Skip to main content
Log in

Limitation of adsorptive penetration of cesium into Prussian blue crystallite

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The adsorption of cesium (Cs) onto Prussian blue (PB) with different crystallite sizes is investigated to examine the limitations of the adsorptive penetration of Cs+ into PB crystallite. The adsorption of Cs+ onto soluble PB occurs via ion exchange with a charge-compensation cation like K+, which originally resides in the crystalline lattice. The ratio of the compensation cation sites that are replaced by Cs+ after adsorption time of 2 weeks significantly increases with decreasing crystallite size, meaning that the adsorption occurs only near the surface of the crystallite during the adsorption time. The depth of Cs+ penetration after 2 weeks is only within approximately 1–2 nm (or 1–2 units of the crystalline lattice) from the external surface of the crystallite at ambient temperature, regardless of the crystallite size. Hence, the crystallite size is the most important factor governing the adsorption performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bleuzen, A., Cafun, J.D., Bachschmidt, A., Verdaguer, M., Münsch, P., Baudelet, F., Itié, J.T.: Co Fe Prussian blue analogues under variable pressure. evidence of departure from cubic symmetry: X-ray diffraction and absorption study. J. Phys. Chem. C 112(45), 17709–17715 (2008)

    Article  CAS  Google Scholar 

  • Buser, H.J., Schwarzenbach, D., Petter, W., Ludi, A.: The crystal structure of Prussian blue: Fe4[Fe(CN)6]3.xH2O. Inorg. Chem. 16(11), 2704–2710 (1977)

    Article  CAS  Google Scholar 

  • Cafun, J.D., Champion, G., Arrio, M.A., Moulin, C.C., Bleuzen, A.: Photomagnetic CoFe Prussian blue analogues: role of the cyanide ions as active electron transfer bridges modulated by cyanide-alkali metal ion interactions. J. Am. Chem. Soc. 132(33), 11552–11559 (2010)

    Article  CAS  Google Scholar 

  • Fujita, H., Sasano, H., Miyajima, R., Sakoda, A.: Adsorption equilibrium and kinetics of cesium onto insoluble Prussian blue synthesized by an immediate precipitation reaction between Fe3+ and [Fe(CN)6] 4 . Adsorption 20, 905–915 (2014)

    Article  CAS  Google Scholar 

  • Gotoh, A., Uchida, H., Ishizaki, M., Satoh, T., Kaga, S., Okamoto, S., Ohta, M., Sakamoto, M., Kawamoto, T., Tanaka, H., Tokumoto, H., Hara, S., Shiozaki, H., Yamada, M., Miyake, M., Kurihara, M.: Simple synthesis of three primary colour nanoparticle inks of Prussian blue and its analogues. Nanotechnology 18, 345609–345615 (2007)

    Article  Google Scholar 

  • Her, J.H., Stephens, P.W., Kareis, C.M., Moore, J.G., Min, K.S., Park, J.W., Bali, G., Kennon, B.S., Miller, J.S.: Anomalous non-Prussian blue structures and magnetic ordering of K2Mn(II)[Mn(II)(CN)6] and Rb2Mn(II)[Mn(II)(CN)6]. Inorg. Chem. 15 49(4), 1524–1534 (2010)

    Article  CAS  Google Scholar 

  • Herren, F., Fischer, P., Ludi, A., Haelg, W.: Neutron diffraction study of Prussian Blue, Fe4[Fe(CN)6]3.xH2O. Location of water molecules and long-range magnetic order. Inorg. Chem. 19(4), 956–959 (1980)

    Article  CAS  Google Scholar 

  • Hu, M., Jiang, J.S., Ji, R.P., Zeng, Y.: Prussian Blue mesocrystals prepared by a facile hydrothermal method. Cryst. Eng. Comm 11, 2257–2259 (2009)

    Article  CAS  Google Scholar 

  • Hu, M., Torad, N.L., Chiang, Y.D., Wu, K.C., Yamauchi, Y.: Size- and shape-controlled synthesis of Prussian blue nanoparticles by a polyvinylpyrrolidone-assisted crystallization process. Cryst. Eng. Commun. 14, 3387–3396 (2012a)

    Article  Google Scholar 

  • Hu, M., Furukawa, S., Ohtani, R., Sukegawa, H., Nemoto, Y., Reboul, J., Kitagawa, S., Yamauchi, Y.: Synthesis of Prussian blue nanoparticles with a hollow interior by controlled chemical etching. Angew. Chem. Int. Ed. 51, 984–988 (2012b)

    Article  CAS  Google Scholar 

  • Hu, M., Torad, N.L., Yamauchi, Y.: Preparation of various Prussian blue analogue hollow nanocubes with single crystalline shells. Eur. J. Inorg. Chem. 2012, 4795–4799 (2012c)

    Article  CAS  Google Scholar 

  • Ishizaki, M., Akiba, S., Ohtani, A., Hoshi, Y., Ono, K., Matsuba, M., Togashi, T., Kananizuka, K., Skamoto, M., Takahashi, A., Kawamoto, T., Tanaka, H., Watanabe, M., Arisaka, M., Nankawad, T., Kurihara, M.: Proton-exchange mechanism of specific Cs+ adsorption via lattice defect sites of Prussian blue filled with coordination and crystallization water molecules. Dalton Trans. 42, 16049–16055 (2013)

    Article  CAS  Google Scholar 

  • Itaya, K., Uchida, I., Vernon, D.N.: Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues. Acc. Chem. Res. 19(6), 162–168 (1986)

    Article  CAS  Google Scholar 

  • Ito, A., Suenaga, M., Ono, K.: Mössbauer study of soluble Prussian blue, insoluble Prussian blue, and Turnbull’s blue. J. Chem. Phys. 48, 3597–3599 (1968)

    Article  CAS  Google Scholar 

  • Kareis, C.M., Lapidus, S.H., Her, J.H., Stephens, P.W., Miller, J.S.: Non-Prussian blue structures and magnetic ordering of Na2MnII[MnII(CN)6] and Na2MnII[MnII(CN)6]·2H2O. J. Am. Chem. Soc. 134(4), 2246–2254 (2012)

    Article  CAS  Google Scholar 

  • Keggin, J.F., Miles, F.D.: Structures and formula of the Prussian blues and related compounds. Nature 137, 577–578 (1936)

    Article  CAS  Google Scholar 

  • Louise, S., Fernande, G., Gary, J.L., Pauline, N., Pierre, B., David, S.: Relationship between the synthesis of Prussian blue pigments, their color, physical properties, and their behavior in paint layers. J. Phys. Chem. C 117(19), 9693–9712 (2013)

    Article  Google Scholar 

  • Matsuda, T., Kim, J., Moritomo, Y.: Control of the alkali cation alignment in Prussian blue framework. Dalton Trans. 41, 7620–7623 (2012)

    Article  CAS  Google Scholar 

  • Mimura, H., Lehto, J., Harjula, R.: Ion exchange of cesium on Potassium nickel hexacyanoferrate(II). J. Nucl. Sci. Technol. 34(5), 484–489 (1997)

    Article  CAS  Google Scholar 

  • Moritomo Y., Tanaka H.: Alkali cation potential and functionality in the nanoporous Prussian blue analogues. Adv. Condens. Matter Phys. 539620 (2013)

  • Nonaka, N., Higuchi, H., Hamaguchi, H., Tomura, K.: Losses of the elements during ashing of plant materials. Bunseki Kagaku 30, 599–604 (1981). (in Japanese, with English abstract)

    Article  CAS  Google Scholar 

  • Nonaka, N., Higuchi, H., Hamaguchi, H., Tomura, K.: Losses of elements during dry ashing of standard reference materials (orchard leaves); relationship between ashing temperature, ashing time, and elemental loss. Bunseki Kagaku 34(6), 360–364 (1985). (in Japanese, with English abstract)

    Article  CAS  Google Scholar 

  • Okubo, M., Asakura, D., Mizuno, Y., Kim, J.D., Mizokawa, T., Kudo, T., Honma, I.: Switching redox-active sites by valence tautomerism in Prussian blue analogues AxMny[Fe(CN)6]·nH2O (A: K, Rb): robust frameworks for reversible Li storage. J. Phys. Chem. Lett. 1(14), 2063–2071 (2010)

    Article  CAS  Google Scholar 

  • Omura, A., Moritomo, Y.: Cs+ trapping in size-controlled nanospaces of hexacyanoferrates. Appl. Phys. Express 5, 057101 (2012)

    Article  Google Scholar 

  • Thanapon, S., Vichaya, S., Robert, J.W., Rafal, M.G., Glen, E.F., Shane, A., Charles, T., Wassana, Y.: Selective capture of cesium and thallium from natural waters and simulated wastes, with copper ferrocyanide functionalized mesoporous silica. J. Hazard. Mater. 182(1–3), 225–231 (2010)

    Google Scholar 

  • Torad, N.L., Hu, M., Imura, M., Naito, M., Yamauchi, Y.: Large Cs adsorption capability of nanostructured Prussian blue particles with high accessible surface areas. J. Mater. Chem. 22, 18261–18267 (2012)

    Article  CAS  Google Scholar 

  • Tsukada, H., Nakamura, Y.: Transfer of 137Cs and stable Cs from soil to potato in agricultural fields. Sci. Total Environ. 228, 111–120 (1999)

    Article  CAS  Google Scholar 

  • Wu, X., Cao, M., Hu, C., He, X.: Sonochemical synthesis of Prussian blue nanocubes from a single-source precursor. Cryst. Growth Des. 6(1), 26–28 (2006)

    Article  CAS  Google Scholar 

  • Zheng, X.J., Kuang, Q., Xu, T., Jiang, Z.Y., Zhang, S.H., Xie, Z.X., Huang, R.B., Zheng, L.X.: Growth of Prussian blue microcubes under a hydrothermal condition: possible nonclassical crystallization by a mesoscale self-assembly. J. Phys. Chem. C 111, 4499–4502 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirotaka Fujita.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 718 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujita, H., Miyajima, R. & Sakoda, A. Limitation of adsorptive penetration of cesium into Prussian blue crystallite. Adsorption 21, 195–204 (2015). https://doi.org/10.1007/s10450-015-9662-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-015-9662-z

Keywords

Navigation