.

So in the case H = Spin(10), any GO metric is naturally reductive.
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5.1.6 Spin(12)

From Table 2, there are only two tiny modules, the 64-dimensional spin module s and the
12-dimensional module R12 for the standard representation of SO(12). We can assume that
m contains at least one spin module by 5.1.1, and at least one other nontrivial module by
Lemma 5(g). We claim that the sum of the spin module and either of the spin or the standard
module is large. Indeed, if the second module is the standard module R

12, the stationary
subgroup of a nonzero element of it is Spin(11) ⊂ Spin(12). Its representation on s is still
irreducible, with the trivial principal stationary subgroup (no Spin(11) entry in Table 2).
Now suppose the second module is also spin. The spin representation comes from the s-
representation for the symmetric space Q = E7/Spin(12)SU(2). The symmetric space Q
has rank 4, with the restricted root system of type F4; there are 12 roots of multiplicity
1 and 12 roots of multiplicity 4 [36, Table 1]. The stationary subalgebra k(0) of a regular
element of a maximal abelian subalgebra a ⊂ q = To Q is so(3) ⊕ so(3) ⊕ so(3). By
[28, Lemma 2.25(a)], for every 4-dimensional root space q(λ), the subalgebra spanned by
[q(λ), q(λ)] is an ideal of k(0) isomorphic to so(4), and it acts as the standard representation
of so(4) on q(λ). Take three 4-dimensional root spaces q(λ) such that [q(λ), q(λ)] span the
same ideal so(4) ⊂ k(0) and choose three generic vectors, X1, X2, X3, one in each of them.
Then the stationary subalgebra of X1 + X2 + X3 in k(0) is the “remaining” ideal so(3). Now
choose a nonzero vector Y in a 4-dimensional root space q(λ) such that [q(λ), q(λ)] contains
that ideal. Then the stationary subalgebra of X1 + X2 + X3 + Y in k(0) is trivial. Therefore
the sum of two copies of s is a large module.

We can therefore assume that the decomposition (2) takes either the formm = s1⊕s2⊕ t,
where t is a trivial module, or the form m = s ⊕ R

12 ⊕ t, where t is a trivial module.
In the second case, both s and R

12 are ad(t)-invariant by Lemma 5(b). As s is of quater-
nionic type and R12 is of real type, t is a subalgebra of sp(1), by Lemma 5(e),(d). It follows
that 142 ≤ dim g ≤ 145. The only simple Lie algebra g whose dimension lies in this range
is su(12), but Spin(12) cannot be a subgroup of SU(12) as Spin(12) has no faithful real
representation on R

24. Similarly, in the first case, t must be a subalgebra of sp(2), which
gives 194 ≤ dim g ≤ 204. The only simple Lie algebra g whose dimension lies in this
range is su(15), but Spin(12) is not a subgroup of SU(15) as Spin(12) has no faithful real
representation on R30.

So in the case H = Spin(12), any GO metric is naturally reductive.

5.2 Type A: H = SU(n), n ≥ 3

From Table 2, we can have the following tiny SU(n) modules. For all n ≥ 3, we have the
standard module of dimension 2n, and for all n ≥ 5, we have the module p of dimension
n(n − 1) coming from the s-representation for the symmetric space Q = SO(2n)/U(n)

(note that for n = 3 this module is standard, and for n = 4 it is reducible). In addition, for
n = 4 we have the tiny module of dimension 6 coming from the standard representation
of SO(6) = SU(4)/Z2, and for n = 6, there is a tiny module q of dimension 40 from the
s-representation for the symmetric space Q = E6/SU(6)SU(2).

Before considering various cases, we prove the following lemma. Consider the homoge-
neous spaceG/H = SO(2n+1)/SU(n), wheren ≥ 3 and H = SU(n) ⊂ U(n) ⊂ SO(2n) ⊂
SO(2n + 1) = G. At the level of Lie algebras, we have h = su(n) ⊂ u(n) ⊂ so(2n) ⊂
so(2n + 1) = g. We have an orthogonal decomposition into h-modules: g = h ⊕ t ⊕ n ⊕ s,
where t is the one-dimensional trivial module which is the orthogonal complement to h in
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u(n), the module n is the orthogonal complement to u(n) in so(2n) and the module s is the
standard 2n-dimensionalmodulewhich is the orthogonal complement to so(2n) in so(2n+1)
(note that the module n is reducible when n = 4 and is standard when n = 3).

Lemma 9 In the above notation, suppose the metric on SO(2n+1)/SU(n), n ≥ 3, is defined
by a metric automorphism A such that the modules s, n, t lie in the eigenspaces of A with
the eigenvalues α1, α2, α3 > 0, respectively. Then if n is even, the metric is GO if and only
if α2 = α3; if n is odd, the metric is GO if and only if nα−1

3 = (n − 1)α−1
2 + α−1

1 .

Proof We have [n, s] = [t, s] = s and [t, n] = n. For X ∈ s, Y ∈ n, T ∈ t, the GO
condition (1) gives [Z + X + Y + T , α1X + α2Y + α3T ] = 0, which is equivalent to

[Z + σ T , Y ] = 0, [Z + ρY + τT , X ] = 0,

where σ = 1 − α3α
−1
2 , ρ = 1 − α2α

−1
1 , τ = 1 − α3α

−1
1 . Choose an almost Hermitian

structure in s = C
n in such a way that (adt )|s1 is a real multiple of the multiplication by

i. Then for w = X ∈ C
n we have [Z , X ] = Mw, where M is an n × n skew-Hermitian

matrix with trace zero, [T , X ] = itw, where t ∈ R, and [Y , X ] = NCw, where N is
an n × n complex skew-symmetric matrix (depending on Y ) and C is the componentwise
complex conjugation. The above GO condition is then equivalent to the following: for any
w ∈ C

n, t ∈ R and N ∈ so(n,C), there exists an n × n traceless, skew-Hermitian matrix
M such that

(M + σ t iIn)N + N (M + σ t iIn)t = 0, (M + ρNC + τ t i)w = 0. (17)

We consider two cases depending on the parity of n.
Suppose n is even; let n = 2k. Take N in (17) to be generic (that is, rk N = n and all

the eigenvalues of N are pairwise distinct). We can choose a unitary basis for Cn relative to
which N = diag(μ1 J , μ2 J , . . . , μk J ), where J = (

0 1−1 0

)
and ±μ1,±μ2, . . . ,±μk ∈ C

are nonzero and pairwise distinct. Then from the first equation of (17) we obtain M +σ t iIn =
diag(F1, F2, . . . , Fk), where F1, F2, . . . , Fk ∈ su(2). It follows that Tr(M +σ t iIn) = 0 and
so σ = 0. This gives α2 = α3 and τ = ρ.

Now the second equation of (17) gives

Fjw
j + ρμ j Jw j + ρt iw j = 0, j = 1, 2, . . . , k,

where the coordinates of the vector w j =
(

w
j
1

w
j
2

)
∈ C

2 are the (2 j − 1)-st and the 2 j-th

coordinates of w respectively. If w j = 0, the latter equation is trivially satisfied, with an

arbitrary Fj . Otherwise, a direct calculation gives Fj =
(

a j i z j
−z j −a j i

)
, where a j ∈ R and

z j ∈ C are given by

(|w j
1 |2 + |w j

2 |2)
(

a j i
z j

)
= −ρt i

(
|w j

1 |2 − |w j
2 |2

2w j
1w

j
2

)
+ ρ

(
2i Im(μ jw

j
1w

j
2)

μ j (w
j
2)

2 + μ j (w
j
1 )

2

)
.

As the right-hand side is continuous in μ j , the entries of N , we deduce that a traceless
skew-Hermitian matrix M which satisfies (17) exists for all N ∈ so(n,C) (and all t ∈ R and
w ∈ C

n). Hence, the metric so defined is GO.
Now suppose n is odd; let n = 2k + 1. The proof is similar to that in the even

case with some modifications. We again take a generic N and choose a unitary basis
for C

n relative to which N = diag(μ1 J , μ2 J , . . . , μk J , 0), where J = (
0 1−1 0

)
and

±μ1,±μ2, . . . ,±μk ∈ C are nonzero and pairwise distinct. The first equation of (17) gives
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M + σ t iIn = diag(F1, F2, . . . , Fk, c), where F1, F2, . . . , Fk ∈ su(2) and c ∈ C. Compar-
ing the traces we find that c = nσ t i and so M + σ t iIn = diag(F1 − σ t iI2, F2 − σ t iI2,
. . . , Fk − σ t iI2, 2kσ t i).

Then the second equation of (17) gives

(Fj + (τ − σ)t iI2)w j + ρμ j Jw j = 0, j = 1, 2, . . . , k, 2kσ + τ = 0,

where the coordinates of the vector w j =
(

w
j
1

w
j
2

)
∈ C

2 are the (2 j − 1)-st and the 2 j-th

coordinates of w respectively. From the last equation we obtain nα−1
3 = (n − 1)α−1

2 + α−1
1 .

From the first k equations we find, provided w j 	= 0, that the entries of the matrix Fj =(
a j i z j
−z j −a j i

)
∈ su(2), a j ∈ R, z j ∈ C are given by

(|w j
1 |2 + |w j

2 |2)
(

a j i
z j

)
= nσ t i

(
|w j

1 |2 − |w j
2 |2

2w j
1w

j
2

)
+ ρ

(
2i Im(μ jw

j
1w

j
2)

μ j (w
j
2)

2 + μ j (w
j
1 )

2

)
.

Similar to the even case this proves that the metric is GO. ��

5.2.1 SU(n), n ≥ 4; all modules standard

We first consider the case when n ≥ 4 and all nontrivial submodules in the decomposition
(2) are standard. There has to be no more than n − 1 of them, as the sum of n − 1 standard
modules is already a large module.

Note that the tensor square of the standard module contains no standard modules, and
the exterior square of the standard module is the sum of the adjoint module, the module
p defined above and the one-dimensional trivial module. Suppose we have two standard
modules s1 ⊂ mi and s2 ⊂ m j , i 	= j . Then by Lemma 2(a) [s1, s2] ⊂ s1⊕s2, and hence s1
and s2 commute; in particular, [[s1, s1], s2] = 0.On the other hand, [s1, s1] is contained in the
subalgebra which is the direct sum of h and a one-dimensional trivial module, and moreover,
is an ideal in that subalgebra. As s1 is nontrivial we obtain h ⊂ [s1, s1]which contradicts the
fact that [[s1, s1], s2] = 0, as s2 is also nontrivial. It follows that all the standard modules sr

lie in the same eigenspace, and so up to relabelling we have m1 = ⊕p
r=1sr ⊕ t1 and mi = ti

for i = 2, . . . , m, where t1, t2, . . . , tm are trivial modules. Note that 2 ≤ p ≤ n − 1 (if
p = 1 we obtain the space SU(n + 1)/SU(n) from Lemma 5(g)) and m ≥ 2, so that t2 	= 0.
Moreover, the module t1 must also be nonzero, for if t1 = 0 we obtain that [s1, s2] = 0
by Lemma 2(d) and then repeat the argument above. Furthermore, the pair (g, h′), where
h′ = h ⊕ t, is a symmetric pair (as the bracket of standard modules contains no standard
modules and hence lies in h′, and m′

1 := ⊕p
r=1sr is ad(t)-invariant, by Lemma 5(b)). As g is

simple and h′ is the sum of two ideals, su(n) and t, with dim t ≥ 2, from the classification
[19] we find that (g, h′) = (su(n + p), su(n) ⊕ su(p) ⊕ R). From Lemma 5(e), (a) we
obtain that m = 2 and t1 ⊕ t2 = su(p) ⊕ R. Note that t2 	= su(p) as adt2 preserves every
individual module sr , r = 1, . . . , p, by Lemma 5(b); therefore t1 = su(p), t2 = R. It
follows that m1 = ⊕p

r=1sr ⊕ su(p) and m2 = R. The corresponding homogeneous space is
SU(n + p)/SU(n), 2 ≤ p ≤ n − 1, where SU(n) ⊂ SU(n) × SU(p) ⊂ S(U(n) × U(p));
this is the space (5) in Theorem 2(A) (with p ≥ 2 and n ≥ 4).

By Lemma (1), the GO condition is equivalent to the fact that for any Xr ∈ sr , r =
1, . . . , p, and T1 ∈ t1, T ∈ t2, there exists Z ∈ h such that [∑p

r=1 Xr + T1 + T + Z ,
α1(

∑p
r=1 Xr + T1) + α2T ] = 0. Note that t2 commutes with both h and t1, and preserves
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each of the sr ’s. Therefore, the GO condition is equivalent to the existence of Z ∈ h such
that

[Z + (1 − α2α
−1
1 )T , Xr ] = 0, for r = 1, . . . , p. (18)

If T = 0, we can take Z = 0. If T 	= 0, then identifying the modules sr with a single
standard module n via an isomorphism we see that relative to some unitary basis for n = C

n ,
the operator (adT )|s is real proportional to the multiplication by i, and the action of su(n)

commutes with it. Then (18) is equivalent to [Z , Xr ] = μiXr , r = 1, . . . , p, where μ ∈
R, μ 	= 0. It is sufficient to show that a required Z ∈ su(n) exists when Xr are unitary
orthonormal. Extending {X1, . . . , X p} to a unitary basis {X1, . . . , X p, . . . , Xn} (recall that
p ≤ n − 1) we can take Z ∈ su(n) such that (adZ )|s relative to this basis is given by the
diagonal matrix whose first p entries are μi and the remaining n − p, are −p(n − p)−1μi.
It follows that the metric is GO.

5.2.2 SU(n), n ≥ 5 and n �= 6

From Table 2, there are two tiny modules, the standard module s = C
n and the n(n −

1)-dimensional module p, and so in the decomposition (2), every nontrivial submodule is
isomorphic to either s or p. There are at least two of them, and we can assume that at least
one is isomorphic to p by 5.2.1. Note that both p ⊕ p and p ⊕ s are large modules. Indeed,
for a generic element of p we have the set of [n/2] mutually unitary orthogonal subspaces
C
2 ⊂ C

n such that the stationary subalgebra is the sum of [n/2] copies of su(2) each acting
in its own C

2. To see that the principal stationary subalgebra of p ⊕ s is trivial we take an
element in s = C

n all whose components in the subspaces C2 are nonzero; for p ⊕ p, we
take two generic elements of p sharing no common subspaces C2 in the corresponding sets.

It follows that the only possible cases for the decomposition (2) are m = p ⊕ p ⊕ t and
m = p ⊕ s ⊕ t, where t is a trivial module.

We will need the irreducible decompositions of the tensor products of s and p:

s ⊗ s = 2R ⊕ p ⊕ 2su(n) ⊕ . . . , for n = 5 or n 	= 7,

p ⊗ p = 2R ⊕ 2su(n) ⊕ . . . , s ⊗ p = s ⊕ . . . , for n ≥ 7,

p ⊗ p = 2R ⊕ 2su(5) ⊕ s ⊕ . . . , s ⊗ p = s ⊕ p ⊕ . . . , for n = 5,

(19)

where R is the trivial module, su(n) is the adjoint module and dots denote the sums of
irreducible large modules.

We now consider the casem = p⊕p⊕ t. From Lemma 5, we find t ⊂ u(2). Furthermore,
by (19), p ⊗ p does not contain p, and so (g, h′ = su(n) ⊕ t) is a symmetric pair, with the
corresponding symmetric space of dimension 2n(n − 1). From the classification in [19], we
find that there are no such pairs for n ≥ 5, and so this case is not possible.

Next consider the case m = p ⊕ s ⊕ t. From Lemma 5, we have t ⊂ R
2. First suppose

that n ≥ 7. Then by (19), (g, h′ = su(n)⊕p⊕ t) is a symmetric pair, with the corresponding
symmetric space of dimension 2n and with 2n2 − n − 1 ≤ dim h′ ≤ 2n2 − n + 1 and
rk h′ ≥ n − 1. From the classification in [19], we find that there is only one such pair:
(g, h′) = (so(2n + 1), so(2n)). Then we get dim t = 1 and su(n) ⊕ p ⊕ t = so(2n) and we
obtain a family of GO metrics as in Lemma 9.

The last case to consider is m = p ⊕ s ⊕ t and n = 5. We again have dim t ≤ 2
and then from the dimension count, dim g ∈ {54, 55, 56}. Then we get dim t = 1 and
g = sp(5) or g = so(11). The first case is not possible, as the only way to realize the algebra
u(5) = su(5) ⊕ t as a subalgebra of sp(5) is the one corresponding to the symmetric pair
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(sp(5), u(5)). But as both p and s are ad(t)-invariant, the 30-dimensional irreducible u(5)-
module which is the tangent space of the corresponding symmetric space remains irreducible
for the subalgebra su(5). In the case g = so(11) there is again, the only way to realize
u(5) = su(5) ⊕ t as a subalgebra of so(11): we have u(5) ⊂ so(10) ⊂ so(11), and then this
case is completed by application of Lemma 9.

Thus we obtain the spaces in Theorem 2(A)(6) with n ≥ 7 and n = 5.

5.2.3 SU(3)

From Table 2, there is only one tiny module, the standard one, of dimension 6. Note that the
sum of two of them is a large module, and so by Lemma 7 and Lemma 5(g) we can assume
that the decomposition (2) takes the form m = s1 ⊕ s2 ⊕ t, where s1 and s2 are standard
and t is a trivial module. As the standard module is of complex type and as there are two of
them, from Lemma 5 we find that t is a subalgebra of u(2). It follows that 20 ≤ dim g ≤ 24.
This gives three possibilities: either g = sp(3), dim t = 1, or g = so(7), dim t = 1, or
g = su(5), dim t = 4.

In the first case, there is only one way, up to conjugation, to realize the algebra u(3) =
h ⊕ t as a subalgebra of g = sp(3), namely the one corresponding to the symmetric pair
(sp(3), u(3)). Aswe have at least two different eigenspacesmi of A, and dim t = 1, we obtain
by Lemma 5(b) that both s1 and s2 are ad(t)-invariant. But then they are u(3)-invariant which
contradicts the fact that the representation of u(3) on the tangent space of the corresponding
symmetric space is irreducible.

In the second case, there is again only one way, up to conjugation, to realize the algebra
u(3) = h ⊕ t as a subalgebra of g = so(7): we have u(3) ⊂ so(6) ⊂ so(7), where
the first inclusion corresponds to the symmetric pair (so(6), u(3)). We have therefore the
following modules in the decomposition (2): the standard module s1 which is the orthogonal
complement to so(6) in so(7), the standard module s2 which is the orthogonal complement
to u(3) in so(6), and the one-dimensional module t, the centre of u(3). By Lemma 9, we get
GO metrics on the space SO(7)/SU(3) from Theorem 2(A)(6) with n = 3.

In the third case, from Lemma 5 we obtain that t can have dimension 4 only if, up to
relabelling, the eigenspaces of A are given by m1 = s1 ⊕ s2 ⊕ t1, m2 = t2, where t1 is
isomorphic to su(2) and dim t2 = 1. Repeating the arguments in the last two paragraphs of
5.2.1, we obtain a family of GO metrics on SU(5)/SU(3) (the space (5) in Theorem 2(A)
with n = 3 and p = 2).

5.2.4 SU(4)

From Table 2, there are two tiny modules, the standard module s = C
4 and the module

n = R
6 coming from the standard representation of SO(6) = SU(4)/Z2 (note that the

orthogonal complement to u(4) in so(8) is reducible and is the direct sum of two copies of
n).

The cases when all nontrivial modules in the decomposition (2) are isomorphic to n or all
are standard have already been considered in 5.1.1 and 5.2.1 respectively. We can therefore
assume that at least one module in (2) is standard and at least one is isomorphic to n. Note
that the module 2n ⊕ s is large. Indeed, the stationary subgroup of a nonzero element from
s = C

4 is SU(3), and the restriction of the representation of SU(4) on n to SU(3) is the
standard representation of SU(3) on n = R

6 = C
3. Then the stationary subgroup of a pair

of linear independent vectors from C
3 is trivial. Similarly, the module n⊕ 2s is large, as the
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stationary subgroup of a nonzero element from n is Sp(2) = Spin(5) ⊂ Spin(6) = SU(4),
and so s can be viewed as the standard module for Sp(2). Then the stationary subgroup of a
pair of linear independent vectors from s = H

2 is trivial.
It therefore follows that the decomposition (2) takes the formm = qs⊕ rn⊕ t, where t is

a trivial module and (q, r) = (1, 1), (2, 1), (1, 2). Note that s is of complex type and n is of
real type. Then in the case (q, r) = (1, 1), by Lemma 5(b), (e) and (d) we obtain dim t ≤ 1,
and so dim g ∈ {29, 30}, which is a contradiction as there are no simple groups of these
dimensions. Similarly, in the case (q, r) = (2, 1) we obtain that t is a subalgebra of u(2),
and so 37 ≤ dim g ≤ 41, which again leads to a contradiction. In the case (q, r) = (1, 2),
Lemma 5 gives dim t ≤ 2, and from the dimension count we obtain one of the following
three cases: either t = 0 and g = su(6), or dim t = 1 and then g = sp(4) or g = so(9).

We have the following irreducible decompositions of SU(4) modules:

s ⊗ s = 2R ⊕ 2n ⊕ 2su(4) ⊕ . . . , n ⊗ n = R ⊕ su(4) ⊕ . . . , s ⊗ n = s ⊕ . . . , (20)

where su(4) is the adjoint module and dots denote the sums of irreducible large modules. It
follows that h′ = h ⊕ 2n ⊕ t is a subalgebra of g and that (g, h′) is a symmetric pair. The
corresponding symmetric space must be of dimension 8, and from the classification in [19]
we find that the only possible case is g = so(9), h′ = so(8), and then s is the orthogonal
complement to so(8) is so(9), t is the one-dimensional centralizer of su(4) in so(8) and
2n is the orthogonal complement to u(4) = su(4) ⊕ t in so(8). Denote by n1, n2 the two
copies of n. If n1 and n2 lie in different eigenspaces mi , then by Lemma 2(a) and (20) we
get [n1, n2] = 0, and so [[n1, n1], n2] = 0 which contradicts the fact that both n1 and n2
are irreducible nontrivial modules. Therefore n1 ⊕ n2 lie in the same eigenspace mi of A.
By a similar argument using Lemma 2(d) we obtain that t ⊂ mi . It follows that the metric
endomorphism A has two eigenspaces, m1 = n1 ⊕ n2 ⊕ t and m2 = s. By Lemma 9, we get
the space SO(9)/SU(4) in Theorem 2(A)(6) with n = 4.

5.2.5 SU(6)

We have three tiny modules, the standard module s of dimension 12, the module p of dimen-
sion 30 and the module q of dimension 40 which comes from the s-representation for the
symmetric space Q = E6/SU(6)SU(2). As above, we can assume that in the decomposi-
tion (2) we have at least two nontrivial modules and that at least one of them is not standard.
We claim that the sum of any two modules each of which is isomorphic to s, p or q and at
least one is not standard is a large module. For the modules p ⊕ p and p ⊕ s the argument is
similar to that in the first paragraph of 5.2.2. In the remaining cases, one of the modules is q
with the stationary subalgebra R2 (see Table 2) which is a subalgebra of a Cartan subalgebra
of su(6). It follows that the sum of q and any nontrivial module is large, by the argument in
the proof of Lemma 8.

Therefore the decomposition (2) takes the formm = n1 ⊕n2 ⊕ t, where n1, n2 ∈ {s, p, q}
and at least one of them is not standard, and t is trivial. Note that s and p are of complex type
and q of quaternionic type. We consider all possible cases.

Suppose m = 2q ⊕ t. Then by Lemma 5 we have t ⊂ sp(2), and by the dimension count
we get dim g = 115 + dim t, so that 115 ≤ dim g ≤ 125. The only two simple algebras
of such dimensions are su(11) and so(16), both of dimension 120. But sp(2) contains no
subalgebras of dimension 5, so this case is not possible.

Suppose m = p ⊕ q ⊕ t. Then t ⊂ sp(1) ⊕ R, and dim g = 105 + dim t, so that
105 ≤ dim g ≤ 109. The only two simple algebras of such dimensions are sp(7) and so(15),
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both of dimension 105. But then t = 0 and so m = p ⊕ q which implies that any GO metric
(if one at all exists) is normal, by [9, Theorem 2].

Suppose m = s ⊕ q ⊕ t. Then again t ⊂ sp(1) ⊕ R, and so dim g = 87 + dim t which
gives the only candidate so(14). Then t = sp(1) ⊕ R. But the only faithful representation
of su(6) of dimension at most 14 is the standard representation on R

12. It follows that
su(6) ⊂ so(12) ⊂ so(14), and so the centralizer of su(6) in so(14) is R2 (cannot be as large
as t = sp(1) ⊕ R). This contradiction shows that this case is also not possible.

Next supposem = 2p⊕t. By Lemma 5we have t ⊂ u(2), and by the dimension count, the
only possible case is g = su(10), t = u(2). But the only realization of su(6) as a subalgebra
of su(10) comes from the inclusionC6 ⊂ C

10, and then the centralizer of su(6) is u(4)which
is much bigger than t. So this case is also not possible.

Finally let m = p ⊕ s ⊕ t. Then t ⊂ R
2 and the dimension count gives dim t = 1 and

dim g = 78, so that g is either e6 or sp(6) or so(13). But the case g = e6 is not possible, as the
only su(6) subalgebra in e6 is the one coming from the symmetric pair (e6, su(6) ⊕ su(2)),
and its centralizer contains su(2) in contradiction with dim t = 1. Furthermore, if g = sp(6),
then the only su(6) subalgebra is the one coming from the symmetric pair (sp(6), u(6)). But
then, as both p and s are ad(t)-invariant, they are also u(6)-invariant which contradicts the fact
that the representation of u(6) on the tangent space of the corresponding symmetric space is
irreducible. The last remaining case is g = so(13). The only way to realize u(6) = su(6)⊕ t

as a subalgebra of so(13) is u(6) ⊂ so(12) ⊂ so(13), where (so(12), u(6)) is a symmetric
pair. By Lemma 9 we obtain the space SO(13)/SU(6) in Theorem 2(A)(6) with n = 6.

5.3 Type C: H = Sp(n), n ≥ 2

From Table 2, we can have two tiny Sp(n) modules: the standard module s of dimension 4n
and the module p of dimension (n − 1)(2n + 1) obtained from the s-representation for the
symmetric space Q = SU(2n)/Sp(n) (note that for n = 2, the module p comes from the
standard representation of SO(5) = Sp(2)/Z2 on R

5).
We first consider the case when all the nontrivial modules in decomposition (2) are stan-

dard. The sumof n suchmodules is a largemodule, and sowe can assume thatm = ⊕p
i=1si ⊕t,

where si are standard modules, t is trivial and 2 ≤ p ≤ n. As the tensor square of the stan-
dard module contains no standard modules, we find that (g, h′ = h ⊕ t) is a symmetric
pair, with the corresponding symmetric space of dimension 4pn, and with t being a nonzero
ideal in h′ (for if t = 0, the eigenspaces mi are the sums of the standard modules and
hence pairwise commute by Lemma 2(a); this gives a naturally reductive metric: we can
take Z = 0 in (1)). From the classification in [19], there are only two cases. In the first
one, we have n = 2 and (g, h′) = (so(5 + q), so(5) ⊕ so(q)); but then 8p = 5q , from the
dimension count, and so p ≥ 5, a contradiction. In the second case, n ≥ 2 is arbitrary and
(g, h′) = (sp(n + q), sp(n) ⊕ sp(q)). It follows that q = p and that t = sp(p), and so by
Lemma 5(a), t entirely lies in a single eigenspace mi . But then from Lemma 5(b), we can
have t so big only when all the standard modules s1, . . . , sp also lie in the same eigenspace
which implies that A is the multiple of the identity and so the GO metric is normal (note that
this argument does not work when p = 1, in which case we obtain the space Sp(n+1)/Sp(n)

from Lemma 5(g) which carries a GO metric which is not naturally reductive).
We can therefore assume that the decomposition (2) contains the module p and at least one

other nontrivial module. Note that p⊕ s is a large module. Indeed, the stationary subalgebra
of a generic element of p is n sp(1), which acts on s = H

n by acting as sp(1) on n orthogonal
copies of H; taking an element of s whose component in each of these copies is nonzero
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we find that the stationary subalgebra is trivial. Assume that all nontrivial modules in (2)
are isomorphic to p. If n = 2, we have the standard representation of so(5) on R

5, and
so the sum of four copies of p is large, but the sum of three is still small. If n ≥ 3, the
sum of two copies of p is already large. To see this, we identify the module p with the
tangent space q of the symmetric space Q = SU(2n)/Sp(n) and choose a generic element
X ∈ q. Its centralizer in q is a maximal abelian subalgebra a ⊂ q of dimension n − 1
which then defines the decomposition of q ∩ a⊥ into the orthogonal sum of 1

2n(n − 1) root
spaces q(λ) of dimension 4, with the root system of type An−1 [36, Table 1]. The stationary
subalgebra of X is k(0) = n sp(1) = ⊕n

i=1(sp(1))i , with every root space q(λ) being k(0)-
invariant, and moreover, for the root λ = ±(εi − ε j ), 1 ≤ i < j ≤ n, the subalgebra
(sp(1))i ⊕ (sp(1)) j ⊂ k(0) acts on q(λ) as the standard representation of so(4), and all the
other (sp(1))k, k 	= i, j , act on q(λ) trivially [28, Lemma 2.25]. It follows that if we choose
Y ∈ q whose component in each of the root spaces q(λ) is nonzero, its stationary subalgebra
in k(0) will be trivial.

Suppose all the nontrivial modules in the decomposition (2) are isomorphic to p. If n = 2
we have the standard representation of so(5) on R

5; this case has been analyzed in 5.1.1. If
n ≥ 3 then from the above,m contains exactly two copies of p. As p is of real type, nomodule
mi can be trivial by Lemma 5(e), (d) and (b), and so the two copies of p must lie in different
eigenspaces mi , and moreover, neither of these eigenspaces contains a trivial submodule. It
follows that the only possibility is m = m1 ⊕ m2, with m1 = p1, m2 = p2, where p1 and
p2 are isomorphic to p. But then from [9, Theorem 2] we find that any GO metric is normal,
hence naturally reductive.

The last remaining case to consider is when the decomposition (2) has the form m =
p ⊕ s ⊕ t, where t is a trivial module. Note that p is of real type and so by Lemma 5 we
have [t, p] = 0, [t, s] ⊂ s and t ⊂ sp(1). From [9, Theorem 2] we also find that t 	= 0.
Moreover, the irreducible decomposition of the tensor product p⊗ s does not contain p, and
so [p, s] ⊂ s and [p, p] ⊥ s. Also, the irreducible decomposition of the tensor product s⊗ s

does not contain s. It follows that (g, h′ = h ⊕ p ⊕ t) is a symmetric pair, with t a nonzero
ideal in h′. The dimension of the corresponding symmetric space is 4n, and we also know that
dim h′ ∈ {4n2, 4n2+2}, rk h′ ≥ n+1 and thath′ contains a nonzero ideal t ⊂ sp(1). From the
classification in [19] we find that the only possibility is (g, h′) = (su(2n + 1), su(2n) ⊕R).
Then s is the orthogonal complement to su(2n) in su(2n + 1) and p is the orthogonal
complement to h in su(2n) (note that the only way, up to automorphism, to realize sp(n) as
a subalgebra of su(2n) is the one corresponding to the symmetric pair (su(2n), sp(n))).

We now consider the GO condition. Suppose s, p and t lie in the eigenspaces of A with
the eigenvalues α1, α2 and α3 respectively (some of them, but not all three, may be equal).
Then (1) is equivalent to the fact that for any X ∈ s, Y ∈ p and T ∈ t, there exists Z ∈ h

such that

[Z , Y ] = 0, [Z + ρY + τT , X ] = 0, (21)

where ρ = 1 − α2α
−1
1 , τ = 1 − α3α

−1
1 . We can now identify s with C2n in such a way that

the action of adt is the multiplication by a real multiple of i and choose a unitary basis in

such a way that su(2n) is the space of complex matrices of the form
(

K1 L
−L∗ K2

)
, where K1

and K2 are skew-Hermitian with Tr K1 + Tr K2 = 0 and L is an arbitrary n × n complex

matrix, and sp(n) ⊂ su(2n) is the space of complexmatrices of the form
(

K S
−S K

)
, where K is

skew-Hermitian and S is an n ×n symmetric complex matrix. Then p is the space of matrices

of the form
(

K L
L −K

)
, where K is skew-Hermitian with Tr K = 0 and L ∈ so(n,C). Choose
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a generic Y ∈ p. We can specify the basis further (conjugate by an element of Sp(n)) in such
a way that the maximal abelian subalgebra of p containing Y is the space

(
iD 0
0 iD

)
where D

is a real diagonal matrix with Tr D = 0. Taking Y of this form with D = diag(d1, . . . , dn)

such that di ∈ R are nonzero and pairwise distinct we obtain from the first equation of (21)

that Z =
(

K S
−S K

)
, where K = diag(ix1, . . . , ixn), S = diag(z1, . . . , zn), x j ∈ R, z j ∈ C.

We also have adT = it I2n, t ∈ R. Then the second equation of (21) splits into n pairs of
equations of the form

i(x j + ρd j + τ t)w j + z j wn+ j = 0, −z j w j + i(−x j + ρd j + τ t)wn+ j = 0, j = 1, . . . , n,

where w j , wn+ j ∈ C are the corresponding coordinates of X ∈ s relative to the chosen
basis. Now ifw j = wn+ j = 0 we can choose x j and z j arbitrarily. If not, a direct calculation
gives x j = (|wn+ j |2−|w j |2)(|wn+ j |2+|w j |2)−1(ρd j +τ t), z j = −2iw jwn+ j (|wn+ j |2+
|w j |2)−1(ρd j + τ t). As these expressions are continuous in d j , the equations (21) have a
solution Z ∈ h for all Y ∈ p, X ∈ s and T ∈ t. Hence the metric so defined is GO which
gives the space SU(2n + 1)/Sp(n), n ≥ 2, in Theorem 2(A)(9).

5.4 Exceptional groups

5.4.1 G2

From Table 2, there is only one tiny module, the space of imaginary octonionsO′ := O∩1⊥
which is the space of the defining representation for G2, and so the decomposition (2) takes
the form m = qO′ ⊕ t, where t is a trivial module. As any three non-associating imaginary
octonions generate the whole algebra of octonions O, the sum of three copies of O′ is a
large module (one can check that the sum of two is still a small module, with the principal
stationary subgroup Sp(1)), and so by Lemma 7 and Lemma 5(g) we have q ∈ {2, 3}. As
the module O

′ is of real type, Lemma 5(b) and (e) imply that no mi can be trivial (and
hence not all the modules O′ lie in a single mi ) and that mi may contain a nonzero trivial
submodule only if it also contains at least two copies of O′. If q = 2 these conditions imply
that m = m1 ⊕m2, where both m1 and m2 are isomorphic to O′, so that m is the sum of two
irreducible submodules. As g is simple, by [9, Theorem 2] we obtain M = Spin(8)/G2, the
space (10) in Theorem 2(A).

Suppose q = 3. If the three modules O
′ lie in three different eigenspaces of A, then

similar to the above, we get m = 3O′. Then dim g = 35, and so g = su(6). But g2 is not a
subalgebra of su(6) (as the complexification of g2 has no nontrivial representation on C6), a
contradiction. So up to relabellingwe havem = m1⊕m2,wherem1 = n1⊕n2⊕t1, m2 = n3,
where the modules n1, n2 and n3 are isomorphic to O

′ and t1 is a trivial module. If t1 = 0,
we get a contradiction by the dimension count as above. Furthermore, by Lemma 5(b) we
get [t1, n3] = 0, and so by Lemma 5(b) and (e), for every nonzero T ∈ t1, the restriction of
adT to n1 ⊕ n2 is nonzero and commutes with adh, and so we obtain that t1 = RT , where

(adT )n1⊕n2 is given by the matrix
(

0 I7−I7 0

)
, relative to bases for n1, n2 which correspond via

isomorphism. Then g is a simple algebra of dimension 36 and h′ = h ⊕ t1 is its subalgebra;
moreover, the modules n1 ⊕n2 and n3 are irreducible for h′ and the metric on (n1 ⊕n2)⊕n3
obtained by the restriction of A is GO. Then the pair (g, h′) corresponds to [9, Theorem 2(2)],
and so we get the space M = SO(9)/G2 in Theorem 2(A)(11). To see that the metric is GO
we note that [t1, n1] = n2 and [t1, n2] = n1. By Lemma 2(a) we have [n3, ni ] ⊂ n3 ⊕ ni for
i = 1, 2, and so acting on both sides by t1 we get [n3, ni ] ⊂ ni for i = 1, 2, as [t1, n3] = 0.
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Now for X = N1 + N2 + T ′ + N3, where Ni ∈ ni for i = 1, 2, 3 and T ′ ∈ t1, equation (1)
gives α1[Z , N1] + α1[Z , N2] + α2[Z , N3] + (α1 − α2)[N3, N1] + (α1 − α2)[N3, N2] = 0
and so projecting to the modules ni , i = 1, 2, 3, we get

[Z , N3] = 0, [Z , Ni ] = (α−1
1 α2 − 1)[N3, Ni ], for i = 1, 2. (22)

If N3 = 0 we can take Z = 0. Suppose N3 	= 0. Identify all three modules n1, n2, n3
with a copy of O′ via isomorphisms and denote xi , i = 1, 2, 3, the image of Ni under this
identification. The stationary subalgebra of x3 is su(3) acting by the standard representation
on C

3 = O
′ ∩ x⊥

3 (see Table 2; the stationary subalgebras of all nonzero elements are
principal). Moreover, the action of adN3 on O

′ commutes with the action of su(3) and so it
is trivial on x3 and is a multiplication by μi on C3 for some μ ∈ R. To satisfy equation (22)
it is sufficient, for any x1, x2 ∈ C

3, to find M ∈ su(3) such that Mx1 = ρix1, Mx2 = ρix2,
where ρ = μ(α−1

1 α2 − 1) ∈ R. We can assume that x1 and x2 are complex orthonormal.
Then, relative to a unitary basis {x1, x2, y} for C3 we can take M = diag(ρi, ρi,−2ρi}.

5.4.2 F4

From Table 2, there is only one tiny module, of dimension 26, which comes from the s-
representation for the symmetric space Q = E6/F4. The sum of three such modules is
a large module (the sum of two is still small, by the dimension count 52 = dim F4 <

2 dim Spin(8) = 56). To see that, we note that the module n of dimension 26 can be viewed
as the space of 3 × 3 traceless, octonion, Hermitian matrices. The algebra h = f4 can be
represented as the direct sum of two subspaces, the Lie subalgebra g2 whose elements act on
a matrix N ∈ n componentwise, and the subspace so(3,O) of the 3 × 3 traceless, octonion,
anti-Hermitian matrices whose elements act on a matrix N ∈ n as a matrix commutator
[3, Theorem 5]. Now take N1 ∈ n to be diagonal (then it is real), with pairwise non-equal
entries. The corresponding stationary subalgebra of h is the direct sum of g2 and the subspace
{diag(a1, a2, a3) | a1, a2, a3 ∈ O

′, a1 + a2 + a3 = 0} ⊂ so(3,O) (note that the stationary
subalgebra is so(8), as per Table 2). Take N2, N3 ∈ n defined by

N2 =
⎛

⎝
0 1 1
1 0 1
1 1 0

⎞

⎠ , N3 =
⎛

⎝
0 x y
x∗ 0 z
y∗ z∗ 0

⎞

⎠ ,

where the octonions x, y, z are non-associating. Note that the action of g2 on N2 is trivial
as all the entries of N2 are real, and that a matrix Q = diag(a1, a2, a3) with a1, a2, a3 ∈
O

′, a1 + a2 + a3 = 0, commutes with N2 only when Q = 0. It follows that the stationary
subalgebra of the pair of matrices (N1, N2) is the subalgebra g2 ⊂ h acting on the matrices
from n componentwise. But as the entries x, y, z of the matrix N3 generate the whole algebra
of octonionsO, the only element of g2 which maps all of them to zero is zero. It follows that
the stationary subalgebra of the triple (N1, N2, N3) is trivial.

Now by the arguments similar to those in (5.4.1) we get that the decomposition (2) takes
the form m = qn ⊕ t, where t is a trivial module and q = 2, 3. As the module n is of real
type, Lemma 5(b) and (e) imply that no mi can be trivial and that mi may contain a nonzero
trivial submodule only if it also contains at least two copies of n. Then for q = 2, the only
possibility ism = m1⊕m2 andm1 = n1, m2 = n2, where n1, n2 are isomorphic to n, which
is not possible by [9, Theorem 2]. Suppose q = 3. If the modules n1, n2, n3 isomorphic to
n lie in three different eigenspaces of A, then m = n1 ⊕ n2 ⊕ n3, and so dim g = 130, a
contradiction, as there is no simple algebra of this dimension. Otherwise, up to relabelling,
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we have m = m1 ⊕ m2, where m1 = n1 ⊕ n2 ⊕ t1, m2 = n3, where t1 is a trivial module.
As n is of real type, by Lemma 5(b) we get [t1, n3] = 0, and so by Lemma 5(b) and (e)
t1 ⊂ so(2) acting on n1 ⊕n2. This is a contradiction, as there is no simple Lie algebra whose
dimension lies in {130, 131}. It follows that in the case H = F4, any GO metric is naturally
reductive.

In the last two sections, on E6 and E7, we will use the following simple fact. There are
three non-isomorphic (nontrivial) representations of so(8) on R

8 (see Sect. 5.1.3). Suppose
we have a representation of so(8) on the direct sum of 12 copies ofR8, on each of which so(8)
is represented via one of these three representations. We claim that the principal stationary
subalgebra is trivial. To see this, we can assume that at least four of the representations belong
to the same type, and then taking four generic vectors in the corresponding modules R8, we
reduce the stationary subalgebra to a subalgebra of so(4). Taking a generic vector in any of
the remaining modules strictly reduces this subalgebra. But it is easy to see that any strictly
decreasing sequence of subalgebras starting from so(4) gives a trivial algebra after at most
four “steps.”

5.4.3 E6

From Table 2, there is only one tiny module n, of dimension 54, which comes from the s-
representation for the symmetric space Q = E7/E6SO(2). The sum of three such modules is
a large module. Indeed, the symmetric space Q has rank 3, with the restricted root system of
type C3; there are three roots of multiplicity 1 and six roots of multiplicity 8 [36, Table 1]. The
stationary subalgebra of a regular element of a maximal abelian subalgebra a ⊂ q = To Q is
so(8) ⊂ e6, and by [28, Lemma 2.25(a)], it acts nontrivially on each of the six 8-dimensional
root spaces (and acts trivially on the three 1-dimensional root spaces). As we have three
modules n, we obtain the direct sum of 12 nontrivial representations of so(8) on R

8 which
implies that the principal stationary subalgebra is trivial, by the argument above. We now
argue as in the previous cases. The decomposition (2) takes the form m = qn⊕ t, where t is
a trivial module and q ∈ {2, 3}. In the case q = 2, as n is of complex type, the centralizer of
adh in so(n1 ⊕n2) (where n1, n2 are isomorphic copies of n) is u(2), and so by Lemma 5(b),
(e) and (d), the maximal dimension of t is 4. Then 186 ≤ dim g ≤ 190. The only simple
Lie algebra g whose dimension satisfies this inequality is so(20), but e6 is not a subalgebra
of so(20) as it has no nontrivial real representation on R

20. Suppose q = 3. If all three
submodules n1, n2 and n3 isomorphic to n lie in different mi , then by Lemma 5(b), each of
them is ad(t)-invariant, and so from Lemma 5(e) and (d), we obtain dim t ≤ 3. If (up to
relabelling) m1 ⊃ n1 ⊕ n2 and m2 ⊃ n3 we get adT ∈ u(2) ⊕ u(1), for all T ∈ t and so
dim t ≤ 5. Finally, if m1 = n1 ⊕ n2 ⊕ n3 ⊕ t1, where t1 is trivial, then all the other modules
mi , 1 < i ≤ m, are trivial. By [9, Theorem 2] we can assume that m ≥ 3, and then by
Lemma 5, t = ⊕m

i=1ti is a subalgebra of u(3), with ti being commuting ideals and t2, t3 	= 0.
It follows that dim t ≤ 5. Therefore in all three cases, we have 240 ≤ dim g ≤ 245, but
there is no simple algebra whose dimension satisfies this inequality. It follows that in the case
H = E6, any GO metric is naturally reductive.

5.4.4 E7

From Table 2, there is only one tiny module n, of dimension 112, which comes from the s-
representation for the symmetric space Q = E8/E7SU(2). We show that the sum of two such
modules is a large module. The symmetric space Q has rank 4, with the restricted root system
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of type F4; there are 12 roots of multiplicity 1 and 12 roots of multiplicity 8 [36, Table 1]. The
stationary subalgebra of a regular element of a maximal abelian subalgebra a ⊂ q = To Q
is so(8) ⊂ e7, and by [28, Lemma 2.25(a)], it acts as a nontrivial representation of so(8) on
each of the twelve 8-dimensional root spaces. By the argument before the previous section,
the principal stationary subalgebra is trivial. We can therefore assume that the decomposition
(2) takes the form m = 2n ⊕ t, where t is a trivial module. But now from Lemma 5 we
get t ⊂ sp(2). It follows that 357 ≤ dim g ≤ 367. The only simple Lie algebra g whose
dimension lies in this range is su(19), but e7 cannot be its subalgebra as e7 has no nontrivial
real representation onR38. So in the case H = E7, anyGOmetricmust be naturally reductive.

This completes the proof of Theorem 2.
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