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Abstract
This paper studies well-definedness and convergence of subdivision schemes which
operate on Riemannian manifolds with nonpositive sectional curvature. These
schemes are constructed from linear ones by replacing affine averages by the Rie-
mannian centre of mass. In contrast to previous work, we consider schemes without
any sign restriction on the mask, and our results apply to all input data. We also anal-
yse the Hölder continuity of the resulting limit curves. Our main result states that
if the norm of the derived scheme (resp. iterated derived scheme) is smaller than
the corresponding dilation factor then the adapted scheme converges. In this way,
we establish that convergence of a linear subdivision scheme is almost equivalent to
convergence of its nonlinear manifold counterpart.

Keywords Refinement processes · Riemannian geometry · Geodesic averaging ·
Hölder continuity

Mathematics Subject Classification (2010) 41A25 · 65D05 · 65D17

1 Introduction

Linear stationary subdivision schemes are well-studied regarding their properties
of convergence and smoothness, see for example [2]. Over the last years, linear
refinement rules were transferred to nonlinear geometries, and subdivision algo-
rithms have been applied to data coming from surfaces, Lie groups or Riemannian
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manifolds. Different methods have been introduced to extend linear refinement
algorithms to manifold-valued data. Examples are the log-exp-analogue of a linear
scheme [4, 18], geodesic averaging processes or the so-called projection analogue,
see [11] for an overview.

Many results on convergence of nonlinear refinement processes are based on
the so-called proximity conditions introduced in [21]. These convergence results
unfortunately only apply to ‘dense enough’ input data.

If convergence is assumed, many nonlinear constructions yield C1 and C2

smoothness, see, e.g. [12, 19, 22]. The full smoothness of linear schemes is repro-
duced only if certain ways of constructing nonlinear schemes from linear ones are
employed [11, 24].

Returning to the question of convergence of nonlinear subdivision schemes, some
results apply to all input data. One can show convergence, e.g. for interpolatory
schemes in Riemannian manifolds [20] or schemes defined by binary geodesic aver-
aging [7, 8]. If one restricts to special geometries, more general classes of schemes
can be shown to converge for all input data, e.g. schemes with nonnegative mask
in Cartan-Hadamard metric spaces have been treated by [9, 10]. In this general set-
ting, which goes beyond smooth manifolds, the coefficients of the scheme’s mask are
interpreted as probabilities.

In this paper, we prove convergence of subdivision schemes in complete Rie-
mannian manifolds with sectional curvature K � 0. We generalise earlier work,
in particular Theorem 5 of [23] which can only be applied to schemes with non-
negative mask. To extend linear refinement rules to manifold-valued data, we use
the Riemannian centre of mass [15]. Such refinement rules have been investigated
by [11] regarding their smoothness, and in [23] with regard to convergence. A syn-
onym for ‘Riemannian centre of mass’ which has been used is weighted geodesic
average.

The paper is organised as follows. First, we recall some facts about linear sub-
division schemes and their nonlinear counterparts. In particular, we introduce a
Riemannian analogue T of a linear scheme S and show that it is well-defined
in Cartan-Hadamard manifolds. In Section 4, we prove that T is contractive and
displacement-safe, in the terminology introduced in [8]. Afterwards, we deduce our
main result which states that if

1

Nm
‖Sm∗‖ < 1, for some m = 1, 2, . . . ,

then a Riemannian analogue of Sm converges to a continuous limit curve. Here, N

denotes the dilation factor and S∗ is the derived scheme. Next, we analyse the Hölder
regularity of the limit curves. Moreover, we describe how to extend our results to
a wider class of manifolds by dropping the simple connectivity required for Car-
tan-Hadamard manifolds. The last section presents some examples. For the reader’s
convenience, some selected proofs have been moved to the Appendix.
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2 Subdivision schemes

2.1 Linear subdivision schemes

A linear subdivision scheme S maps a sequence of points (xi)i∈Z lying in a linear
space to a new sequence of points (Sxi)i∈Z using the rule

Sxi =
∑

j∈Z
ai−Njxj .

Here, N ∈ N is the dilation factor. We require N � 2, but the usual case is N = 2.
Throughout the paper, we assume that the sequence a�, � ∈ Z, called the mask of the
refinement rule, has compact support. This means that a� �= 0 only for finitely many
�. It turns out that the condition

∑

j∈Z
ai−Nj = 1 for all i (1)

(affine invariance) is necessary for the convergence of linear subdivision schemes,
see [8] and [2] for an overview. From now on, we make the assumption that all
subdivision schemes are affine invariant.

To simplify notation, we initially consider only binary refinement rules, i.e. rules
with dilation factor N = 2. Then, we can write the refinement rule in the following
way:

(Sx)2i =
m+1∑

j=−m

αjxi+j and (Sx)2i+1 =
m+1∑

j=−m

βjxi+j , (2)

with m ∈ N and coefficients αj , βj such that

m+1∑

j=−m

αj =
m+1∑

j=−m

βj = 1. (3)

For example, Chaikin’s algorithm [3], which is given by the mask (a−2, . . . , a1) =
( 14 ,

3
4 ,

3
4 ,

1
4 ), can be written as

(Sx)2i = 3

4
xi + 1

4
xi+1 and (Sx)2i+1 = 1

4
xi + 3

4
xi+1. (4)

Subdivision schemes satisfying (Sx)2i = xi are called interpolatory. For example,
the well-known four-point scheme is defined by

(Sx)2i = xi and (Sx)2i+1 = −ωxi−1+
(1
2

+ω
)
xi +

(1
2

+ω
)
xi+1−ωxi+2, (5)

for some parameter ω, see [6]. The next example will be our main example
throughout the text.
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Example 1 We consider a non-interpolatory subdivision scheme with negative mask
coefficients. Taking averages of the four-point scheme with parameter ω = 1

16 and
Chaikin’s scheme yields

(Sx)2i = − 1

32
xi−1 + 21

32
xi + 13

32
xi+1 − 1

32
xi+2,

(Sx)2i+1 = − 1

32
xi−1 + 13

32
xi + 21

32
xi+1 − 1

32
xi+2.

2.2 The Riemannian analogue of a linear subdivision scheme

We recall the extension of a linear subdivision scheme to manifold-valued data with
the help of the Riemannian centre of mass as shown in [11]. This generalisation of
the concept of affine average is quite natural in the sense that we only replace the
Euclidean distance by the Riemannian distance. The construction requires to intro-
duce some notation. We denote the Riemannian inner product by 〈·, ·〉 = |·|2 on a
Riemannian manifold M . The Riemannian distance dist(x, y) between two points
x, y ∈ M is given by

dist(x, y) := inf
γ

∫ b

a

|γ̇ (t)| dt,

where γ : [a, b] → M is a curve connecting points γ (a) = x and γ (b) = y.
Consider the weighted affine average

x∗ =
n∑

j=0

αjxj

of points xj ∈ R
d w.r.t. weights αj ∈ R, satisfying

∑
αj = 1. It can be characterised

as the unique minimum of the function

gα(x) =
n∑

j=0

αj

∣∣x − xj

∣∣2 .

We transfer this definition to Riemannian manifolds by replacing the Euclidean
distance by the Riemannian distance. Let

fα(x) =
n∑

j=0

αj dist(x, xj )
2.

We call the minimizer of this function the Riemannian centre of mass and denote it by

x∗ = av(α, x).

Note that in general the Riemannian centre of mass is only well-defined locally. It is
the aim of the present paper to identify settings where the average is globally well-
defined. We extend the linear subdivision rule (2) to manifold-valued data by defining

(T x)2i = av(α, x) and (T x)2i+1 = av(β, x). (6)

Definition 2 We call T the Riemannian analogue of the linear subdivision scheme S.
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3 The Riemannian centre of mass in Cartan-Hadamardmanifolds

Cartan-Hadamard manifolds, and more generally manifolds with nonpositive sec-
tional curvature, are a class of geometries where the Riemannian average can be
made globally well-defined. Let M be a Cartan-Hadamard manifold, i.e. a simply
connected, complete Riemannian manifold with sectional curvature K � 0. To show
well-definedness of geodesic averages, we have to clarify the global existence and
uniqueness of a minimizer of the function

fα(x) =
m+1∑

j=−m

αj dist(xj , x)2, with
∑

j

αj = 1 (7)

and xj ∈ M . A local answer to this question is not difficult, see for example [17].
The global well-definedness in case αj � 0 is shown in [16]. Hanne Hardering gave
another proof of the global existence in [13]. We are mainly interested in the result
she gave in Lemma 2.3. of [13] which we formulate as

Lemma 3 (H. Hardering, [13]) The function fα has at least one minimum. Moreover,
there exists r > 0 (depending on the coefficients αj and the distances of the points
xj from each other) such that all minima of fα lie inside the compact ball Br(x0).

To prove that the function fα has a unique minimum, we generalise a statement
of Hermann Karcher [15]. It turns out that we can use arguments similar to his
by splitting

∑m+1
j=−m αj dist(xj , x)2 into two sums depending on whether the corre-

sponding coefficient is negative or not. Before we introduce the general notation used
throughout the text, we illustrate the idea by means of Example 1.

Example 4 Consider the subdivision rule defined by the coefficients αj and βj of
Example 1. Define fα according to (7) by

fα(x) =
2∑

j=−1

αj dist(xj , x)2,

with (α−1, . . . , α2) = (− 1
32 ,

21
32 ,

13
32 , − 1

32 ). We sort these coefficients in two groups
depending on whether they are positive or not.

It is convenient to define α+ = 21
32 + 13

32 = 34
32 and α− =

∣∣∣− 1
32

∣∣∣ +
∣∣∣− 1

32

∣∣∣ = 2
32 .

We split the interval [0, α+ + α−] in four subintervals whose length coincides with
the values |αj | (but in a different order). We define the function σ : [0, α+ + α−] →
{−1, 0, 1, 2} by

σ(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−1 for t ∈
[
0, 1

32

]

2 for t ∈
(

1
32 ,

2
32

]

0 for t ∈
(

2
32 ,

23
32

]

1 for t ∈
(
23
32 ,

36
32

]



1694 S. Hüning, J. Wallner

and see that

fα(x) =
2∑

j=−1

αj dist(xj , x)2 = −
α−∫

0

dist(xσ(t), x)2dt +
α−+α+∫

α−

dist(xσ(t), x)2dt .

In the general case, we need the following notation to eventually rewrite the func-
tion in (7) as the sum of two integrals (Fig. 1). We begin to sort our coefficients in
two groups by defining two index sets

Iα− := {j | αj < 0}, Iα+ := {j | αj � 0}.

We describe these sets as

Iα− = {j1, . . . , jn}, Iα+ = {jn+1, . . . , j2m+2},

with j1 < . . . < jn and jn+1 < . . . < j2m+2 for n ∈ {1, . . . , 2m + 2} and ji ∈
{−m, . . . , m + 1}. If Iα− = ∅, we set n = 0 and Iα+ = {−m, . . . , m + 1}. Let

α+ =
∑

j∈Iα+

αj , α− =
∑

j∈Iα−

|αj |, β+ =
∑

j∈I
β
+

βj , β− =
∑

j∈I
β
−

|βj |.

Assumption (3) implies that

α+ − α− = β+ − β− = 1. (8)

We are now able to rewrite the function fα in terms of two integrals

fα(x) = ∑m+1
j=−m αj dist(xj , x)2 =

(
− ∫ α−

0 + ∫ α−+α+
α−

)
dist

(
xσ(t), x

)2
dt (9)

with the function σ : [0, α+ + α−
] → {−m, . . . , m + 1} given as follows. It

is constant in each of the successive intervals of length |αj1 |, |αj2 |, . . . , |αj2m+2 |
which tile the interval

[
0, α+ + α−

]
. Its value in the k-th interval is given by the

integer jk . The values at subinterval boundaries are not relevant. We note that the
first part of the definition of σ represents the summands of (7) corresponding to

Fig. 1 Construction of the index selection function σ on basis of the sequence (αj )
2
j=−1 with α−1, α2 < 0,

α0, α1 > 0
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coefficients of Iα− whereas the second part represents the coefficients corresponding
to Iα+.

Using the representation of the function fα given in (9), we can state

Lemma 5 In a Cartan-Hadamard manifold, the gradient of the function fα is given
by the formula

1

2
grad fα(x) =

∫ α−

0
exp−1

x xσ(t)dt −
∫ α−+α+

α−
exp−1

x xσ(t)dt,

where exp denotes the Riemannian exponential map. Furthermore, we have

d2

ds2
fα(γ (s)) � 2〈γ̇ (s), γ̇ (s)〉

for any geodesic γ : [0, 1] → M .

The proof of this lemma is contained in the Appendix. It is mainly based on the
proof of Theorem 1.2. in [15]. We sum up the results of the two lemmas above to
state the main result of this section.

Theorem 6 In a Cartan-Hadamard manifold M , the function

fα(x) =
m+1∑

j=−m

αj dist(xj , x)2

(
∑

αj = 1) with xj ∈ M has a unique minimum. This implies that the geodesic
average is globally well-defined in Cartan-Hadamard manifolds.

Proof By Lemma 3, there exists a minimum of the function fα and all its minima
lie inside a compact ball. By the second part of Lemma 5, the function fα is strictly
convex, so the minimum is unique.

4 Convergence result

In this section, we prove that the Riemannian analogue of a linear subdivision scheme
in a Cartan-Hadamard manifold converges for all input data, if the mask satisfies
a contractivity condition with contractivity factor smaller than 1, see Theorems 8
and 11. The condition implying convergence involves derived schemes (and iter-
ates of derived schemes) and is analogous to a well-known criterion which applies
in the linear case. This kind of result was previously only known for schemes
with nonnegative mask (see [23, Theorem 5]). It has already been conjectured
in [11].

4.1 Contractivity condition

We begin by adapting Lemma 3 of [23].
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Lemma 7 Consider points xj , coefficients αj , βj , for j = −m, . . . , m + 1, and
their centre of mass x∗ = av(α, x), x∗∗ = av(β, x) in a Cartan-Hadamard manifold.
Moreover, we assume that (3) holds. Then,

dist(x∗, x∗∗) �
( m+1∑

j=−m

∣∣∣
∑

i�j

αi − βi

∣∣∣
)

· max
�

dist(x�, x�+1).

The proof of this lemma is given in the Appendix.
Recall that a linear, binary subdivision scheme S is given by Sxi =∑

j∈Z ai−2j xj

with
∑

j∈Z ai−2j = 1 for all i. In order to obtain a convergence result for the Rie-
mannian analogue T of S, we have to estimate the distance between two consecutive
points in the sequence Skx. Let μ(r)

j = ∑
i�j

ar−2i and

μ = max
r∈{1,2}

m+1∑

j=−m

∣∣∣μ(r+1)
j − μ

(r)
j

∣∣∣ . (10)

Then, Lemma 7 implies that the subdivision rule T obeys a so-called contractivity
condition

dist(T kxi+1, T
kxi) � μk · sup

�

dist(x�, x�+1). (11)

The factor μ is called contractivity factor. In Section 4.2, we show that the value of
the contractivity factor μ in (10) is closely related to the norm of the derived scheme.

We make use of the result Hanne Hardering gave in [13, Lemma 2.3] again. In
particular, she shows that all solutions of the minimisation problem stated in (7) lie
inside a compact ball around x0. The radius of this ball only depends on the chosen
weights and the distances of xi , i = −m, . . . , m, from x0. In our setting, this means
that the points of the refined sequence are not too far from the initial sequence points.
To be more precise, it follows that there exists a constant C > 0 such that

dist(T x2i , xi) � C · sup
�

dist(x�, x�+1), i ∈ Z. (12)

Subdivision schemes satisfying inequality (12) have been called displacement-safe
by [8]. Together with (11), we conclude that

dist(T k+1x2i , T
kxi) � Cμk� with � := sup

�

dist(x�, x�+1). (13)

In the linear case (see [5]), a contractivity factor smaller than 1 itself leads to a
convergence result, but this condition is not sufficient in the nonlinear case. Here,
we additionally need the fact that our schemes are displacement-safe as shown in [8]
for manifold-valued subdivision schemes based on an averaging process. For inter-
polatory subdivision schemes however, a contractivity factor smaller than 1 entails
convergence of the scheme since (12) is satisfied anyway, see [8, 20].

We now state our convergence result which generalises the result of [23].

Theorem 8 Consider a linear, binary, affine invariant subdivision scheme S. Denote
by T the Riemannian analogue of S in a Cartan-Hadamard manifold M . Let μ be
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the contractivity factor defined by (10). If μ < 1, then T converges to a continuous
limit T ∞x for all input data x.

Proof Let J = [a, b] be an interval and denote by C(J, M) the continuous func-
tions from J to M . We use c|J for the restriction of a map c to an interval J .
Denote by ck : R → M the broken geodesic which is the union of geodesic seg-
ments ck

∣∣[ i
2k , i+1

2k ] which connect successive points T kxi and T kxi+1. We show that(
ck|J

)
k�0 is a Cauchy sequence in C(J, M) for any J . The metric on C(J, M) is

given by dist(g, h) := maxt∈J dist(g(t), h(t)). We now proceed as in the proof of
Proposition 4 of [23]. Since T satisfies (11) and is displacement-safe, it follows from
the definition of the geodesics that

dist(cm, cm+1) � �μm + C�μm + �μm+1. (14)

Therefore,

dist(cm, cn) �
(
� + C� + �μ

)μm − μn

1 − μ

for allm � n. Thus,
(
ck

∣∣J
)
k�0 is a Cauchy sequence inC(J, M) for any interval J =

[a, b]. Completeness of the space C(J, M) implies existence of the limit function
T ∞x.

Example 9 We compute the contractivity factor of the subdivision scheme introduced
in Example 1. Using our previous results, we get

μ = max
{28
32

,
8

32

}
= 28

32
< 1. (15)

Thus, the Riemannian analogue of the linear scheme converges in Cartan-Hadamard
manifolds for all input data. Figure 2 illustrates the action of this subdivision scheme
in the hyperbolic plane.

Remark 1 So far, we considered subdivision schemes with dilation factor N = 2.
We note here that one can extend the convergence result given in Theorem 8 to
subdivision schemes with arbitrary dilation factor. We still extend a linear subdivision

Fig. 2 Subdivision algorithm of Example 1 with initial data x0 = (0.6, 0.5), x1 = (0.6,−0.5), x2 =
(−0.6,−0.5) and x3 = (−0.6, 0.5) in the hyperbolic plane represented with the Poincaré disk model. From
left to right: initial polygon, polygon after one refinement step and polygon after four refinement steps
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scheme S to its nonlinear counterpart T by using the Riemannian analogue intro-
duced in Section 2.2. Analogous to the binary case, we say that T satisfies a
contractivity condition with contractivity factor μ if

dist
(
T kxi+1, T

kxi

)
� μk · sup

�

dist
(
x�, x�+1

)
, i ∈ Z.

Also, we say that T is displacement-safe if there exists a constant C > 0 such that

dist
(
(T x)Ni, xi

)
� C · sup

�

dist
(
x�, x�+1

)
, i ∈ Z.

The convergence result now reads as follows.

Theorem 10 Let T be the Riemannian analogue of the linear subdivision rule S

in a Cartan-Hadamard manifold M . Assume that (1) holds. Let μ
(r)
j = ∑

i�j

ar−Ni

and

μ = max
r∈{1,...,N}

∑

j

∣∣∣μ(r+1)
j − μ

(r)
j

∣∣∣ . (16)

If μ < 1, then T converges to a continuous limit T ∞x for all input data x.

The convergence proof in the case N > 2 is along the same lines as for N = 2.

4.2 Derived scheme

For every linear, affine invariant subdivision scheme S, there exists the derived scheme
S∗ given by the rule S∗	 = N	S with 	xi = xi+1 − xi , see, e.g. [11, Sec. 2.1]. In
this section, we show that the contractivity factor (16) is closely related to the norm

‖S∗‖ := max
r∈{1,...,N}

{∑

j

|a∗
r−Nj |

}

of the derived scheme S∗ with mask a∗. This result is not surprising since it holds
in the linear case as well as for nonlinear subdivision schemes with nonnegative
mask [23].

Theorem 11 Let S be a linear, affine invariant subdivision rule with dilation fac-
tor N . Denote its derived scheme by S∗. If there exists an integer m � 1 such
that 1

Nm ‖Sm∗‖ < 1, then the Riemannian analogue of Sm in a Cartan-Hadamard
manifold converges for all input data.

We can reuse the proof of Theorem 5 of [23] to show Theorem 11. We repeat it
here for the reader’s convenience.

Proof Let a∗ = (a∗
j )j∈Z denote the mask of the derived scheme S∗. We consider the

special input data y = (yj )j∈Z given by

yj =
{−1 if j � 0

0 else.
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We obtain
1

N
a∗
l = 1

N

∑
k
a∗
l−Nk(yk+1 − yk) = 1

N
S∗(yl+1 − yl) = 1

N
S∗	yl

= 	Syl = Syl+1 − Syl =
∑

k�0
al−Nk − al+1−Nk, and

1

N
a∗
r−Nj =

∑
k�0

ar−N(j+k) − ar+1−N(j+k) =
∑

i�j
ar−Ni − ar+1−Ni .

By (16), we get

sup
r

∑

j

|μ(r)
j − μ

(r+1)
j | = 1

N
sup

r

∑

j

|a∗
r−Nj | = 1

N
‖S∗‖.

Since the dilation factor of Sm is Nm, Theorem 10 gives the desired result.

We have just seen that the contractivity factor (16) of the Riemannian analogue of
a linear subdivision scheme S is given by

μ = 1

N
‖S∗‖.

So in order to obtain a convergence result, it suffices to check if the norm of the
derived scheme S∗ is smaller than the dilation factor. Even if this is not the case, we
might get a convergence result by considering iterates of derived schemes Sm∗, since
the contractivity factor might decrease, see Section 7.1.

In [5], it is shown that if we ask for uniform convergence of a linear subdivision
scheme S, the existence of an integer m � 1 such that 1

Nm ‖S∗m‖ < 1 is equivalent to
the convergence of the scheme. Thus, Theorem 11 states that if the linear subdivision
scheme converges uniformly, so does a certain Riemannian analogue of this scheme
in Cartan-Hadamard manifolds.

5 Hölder continuity

It has been shown in [20] that the limit function of an interpolatory subdivision
scheme for manifold-valued data has Hölder continuity − log μ

log 2 . Here, μ is a contrac-
tivity factor for the nonlinear analogue of the linear scheme. It depends only on the
mask of the scheme. In [5], a similar inequality is proven for uniformly convergent
subdivision schemes in linear spaces. We get the following related result.

Proposition 12 Let T be the Riemannian analogue of a binary, affine invariant sub-
division scheme S which has contractivity factor μ < 1. Then, the limit curve T ∞x

satisfies

dist
(
T ∞x(t1), T

∞x(t2)
)
� D|t2 − t1|ι,

with

D = 2 ·
(C� + � + μ�

1 − μ
+ �

)
and ι = 1 − log ‖S∗‖

log 2
,
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for all t1, t2 ∈ R with |t1 − t2| < 1 and all input data x, i.e. the limit curve is Hölder
continuous with exponent ι.

Here, the data-dependent constant � is defined by the maximal distance of
successive data points which contribute to the limit curve in the interval under
consideration.

The proof is contained in the Appendix.

Example 13 For our main Example 1, we compute ι = −log( 2832 )/log 2 ≈ 0.1926.

For subdivision schemes with arbitrary dilation factor, we obtain

Proposition 14 Let T be the Riemannian analogue of a linear subdivision scheme S

in a Cartan-Hadamard manifold M satisfying (1). Moreover, we assume that T has
contractivity factor μ < 1. Then, the limit curve T ∞x satisfies

dist
(
T ∞x(t1), T

∞x(t2)
)
� D|t2 − t1|ι,

with

D = 2 · C�+�+(N−1)μ�
1−μ

+ N� and ι = 1 − log ‖S∗‖
log N

for all t1, t2 ∈ R with |t1 − t2| < 1 and all input data x. Here, N is the dila-
tion factor and the data-dependent constant � is defined by the maximal distance
of successive data points which contribute to the limit curve in the interval under
consideration.

6 The case of manifolds which are not simply connected

We explain how to extend our previous results to a complete Riemannian manifold
M with sectional curvature K � 0, i.e. we drop the assumption of simple connect-
edness. We use the fact that M has a so-called simply connected covering (universal
covering) M̃ . This is a simply connected manifold which projects onto M in a locally
diffeomorphic way. The Riemannian metric on M is transported to M̃ by declaring
the projection π : M̃ → M a local isometry. An example is shown by Fig. 3, where
a strip of infinite length and width 1 wraps around the cylinder of height 1 infinitely
many times. For the general theory of coverings, see, e.g. [14]. Each data point xj in
M has a potentially large number of preimages π−1(xj ).

6.1 Re-definition of the Riemannian analogue of a linear scheme

So far our initial data always consisted of a sequence of points in M . Now we addi-
tionally choose a path c(t) which connects the data points xj in the correct order: we
have c(tj ) = xj for suitable parameter values . . . < tj < tj+1 < . . . . Such a path is
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not unique, see Fig. 3. By well-known properties of the simply connected covering,
this path can be uniquely lifted to a path c̃(t) in M̃ which projects onto the original
path c(t), once a preimage x̃0 with π(x̃0) = x0 has been chosen. This means that for
all indices j , we have

c̃(tj ) = x̃j , with π(x̃j ) = xj .

We can now simply apply the Riemannian analogue T̃ of the linear scheme S

which operates on data from M̃ , because M̃ is Cartan-Hadamard by construction.
Note that there is no Riemannian analogue of S in M , since M is not simply con-
nected and geodesic averages are not well-defined in general. However, if our input
data is a sequence xj together with a connecting path as described above, we may let

T x = π(T̃ x̃) where x̃ arises from x by lifting.

We can still call T a natural Riemannian analogue of the linear subdivision scheme S.

Lemma 15 For any given input data (xj ), the refined data (T x)j computed by
the Riemannian analogue T of a linear subdivision scheme S depends only on the
homotopy class of the path c(t) which is used to connect the data points.

Proof First we show that T x does not depend on the choice of the preimage x̃0
in the covering space M̃: if another preimage x̃ ′

0 is chosen, there is an isometric

Fig. 3 Top: initial data on a cylinder M = S1 × [0, 1] together with connecting paths. Bottom: their lift to
the universal covering M̃ , which is the strip (−∞,∞) × [0, 1]. The various possible liftings are mapped
onto each other by a deck transformation φ
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deck transformation φ : M̃ → M̃ which maps the original lifting to the new one
and which commutes with the covering projection π . The action of T̃ is invariant
under isometries, so π(T̃ x̃′) = π(T̃ φ(x̃)) = π(φ(T̃ x̃)) = π(T̃ x̃). Further, it is well
known that the lifted location x̃j of any individual data point xj depends only on the
homotopy class of the path c, cf. [14].

With this modification of the notion of input data, our main result Theorem 11
now reads as follows:

Theorem 16 Let M be a complete manifold with K � 0, and let S be a lin-
ear, affine invariant subdivision rule with dilation factor N . Denote by S∗ its
derived scheme. If there exists an integer m � 1 such that 1

Nm ‖Sm∗‖ < 1, then
the Riemannian analogue of Sm in M produces continuous limits for all input
data.

7 Examples

7.1 Four-point scheme

Consider the general four-point scheme S introduced in (5). We would like to know
for which values of ω ∈ (0, ∞) the Riemannian analogue T of S converges. The
mask of the derived scheme is given by a∗−2 = a∗

3 = −2ω, a∗−1 = a∗
2 = 2ω and

a∗
0 = a∗

1 = 1. Thus by Theorem 8, the contractivity factor is μ = 2|ω| + 1
2 and T

converges for arbitrary input data if − 1
4 < ω < 1

4 . For − 1
2 < ω � 0, this has already

been known [9, 10]. In this case, the mask is nonnegative.
In particular, we obtain a contractivity factor of μ = 5

8 for the well-studied case of
the four-point scheme with ω = 1

16 . By Proposition 12, we obtain a Hölder exponent
of ι ≈ 0.6781. Figure 4 shows an example of the four-point scheme in the hyperbolic
plane for ω = 0.23.

Fig. 4 The four-point scheme with ω = 0.23 in the hyperbolic plane. Left to right: initial polygon, polygon
after one refinement step, polygon after three refinement steps and limit curve. The limit curve is Hölder
continuous with exponent 0.06
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Now we consider two rounds of the four-point scheme as one round of a subdi-
vision scheme with dilation factor N = 4 which for simplicity is again called S. If
ω = 1

16 , our refinement rule is then given by

(Sx)4i = xi,

(Sx)4i+1 = 1

162
(
xi−2 − 18xi−1 + 216xi + 66xi+1 − 9xi+2

)
,

(Sx)4i+2 = 1

162
(− 16xi−1 + 144xi + 144xi+1 − 16xi+2

)
,

(Sx)4i+3 = 1

162
(− 9xi−1 + 66xi + 216xi+1 − 18xi+2 + xi+3

)
.

The contractivity factor is

μ = max
{ 84

162
,
80

162

}
= 84

162
≈ 0.3281.

Theorem 10 again confirms that a Riemannian analogue converges to a continuous
limit function for all input data. Proposition 14 yields a Hölder exponent of ι ≈
0.8039.
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Appendix

We give the proofs of the two Lemmas 5 and 7 which use the concept of Jacobi fields.
Therefore, we first briefly recall their definition and properties. Finally, we prove
Proposition 12.

A.1 Jacobi fields

Denote by c(u, s) a one-parameter family of geodesics parametrised by s, with u

being the parameter along each geodesic. Let c′(u, s) := d
du

c(u, s). Then for fixed
s = s0, J (u) = c′(u, s0) is a Jacobi vector field along the geodesic c(·, s0). It is
known that Jacobi fields are solutions of the linear second-order differential equation
J ′′ + R(c′, J )c′ = 0, with R denoting the Riemann curvature tensor. For any given
geodesic, there is a linear space of Jacobi vector fields whose dimension is 2 dimM .
Jacobi fields are an important tool in global Riemannian geometry because on the one
hand, geodesics cannot be shortest curves if they admit Jacobi fields with two zeros,

http://creativecommons.org/licenses/by/4.0/
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and on the other hand, the behaviour of Jacobi fields is guided by R. For this reason,
Jacobi fields are a well-investigated topic. We refer to the textbook of do Carmo [1]
for a general introduction.

A.2 Proofs

Proof of Lemma 5 Recall the definition of fα by (9). Let γ : [0, 1] → M be a
geodesic and

ct (u, s) = expxσ(t)

(
u · exp−1

xσ(t)
γ (s)

)
.

For any s, the geodesic ct (·, s) connects xσ(t) with γ (s). Those geodesics exist and
are unique since M is Cartan-Hadamard. Additionally, let c′

t (u, s) := d
du

ct (u, s) and
ċt (u, s) := d

ds
ct (u, s). By construction, dist

(
xσ(t), γ (s)

) = ‖c′
t (u, s)‖. For each t, s

the vector field J (u) = ċt (u, s) along the geodesic u → ct (u, s) is a Jacobi field.
Since

fα(γ (s)) =
(

−
∫ α−

0
+
∫ α−+α+

α−

)
dist(xσ(t), γ (s))2dt

=
(

−
∫ α−

0
+
∫ α−+α+

α−

)
〈c′

t (u, s), c′
t (u, s)〉dt

we obtain

1

2

d

ds
fα(γ (s)) =

(
− ∫ α−

0 + ∫ α−+α+
α−

) 〈 ∇
∂s

c′
t (u, s), c′

t (u, s)
〉

dt .

Here, ∇
∂s

denotes the covariant derivative along the curve γ (s). In the following, we
use the facts that ‖c′

t (u, s)‖ does not depend on s, ∇
∂s

c′
t (u, s) = ∇

∂u
ċt (u, s) and finally

that ∇
∂u

c′
t (u, s) = 0 since c is a geodesic. This leads to

(
−
∫ α−

0
+
∫ α−+α+

α−

) 〈 ∇
∂s

c′
t (u, s), c′

t (u, s)

〉
dt

=
(

−
∫ α−

0
+
∫ α−+α+

α−

)∫ 1

0

〈 ∇
∂s

c′
t (u, s), c′

t (u, s)

〉
du dt

=
(

−
∫ α−

0
+
∫ α−+α+

α−

)∫ 1

0

〈 ∇
∂u

ċt (u, s), c′
t (u, s)

〉
du dt

=
(

−
∫ α−

0
+
∫ α−+α+

α−

)∫ 1

0

d

du

〈
ċt (u, s). c′

t (u, s)
〉

du dt .

Since ċt (0, s) = 0, we finally obtain

1

2

d

ds
fα(γ (s)) =

(
−
∫ α−

0
+
∫ α−+α+

α−

) 〈
ċt (1, s), c′

t (1, s)
〉
. (17)
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Observe that c′
t (1, s) = − exp−1

γ (s) xσ(t) (by definition of the exponential map) and
ċt (1, s) = γ̇ (s) (by construction) are independent of t . Therefore,

1

2

d

ds
fα(γ (s)) =

〈
γ̇ (s),

(∫ α−

0
−
∫ α−+α+

α−

)
exp−1

γ (s) xσ(t)dt

〉
.

By the definition of the gradient, we conclude that

1

2
gradfα(x) =

(∫ α−

0
−
∫ α−+α+

α−

)
exp−1

x xσ(t)dt .

Using (8), we see that

1

2

d2

ds2
fα(γ (s)) =

(
−
∫ α−

0
+
∫ α−+α+

α−

) 〈
ċt (1, s),

∇
∂u

ċt (1, s)

〉
dt

=
(

−
∫ α−

0
+
∫ α−+α+

α−

) 〈
J (1), J ′(1)

〉
dt

= 〈J (1), J ′(1)〉 � 〈γ̇ (s), γ̇ (s)〉.
To obtain the inequality above, we used the following relations between the Jacobi
field and its derivative

J ′(1)tan = J (1)tan and 〈J ′(1)norm, J (1)〉 � 〈J (1)norm, J (1)〉, (18)

where J tan (resp. J norm) denotes the tangential (resp. normal) part of the Jacobi field;
see Appendix A in [15] for more details. Here, we used the fact that the sectional
curvature of M is bounded above by zero.

Remark 2 We note that a direct further differentiation of (17) yields

d

ds

(
1

2

d

ds
fα(γ (s))

)
=
(

−
∫ α−

0
+
∫ α−+α+

α−

) 〈
ċt (1, s),

∇
∂u

d

ds
ct (1, s)

〉
.

Thus,

∇
∂s

1

2
gradfα(γ (s)) =

(∫ α−

0
−
∫ α−+α+

α−

) ∇
∂u

d

ds
ct (1, s)dt .

This equality is used in the next proof.

To prove the next result, we make use of the representation of fα (resp. fβ ) as in
(9) in terms of the function σ (resp. τ ). Before we give the proof of Lemma 7, we
illustrate the idea by means of our main example:

Example 17 From Example 4, we know that

fα(x) = −
∫ α−

0
dist(xσ(t), x)2dt +

∫ α−+α+

α−
dist(xσ(t), x)2dt .

Similarly, we obtain

fβ(x) = −
∫ β−

0
dist(xτ(t), x)2dt +

∫ β−+β+

β−
dist(xτ(t), x)2dt,
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with β− = 2
32 , β+ = 34

32 and

τ(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−1 for t ∈ [0, 1
32 ]

2 for t ∈
(

1
32 ,

2
32

]

0 for t ∈
(

2
32 ,

15
32

]

1 for t ∈
(
15
32 ,

36
32

]
.

In order to get the desired result in Lemma 7, we estimate the distance between the
gradients of the functions fα and fβ at the point x∗ = av(α, x) (as explained in more
detail in the proof of the Lemma 7). To be able to do so, we make use of Lemma 5
and convert the resulting four integrals into two. In this case, we get

∥∥∥
1

2
gradfβ(x∗) − 1

2
gradfα(x∗)

∥∥∥ =
∥∥∥

2∑

j=−1

(αj − βj ) exp
−1
x∗ xj

∥∥∥

=
∥∥∥−

∫ 8
32

0
exp−1

x∗ x
ν(t+ 8

32 )
dt +

∫ 8
32

0
exp−1

x∗ xν(t)dt

∥∥∥,

with

ν(t) =
{
0 for t ∈ [0, 8

32 ]
1 for t ∈

(
8
32 ,

16
32

]
.

Note that the construction of the function ν is similar to the one of σ in (9).

We are now ready to give the proof of Lemma 7 which follows the structure in
[23] and the ideas of [15].

Proof of Lemma 7 To obtain a lower bound for the absolute value of the gradient of
1
2fα(x), we make use of Theorem 1.5. in [15] . Let γ be the geodesic starting from

x∗ and ending in x and let ct (u, s) = expxσ(t)

(
u · exp−1

xσ(t)
γ (s)

)
be the family of

geodesics from xσ(t) to γ (s). We apply the Cauchy-Schwarz inequality and the fact
that gradfα(x∗) = 0 by definition of x∗ to obtain

∥∥∥ 1
2gradfα(γ (1))

∥∥∥ ·
∥∥∥γ̇ (1)

∥∥∥ �
∫ 1
0

d
ds

〈
1
2gradfα(γ (s)), γ̇ (s)

〉
ds.

By Remark 2, we conclude
∥∥∥
1

2
gradfα(γ (1))

∥∥∥ ·
∥∥∥γ̇ (1)

∥∥∥

�
(

−
∫ α−

0
+
∫ α−+α+

α−

)∫ 1

0

〈 ∇
∂u

d

ds
ct (1, s), ċt (1, s)

〉
ds dt,

with ċt (u, s) = d
ds

ct (u, s). As in the proof of Lemma 5, let J (u) = ċt (u, s) denote
the Jacobi field along the curve u → ct (u, s). The dependence on s and t is not
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indicated in the notation. We have J (1) = γ̇ (s) and J ′(1) = ∇
∂u

ċt (1, s). Using (8),
we obtain

∥∥∥
1

2
gradfα(γ (1))

∥∥∥ ·
∥∥∥γ̇ (1)

∥∥∥ �
(

−
∫ α−

0
+
∫ α−+α+

α−

)∫ 1

0
〈J ′(1), J (1)〉 ds dt

= 〈J ′(1), J (1)〉 � 〈γ̇ (s), γ̇ (s)〉.
The last inequality follows in the same way as in the proof of Lemma 5. By the
definition of the geodesic γ , we have ‖γ̇ (s)‖ = dist(x, x∗) and conclude that

∥∥∥
1

2
gradfα(x)

∥∥∥ � dist(x, x∗). (19)

By definition of x∗, we have gradfα(x∗) = 0. Together with Lemma 5, we obtain

∥∥∥
1

2
gradfβ(x∗)

∥∥∥=
∥∥∥
1

2
gradfβ(x∗) − 1

2
gradfα(x∗)

∥∥∥ =
∥∥∥

m+1∑

j=−m

(αj − βj ) exp−1
x∗ xj

∥∥∥.

We define the sequence δ = (δj )j=−m,...,m+1 by δj = αj − βj . Let ν be the function
constructed as σ in (9) with respect to the coefficients δ, i.e. the value of ν is constant
in intervals of length |δj | and given by the corresponding index. Denote by δ− (resp.
δ+) the sum of the absolute values of the negative (resp. nonnegative) coefficients
of δ. Equation (3) implies that δ− = δ+. As in (9), we rewrite the sum above as an
integral

∥∥∥
m+1∑

j=−m

(αj − βj ) exp−1
x∗ xj

∥∥∥=
∥∥∥−

∫ δ−

0
exp−1

x∗ xν(t)dt +
∫ δ−+δ+

δ−
exp−1

x∗ xν(t)dt

∥∥∥

=
∥∥∥
∫ δ−

0

(
− exp−1

x∗ xν(t) + exp−1
x∗ xν(t+δ−)

)
dt

∥∥∥

�
∫ δ−

0

∥∥∥ exp−1
x∗ xν(t+δ−) − exp−1

x∗ xν(t)

∥∥∥ dt .

With the help of (19), we conclude that

dist(x∗, x∗∗) �
∥∥∥
1

2
gradfβ(x∗)

∥∥∥ �
∫ δ−

0

∥∥∥ exp−1
x∗ xν(t+δ−) − exp−1

x∗ xν(t)

∥∥∥ dt

�
∫ δ−

0
dist(xν(t+δ−), xν(t))dt

�
∫ δ−

0
|ν(t + δ−) − ν(t)| dt · max

�
dist(x�, x�+1).

To obtain the third inequality above, we used the fact that in Cartan-Hadamard
manifolds, the exponential map does not decrease distances, see for example [16].

It remains to show that
∫ δ−

0
|ν(t + δ−) − ν(t)| dt =

m+1∑

j=−m

∣∣∣
∑

i�j

αi − βi

∣∣∣.
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To do that, we split the sequence of coefficients δ in two sequences η1, η2 defined by

η1j :=
{

δj if δj � 0
0 else

and η2j :=
{ |δj | if δj < 0
0 else.

Similarly to the construction in the proof of Lemma 3 of [23], we consider the
function ε1 given by

ε1 : [0, δ−] → {−m, . . . , m + 1}, ε1(t) := sup

{
j

∣∣∣
∑
i�j

η1i < t

}
+ 1.

Analogously, we define ε2 for the sequence η2. We finally obtain
∫ δ−

0
|ν(t + δ−) − ν(t)| dt =

∫ δ−

0
|ε1(t) − ε2(t)| dt

=
m+1∑

j=−m

∣∣∣
∑

i�j

η1i −
∑

i�j

η2i

∣∣∣ =
m+1∑

j=−m

∣∣∣
∑

i�j

αi − βi

∣∣∣.

This concludes the proof of Lemma 7.

Finally, we give the proof of Proposition 12.

Proof of Proposition 12 Assume that t1, t2 ∈ R with |t1 − t2| < 1. Then, there exists
an integer k ∈ Z such that 2−k−1 � |t2 − t1| � 2−k . As in the proof of Theorem 8,
let ck be the union of geodesic segments ck

∣∣[ i
2k , i+1

2k ] connecting the points T kxi and

T kxi+1. Together with (11), we obtain

dist (ck+1(t1), ck+1(t2)) � 2 sup
�

dist
(
T k+1x�+1, T

k+1x�

)
� 2μk+1�.

Using (14), we have

dist
(
T ∞x(t), ck+1(t)

)
� lim

�→∞ dist (c�(t), ck+1(t))

�
∞∑

j=k+1

dist
(
cj (t), cj+1(t)

) = C� + � + μ�

1 − μ
μk+1

for all t ∈ R. Summarising the previous two observations leads to

dist
(
T ∞x(t1), T ∞x(t2)

)

� dist
(
T ∞x(t1), ck+1(t1)

)+ dist (ck+1(t1), ck+1(t2)) + dist
(
ck+1(t2), T ∞x(t2)

)

� Dμk+1.

Since |t2 − t1| � 2−k , taking the logarithm shows that μk+1 � μ− log2(|t2−t1|). We
conclude that

dist
(
T ∞x(t1), T ∞x(t2)

)
� D

(
2log2(|t2−t1|)

)− log2(μ)

� D|t2 − t1|ι,

with ι = − log μ
log 2 = 1− log ‖S∗‖

log 2 . Here, the last equality holds becauseμ = 1
2‖S∗‖.
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