Skip to main content
Log in

Identification of airborne propagules of the Gibberella fujikuroi species complex during maize production

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

An Erratum to this article was published on 26 January 2012

Abstract

The airborne dispersal of the anamorphs of the Gibberella fujikuroi species complex was studied under pre- and postharvest maize (corn) production conditions using a 3-stage Andersen sampler. The aim of this study was to identify and analyse the size distribution of such species in air samples. Differences were observed between the concentration of large- and small-sized propagules (identified as aggregates and single microconidia, respectively), but the difference was only significant during a high concentration period (October 2007, P = 0.009). No correlation was found between the concentration of fusaria found at different sampling heights (10 and 150 cm above ground level). Fusarium isolates were collected and identified based on morphological characters and using species-specific PCR assays. The PCR analysis confirmed morphological identification of F. verticillioides, F. proliferatum and F. subglutinans. High concentrations were found during the maize harvest, loading and corn shelling. Our results showed that the monitoring of F. verticillioides should be performed at a single sampling height.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ajello, L., Padhye, A. A., Chandler, F. W., McGinnis, M. R., Morganti, L., & Alberici, F. (1985). Fusarium moniliforme, a new mycetoma agent. Restudy of a European case. European Journal of Epidemiology, 1, 5–10.

    CAS  Google Scholar 

  • Andersen, A. A. (1958). A new sampler for the collection, sizing and enumeration of viable airborne bacteria. Journal of Bacteriology, 76, 471–484.

    CAS  Google Scholar 

  • Anonymous. (2007). Agricultural statistical report. Budapest: Ministry of Agriculture of Hungary.

  • Bacon, C. W., & Hinton, D. M. (1996). Symptomless endophytic colonization of maize by Fusarium moniliforme. Canadian Journal of Botany, 74, 1195–1202.

    Article  Google Scholar 

  • Bartók, T., Szécsi, Á., Szekeres, A., Mesterházy, Á., & Bartók, M. (2006). Detection of new fumonisin mycotoxins and fumonisin-like compounds by reverse-phase high-performance liquid chromatography/electrospray ionization ion trap mass spectrometry. Rapid Communications in Mass Spectrometry, 20, 2447–2462.

    Article  Google Scholar 

  • Bartók, T., Szekeres, A., Szécsi, Á., Bartók, M., & Mesterházy, Á. (2008). A new type of fumonisin series appeared on the scene of food and feed safety. Cereal Research Communications, 36(Suppl B), 315–319.

    Article  Google Scholar 

  • Bartók, T., Tölgyesi, L., Szekeres, A., Varga, M., Bartha, R., Szécsi, Á., et al. (2010). Detection and characterization of twenty-eight isomers of fumonisin B1 (FB1) mycotoxin in a solid rice culture infected with Fusarium verticillioides by reversed-phase high-performance liquid chromatography/electrospray ionization time-of flight and ion trap spectrometry. Rapid Communications in Mass Spectrometry, 24, 35–42.

    Article  Google Scholar 

  • Bezuidenhout, S. C., Gelderblom, W. C. A., Gorst-Allman, C. P., Horak, R. M., & Marasas, W. F. O. (1988). Structure elucidation of fumonisins, mycotoxins from Fusarium moniliforme. Journal of the Chemical Society, Chemical Communications, 52, 743–745.

    Article  Google Scholar 

  • Bottalico, A. (1998). Fusarium diseases of cereals: Species complex and related mycotoxin profiles in Europe. Journal of Plant Pathology, 80, 85–103.

    CAS  Google Scholar 

  • Deméke, T., Clear, R. M., Patrick, S. K., & Gaba, D. (2005). Species-specific PCR-based assays for the detection of Fusarium species and a comparison with the whole seed agar plate method and trichothecene analysis. International Journal of Food Microbiology, 103, 271–284.

    Article  Google Scholar 

  • Desjardins, A. E. (2006). Fusarium mycotoxins: Chemistry, genetics and biology. St Paul: APS Press.

    Google Scholar 

  • Dóczi, I., Gyetvai, T., Kredics, L., & Nagy, E. (2004). Involvement of Fusarium spp. in fungal keratitis. Clinical Microbiology & Infection, 10, 773–776.

    Article  Google Scholar 

  • Durán, J. A., Malvar, A., Pereiro, M., & Pereiro, M. (1989). Fusarium moniliforme keratitis. Acta Ophthalmologica, 67, 710–713.

    Article  Google Scholar 

  • Edwards, S. G., O’Callaghan, J., & Dobson, A. D. W. (2002). PCR-based detection and quantification of mycotoxigenic fungi. Mycological Research, 106, 1005–1025.

    Article  CAS  Google Scholar 

  • Gelderblom, W. C. A., Jaskiewicz, K., Marasas, W. F. O., Thiel, P. G., Horak, R. M., Vleggaar, R., et al. (1988). Fumonisins, novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Applied and Environmental Microbiology, 54, 1806–1811.

    CAS  Google Scholar 

  • Gerlach, W., & Nirenberg, H. (1982). The Genus Fusarium—a Pictorial Atlas. Berlin-Dahlem: Biol Bundesanstal Land- und Forstwirtsch.

  • Gillette, K. S. (1999). Biodiversity of Fusarium species in Iowa maize fields and kernels: Preharvest and postharvest. MS Thesis, Ames: Iowa State University.

  • Gregory, P. H. (1961). The microbiology of the atmosphere. London: Intersience Publishers Inc.

    Google Scholar 

  • Guarro, J., & Gené, J. (1992). Fusarium infections. Criteria for the identification of the responsible species. Mycoses, 35, 109–114.

    Article  CAS  Google Scholar 

  • Halstensen, A. S., Nordby, K.-C. H., Klemsdal, S. S., Elen, O., Clasen, P.-E., & Edward, W. (2006). Toxigenic Fusarium spp. as determinants of trichothecene mycotoxins in settled grain dust. Journal of Occupational and Environmental Hygiene, 3, 651–659.

    Article  CAS  Google Scholar 

  • Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39, 257–265.

    Article  Google Scholar 

  • Jurado, M., Vázquez, C., Marin, S., Sanchis, V., & González-Jaén, M. T. (2006). PCR-based strategy to detect contamination with mycotoxinogenic Fusarium species in maize. Systematic and Applied Microbiology, 29, 681–689.

    Article  CAS  Google Scholar 

  • Kasznia-Kocot, J., Lis, D. O., Kordys-Darmolińska, B., Grzybowska-Chlebowczyk, U., Woś, H., & Górny, R. L. (2007). Children’s diseases and microbial contamination of indoor air—a case report. Annals of Agricultural and Environmental Medicine, 14, 187–190.

    Google Scholar 

  • Koncz, Z., Naár, Z., Kiss, A., & Szécsi, Á. (2009). PCR-based assays for the identification of enniatin-producing Fusarium species associated with wheat. Acta Alimentaria Hungarica, 38, 483–492.

    Article  CAS  Google Scholar 

  • Lacey, J. (1991). Aggregation of spores and its effect on aerodynamic behaviour. Grana, 30, 347–445.

    Article  Google Scholar 

  • Leslie, J. F. (1995). Gibberella fujikuroi: Available population and variable traits. Canadian Journal of Botany, 73, 282–291.

    Article  Google Scholar 

  • Leslie, J. F., Summerell, B. A., & Bullock, S. (2006). The fusarium laboratory manual. Ames: Blackwell Publishing.

    Book  Google Scholar 

  • Macêdo, D. P. C., Neves, R. P., Fontan, J., Souza-Motta, C. M., & Lima, D. (2008). A case of invasive rhinosinusitis by Fusarium verticillioides (Saccardo) Nirenberg in an apparently immunocompetent patient. Medical Mycology, 46, 499–503.

    Article  Google Scholar 

  • Macher, J. M. (1989). Positive-hole correction of multiple-jet impactors for collecting viable microorganisms. American Industrial Hygiene Association Journal, 50, 561–568.

    Article  CAS  Google Scholar 

  • Magyar, D. (2005). Aerobiological studies on mycobiota. PhD Thesis, Budapest: Szent István University.

  • Magyar, D., Barasits, T., Fischl, G., & Fernando, W. G. D. (2006). First record of the natural occurrence of the teleomorph of Leptosphaeria maculans on oilseed rape and airborne dispersal of ascospores in Hungary. Journal of Phytopathology, 154, 428–431.

    Article  Google Scholar 

  • Magyar, D., Eszéki, E. R., Oros, Gy., Szécsi, Á., Kredics, L., Hatvani L., & Körmöczi P. (2011). The air spora of an orchid greenhouse. Aerobiologia. doi: 10.1007/s10453-010-9182-y.

  • Magyar, D., Szécsi, Á., & Barasits, T. (2003). Andersen és Hirst típusú levegőmintavevők összehasonlítása növény- és közegészségügyi vizsgálatokban. (The comparison of Andersen and Hirst-type air samplers in plant plant protection and public health studies.). Környezeti Ártalmak és Légzőrendszer, 13, 239–250.

    Google Scholar 

  • Marasas, W. F. O. (2001). Discovery and occurrence of fumonisins: A historical perspective. Environmental Health Perspectives, 109, 239–243.

    CAS  Google Scholar 

  • Marasas, W. F. O., Miller, J. D., Riley, R. T., & Visconti, A. (2001). Fumonisins—occurrence, toxicology, metabolism and risk assessment. In B. A. Summerell et al. (Ed.), FusariumPaul E Nelson memorial symposium. (pp. 332–360), St Paul, MN, USA: APS Press.

  • Mulé, G., Jaén-González, M. T., Hornok, L., Nicholson, P., & Waalwijk, C. (2005). Advances in molecular diagnosis of toxigenic Fusarium species. Food Additives and Contaminants, 22, 316–323.

    Article  Google Scholar 

  • Mulé, G., Susca, A., Stea, G., & Moretti, A. (2004). A species-specific PCR assay based on the calmodulin partial gene for identification of Fusarium verticillioides, F. proliferatum, F. subglutinans. European Journal of Plant Pathology, 110, 495–502.

    Article  Google Scholar 

  • Munkvold, G. P. (2003). Epidemiology of Fusarium diseases and their mycotoxins in maize ears. European Journal of Plant Pathology, 109, 705–713.

    Article  CAS  Google Scholar 

  • Musser, S. M., & Plattner, R. D. (1997). Fumonisin composition in cultures of Fusarium moniliforme, F.proliferatum, and F. nygami. Journal of Agricultural and Food Chemistry, 45, 1169–1173.

    Article  CAS  Google Scholar 

  • Nelson, P. E., Desjardins, A. E., & Plattner, R. D. (1993). Fumonisins, mycotoxins produced by Fusarium species: Biology, chemistry and significance. Annual review of Phytopathology, 31, 233–252.

    Article  CAS  Google Scholar 

  • Nirenberg, H. (1976). Untersuchungen über die morphologische und biologische Differenzierung in der Fusarium Sektion Liseola. Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft, Berlin-Dahem, 169, 1–117.

    Google Scholar 

  • Ooka, J. J., & Kommendahl, T. (1977). Wind and rain dispersal of Fusarium moniliforme in corn fields. Phytopathology, 67, 1023–1026.

    Article  Google Scholar 

  • Proctor, R. H., Plattner, R. D., Brown, D. W., Seo, J. A., & Lee, Y. W. (2004). Discontinuous distribution of fumonisin biosynthetic genes in Gibberella fujikuroi species complex. Mycological Research, 108, 815–822.

    Article  CAS  Google Scholar 

  • Rogerson, C. T. (1958). Kansas aeromycology. I. Comparison of media. Transactions Kansas Academy of Sciences, 61, 155–162.

    Article  Google Scholar 

  • Rossi, V., Pattori, E., Languasco, L., & Giousè, S. (2000). Dispersal of Fusarium species causing head blight of winter wheat under field conditions. In H. I. Nierenberg (Ed.), Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft, Berlin-Dahlem, 377, 6th European Fusarium seminar and third COST 835 workshop of agriculturally important toxigenic fungi (pp. 45–46). Berlin: Parey Buchverlag.

  • Schmale, D. G., I. I. I., Leslie, J. F., Zeller, K. A., Saleh, A. A., Shields, E. J., & Bergstrom, G. C. (2006). Genetic structure of atmospheric populations of Gibberella zeae. Phytopathology, 96, 1021–1026.

    Article  CAS  Google Scholar 

  • Szécsi, Á. (2004). Szelektív táptalajok Fusarium-fajok izolálására és megkülönböztetésére. (Selective media for the isolation and differentiation of Fusarium-species). Növényvédelem, 40, 339–341.

    Google Scholar 

  • Szécsi, Á., Bartók, T., Varga, M., Magyar, D., & Mesterházy, Á. (2005). Determination of trichothecene chemotypes of Fusarium graminearum strains isolated in Hungary. Journal of Phytopathology, 153, 445–448.

    Article  Google Scholar 

  • Szécsi, Á., Szekeres, A., Bartók, T., Oros, G., Bartók, M., & Mesterházy, Á. (2010). Fumonisin B1-4-producing capacity of Hungarian Fusarium verticillioides isolates. World Mycotoxin Journal, 3, 67–76.

    Article  Google Scholar 

  • Torelli, E., Gubiani, R., Firrao, G., Cividinos, S., Locci, R., & Gobbi, E. (2010). Air analysis in the assessment of fumonisin contamination risk in maize. Journal of the Science of Food and Agriculture, 90, 641–649.

    CAS  Google Scholar 

  • Veglia, K. S., & Marks, V. J. (1987). Fusarium as a pathogen. A case report of Fusarium species and review of the literature. Journal of the American Academy of Dermatology, 16, 260–263.

    Article  Google Scholar 

  • Voss, K. A., Smith, G. W., & Hschek, W. M. (2007). Fumonisins: Toxicokinetics, mechanisms of action and toxicity. Animal Feed Science and Technology, 137, 299–325.

    Article  CAS  Google Scholar 

  • White, D. G. (1999). Compendium of corn diseases (3rd ed.). St Paul: American Phytopathological Society.

    Google Scholar 

  • Williams, R. H., Ward, E., & McCartney, A. (2001). Methods for integrated air sampling and DNA analysis for detection of airborne fungal spores. Applied and Environmental Microbiology, 67, 2453–2459.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Antonio Logrieco (Institute of Sciences of Food Production, ISPA-CNR, Bari, Italy) for the kind gift of the Fusarium strains. This research was supported by Hungarian State Research Grants (OTKA F67908, 77612).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magyar Donát.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donát, M., Csaba, S., Zsuzsanna, K. et al. Identification of airborne propagules of the Gibberella fujikuroi species complex during maize production. Aerobiologia 28, 263–271 (2012). https://doi.org/10.1007/s10453-011-9213-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-011-9213-3

Keywords

Navigation