
https://doi.org/10.1007/s10444-021-09904-4

Comparison of integral equations for the Maxwell
transmission problemwith general permittivities

Johan Helsing1 ·Anders Karlsson2 ·Andreas Rosén3

Received: 17 August 2020 / Accepted: 20 September 2021 /
© The Author(s) 2021

Abstract
Two recently derived integral equations for the Maxwell transmission problem are
compared through numerical tests on simply connected axially symmetric domains
for non-magnetic materials. The winning integral equation turns out to be entirely
free from false eigenwavenumbers for any passive materials, also for purely negative
permittivity ratios and in the static limit, as well as free from false essential spectrum
on non-smooth surfaces. It also appears to be numerically competitive to all other
available integral equation reformulations of the Maxwell transmission problem,
despite using eight scalar surface densities.
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1 Introduction

The Maxwell transmission problem is about determining the fields that result when
an incident time-harmonic electromagnetic wave is scattered from and transmitted
into a bounded dielectric object. Two pioneering integral equation reformulations
(IERs) of this problem, which are still popular, are the Müller IER [28, Section 23]
and the Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) IER [27, 34]. These
IERs are of Fredholm’s second and first kind, respectively. Over the years, much
effort has been made to find more efficient IERs. Focus has been on avoiding dense-
mesh and topological low-frequency breakdown, on avoiding false resonances, and
on providing unique solutions for wider ranges of material parameters. Among later
contributions we mention [10, 12, 13, 19, 22, 25, 26, 33].

In this work we compare the numerical performance of two recently derived IERs
of the Maxwell transmission problem. The two IERs, which are of Fredholm’s sec-
ond kind with singular integral operators, are referred to as “Dirac” and “HK 8-dens”.
“Dirac” is derived in [22] by embedding the time-harmonic Maxwell’s equations into
a Dirac equation and by tuning the six free parameters of this equation as to optimize
numerical performance. “HK 8-dens” is derived in [19] by extending a classic IER
of the Helmholtz transmission problem [23] via the use of four uniqueness parame-
ters. Both our IERs use eight unknown scalar surface densities for modeling. This is
more than other popular IERs use. Typical numbers are four [10, 25, 27, 28, 34] or
six [12, 26, 33]. The major advantage with our new IERs, however, is that they offer
unique solutions, that is they are free from false eigenwavenumbers, in particular for
plasmonic scattering. Another advantage, from a programming point of view, is that
both IERs require only bounded integral operators with double and single layer type
kernels, and in particular do not use (compact differences of) hypersingular integral
operators.

Uniqueness for a wide range of parameters is an important property of an IER of a
parameter-dependent partial differential equation (PDE) for many reasons. First, one
may actually be interested in solving the PDE for a wide range of parameters. Then
uniqueness is obviously important. Second, even if one is not interested in a wide
range of parameters, non-uniqueness outside the parameter regime of interest can
seriously affect the conditioning of an IER inside the parameter regime of interest.
Third, theoretical studies of the solvability of a PDE, for example the time-harmonic
Maxwell’s equations in Lipschitz domains, are often based on IERs. Then it is crucial
that the IER has the same solvability properties as the PDE it models.

While “Dirac” and “HK 8-dens” are similar in many respects, there are also dif-
ferences. “Dirac” is derived in [22] for general magnetic materials and assuming
only Lipschitz regularity of the surface of the scattering object. “HK 8-dens” has the
advantage that its surface densities have immediate interpretations in terms of bound-
ary limits of physical fields. Two of these surface densities are always zero and are
only needed, for uniqueness, in the main linear system that is to be solved. They are
omitted in field evaluations, whose cost then are the same as for six-density IERs.

The original papers [19, 22] use mutually different notation and contain numerical
examples for reduced and two-dimensional versions of the IERs. The purpose of this
work is to present “Dirac” and “HK 8-dens” in a unified and programming-friendly
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notation and to conduct a series of numerical experiments for their full versions in
three dimensions as to see which IER is the most efficient. For this comparison, we
limit the discussion to non-magnetic materials, for which “HK 8-dens” is formulated.
Moreover, the free parameters in “Dirac” are likely to need further tuning in the
magnetic case, which will appear in a forthcoming publication.

We conclude the paper in Section 11 by comparing some salient properties of
our IERs to those of two available competitive IERs for the Maxwell transmission
problem: the “Debye” and the “DFIE” IERs [9, 33]. With the aim of achieving a
comparison as accurate as possible, given the available information, we base the dis-
cussion in Section 11 on the following aspects of an IER. (A) Has it been used for
Lipschitz regular/piecewise smooth surfaces Γ ? (B) What types of operators does it
employ? (C) How fast does it compute all the scattered and transmitted fields? (D)
How does it behave in the quasi-static limit? (E) How stable is it? Does it have false
eigenwavenumbers, false near-eigenwavenumbers, or false essential spectrum?

2 Problem formulation

Let Ω+ be a bounded domain in R
3 with boundary surface Γ and an unbounded,

connected, exteriorΩ−. The outward unit normal at position r on Γ is ν. We consider
time-harmonic fields with time dependence e−iωt and angular frequency ω > 0. The
relation between time-dependent fields F(r, t) and complex fields F(r) is

F(r, t) = �e
{
F(r)e−iωt

}
. (1)

The domains Ω± are homogeneous with material properties described by wavenum-
bers k±. See Fig. 1a. The k± are related to the total permittivities ε± and perme-
abilities μ± by k± = ω

√
ε±μ±. To avoid issues regarding the choice of branch

of the square root, the k± are considered our basic parameters. Passive materials

(a) (b)
0 /2

0

/2

Fig. 1 (a) Geometry in R3. Outside Γ the volume is Ω− and the wavenumber k−. Inside Γ the volume is
Ω+ and the wavenumber k+. The outward unit normal is ν at r and ν′ at r ′. (b) The gray region and the
solid black lines constitute a set of points (arg(k−), arg(k+)) for which the Maxwell transmission problem
has at most one solution. Circles are not included
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have �m{ε±} ≥ 0 and �m{μ±} ≥ 0 and values of k± in the closed first quadrant.
In Maxwell’s equations, ∇ × E = iωμ±H and ∇ × H = −iωε±E in Ω±, we
rescale the magnetic field H by the wave impedance in Ω− and set E = E and
H = √

μ−/ε−H in all R3. Throughout the paper, only non-magnetic materials are
considered. That is, μ± = μ0, where μ0 is the permeability of vacuum. We now state
our formulation of the Maxwell transmission problem:

Given incident fields Ein and H in, generated in Ω−, we seek the total electric and
magnetic fields E(r) and H (r), r ∈ Ω− ∪ Ω+, which, for (k−, k+) with arguments
in the set of points shown in Fig. 1b and with ε̂ such that

ε̂ ≡ ε+/ε− = k2+/k2− and ε̂ �= −1 , (2)

solve Maxwell’s equations

∇ × E(r) = ik−H (r) , r ∈ Ω− ∪ Ω+ ,

∇ × H (r) = −ik−E(r) , r ∈ Ω− ,

∇ × H (r) = −ik−ε̂E(r) , r ∈ Ω+ ,

(3)

except possibly at an isolated point inΩ− where the source ofEin andH in is located,
subject to the boundary conditions

lim
Ω−�r ′→r

ν × E(r ′) = limΩ+�r ′→r ν × E(r ′) , r ∈ Γ , (4)

lim
Ω−�r ′→r

ν × H (r ′) = limΩ+�r ′→r ν × H (r ′) , r ∈ Γ , (5)

r/|r| × Esc(r) − H sc(r) = o
(|r|−1e�m{k−}|r|) , |r| → ∞ , (6)

r/|r| × H sc(r) + H sc(r) = o
(|r|−1e�m{k−}|r|) , |r| → ∞ . (7)

The scattered fields Esc and H sc are source free in Ω− and defined, along with the
transmitted fields Etr and H tr, by

E(r) =
{

Ein(r) + Esc(r) , r ∈ Ω− ,

Etr(r) , r ∈ Ω+ .

H (r) =
{

H in(r) + H sc(r) , r ∈ Ω− ,

H tr(r) , r ∈ Ω+ .

(8)

The incident fields satisfy

∇ × Ein(r) = ik−H in(r) , r ∈ R
3 ,

∇ × H in(r) = −ik−Ein(r) , r ∈ R
3 ,

(9)

except at the possible isolated source point inΩ−. In addition, conservation of charge
must hold and by that

∫

Γ

ν · Esc−(r) dΓ = 0 , (10)

where Esc− is the exterior limit of Esc on Γ . In what follows, the Maxwell
transmission problem (3)–(10) will be referred to as the MTP(k−, k+).
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3 Properties of IERs of theMTP(k−, k+)

Let us first mention that there is yet no IER of the MTP(k−, k+) known that is equiv-
alent to the MTP(k−, k+) itself for all pairs of complex-valued (k−, k+), not even
for all 0 ≤ arg(k−), arg(k+) ≤ π . Neither is it known for which (k−, k+) there
exist unique solutions to the MTP(k−, k+). The most comprehensive result we are
aware of, for uniqueness with Lipschitz regular Γ and with μ = 1, says that the
MTP(k−, k+) has at most one solution when (arg(k−), arg(k+)) belongs to the set of
points shown in Fig. 1b [22, Proposition 8.2]. As for existence of solutions, the same
set of points apply with the restriction that ε̂ �= −1 for smooth Γ and that ε̂ is out-
side of a geometry-dependent interval on the negative real axis, containing ε̂ = −1,
for merely Lipschitz regular Γ [22, Proposition 8.3].

For “Dirac” it is proven that there exist unique solutions when Ω+ is a bounded
Lipschitz domain with connected exterior Ω− and (k−, k+) satisfies the conditions
of [22, Proposition 8.3]. Existence of unique solutions for “HK 8-dens” is proven for
(k−, k+) as described in [19, Section 8.3]. It is assumed in [19] that Γ is smooth and
Ω+ simply connected but the proof holds also for objects that are multiply connected.
All other IERs of the MTP(k−, k+) in the electromagnetics literature, possibly with
the exception of the Debye representation [9], seem to have unique solutions only
under more restrictive conditions. In particular, they can not guarantee uniqueness
for any (arg(k−), arg(k+)) = (0, π/2).

Two problems shared by many IERs of the MTP(k−, k+), which have received
much attention recently, are dense-mesh and topological low-frequency breakdown,
see [33] and [10, Section 2]. Dense-mesh low-frequency breakdown refers to catas-
trophic cancellation that destroys the numerical accuracy in the computed fields in the
static limit. Topological low-frequency breakdown is a, perhaps, more elusive phe-
nomenon that broadly seems to refer to an increased ill-conditioning of the integral
equation itself in the quasi-static limit k± → 0, with ε̂ = (k+/k−)2 fixed, for Γ with
non-zero genus. For scattering by superconductors, this phenomenon is discussed in
[7, 8]. “Dirac” is proven to be free from dense-mesh low-frequency breakdown and,
at large, also from topological low-frequency breakdown. See Section 7 below.

Additional problems, which have not received as much attention as low-frequency
breakdown but still cause numerical degradation of IERs, include false near-
eigenwavenumbers and false essential spectrum. An eigenwavenumber is a pair of
wavenumbers (k−, k+) for which the IER does not have a unique solution. If the
MTP(k−, k+) has a unique solution we speak of a false eigenwavenumber, whereas
we call it a true eigenwavenumber if even the MTP(k−, k+) fails to have a unique
solution. If we only consider wavenumber pairs from a set X and there is an eigen-
wavenumber z outside but close to X, then a pair x ∈ X near z which locally
maximizes the condition number of the IER, is referred to a near-eigenwavenumber.
This can be a true or false such, depending on the nature of z. The terminology of
true and false eigenwavenumbers was introduced in [17, Section 5.3], to make more
precise the common terminology of true and spurious resonances. The term spurious
near resonances is used in [33].

False essential spectrum may appear for certain (kf−, kf+) with ε̂f = (kf+/kf−)2

real and negative and a merely Lipschitz regular Γ . More precisely: for a pair of
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wavenumbers (kf−, kf+), we say that the IER has false essential spectrum if it is not
a Fredholm operator, even though the MTP(kf−, kf+) defines a Fredholm map. While
the term essential spectrum is standard, the term false/spurious essential spectrum
does not seem to have been used.

Let k− = kf− and k+ → kf+ in such a way that ε̂ → ε̂f from above or from
below in the complex plane. At a point (kf−, kf+) where we have false essential spec-
trum, the typical numerical behavior of the IER is that it has the same unique limit
solution from above and below and this solution coincides with the solution to the
MTP(kf−, kf+), while the IER is not solvable for (k−, k+) = (kf−, kf+).

4 Notation for axially symmetric Γ

From now on we assume that Γ is axially symmetric, since our numerical examples
cover such domains. Note, however, that the full 3D formulations of our IERs and
of the representations of E and H are given in [19, 22]. These IERs are in no way
limited to axially symmetric domains. In the present paper we use both Cartesian
coordinates x, y, z and cylindrical coordinates ρ, θ , z, as illustrated in Fig. 2. A half-
plane A in R2 is defined by θ = 0, a generating curve γ is defined by the intersection
of Γ and A, and a general point in A is

r = (ρ, z) . (11)

The outward unit normal and a tangent on γ , in A, are

ν = (νρ, νz) , (12)

τ = (νz, −νρ) . (13)

In R
3, the position with Cartesian basis vectors is

r ≡ (x, y, z) = (ρ cos θ, ρ sin θ, z) . (14)

(c)

Fig. 2 Notation for an axially symmetric surface Γ generated by a curve γ : (a) a point r on Γ has outward
unit normal ν and unit tangent vectors τ and θ ; (b) cylindrical coordinates (ρ, θ, z) of r; (c) coordinate
axes and vectors in the half-plane A defined by θ = 0
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We also use the cylindrical unit vectors

ρ = (cos θ, sin θ, 0) , (15)

θ = (− sin θ, cos θ, 0) , (16)

z = (0, 0, 1) . (17)

On Γ , the unit normal is ν and the tangential unit vectors are τ and θ

ν = (νρ cos θ, νρ sin θ, νz) , (18)

τ ≡ θ × ν = (νz cos θ, νz sin θ, −νρ) . (19)

Vector fields, off from Γ , will often be expressed using ρ, θ , and z

E = ρEρ + θEθ + zEz ,

H = ρHρ + θHθ + zHz .
(20)

The causal fundamental solution to the Helmholtz’ equation and its gradient, renor-
malized by a factor of −2 to make the expressions of the integral operators in
Appendix A simpler, are

Φk(r, r ′) = eik|r−r ′|

2π |r − r ′| , (21)

∇′Φk(r, r ′) = r − r ′

2π |r − r ′|3 (1 − ik|r − r ′|)eik|r−r ′| . (22)

5 A unified formalism

The integral equations of “Dirac” and “HK 8-dens” can both be written in the general
form

(I + G)h(r) = 2Nf in(r) , r ∈ Γ , (23)

with

G = PEk+N ′ − NEk−P ′ . (24)

Here h contains eight unknown scalar surface densities

h = [
h1 h2 h3 h4 h5 h6 h7 h8

]T
, (25)

f in contains the field components

f in = [
0 ν · H in τ · H in θ · H in 0 ν · Ein τ · Ein θ · Ein

]T
, (26)
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Ek is the Cauchy singular 8 × 8 block operator matrix
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Kν′
k 0 Kθ ′

k −Kτ ′
k 0 S1

k 0 0

Kν×ν′
k −Kν

k −Kν×θ ′
k Kν×τ ′

k Sν·ν′
k 0 Sν·θ ′

k −Sν·τ ′
k

Kτ×ν′
k −Kτ

k −Kτ×θ ′
k Kτ×τ ′

k Sτ ·ν′
k 0 Sτ ·θ ′

k −Sτ ·τ ′
k

Kθ×ν′
k −Kθ

k −Kθ×θ ′
k Kθ×τ ′

k Sθ ·ν′
k 0 Sθ ·θ ′

k −Sθ ·τ ′
k

0 S1
k 0 0 −Kν′

k 0 −Kθ ′
k Kτ ′

k

Sν·ν′
k 0 −Sν·θ ′

k Sν·τ ′
k −Kν×ν′

k −Kν
k −Kν×θ ′

k Kν×τ ′
k

Sτ ·ν′
k 0 −Sτ ·θ ′

k Sτ ·τ ′
k −Kτ×ν′

k −Kτ
k −Kτ×θ ′

k Kτ×τ ′
k

Sθ ·ν′
k 0 −Sθ ·θ ′

k Sθ ·τ ′
k −Kθ×ν′

k −Kθ
k −Kθ×θ ′

k Kθ×τ ′
k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(27)

with operator entries detailed in Appendix A, and P , P ′, N , N ′ are diagonal matrices
which are specified by “Dirac” and “HK 8-dens”, respectively.

Once (23) is solved for h, the fields E and H in Ω±, decomposed as in (20), can
be evaluated from (8) and

Esc
ρ = 1

2

[
S̃

ρ·ν′
k− 0 −S̃

ρ·θ ′
k− S̃

ρ·τ ′
k− −K̃

ρ×ν′
k− −K̃

ρ
k− −K̃

ρ×θ ′
k− K̃

ρ×τ ′
k−

]
h−,

Esc
θ = 1

2

[
S̃θ ·ν′

k− 0 −S̃θ ·θ ′
k− S̃θ ·τ ′

k− −K̃θ×ν′
k− −K̃θ

k− −K̃θ×θ ′
k− K̃θ×τ ′

k−

]
h−,

Esc
z = 1

2

[
S̃z·ν′

k− 0 0 S̃z·τ ′
k− −K̃z×ν′

k− −K̃z
k− −K̃z×θ ′

k− K̃z×τ ′
k−

]
h−,

(28)

Etr
ρ = 1

2

[
S̃

ρ·ν′
k+ 0 −S̃

ρ·θ ′
k+ S̃

ρ·τ ′
k+ −K̃

ρ×ν′
k+ −K̃

ρ
k+ −K̃

ρ×θ ′
k+ K̃

ρ×τ ′
k+

]
h+,

Etr
θ = 1

2

[
S̃θ ·ν′

k+ 0 −S̃θ ·θ ′
k+ S̃θ ·τ ′

k+ −K̃θ×ν′
k+ −K̃θ

k+ −K̃θ×θ ′
k+ K̃θ×τ ′

k+

]
h+,

Etr
z = 1

2

[
S̃z·ν′

k+ 0 0 S̃z·τ ′
k+ −K̃z×ν′

k+ −K̃z
k+ −K̃z×θ ′

k+ K̃z×τ ′
k+

]
h+,

(29)

H sc
ρ = 1

2

[
K̃

ρ×ν′
k− −K̃

ρ
k− −K̃

ρ×θ ′
k− K̃

ρ×τ ′
k− S̃

ρ·ν′
k− 0 S̃

ρ·θ ′
k− −S̃

ρ·τ ′
k−

]
h−,

H sc
θ = 1

2

[
K̃θ×ν′

k− −K̃θ
k− −K̃θ×θ ′

k− K̃θ×τ ′
k− S̃θ ·ν′

k− 0 S̃θ ·θ ′
k− −S̃θ ·τ ′

k−

]
h−,

H sc
z = 1

2

[
K̃z×ν′

k− −K̃z
k− −K̃z×θ ′

k− K̃z×τ ′
k− S̃z·ν′

k− 0 0 −S̃z·τ ′
k−

]
h−,

(30)

H tr
ρ = k̂

2

[
K̃

ρ×ν′
k+ −K̃

ρ
k+ −K̃

ρ×θ ′
k+ K̃

ρ×τ ′
k+ S̃

ρ·ν′
k+ 0 S̃

ρ·θ ′
k+ −S̃

ρ·τ ′
k+

]
h+,

H tr
θ = k̂

2

[
K̃θ×ν′

k+ −K̃θ
k+ −K̃θ×θ ′

k+ K̃θ×τ ′
k+ S̃θ ·ν′

k+ 0 S̃θ ·θ ′
k+ −S̃θ ·τ ′

k+

]
h+,

H tr
z = k̂

2

[
K̃z×ν′

k+ −K̃z
k+ −K̃z×θ ′

k+ K̃z×τ ′
k+ S̃z·ν′

k+ 0 0 −S̃z·τ ′
k+

]
h+.

(31)

Here the layer potential entries are detailed in Appendix A and

k̂ = k+/k− , (32)

h+ = N ′h , h− = P ′h . (33)

Note that the additional zero entry of Ez and Hz is due to axial symmetry.
For “Dirac”, the field evaluation can be improved by instead using the projected

densities
h+ = 1

2 (I + Ek+)N ′h , h− = 1
2 (I − Ek−)P ′h (34)
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as input to the field evaluation (28)–(31). The two choices (33) and (34) will always
produce the same fields inΩ±, and we discuss their uses in the following subsections.

We remark that the framework (23)–(27) applies to both “Dirac” and to “HK
8-dens”, also for general object shapes Γ , whenever τ and θ are two arbitrary orthog-
onal tangential unit vectors. The corresponding representations of E and H are then
given by [22, Eqs. (22) and (23)].

5.1 Choice of P , P ′, N , N ′ for “Dirac”

Given the formalism above, “Dirac” specifies the diagonal matrices

P = diag
[

1−iδ arg(ĉ)
ĉ+1−iδ arg(ĉ)

1√
ĉ+|ĉ|

1
2
√

ĉ

1
2
√

ĉ

|ĉ|
ĉ+|ĉ|

ε̂
ε̂+1 1 1

]
,

P ′ = diag
[
1 1√

ĉ+|ĉ|
1√
ĉ

1√
ĉ
1 1 1

ĉ+1
1

ĉ+1

]
,

N = diag

[
ĉ

ĉ+1−iδ arg(ĉ)
ĉ√

ĉ+|ĉ|
√

ĉ
2

√
ĉ
2

ĉ
ĉ+|ĉ|

1
ε̂+1 1 1

]
,

N ′ = diag
[
1 |ĉ|√

ĉ+|ĉ|
√

ĉ
√

ĉ 1 1 ĉ
ĉ+1

ĉ
ĉ+1

]
,

(35)

where ĉ = 1/k̂ and ε̂ = k̂2 as in (2). The matrices P and N differ in their first
elements from those used in [22, Theorem 2.3], and we have set μ̂ = 1 as we consider
non-magnetic materials. The modified first elements correspond to another choice of
the parameter β in [22, Section 8], using here β = 1 + iδ arg(k̂) instead of β = 1, to
avoid false eigenwavenumbers when (arg(k−), arg(k+)) = (π/2, 0). We use

δ = 0.2/π . (36)

Computations show that this is close enough to δ = 0 not to affect speed
and accuracy, but large enough to eliminate false eigenwavenumbers and near-
eigenwavenumbers. In the original formulation of “Dirac” in R

3 from [22], false
eigenwavenumbers appear when (arg(k−), arg(k+)) = (π/2, 0), that is, when the
wavenumber in the exterior region is imaginary. This corresponds to the circled lower
corner point in Fig. 1b and is confirmed by numerical experiments on the unit sphere
and comparison with semi-analytic results given by Mie theory. For the parame-
ters (35), with δ = 0.2/π , it follows from [22, Proposition 8.5] that there are no
false eigenwavenumbers for “Dirac” in the shaded region in Fig. 1b. Not even at
(arg(k−), arg(k+)) = (π/2, 0), where there are true eigenwavenumbers.

Note that “Dirac” is not a Fredholm second kind integral equation with compact
operators on smooth Γ . For one thing, the block operator G in (24) contains Cauchy
singular differences of operators. However, the particular choice of P , P ′, N , N ′ in
the original “Dirac”, that is for δ = 0, makes G4 a compact operator on smooth Γ

and as a consequence the spectrum of G has zero as its only accumulation point. This
should be an advantage when using iterative solvers for (23).

When evaluating E and H with “Dirac”, one can use either (33) or (34) for h±.
The reason for preferring (34), which we use for smooth Γ in the numerical examples
of Section 10, is that, like in (26), components 1 and 5 of h± from (34) are zero. This
leads to at most five non-zero densities in the evaluation of each field. However, for
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non-smooth Γ the numerical method used in Section 10 is less compatible with (34)
and we use the simpler (33). For “Dirac”, the densities computed with (34) satisfy

Ph+ = N(f in − h−), (37)

so only one of the Cauchy integrals in (34) needs to be computed.

5.2 Choice of P , P ′, N , N ′ for “HK 8-dens”

“HK 8-dens” specifies the diagonal matrices

P = diag
[

k̂3γ1η
1+γ1η

−k̂λε̂η

1+λε̂η

−k̂η
1+η

k̂η
1+η

ε̂γ2η
1+γ2η

−ε̂η
1+η

λε̂η

1+λε̂η

−λε̂η

1+λε̂η

]
,

P ′ = diag
[
1 −1 −1 1 1 −1 1 −1

]
,

N = diag
[ −1
1+γ1η

1
1+λε̂η

1
1+η

−1
1+η

−1
1+γ2η

1
1+η

−1
1+λε̂η

1
1+λε̂η

]
,

N ′ = diag
[−ĉ3 ĉ ĉ −ĉ −ε̂−1 ε̂−1 −1 1

]
,

(38)

where γ1, γ2, η, and λ are uniqueness parameters whose determination is discussed
in [19, Section 11.1 and Appendix D]. Note that in [19], these parameters are called
γE, γM, c, and λ. A valid choice when (arg(k−), arg(k+)) = (0, 0) is

[
γ1 γ2 η λ

] = [
ε̂−1 1 1 1

]
. (39)

This is also a valid choice in the part of the uniqueness region of Fig. 1b that is in
the vicinity of (arg(k−), arg(k+)) = (π/2, 0). For this reason (39) is used also at
(arg(k−), arg(k+)) = (π/2, 0). A valid choice when (arg(k−), arg(k+)) = (0, π/2)
is

[
γ1 γ2 η λ

] = [
iε̂−1 1 −i i

]
. (40)

The surface densities h of (25) have, with “HK 8-dens”, the physical interpreta-
tions

[
h1 h2 h3 h4 h5 h6 h7 h8

] = [
σE ρM Jθ Jτ σM ρE Mθ Mτ

]
, (41)

where −ik−σE and −ik−σM are exterior limits of the electric and magnetic volume
charge densities on Γ , ρE and ρM are the equivalent electric and magnetic surface
charge densities on the exterior side of Γ , and Jθ , Jτ , Mθ , Mτ are components of
the equivalent electric and magnetic surface current densities on the exterior side of
Γ . See [19, Remark 10.2], where it also is shown that h1 = σE and h5 = σM must
be zero on theoretical grounds. Therefore, the preferred choice for field evaluations
with “HK 8-dens” is always via (33), which is the Stratton–Chu representation, and
(34) is never needed since it does not lead to any reduced numerical costs.

We remark that “HK 8-dens” was discovered independently and prior to “Dirac”,
and that it was only later realized that it can be written in the form (23)–(24), just like
“Dirac”. However, it is not the case that “HK 8-dens” is a special case of “Dirac”,
corresponding to a certain choice of Dirac parameters as in [22, Section 8]. Indeed,
“HK 8-dens” is not derivable from jump matrices M and M ′ as in [22, Theorem 2.3].
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6 False essential spectra

A key operator for the MTP(k−, k+) is the static, k → 0, limit

Kdg(r) = p.v.
∫

Γ

ν(r ′) · ∇′�0(r, r ′)g(r ′) dΓ ′ , r ∈ Γ, (42)

of the acoustic double layer operator Kν′
k , appearing in the (1, 1) and (5, 5) diago-

nal blocks of Ek . That is, Kd equals the Neumann–Poincaré operator KNP, possibly
modulo a sign depending on convention [3]. Its essential spectrum σess(Kd) in the
fractional Sobolev space H 1/2(Γ ), that is the set of λ for which λI − Kd fails to
be a Fredholm operator, is a compact subset of the interval (−1, 1), for any Lips-
chitz surface Γ . Unlike in R

2, σess(Kd) is not necessarily symmetric with respect to
0 for Γ ⊂ R

3: see examples for the spectrum of the adjoint of KNP, σess(K
∗
NP) in

H−1/2(Γ ), and Γ with axially symmetric conical points in [21, Section 7.3].
We map σess(Kd) onto the negative real axis and define

�(Γ ) = {ε̂ ∈ C ; (1 + ε̂)/(1 − ε̂) ∈ σess(Kd)}. (43)

For Ek and our IERs, the relevant function space is

H3 = H 1/2(Γ ) ⊕ H−1/2(Γ ) ⊕ H−1/2(curl, Γ )

⊕ H 1/2(Γ ) ⊕ H−1/2(Γ ) ⊕ H−1/2(curl, Γ ), (44)

as discussed in [22, Section 5]. Here H−1/2(curl, Γ ) denotes the tangential vector
fields in H−1/2 with tangential curl in H−1/2, with suitable modification for non-
smooth Γ . By inspection of the proof of [22, Proposition 8.4] it is immediate that the
“Dirac” IER is a Fredholm operator in H3 if and only if the MTP(k−, k+) defines a
Fredholm map. By the latter we mean that (Etr, H tr, Esc, H sc) �→ f in is a Fredholm
map, in L2-norms of the fields in a bounded neighborhood of Γ in R3 and f in ∈ H3
being the trace of a Maxwell field as in (26). Furthermore, as we shall prove in a
forthcoming publication, the MTP(k−, k+) defines a Fredholm map if and only if
ε̂ /∈ �(Γ ), for any wavenumbers and not only in the quasi-static limit.

Another key operator for the MTP(k−, k+) is the magnetic dipole operator,

Kmg(r) = ν(r) × p.v.
∫

Γ

∇′�0(r, r ′) × g(r ′) dΓ ′ , r ∈ Γ, (45)

acting on tangential vector fields g. We note that the static limit of the opera-
tor appearing in the (3:4,3:4) and (7:8,7:8) size 2 × 2 diagonal blocks in Ek , is
−K∗

m. Moreover, the static limit of the normal derivative of the acoustic single layer
potential, Kν

k , appearing in the (2, 2) and (6, 6) diagonal elements, equals −K∗
d .

By Hodge decomposition of H−1/2(curl, Γ ), it can be shown that the essential
spectrum of Km is σess(Kd)∪ (−σess(Kd)). The corresponding result for eigenvalues
is in [2, Proposition 4.7] and in [24]. However, these results are proved for smooth
Γ , on which Km is compact and σess(Kd) = {0}.

In the diagonal blocks of the matrix Ek , we therefore find operators with essen-
tial spectra σess(Kd) as well as −σess(Kd). To avoid the false essential spectrum
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(−σess(Kd)) \ σess(Kd), the matrices P, P ′, N, N ′ need to be chosen carefully. Con-
sider the diagonal operator blocks of (27) for “Dirac” and “HK 8-dens” when ε̂ is
negative real and k̂/i is positive, referred to as the plasmonic case in Section 10. The
only operator block which can fail to be a Fredholm operator for “Dirac” is (6,6).
This happens when ε̂ ∈ �(Γ ), that is, if and only if the MTP(k−, k+) itself fails to
define a Fredholm map.

The diagonal operator blocks of “HK 8-dens” that can fail to be Fredholm opera-
tors are the (1,1), (2,2) and (7:8,7:8) blocks. The (1,1) and (2,2) blocks each fails to
be a Fredholm operator when ε̂−1 ∈ �(Γ ), whereas the (7:8,7:8) size 2 × 2 diago-
nal block fails to be a Fredholm operator when ε̂ ∈ �(Γ ) or ε̂−1 ∈ �(Γ ). However,
in the analysis of the full IERs also the non-diagonal blocks need to be taken into
account, as the plots of densities in Section 10 clearly show.

The spectral properties of the diagonal blocks show that “Dirac” has no false
essential spectrum, but also indicate that “HK 8-dens” may have false essential spec-
trum. Section 10.4 contains numerical results that support this. However, since the
spaceH3 is a space of mixed±1/2 regularity, a full proof must include an analysis of
the off-diagonal blocks. We plan a forthcoming publication devoted to a more careful
theoretical and numerical study of the essential spectrum and the issues discussed in
this section.

7 The quasi-static limit

In the quasi-static limit k± → 0, with k̂ = k+/k− fixed, the operator G from (24)
simplifies considerably. The diagonal matrices P, P ′, N, N ′ are all fixed whereas
our basic Cauchy integral operator becomes a 4/4 block diagonal operator

E0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−Kd 0 K1,3:4 0 0 0
Kν×ν′

0 K∗
d K2,3:4 0 0 0

K3:4,1 K3:4,2 −K∗
m 0 0 0

0 0 0 −Kd 0 K5,7:8
0 0 0 −Kν×ν′

0 K∗
d K6,7:8

0 0 0 K7:8,5 K7:8,6 −K∗
m

⎤
⎥⎥⎥⎥⎥⎥⎦

, (46)

where we have written rows/columns 3:4 and 7:8 in vector/block notation. We keep
indexing 1:8, and all operators are as in (27) but with k = 0. Now all single layer
operator entries vanish, as they contain a factor k±, and the equations for the magnetic
and electric fields, which correspond to the two diagonal blocks, decouple. For spec-
tral properties of the operators Kd and Km defined in Section 6, used in this section,
we refer to [6, Sections 5.1–5.2]. These results generalize to Lipschitz surfaces, if we
use the spaces H 1/2(Γ ) and H−1/2(curl, Γ ) for Kd and Km respectively.

Let MTP(0, 0, k̂) denote the Maxwell transmission problem in the quasi-static
limit with k̂ fixed. The MTP(0, 0, k̂) amounts to two decoupled divergence and curl
free vector fields E and H in Ω±, having continuous tangential parts (4)–(5) and
with Esc and H sc decaying at infinity. We now also explicitly need to require the
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Gauss jump conditions

lim
Ω−�r ′→r

ν · E(r ′) = ε̂ limΩ+�r ′→r ν · E(r ′), r ∈ Γ, (47)

lim
Ω−�r ′→r

ν · H (r ′) = limΩ+�r ′→r ν · H (r ′), r ∈ Γ . (48)

We note that since we consider non-magnetic materials, the jump condition for
all components of H are the same. It is only the (5:8,5:8) diagonal block in (46)
which needs to be inverted in the quasi-static limit. Moreover, one can show that the
MTP(0, 0, k̂) defines an invertible map if and only if (1 + ε̂)/(1 − ε̂) /∈ σ(Kd).

In Section 10.6 we show numerical results for condition numbers of “Dirac” as
well as of “HK 8-dens” in this quasi-static limit, but restrict our analysis here to
“Dirac”. For simplicity, assume δ = 0 in the definition of P, P ′, N, N ′ in (35). This
makes the blocks in G corresponding to K1,3:4, K2,3:4, K7:8,5 and K7:8,6 vanish, and
invertibility of I +G is determined by the diagonal blocks. (δ ≈ 0 makesK1,3:4 ≈ 0.)
The main operator is the (6,6) diagonal block, which fails to be invertible for “Dirac”
precisely when (1 + ε̂)/(1 − ε̂) ∈ σ(Kd). Since the spectra of Kd, K∗

d and K∗
m are

subsets of [−1, 1], for any topology of Γ , the remaining diagonal operators are all
seen to be invertible for any k̂ �= 0 and k̂ �= ∞.

Let MTP(0,0,0) and MTP(0, 0, ∞) denote the MTP(0, 0, k̂) in the limits k̂ →
0, ∞. The MTP(0,0,0) can be viewed as an exterior homogeneous Neumann problem
for the scalar electric potential and the MTP(0, 0, ∞) as an exterior Dirichlet prob-
lem. Both problems can be shown to have unique solutions. To analyze the behavior
of “Dirac”, with δ = 0 as above, for these problems, we examine which spectral
points are used for the diagonal blocks in I + G. From [22, Equation (132)], we
see that for the diagonal (2,2), (3:4,3:4) and (5:5) blocks, the spectral points are uni-
formly bounded away from [−1, 1] as k̂ → 0, ∞. The (6,6) block is I − 1−ε̂

1+ε̂
K∗

d as
discussed above. The (1,1) block is

I − k̂−1
k̂+1

Kd (49)

and the (7:8,7:8) block is

I + k̂−1
k̂+1

K∗
m. (50)

Here σ(Kd) ∩ {−1, 1} = {−1}. Furthermore σ(K∗
m) ∩ {−1, 1} = ∅, assuming that

Ω+ is simply connected. This shows that “Dirac” exhibits a false eigenwavenumber
for the MTP(0,0,0), due to the (1,1) block. If one is only interested in the quasi-static
limit, this deficiency can be avoided by only using the (5:8,5:8) block of I + G for
solving for the electric fields as discussed above. (Or even simpler IERs available in
this case.) If one is also interested in near quasi-statics and k̂ ≈ 0, assuming that Ω+
is simply connected, we can tune the free Dirac parameters r, β, γ, α′, β ′, γ ′ from
[22, Section 8] as follows. Rather than choosing α′ = β ′ = 1/k̂ as done for “Dirac”,
we choose α′ = |k̂|/k̂ and β ′ = 1/(|k̂|k̂). With these choices, the spectral point for
the (1,1) block stays uniformly bounded away from [−1, 1]. We approach the spectral
point +1 for the (6,6) and (7:8,7:8) blocks as k̂ → 0, but this is not a problem since
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+1 /∈ σ(K∗
d ) and, for simply connected Ω+, +1 /∈ σ(K∗

m). Preconditioning similarly
to [22, Theorem 2.3], we arrive at

P =
[

β
√

|ĉ|/ĉ
ĉ+|ĉ|β

ĉ−1√
1+|ĉ|/ĉ

1
2ĉ

1
2ĉ

|ĉ|
ĉ+|ĉ| ε̂

|ĉ|ĉ
1+|ĉ|ĉ

|ĉ|ĉ
1+|ĉ|ĉ

]
,

P ′ =
[√

ĉ
|ĉ|

1√
1+|ĉ|/ĉ 1 1 1 1

ε̂+1
1

|ĉ|ĉ
1

|ĉ|ĉ
]

,

N =
[ √

|ĉ|/ĉ
1+β|ĉ|/ĉ

1√
1+|ĉ|/ĉ

1
2

1
2

ĉ
ĉ+|ĉ| 1 |ĉ|ĉ

1+|ĉ|ĉ
|ĉ|ĉ

1+|ĉ|ĉ

]
,

N ′ =
[√|ĉ|ĉ |ĉ|√

1+|ĉ|/ĉ ĉ ĉ 1 1
ε̂+1 1 1

]
,

(51)

where β = 1 − iδ arg(ĉ) is chosen as in Section 5.1. When k± ≈ 0 and k̂ ≈ 0, the
version (51) of “Dirac” is better conditioned than that of (35). Indeed, one verifies
for these choices of parameters and P, P ′ that I + G converges in operator norm as
k± → 0 and k̂ → 0, to a limit operator which is invertible due to the block diagonal
and triangular structures and the fact that the (1,1) block is now invertible as above.

For the MTP(0, 0, ∞), “Dirac” again has a false eigenwavenumber, this time due
the (6,6) block. It is not clear how to avoid this by tuning the free Dirac parameters.
We plan to address this issue, as well as Ω+ that are not simply connected, in a
forthcoming paper.

8 Surface plasmon standing waves and plasmons

Let, for the moment, R3 be divided into two, not necessarily bounded, domains Ω1
and Ω2 separated by a surface Γ and with real-valued permittivities ε1 and ε2 such
that ε1 > 0 and ε2 < 0. Surface plasmon waves, surface plasmon standing waves,
and quasi-static plasmons are then particular types of electromagnetic fields that may
appear as solutions to the MTP(k−, k+). These fields are briefly described here from
a classical electrodynamics point of view and they are referenced in the discussion of
the numerical examples in Section 10.

Surface plasmon waves (SPWs) are surface waves that can propagate along Γ . A
necessary extra condition for their existence on planar Γ is ε̂ ≡ ε2/ε1 < −1, see [32,
Section 5.1] and [30, Appendix I]. Numerical experiments done in the preparation of
[19] indicate that the same condition holds on non-planar Γ . On planar Γ , the SPWs
propagate without attenuation with wavelength

λspw = λ1
√
1 − 1/|ε̂| (52)

and decay exponentially in the directions normal to Γ , see [32, Section 2.1] and [30,
Appendix I]. Here λ1 = 2π/k1 is the free space wavelength in Ω1. Furthermore,
the following has been verified by us for a circular cylinder, using semi-analytic
methods, and by numerical examples in [17, 19]: The SPWs can propagate without
attenuation along surfaces that are invariant only in the propagation direction. They
can also propagate along surfaces which are curved in the direction of propagation,
but are then attenuated due to radiation. The radiation increases with the ratio of λspw
to the radius of curvature.
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A natural conjecture is that SPWs appear, excited at corners or edges on Γ , when
(1 + ε̂)/(1 − ε̂) hits the essential spectrum of Kd. This was discussed, for edges,
in [17, Section 7.3], but that discussion is not exhaustive. Indeed, as we shall see
in Section 10, an SPW appears in Fig. 6 even though we are outside the essential
spectrum, and in Fig. 8 we are in the essential spectrum, but no SPW appears. The
description of the precise mechanisms for the excitation of SPWs on non-smooth Γ

remains an open problem.
Consider now, with notation as in Section 2, a bounded object Ω+ and assume

that the wavenumber k− is positive real and that ε̂ < −1, to enable SPWs along
Γ . At certain k− the SPWs form standing waves. Such SPWs are here called sur-
face plasmon standing waves (SPSWs). In some literature the name surface plasmon
resonances (SPRs) is used to emphasize their resonant nature. However, SPR is not
a direct synonym for SPSW since it is also used for other plasmonic phenomena.
Due to radiation, the SPSW is a damped resonant field and the (k−, k+), for which
it appears, is close to a true eigenwavenumber outside the set of points shown in
Fig. 1b. That is, SPSWs appear close to true near-eigenwavenumbers, in the termi-
nology from Section 3. When an SPSW is excited by an incident field, its amplitude
becomes large, which results in a large scattering cross section. This is one reason
why SPSWs are of interest in optics.

A quasi-static plasmon is an electromagnetic field that approaches an eigenfield,
referred to as a static plasmon, as k± → 0. It appears around objects that are much
smaller than the wavelength λ−. The quasi-static plasmon is also denoted surface
plasmon (SP) in optics, a name that may lead to confusion since it is sometimes used
as a synonym for SPSW. A quasi-static plasmon is a resonant field, but in contrast to
SPSWs it is not a standing wave field. For smooth Γ there is an infinite discrete set of
ε̂ corresponding to static plasmons. The electric field of a static plasmon is distributed
so that the electric energies in Ω− and Ω+ exactly cancel each other, while the mag-
netic field is zero. Indeed, Green’s identity shows that ε̂

∫
Ω+ |E|2dx = − ∫

Ω− |E|2dx

so that, in accordance with Poincaré’s variational principle [3, Theorem 2.4], the
static plasmon corresponds to the eigenvalue (1 + ε̂)/(1 − ε̂) for Kd.

Quasi-static and static plasmons can be classified as being bright or dark depend-
ing on whether they can be excited by a uniform incident field or not. A bright
plasmon radiates as an electric dipole and its far-field is very large considering the
object is small compared to λ−. A dark plasmon radiates as a higher-order multipole
and its far-field is weak. See [2, Lemma 5.3], where the full multipole expansion of
far-fields is given. Furthermore, there is a close connection between bright static plas-
mons and the imaginary part of an object’s limit polarizability [20, 29]. For an object
with sharp corners, edges, or points there is a continuous, possibly punctured, inter-
val of ε̂ where a special type of static plasmons, with infinite (but cancelling) electric
energies in Ω− and Ω+, can occur together with a partially embedded discrete set of
regular static plasmons [15, 21, 29].

9 Scattering objects and discretization

This section reviews shapes of scattering objects and discretization schemes that are
used for the numerical tests in Section 10.
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9.1 Two surface families

Examples with smooth Γ come from a generating curve γ parameterized as

r(s) = (1 + α sin(5s))(cos(s), sin(s)) , s ∈ [−π/2, π/2] , (53)

where α is a shape parameter. The choice α = 0 corresponds to Γ being the unit
sphere. With α = 0.25 the shape of Γ resembles a “rotated starfish”. See Fig. 2a.

Examples with non-smooth Γ come from a γ parameterized as

r(s) = sin(πs) (sin((0.5 − s)α), cos((0.5 − s)α)) , s ∈ [0, 0.5] , (54)

where α is the opening angle of the conical point at the origin. With α > π , the shape
of Γ resembles a “tomato”. See Fig. 1a for an illustration with α = 31π/18. With
α < π the shape of Γ resembles a “drop with a sharp tip”. The generating curve γ

of (54) has previously been used for numerical examples in [19, 21].

9.2 Fourier–Nyström discretization

The integral equation (23) is solved on axially symmetric Γ using high-order
Fourier–Nyström discretization. An azimuthal Fourier transform is first applied
to (23), yielding a sequence of modal problems for the Fourier coefficients h(n) of h

(I + G(n))h(n)(r) = 2Nf in
(n)(r) , r ∈ γ , n = 0, ±1, ±2, . . . , (55)

which are solved independently using high-order panel-based Nyström discretiza-
tion. The modal solutions h(n) are then synthesized to give the full solution h.

High-order panel-based Fourier–Nyström discretization for solving integral equa-
tions modeling scattering problems on axisymmetric surfaces was made popular by
Young, Hao, andMartinsson in 2012 [35]. Since then, several authors have worked on
extensions of such schemes and related issues. The aim has been to include a broader
range of integral operators, to reach higher achievable accuracy, to evaluate near
fields more efficiently, and to cope with problems related to wavenumbers with large
imaginary parts [1, 10, 16, 25]. Our version of the Fourier–Nyström scheme is the
one used in [19]. This version is of 16th order. It relies on a combination of 16-point
and 32-point underlying Gauss–Legendre quadrature, a variety of explicit kernel-
splits, semi-analytic product integration computed on the fly, and is compatible with
the recursively compressed inverse preconditioning method (RCIP) [14]. The RCIP
accelerates and stabilizes Nyström discretization in the presense of singular boundary
points on γ , such as corners.

10 Numerical examples

The numerical efficiency of “Dirac” and “HK 8-dens” is now compared. That is, we
solve the discretized modal systems (55) and compute fields via (28)–(31) with P ,
P ′, N , N ′ as in Sections 5.1 and 5.2. We also compute condition numbers of the
modal systems. Three material parameter cases are used:

76   Page 16 of 32 Adv Comput Math (2021) 47: 76



– the positive dielectric case, where k̂ = 1.5 and k− is positive real;
– the plasmonic case, where k̂ = i

√
1.1838 and k− is positive real;

– the reverse plasmonic case, where k̂ =
(
i
√
1.1838

)−1
and k+ is positive real.

These parameter cases are taken from previous work on time-harmonic transmission
problems [4, 19, 22].

In all examples involving field images, unless otherwise stated, the incident field
is a linearly polarized plane wave Ein(r) = xeik−z with x = (1, 0, 0). The fields are
plotted in the plane y = 0, where the field componentsEθ ,Hρ , andHz are zero due to
symmetry. To save space in the examples, we only show Eρ and Hθ . Generally, these
two seem to exhibit more pronounced field patterns than the omitted component Ez.

When Γ is non-smooth, it may happen that k̂ = i
√
1.1838 or k̂ =

(
i
√
1.1838

)−1

correspond to that the MTP(k−, k+) does not define a Fredholm map. We then
compute limit solutions as ε̂ approaches −1.1838 or −1/1.1838 from above in the
complex plane. Such limit solutions have boundary traces lying outside the function
space H3 from (44) and are given a down arrow superscript. For example, the limit
of the field E is denoted E↓.

Our codes are implemented in MATLAB, release 2018b, and executed on a work-
station equipped with an Intel Core i7-3930K CPU and 64 GB of RAM. Large linear
systems are solved iteratively using GMRES with a stopping criterion threshold of
machine varepsilon (εmach) in the estimated relative residual. When assessing the
accuracy of computed field quantities we adopt a procedure where to each numeri-
cal solution we also compute an overresolved reference solution, using roughly 50%
more points in the discretization of the system under study. The absolute difference
between these two solutions is denoted the estimated absolute error. In examples
involving field images, the fields are computed at 106 target points on a rectangular
Cartesian grid in the computational domains shown.

Sections 10.1, 10.3, and 10.6, on eigenwavenumbers, convergence, and the quasi-
static limit, involve the unit sphere. An advantage with doing experiments on spheres
is that semi-analytic results given by Mie theory can be used for verification. The
remaining subsections concern less trivial object shapes and there we limit ourselves
mainly to the plasmonic case. The positive dielectric case is not deemed challenging
enough for thorough testing. The performances of “Dirac” and “HK 8-dens” in the
reverse plasmonic case is rather similar to their respective performances in the plas-
monic case — apart from the new risk of being close to a true eigenwavenumber and,
for “HK 8-dens”, also close to a false eigenwavenumber or near-eigenwavenumber.

10.1 Condition numbers on the unit sphere

We compute condition numbers of system matrices of the discretized modal integral
equations (55) and with Γ being the unit sphere. Results for the azimuthal modes
n = 0, 5, 10 are shown in Fig. 3. A number of 768 discretization points are placed
on a grid on γ , making the total system size 6144 × 6144, and up to 5,300 data
points are used to capture the rapid variations in the condition numbers as k− and
k+ are swept through the intervals [0, 10] and [0, 6]. The purpose of this study is
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Fig. 3 The unit sphere. Condition numbers of system matrices of the discretized modal integral equa-
tions (55) with azimuthal indices n = 0, 5, 10 and wavenumber k− ∈ [0, 10] or k+ ∈ [0, 6]: (a, b) the
positive dielectric case with k̂ = 1.5; (c, d) the plasmonic case with k̂ = i

√
1.1838; (e, f) the reverse

plasmonic case with k̂ =
(
i
√
1.1838

)−1
; (a, c, e) “Dirac”; (b, d, f) “HK 8-dens”

primarily to detect possible false eigenwavenumbers, but also to get a notion of how
well-conditioned the two IERs under study are.

Figure 3 shows that “Dirac” and “HK 8-dens” have similar condition numbers in
the positive dielectric case, while “Dirac” is better conditioned than “HK 8-dens”
in the plasmonic- and reverse plasmonic cases — particularly at higher wavenum-
bers k− and k+. Note that the regularly recurring high peaks that are common to
Fig. 3c and d correspond to true near-eigenwavenumbers, each with multiplicity
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one for a given n, while the additional peaks in Fig. 3d correspond to false near-
eigenwavenumbers of “HK 8-dens”, as discussed in the last paragraph of Section 3.
The true near-eigenwavenumbers are associated with SPSWs. The first peak in
Fig. 3c and d corresponds to an SPSW with � = 6, where � is the degree of the
spherical harmonic Yn

� , and that peak is common to the 13 n-values −6 ≤ n ≤ 6.
Note also that the 14 eigenwavenumbers with k+ ∈ [0, 6], visible in Fig. 3e, are true
eigenwavenumbers in the reverse plasmonic case, as confirmed to at least 13 dig-
its by comparison with semi-analytic results. In contrast, “HK 8-dens” exhibits here,
in addition, around 25 false eigenwavenumbers and false near-eigenwavenumbers.
See Fig. 3f. Eleven of the 14 peaks in Fig. 3e form a periodic pattern and corre-
spond to eigenwavenumbers with eigenfields that are SPSWs, whereas the other three
peaks correspond to eigenwavenumbers with eigenfields that are not bound to the
surface.

10.2 Field images for the “rotated starfish”

We compute images of scattered and transmitted fields Esc
ρ (r, 0), H sc

θ (r, 0) and
Etr

ρ (r, 0), H tr
θ (r, 0). The surface Γ is that of the “rotated starfish”, given by (53) with

α = 0.25. A number of 768 discretization points are again used for each integral
operator on γ in (55).

We first test the positive dielectric case (k̂ = 1.5) with k− = 10. This is a simple
problem and both “Dirac” and “HK 8-dens” give fields with an estimated absolute
precision of at least twelve digits— also close to Γ . We refrain from showing images.
The only noticeable difference between the methods is the number of GMRES iter-
ations needed for full convergence. The “Dirac” system converges to an estimated
relative residual of εmach in 111 iterations while the “HK 8-dens” system is a bit
better and only needs 68 iterations.

We next test the plasmonic case (k̂ = i
√
1.1838) with k− = 6. Figure 4 shows

that the accuracy achieved by “Dirac” and “HK 8-dens” is similar also in this case,
although the spectral properties of “Dirac” are now much better than those of “HK 8-
dens”. The condition number of the system matrix in the discretized “Dirac” system
is 9.7·103 while the corresponding condition number for “HK 8-dens” is 1.2 ·105 and
this is reflected in the number of GMRES iterations needed for full convergence. The
“Dirac” system converges to an estimated relative residual of εmach in 170 iterations
while the “HK 8-dens” system needs 623 iterations.

The symmetry of Ein is such that only the two azimuthal modes n = −1 and
n = 1 are present. The Fourier coefficients of the surface densities of these modes,
h(1) and h(−1) of (55), are either identical or have opposite signs. Animations based
on (1) for a sequence of t reveal that SPWs are propagating along Γ in the images
of Fig. 4a and b. Their wavelength is roughly 15% shorter than the wavelength given
by (52).

10.3 Convergence of field images

As pointed out by one of the referees, it is interesting to see how the numerical error
in field images, produced by our 16th order Fourier–Nyström scheme of Section 9.2
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Fig. 4 Field images for scattering from the “rotated starfish” in the plasmonic case and with Ein(r) =
xei6z: (a, c, e) the scattered/transmitted Eρ(r, 0)-field; (b, d, f) the scattered/transmitted Hθ(r, 0)-field;
(c, d) log10 of estimated absolute field error for “HK 8-dens”; (e, f) the same for “Dirac”

in conjunction with “Dirac”, evolves as the size of the discrete linear systems (55)
increases. To this end, Fig. 5a shows the average estimated absolute field error in
Fig. 4e and f under mesh refinement. The error is estimated using 90,000 field points
on a Cartesian grid in the box B = {−1.3 ≤ x ≤ 1.3; −1.2 ≤ z ≤ 1.4} and behaves
very stably.
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It is also of interest to make convergence studies on setups which have semi-
analytic solutions, and compare with these, even though such solutions themselves
may not be entirely free from numerical error. To this end we let an incident
field

Ein(r) = G(r) + k−1− ∇ × G(r) , H in(r) = −iEin(r) ,

G(r) = j1(k−|r|)ρ|r|−1θ ,
(56)

be scattered from and transmitted into the unit ball. Here j1 is the first order spher-
ical Bessel function of the first kind and we are still in the plasmonic case with
k̂ = i

√
1.1838 and k− = 6. Figure 5b shows the average absolute error, obtained by

comparison with the Mie solution, in the fields E(r) and H (r) under mesh refine-
ment. The error is computed using 90,000 field points on a Cartesian grid in the box
B = {−2 ≤ x ≤ 2; −2 ≤ z ≤ 2} and normalized with the largest field amplitudes in
B. The convergence in Fig. 5b is very similar to that in Fig. 5a.

10.4 In a false essential spectrum for the “tomato”

We repeat the experiments of Section 10.2, but now for the “tomato”, that is, with Γ

non-smooth and generated by γ of (54) with α = 31π/18 as illustrated in Fig. 1a. A
number of 576 discretization points are used for each integral operator on γ in (55),
making the total system size 4608 × 4608.

In the positive dielectric case, and with a larger wavenumber k− = 18 as to com-
pensate for the “tomato” being smaller than the “rotated starfish”, the results for both
methods are even (marginally) better than in the previous example. The estimated
pointwise precision in the field images is between twelve and 13 digits (no images
shown). The “Dirac” system needs 96 GMRES iterations for full convergence while
the “HK 8-dens” system needs 87 iterations. We conclude that, thanks to the RCIP
method for dealing with the conical point, the non-smooth “tomato” is as simple as
the smooth “rotated starfish” from a numerical point of view.
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Fig. 5 Convergence as a function of the number of discretization points on γ of: (a) the scat-
tered/transmitted Eρ(r, 0)-field and Hθ(r, 0)-field, shown in Fig. 4e, f; (b) the scattered/transmitted
E(r)-field and H (r)-field resulting from the incident field (56) and Γ being the unit sphere
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In the plasmonic case and with k− = 5 we observe some very interesting fea-
tures. The wavenumber ratio corresponds to that (1 + ε̂)/(1 − ε̂) is in −σess(Kd),
but not in σess(Kd). Given the discussion about essential spectra in Section 6, it may
not come as a complete surprise that “HK 8-dens” exhibits false essential spectrum
in this case, even though correct limit solutions can be computed, see the last para-
graph of Section 3. “Dirac”, on the other hand, is free from this problem and correct
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Fig. 6 Field images for scattering from the “tomato” in the plasmonic case and with Ein(r) = xei5z: (a,
c, e) the scattered/transmitted Eρ(r, 0)-field; (b, d, f) the scattered/transmitted Hθ(r, 0)-field; (c,d) log10
of estimated absolute field error for “HK 8-dens”; (e, f) The same for “Dirac”. The colorbar range in (a)
is set to [−4.55, 4.55]
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fields can be computed without a limit process. Figure 6 shows that “Dirac” clearly
achieves better field accuracy than “HK 8-dens” in this case. In terms of GMRES
convergence the difference is even greater: “Dirac” needs 88 iterations while “HK 8-
dens” needs 326 iterations. There are SPWs propagating along Γ with a wavelength
that is roughly 20% shorter than the wavelength given by (52).

It is also enlightening to inspect the asymptotics of h close to the conical tip of
the “tomato” in the plasmonic case. Thanks to the symmetry of Ein, as discussed in
the last paragraph of Section 10.2, it is enough to study the eight densities (Fourier
coefficients) contained in the modal solution h(1). Figure 7 shows these eight den-
sities both for “Dirac” and “HK 8-dens”. The individual densities are denoted hi ,
i = 1, . . . , 8, with the azimuthal index omitted. Note that the densities h1 and h5 of
“HK 8-dens” are approximately zero, as they should be according to Section 5.2.

The strongest singularity observed in Fig. 7 is

hi ∝ s−0.51712968815959 , (57)

where s is the arc length distance along γ to the conical point at the origin. The
exponents in (57) and (58) are estimated using the automated eigenvalue method of
[14, Section 14] and all displayed digits are believed to be correct. For “HK 8-dens”,
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Fig. 7 Asymptotics for the “tomato” in the plasmonic case. The densities hi , i = 1, . . . , 8, for azimuthal
mode n = 1, as functions of the arc length distance along γ to the conical point at the origin. Columns
1-2: “HK 8-dens”. Columns 3-4: “Dirac”
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the singularity of (57) is observed for the densities h6, h7, and h8, corresponding to
ρE, Mθ , and Mτ according to (41). For “Dirac”, the singularity of (57) is observed
only for the density h6. Note that each of these functions is more singular than
H 1/2(Γ ), as allowed by the function space H3.

10.5 In the essential spectrum for a “drop with a sharp tip”

We repeat some of the experiments of Section 10.4, but shrink the opening angle
of the conical point to α = 5π/18, so that the shape of Γ now resembles that of
a “drop with a sharp tip”. A number of 576 discretization points are again used for
each integral operator on γ in (55).

Field images for the plasmonic case along with error estimates for “Dirac” are
shown in Fig. 8. No SPWs are excited along Γ . A number of 83 iterations were
needed for full GMRES convergence. The corresponding number for “HK 8-dens” is
314 iterations. Note that (1 + ε̂)/(1 − ε̂) is now in the essential spectrum of Kd and
that E

↓
ρ and H

↓
θ are oscillatory and unbounded at the origin. The colorbar ranges in
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Fig. 8 Field images for scattering from the “drop with a sharp tip” in the plasmonic case and withEin(r) =
xei5z: (a,c) the scattered/transmitted E

↓
ρ (r, 0)-field; (b, d) the scattered/transmitted H

↓
θ (r, 0)-field; (c, d)

log10 of estimated absolute field error for “Dirac”. The colorbar range in (a) is set to [−9.27, 9.27] and in
(b) set to [−1.43, 1.43]
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Fig. 8a and b are therefore restricted to the most extreme field values away from the
origin. The estimated pointwise absolute error close to the origin is, of course, now
larger than that in previous examples with everywhere bounded fields.

Figure 9 is analogous to Fig. 7 and exhibits the same general features. The
strongest singularity observed is now

hi ∝ s−1.5+1.25455347163480i , (58)

clearly visible for h6 of “Dirac” and for h6, h7, and h8 of “HK 8-dens”. As we are
now in the essential spectrum, we do not expect the densities to belong to H3, and
indeed the above mentioned densities just fail to belong to H−1/2(Γ ). Moreover, the
densities h3 and h4, and for “Dirac” also h1, just fail to belong to H 1/2(Γ ). This
second strongest singularity observed is s−0.50000+1.25455i. Again h1 and h5 are zero
for “HK 8-dens”, modulo rounding errors.

10.6 Static plasmons

Similar to Section 10.1 we plot condition numbers of our IERs for the unit sphere
to detect possible false eigenwavenumbers, but also to get a notion of how well-
conditioned the two IERs under study are. This time we consider the quasi-static limit
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Fig. 9 Asymptotics for the “drop with a sharp tip” in the plasmonic case. Densities displayed as in Fig. 7.
Column 1-2: “HK 8-dens”. Column 3-4: “Dirac”
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k± → 0 of the IERs as in Section 7, and plot the condition numbers as functions of
x = (1 + ε̂)/(1 − ε̂) in Fig. 10. With a slight abuse of notation, we keep speaking of
(true/false) eigenwavenumbers.

Here x < −1 corresponds to the positive dielectric case k̂ > 1, x = −1 corre-
sponds to an exterior Dirichlet problem, −1 < x < 0 corresponds to the plasmonic
case k̂/i > 1, x = 0 corresponds to the essential spectrum, 0 < x < 1 corresponds
to the plasmonic case 0 < k̂/i < 1, x = 1 corresponds to an exterior Neumann
problem, and x > 1 corresponds to the positive dielectric case 0 < k̂ < 1.

As discussed in Section 7, the condition number of the (5:8,5:8) diagonal block
for “Dirac”, shown in Fig. 10c, follows closely that of Kd and the peaks correspond
to the static plasmons discussed in Section 8. The peak at x = −1/3 has a bright
plasmon whereas all others have dark plasmons. “HK 8-dens” shows a symmetric
spectrum with an infinite number of false eigenwavenumbers for 0 < x < 1. The full
“Dirac” shows only two false eigenwavenumbers in the limits x = ±1. As shown in
Fig. 10d, the peak at x = 1 can be removed by using the version of “Dirac” specified
by (51). Note that “Dirac” specified by (35), is better conditioned near x = −1,
where false eigenwavenumbers occur both for “Dirac” and “HK 8-dens”. For “Dirac”
this false eigenwavenumber corresponds to the monopole field E = r/|r|3, H = 0
for |r| > 1, and E = H = 0 for |r| < 1.
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Fig. 10 The unit sphere. Condition numbers of system matrices of the discretized modal integral equa-
tions (55) with azimuthal index n = 0 in the quasi-static limit k+ = k− = 0. The plasmonic case is
x ∈ (−1, 1) and the positive dielectric case is x ∈ (−2,−1) ∪ (1, 2). (a) “HK 8-dens”; (b) “Dirac”; (c)
The “Dirac” (5:8,5:8) diagonal block; (d) The “Dirac” version (51)
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11 Conclusions and discussion

Our numerical results show that “Dirac” wins over “HK 8-dens” in almost all tests.
“Dirac” does not have any false near-eigenwavenumbers for any passive materials,
whereas “HK 8-dens” exhibits such in the plasmonic case, and even false eigen-
wavenumbers in the reverse plasmonic case. We have seen that “HK 8-dens” exhibits
false essential spectrum on domains with corners, and false eigenwavenumbers in the
quasi-static limit. “HK 8-dens” also requires more than three times as many GMRES
iterations than “Dirac” in the plasmonic cases.

Since “Dirac” clearly is a competitive IER of the MTP(k−, k+), we end by
comparing it to other available IERs. We limit our discussion to non-magnetic mate-
rials, although “Dirac” was formulated for general materials in [22], which we plan
to cover in a forthcoming publication. The aspects of the IERs that we base our
discussion on are the following.

(A) Has it been used for Lipschitz regular/piecewise smooth surfaces Γ ?
(B) What types of operators does it employ?
(C) How fast does it compute all the scattered and transmitted fields?
(D) How does it behave in the quasi-static limit?
(E) How stable is it? Does it have false eigenwavenumbers, false near-

eigenwavenumbers, or false essential spectrum?

We now make a comparison with the “Debye” formalism in [9, 10] and the “DFIE”
formalism in [33] which, according to [33, Conclusions], are the current leading IERs
when it comes to well-posedness for a wide range of passive materials. Using formal-
ism from [22, 31], “Dirac” uses Cauchy type integral representations for the Dirac
equation DF = ikF for the electromagnetic multivector field F , whereas “Debye”
employs a Dirac multivector potential F = DG + ikG, leading to a component-wise
Helmholtz equation ΔG + k2G = 0, for which classical layer potentials apply. The
electric and magnetic Gauss equations translate to certain conditions on these bound-
ary layers, which via Hodge decompositions of tangential vector fields allows one
to eliminate all but two scalar boundary densities for each domain. In the scattering
situation of the present paper, this yields a “Debye” IER with four scalar densi-
ties. It is known that (D) it does not have dense-mesh low-frequency breakdown,
and no topological low-frequency breakdown if complemented by extra equations.
A drawback of “Debye” is that implementing the Hodge projections requires the
numerical solution of a second order surface Laplace equation on Γ . An imple-
mentation of “Debye” for scattering by perfect conductors and piecewise smooth Γ

is in [5], but (A) it has not been used for the MTP(k−, k+) on piecewise smooth
Γ . According to [10, Equation (2.19)], “Debye” also (B) uses compositions of two
integral operators. Concerning (E), it is stated in [10, Conclusions] that “Debye” is
invertible for all passive materials. However, this is impossible for any IER, which
is equivalent to MTP(k−, k+), due to the true eigenwavenumbers shown in Fig. 3e.
Moreover, the main uniqueness result for “Debye”, [9, Theorem 3.2], assumes that
�e {ε+} > 0 and relies on [28, Theorem 69], which assumes permittivities in
the first quadrant [28, p. 261]. These assumptions do not cover all passive non-
magnetic materials, which correspond to the square [0, π/2]2 in Fig. 1b. It was
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recently shown in [11] though, that these uniqueness results can be sharpened to
cover (arg(k−), arg(k+)) = (0, π/2) in particular. However, numerical experiments
revealing possible false near-eigenwavenumbers as in Fig. 3d are not available.

“DFIE” is formulated in [33]. Like “Debye”, it employs potentials to reduce
Maxwell’s equations to vector Helmholtz equations. With “DFIE”, the fields E

and H are calculated independently of each other, by solving an IER with six
scalar densities for each field. Again it is known for “DFIE” that (D) it does not
suffer from low-frequency breakdown and (E) it does not have false eigenwavenum-
bers for k− > 0 and 0 ≤ arg(ε̂) < π , but it has false eigenwavenumbers at
(arg(k−), arg(k+)) = (0, π/2) as shown in [18, Section 11.3.2] (at least for a 2D
version of “DFIE”). The theory in [33] is presented for Hölder boundary function
spaces, and it is assumed that Γ is C2 regular. However, by straightforward adaption
to fractional Sobolev spaces and Lipschitz regular Γ as in [22], it appears that (A)
“DFIE” is applicable to non-smooth scattering. Inspecting the integral operators that
“DFIE” employs in [33, Appendix D], we see that (B) it uses single and double layer
type boundary operators like “Dirac”, with one exception. The exception is K31 in
[33, Equation (89)], which is a compact difference of hypersingular operators, and
somewhat more numerically challenging to implement [25]. To compare (C) how fast
“DFIE” and “Dirac” are, since the operators employed are roughly the same and hav-
ing a good solver in mind which is linear in the number of non-zero operator blocks,
we count these. From [33, Equation (87)] we have 2(36 − 4) = 64 non-zero opera-
tor blocks for “DFIE”, keeping in mind that we need to solve two 6 × 6 systems for
obtaining both E and H . From (27) we see that “Dirac” uses 64 − 14 = 50 non-
zero operator blocks. For field evaluations, [33, Equations (36) and (38)] show that
“DFIE” requires the evaluation of three double layer and three single layer poten-
tials, for each component of the fields. For “Dirac”, using the projected densities
(34), which are fast to compute on Γ , each field component requires in general the
evaluation of three double layer and two single layer potentials.

Comparing with “Dirac”, this has the advantage of (A) applying to any Lips-
chitz regular Γ and (B) only using bounded integral operators of single and double
layer type with explicit kernels. We remark that although (23) seems to be a Fred-
holm equation of the second kind, the operator G is not compact, even on smooth
Γ . However G4 is compact, which explains why “Dirac” works well in an iterative
solver. Moreover, “Dirac” does not (E) have any false eigenwavenumbers, false near-
eigenwavenumbers or false essential spectrum, (D) not even in the quasi-static limit,
except at x = ±1. These quasi-static endpoints are related to eddy current scattering,
and is the topic of a forthcoming paper by the authors. A reason why “Dirac” is so
successful in avoiding false spectra, is that the choices of parameters make its invert-
ibility depend only on the (6,6) diagonal block involving Kd. Thus the false spectrum
of Km, of which only one Hodge component is needed for the MTP(k−, k+), is
avoided.

In [2, Important Remark p. 123] it is stated that σ(Km) \ σ(Kd) contributes to
“higher-order resonances” in the near quasi-static limit. However, plots of the con-
dition numbers for “Dirac” on the sphere near the quasi-static limit (not shown) are
very similar to Fig. 10b. In particular, there are no visible traces of σ(Km) in terms
of near-eigenwavenumbers for 0 < x < 1.
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Appendix A. The entries of Ek

The entries of the matrixEk of (27) involve two families of integral operators denoted
Sk and Kk . A given member in an operator family, Sα

k or Kα
k , is defined by its super-

script α, which can be a constant, a unit vector, a scalar product of unit vectors,
or a cross product of unit vectors. Specifically we have for S1

k acting on a general
density g

S1
k g(r) = ik

∫

Γ

�k(r, r ′)g(r ′) dΓ ′ , r ∈ Γ , (A.1)

for Su·v′
k , where u and v are unit vectors,

Su·v′
k g(r) = ik

∫

Γ

u(r) · v(r ′)�k(r, r ′)g(r ′) dΓ ′ , r ∈ Γ , (A.2)

and for Ku
k and Ku×v′

k

Ku
k g(r) = p.v.

∫

Γ

u(r) · ∇′�k(r, r ′)g(r ′) dΓ ′ , r ∈ Γ , (A.3)

Ku×v′
k g(r) = p.v.

∫

Γ

(u(r) × v(r ′)) · ∇′�k(r, r ′)g(r ′) dΓ ′ , r ∈ Γ . (A.4)

When coding, particularly when Γ is axially symmetric and when azimuthal
Fourier transforms are to be implemented, it is helpful to have Sα

k and Kα
k in the form

Sα
k g(r) = ik

∫

Γ

sα(r, r ′)
2π |r − r ′|e

ik|r−r ′|g(r ′) dΓ ′ , r ∈ Γ , (A.5)

Kα
k g(r) = p.v.

∫

Γ

dα(r, r ′)
2π |r − r ′|3 (1−ik|r−r ′|)eik|r−r ′|g(r ′) dΓ ′ , r ∈ Γ ,(A.6)

where sα(r, r ′) and dα(r, r ′) are static kernel factors expressed in terms of quantities
introduced in (11)-(13) and the azimuthal angle θ .

Here follow sα(r, r ′) for the ten operators Sα
k of Ek

s1(r, r ′) = 1 , (A.7)

sν·ν′(r, r ′) = νρν′
ρ cos(θ − θ ′) + νzν

′
z , (A.8)

sν·θ ′(r, r ′) = νρ sin(θ − θ ′) , (A.9)

sν·τ ′(r, r ′) = νρν′
z cos(θ − θ ′) − νzν

′
ρ , (A.10)

sτ ·ν′(r, r ′) = νzν
′
ρ cos(θ − θ ′) − νρν′

z , (A.11)

sτ ·θ ′(r, r ′) = νz sin(θ − θ ′) , (A.12)

sτ ·τ ′(r, r ′) = νzν
′
z cos(θ − θ ′) + νρν′

ρ , (A.13)

sθ ·ν′(r, r ′) = −ν′
ρ sin(θ − θ ′) , (A.14)

sθ ·θ ′(r, r ′) = cos(θ − θ ′) , (A.15)

sθ ·τ ′(r, r ′) = −ν′
z sin(θ − θ ′) . (A.16)
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Here follow dα(r, r ′) for the 15 operators Kα
k of Ek

dν(r, r ′) = ν · (r − r ′) + νρρ′(1 − cos(θ − θ ′)) , (A.17)

dν′(r, r ′) = ν′ · (r − r ′) − ν′
ρρ(1 − cos(θ − θ ′)) , (A.18)

dτ (r, r ′) = τ · (r − r ′) + νzρ
′(1 − cos(θ − θ ′)) , (A.19)

dτ ′(r, r ′) = τ ′ · (r − r ′) − ν′
zρ(1 − cos(θ − θ ′)) , (A.20)

dθ (r, r ′) = ρ′ sin(θ − θ ′) , (A.21)

dθ ′(r, r ′) = ρ sin(θ − θ ′) , (A.22)

dν×ν′(r, r ′) = (ν′
ρτ · r − νρτ ′ · r ′) sin(θ − θ ′) , (A.23)

dν×θ ′(r, r ′) = −τ · (r − r ′) + (τ · r + νρz′)(1 − cos(θ − θ ′)) , (A.24)

dν×τ ′(r, r ′) = (νρν′ · r ′ + ν′
zτ · r) sin(θ − θ ′) , (A.25)

dτ×ν′(r, r ′) = −(ν′
ρν · r + νzτ

′ · r ′) sin(θ − θ ′) , (A.26)

dτ×τ ′(r, r ′) = −(ν′
zν · r − νzν

′ · r ′) sin(θ − θ ′) , (A.27)

dτ×θ ′(r, r ′) = ν · (r − r ′) − (ν · r − νzz
′)(1 − cos(θ − θ ′)) , (A.28)

dθ×ν′(r, r ′) = τ ′ · (r − r ′) + (τ ′ · r ′ + ν′
ρz)(1 − cos(θ − θ ′)) , (A.29)

dθ×τ ′(r, r ′) = −ν′ · (r − r ′) − (ν′ · r ′ − ν′
zz)(1 − cos(θ − θ ′)) , (A.30)

dθ×θ ′(r, r ′) = −(z − z′) sin(θ − θ ′) . (A.31)

Appendix B. Layer potentials for field evaluations

The expressions for field evaluation (28–31) involve layer potentials S̃α
k and K̃α

k

which are defined analogously to the operators Sα
k and Kα

k in Appendix A. The only
difference is that S̃α

k g(r) and K̃α
k g(r) have r ∈ Ω− ∪ Ω+ while Sα

k g(r) and Kα
k g(r)

have r ∈ Γ . Therefore K̃α
k does not need the principal value.

When coding, it is helpful to have S̃α
k and K̃α

k in the form

S̃α
k g(r) = ik

∫

Γ

sα(r, r ′)
2π |r − r ′| e

ik|r−r ′ |g(r ′) dΓ ′ , r ∈ Ω− ∪ Ω+ , (A.32)

K̃α
k g(r) =

∫

Γ

dα(r, r ′)
2π |r − r ′|3 (1 − ik|r − r ′|)eik|r−r ′ |g(r ′) dΓ ′ , r ∈ Ω+ ∪ Ω− , (A.33)

where sα(r, r ′) and dα(r, r ′) are static kernel factors, some of which are already
listed Appendix A. The static kernel factors needed, not listed in Appendix A, are

sρ·ν′(r, r ′) = ν′
ρ cos(θ − θ ′) , (A.34)

sρ·τ ′(r, r ′) = ν′
z cos(θ − θ ′) , (A.35)

sρ·θ ′(r, r ′) = sin(θ − θ ′) , (A.36)

sz·ν′(r, r ′) = ν′
z , (A.37)

sz·τ ′(r, r ′) = −ν′
ρ , (A.38)
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and

dρ(r, r ′) = ρ − ρ′ cos(θ − θ ′) , (A.39)

dz(r, r ′) = z − z′ , (A.40)

dρ×ν′(r, r ′) = −(τ ′ · r ′ + ν′
ρz) sin(θ − θ ′) , (A.41)

dρ×τ ′(r, r ′) = (ν′ · r ′ − ν′
zz) sin(θ − θ ′) , (A.42)

dρ×θ ′(r, r ′) = (z − z′) cos(θ − θ ′) , (A.43)

dz×ν′(r, r ′) = ν′
ρρ sin(θ − θ ′) , (A.44)

dz×τ ′(r, r ′) = ν′
zρ sin(θ − θ ′) , (A.45)

dz×θ ′(r, r ′) = ρ′ − ρ cos(θ − θ ′) . (A.46)
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