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Abstract We propose in this paper a unifying scheme for several algorithms from the
literature dedicated to the solving of monotone inclusion problems involving com-
positions with linear continuous operators in infinite dimensional Hilbert spaces. We
show that a number of primal-dual algorithms for monotone inclusions and also the
classical ADMM numerical scheme for convex optimization problems, along with
some of its variants, can be embedded in this unifying scheme. While in the first
part of the paper, convergence results for the iterates are reported, the second part is
devoted to the derivation of convergence rates obtained by combining variable met-
ric techniques with strategies based on suitable choice of dynamical step sizes. The
numerical performances, which can be obtained for different dynamical step size
strategies, are compared in the context of solving an image denoising problem.
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1 Introduction and preliminaries

Consider the convex optimization problem

inf
x∈H

{f (x) + g(Lx) + h(x)}, (1)

where H and G are real Hilbert spaces, f : H → R := R ∪ {±∞} and g : G → R

are proper, convex and lower semicontinuous functions, h : H → R is a convex and
Fréchet differentiable function with Lipschitz continuous gradient and L : H → G
is a linear continuous operator.

Due to numerous applications in fields like signal and image processing, portfolio
optimization, cluster analysis, location theory, network communication, and machine
learning, the design and investigation of numerical algorithms for solving convex
optimization problems of type (1) attracted in the last couple of years huge interest
from the applied mathematics community. The most prominent methods one can find
in the literature for solving (1) are the primal-dual proximal splitting algorithms and
the ADMM algorithms. We briefly describe the two classes of algorithms.

Primal-dual algorithms have their origins in the works of Arrow, Hurwicz and
Uzawa [1], and Korpelevich [33]. Tseng’s algorithm [40], which stands at heart of
primal-dual algorithms of forward-backward-forward type, is a modification of the
iterative methods in these two fundamental works. Proximal splitting algorithms for
solving convex optimization problems involving compositions with linear continu-
ous operators have been proposed by Combettes and Ways [19], Esser et al. [26],
Chambolle and Pock [14], and He and Yuan [32]. Further investigations have been
made in the more general framework of finding zeros of sums of linearly composed
maximally monotone operators, and monotone and Lipschitz, respectively, cocoer-
cive operators. The resulting numerical schemes have been employed to the solving
of the inclusion problem as follows:

find x ∈ H such that 0 ∈ ∂f (x) + (L∗ ◦ ∂g ◦ L)(x) + ∇h(x),

which represents the system of optimality conditions of problem (1).
Briceño-Arias and Combettes pioneered this approach in [13], by reformulating

the general monotone inclusion in an appropriate product space as the sum of a
maximally monotone operator and a linear and skew one, and by solving the result-
ing inclusion problem via a forward-backward-forward type algorithm (see also
[16]). Afterwards, by using the same product space approach, this time in a suitable
renormed space, Vũ succeeded in [41] in formulating a primal-dual splitting algo-
rithm of forward-backward type, in other words, by saving a forward step. Condat
has presented in [20], in the variational case, algorithms of the same nature with the
one in [41]. A primal-dual algorithm of Douglas-Rachford type has been proposed
in [11]. Under strong monotonicity/convexity assumptions and the use of dynamic
step size strategies, convergence rates have been provided in [9], for the primal-dual
algorithm in [41] (see also [14, 15]), and in [10] and for the primal-dual algorithm in
[16]. Among the recent developments in this field count, the primal-dual algorithm
with linesearch introduced in [34], which avoids the exact calculation of the norm of
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the linear operator and the three-operator splitting algorithm for monotone inclusions
introduced in [21].

We describe the ADMM algorithm for solving (1) in the case h = 0, which corre-
sponds to the standard setting in the literature. By introducing an auxiliary variable,
one can rewrite (1) as follows:

inf
(x,z)∈H×G

Lx−z=0

{f (x) + g(z)}. (2)

For a fixed real number c > 0, we consider the augmented Lagrangian associated
with problem (2), which is defined as follows:

Lc : H × G × G → R, Lc(x, z, y) = f (x) + g(z) + 〈y, Lx − z〉 + c

2
‖Lx − z‖2.

The ADMM algorithm relies on the alternating minimization of the augmented
Lagrangian with respect to the variables x and z (see [12, 22–24, 28–30] and Remark
4 for the exact formulation of the iterative scheme). Generally, the minimization
with respect to the variable x does not lead to a proximal step. This drawback has
been overcome by Shefi and Teboulle in [38] by introducing additional suitably cho-
sen metrics, and also in [3] for an extension of the ADMM algorithm designed for
problems, which involve also smooth parts in the objective.

The aim of this paper is to provide a unifying algorithmic scheme for solv-
ing monotone inclusion problems, which encompasses several primal-dual iterative
methods [8, 14, 20, 41] and the ADMM algorithm (and its variants from [38]) in
the particular case of convex optimization problems. A closer look at the structure
of the new algorithmic scheme shows that it translates the paradigm behind ADMM
methods for optimization problems to the solving of monotone inclusions. We carry
out a convergence analysis for the proposed iterative scheme by making use of tech-
niques relying on the Opial Lemma applied in a variable metric setting. Furthermore,
we derive convergence rates for the iterates under supplementary strong monotonic-
ity assumptions. To this aim, we use a dynamic step strategy, based on which we
can provide a unifying scheme for the algorithms in [9, 14]. Not least, we also pro-
vide accelerated versions for the classical ADMM algorithm (and its variable metric
variants). In the last section, we compare the performances of the accelerated algo-
rithm under different dynamical step size strategies in the context of solving an image
processing problem.

In what follows, we recall some elements of the theory of monotone operators in
Hilbert spaces and refer for more details to [4, 6, 39].

Let H be a real Hilbert space with inner product 〈·, ·〉 and associated norm ‖ · ‖ =√〈·, ·〉. For an arbitrary set-valued operator A : H ⇒ H, we denote by Gr A =
{(x, u) ∈ H × H : u ∈ Ax} its graph, by dom A = {x ∈ H : Ax 
= ∅} its
domain and by A−1 : H ⇒ H its inverse operator, defined by (u, x) ∈ Gr A−1 if
and only if (x, u) ∈ Gr A. We say that A is monotone if 〈x − y, u − v〉 ≥ 0 for all
(x, u), (y, v) ∈ Gr A. A monotone operator A is said to be maximal monotone, if
there exists no proper monotone extension of the graph of A on H × H.

The resolvent of A, JA : H ⇒ H, is defined by JA = (Id +A)−1, where Id : H →
H, Id(x) = x for all x ∈ H, is the identity operator on H. If A is maximal monotone,
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then JA : H → H is single-valued and maximal monotone (see [4, Proposition 23.7
and Corollary 23.10]). For an arbitrary γ > 0, we have (see [4, Proposition 23.2])

p ∈ JγAx if and only if (p, γ −1(x − p)) ∈ Gr A

and (see [4, Proposition 23.18])

JγA + γ Jγ −1A−1 ◦ γ −1 Id = Id . (3)

When G is another Hilbert space and L : H → G is a linear continuous operator,
then L∗ : G → H, defined by 〈L∗y, x〉 = 〈y, Lx〉 for all (x, y) ∈ H × G, denotes
the adjoint operator of L, while the norm of L is defined as ‖L‖ = sup{‖Lx‖ : x ∈
H, ‖x‖ ≤ 1}.

Let γ ≥ 0 be arbitrary. We say that A is γ -strongly monotone, if 〈x − y, u − v〉 ≥
γ ‖x − y‖2 for all (x, u), (y, v) ∈ Gr A. A single-valued operator A : H → H is said
to be γ -cocoercive, if γ 〈x−y, Ax−Ay〉 ≥ ‖Ax−Ay‖2 for all (x, y) ∈ H×H. Notice
that we slightly modify the classical definition of a coercive operator, without altering
its sense, in order to cover also the situation when A is constant (in particular, when
A = 0) and γ = 0. A is called γ -Lipschitz continuous, if ‖Ax−Ay‖ ≤ γ ‖x −y‖ for
all (x, y) ∈ H × H. A single-valued linear operator A : H → H is said to be skew,
if 〈x, Ax〉 = 0 for all x ∈ H. The parallel sum of two operators A, B : H ⇒ H is
defined by A�B : H ⇒ H, A�B = (A−1 + B−1)−1.

Since the variational case will be also in the focus of our investigations, we recall
next some elements of convex analysis.

For a function f : H → R we denote by dom f = {x ∈ H : f (x) < +∞}
its effective domain and say that f is proper, if dom f 
= ∅ and f (x) 
= −∞
for all x ∈ H. We denote by �(H) the family of proper convex and lower semi-
continuous extended real-valued functions defined on H. Let f ∗ : H → R,
f ∗(u) = supx∈H{〈u, x〉 − f (x)} for all u ∈ H, be the conjugate function of f .
The subdifferential of f at x ∈ H, with f (x) ∈ R, is the set ∂f (x) := {v ∈
H : f (y) ≥ f (x) + 〈v, y − x〉 ∀y ∈ H}. We take by convention ∂f (x) := ∅, if
f (x) ∈ {±∞}. If f ∈ �(H), then ∂f is a maximally monotone operator (cf. [37])
and it holds (∂f )−1 = ∂f ∗. For f, g : H → R two proper functions, we consider
also their infimal convolution, which is the function f�g : H → R, defined by
(f�g)(x) = infy∈H{f (y) + g(x − y)}, for all x ∈ H.

When f ∈ �(H) and γ > 0, for every x ∈ H, we denote by proxγf (x) the
proximal point of parameter γ of f at x, which is the unique optimal solution of the
optimization problem

inf
y∈H

{
f (y) + 1

2γ
‖y − x‖2

}
.

Notice that Jγ ∂f = (Id +γ ∂f )−1 = proxγf , thus proxγf : H → H is a single-valued
operator fulfilling the extended Moreau’s decomposition formula as follows:

proxγf +γ prox(1/γ )f ∗ ◦γ −1 Id = Id .

Finally, we say that the function f : H → R is γ -strongly convex for γ > 0, if
f − γ

2 ‖·‖2 is a convex function. This property implies that ∂f is γ -strongly monotone
(see [4, Example 22.3]).
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2 The ADMM paradigm employed to monotone inclusions

In this section, we propose an algorithm for solving monotone inclusion prob-
lems involving compositions with linear continuous operators in infinite dimensional
Hilbert spaces, which is designed in the spirit of the ADMM paradigm.

2.1 Problem formulation, algorithm, and particular cases

The following problem represents the central point of our investigations.

Problem 1 Let H and G be real Hilbert spaces, A : H ⇒ H and B : G ⇒ G be
maximally monotone operators and C : H → H an η-cocoercive operator for η ≥ 0.
Let L : H → G be a linear continuous operator. The aim is to solve the primal
monotone inclusion

find x ∈ H such that 0 ∈ A x + (L∗ ◦ B ◦ L)x + Cx (4)

together with its dual monotone inclusion

find v ∈ G such that ∃x ∈ H : −L∗v ∈ Ax + Cx and v ∈ B(Lx). (5)

Simple algebraic manipulations yield that (5) is equivalent to the problem

find v ∈ G such that 0 ∈ B−1v +
(
(−L) ◦ (A + C)−1 ◦ (−L∗)

)
v,

which can be equivalently written as follows:

find v ∈ G such that 0 ∈ B−1v +
(
(−L) ◦ (A−1�C−1) ◦ (−L∗)

)
v. (6)

We say that (x, v) ∈ H× G is a primal-dual solution to the primal-dual pair of
monotone inclusions (4)–(5), if

− L∗v ∈ Ax + Cx and v ∈ B(Lx). (7)

If x ∈ H is a solution to (4), then there exists v ∈ G such that (x, v) is a primal-
dual solution to (4)–(5). On the other hand, if v ∈ G is a solution to (5), then there
exists x ∈ H such that (x, v) is a primal-dual solution to (4)–(5). Furthermore, if
(x, v) ∈ H× G is a primal-dual solution to (4)–(5), then x is a solution to (4) and v

is a solution to (5).
Next, we relate this general setting to the solving of a primal-dual pair of convex

optimization problems.

Problem 2 Let H and G be real Hilbert spaces, f ∈ �(H), g ∈ �(G), h : H → R a
convex and Fréchet differentiable function with η-Lipschitz continuous gradient, for
η ≥ 0, and L : H → G a linear continuous operator. Consider the primal convex
optimization problem

inf
x∈H

{f (x) + h(x) + g(Lx)} (8)
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and its Fenchel dual problem

sup
v∈G

{−(f ∗ �h∗)(−L∗v) − g∗(v)}. (9)

The system of optimality conditions for the primal-dual pair of optimization
problems (8)–(9) reads as follows:

− L∗v − ∇h(x) ∈ ∂f (x) and v ∈ ∂g(Lx), (10)

which is actually a particular formulation of (7) when

A := ∂f, C := ∇h, B := ∂g. (11)

Notice that, due to the Baillon-Haddad Theorem (see [4, Corollary 18.16]), ∇h is
η-cocoercive.

If (8) has an optimal solution x ∈ H and a suitable qualification condition is
fulfilled, then there exists v ∈ G, an optimal solution to (9), such that (10) holds. If
(9) has an optimal solution v ∈ G and a suitable qualification condition is fulfilled,
then there exists x ∈ H, an optimal solution to (8), such that (10) holds. Furthermore,
if the pair (x, v) ∈ H×G satisfies relation (10), then x is an optimal solution to (8), v
is an optimal solution to (9) and the optimal objective values of (8) and (9) coincide.

One of the most popular and useful qualification conditions guaranteeing the exis-
tence of a dual optimal solution is the one known under the name Attouch-Brézis and
which requires that:

0 ∈ sqri(dom g − L(dom f )) (12)

holds. Here, for S ⊆ G a convex set, we denote by

sqri S := {x ∈ S : ∪λ>0λ(S − x) is a closed linear subspace of G}
its strong quasi-relative interior. The topological interior is contained in the strong
quasi-relative interior: int S ⊆ sqri S, however, in general, this inclusion may be
strict. If G is finite dimensional, then for a nonempty and convex set S ⊆ G, one has
sqri S = ri S, which denotes the topological interior of S relative to its affine hull.
Considering again the infinite dimensional setting, we remark that condition (12) is
fulfilled, if there exists x′ ∈ dom f such that Lx′ ∈ dom g and g is continuous at
Lx′. For further considerations on convex duality, we refer to [4, 6, 7, 25, 42].

Throughout the paper, the following additional notations and facts will be used.
We denote by S+(H) the family of operators U : H → H which are linear, con-
tinuous, self-adjoint, and positive semi-definite. For U ∈ S+(H), we consider the
semi-norm defined by

‖x‖2
U = 〈x, Ux〉 ∀x ∈ H.

The Loewner partial ordering is defined for U1, U2 ∈ S+(H) by

U1 � U2 ⇔ ‖x‖2
U1

≥ ‖x‖2
U2

∀x ∈ H.

Finally, for α > 0, we set

Pα(H) := {U ∈ S+(H) : U � α Id}.
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Let α > 0, U ∈ Pα(H) and A : H ⇒ H a maximally monotone operator. Then, the
operator (U + A)−1 : H → H is single-valued with full domain; in other words,

for every x ∈ H, there exists a unique p ∈ H such that p = (U + A)−1x.

Indeed, this is a consequence of the relation

(U + A)−1 = (Id +U−1A)−1 ◦ U−1

and of the maximal monotonicity of the operator U−1A in the renormed Hilbert space
(H, 〈·, ·〉U) (see for example [18, Lemma 3.7]), where

〈x, y〉U := 〈x, Uy〉 ∀x, y ∈ H.

We are now in the position to formulate the algorithm relying on the ADMM
paradigm for solving the primal-dual pair of monotone inclusions (4)–(5).

Algorithm 3 For all k ≥ 0, let Mk
1 ∈ S+(H), Mk

2 ∈ S+(G) and c > 0 be such that
cL∗L + Mk

1 ∈ Pαk
(H) for αk > 0. Choose (x0, z0, y0) ∈ H × G × G. For all k ≥ 0,

the generated the sequence (xk, zk, yk)k≥0 is as follows:

xk+1 =
(
cL∗L + Mk

1 + A
)−1 [

cL∗(zk − c−1yk) + Mk
1 xk − Cxk

]
(13)

zk+1 =
(

Id +c−1Mk
2 + c−1B

)−1 [
Lxk+1 + c−1yk + c−1Mk

2 zk
]

(14)

yk+1 = yk + c(Lxk+1 − zk+1). (15)

The choice of variable metrics is mainly motivated by the fact this allows make
use of variable step sizes, as we will show in Section 3 in the context of primal-dual
algorithms. In [31], variable metrics have been used in the context of an ADMM
iterative scheme. We refer the reader to [35], where the positive impact of variable
metrics on the performances of numerical optimization algorithms is emphasized.

We show below that several algorithms from the literature can be embedded in the
iterative scheme of Algorithm 3.

Remark 4 For all k ≥ 0, the Eqs. 13 and (14) are equivalent to

cL∗(zk − Lxk+1 − c−1yk) + Mk
1 (xk − xk+1) − Cxk ∈ Axk+1, (16)

and, respectively,

c(Lxk+1 − zk+1 + c−1yk) + Mk
2 (zk − zk+1) ∈ Bzk+1. (17)

Notice that the latter is equivalent to

yk+1 + Mk
2 (zk − zk+1) ∈ Bzk+1. (18)

In the variational setting as described in Problem 2, namely, by choosing the
operators as in (11), the inclusion (16) becomes

0 ∈ ∂f (xk+1) + cL∗(Lxk+1 − zk + c−1yk) + Mk
1 (xk+1 − xk) + ∇h(xk),
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which is equivalent to

xk+1 =argmin
x∈H

{
f (x) + 〈x−xk, ∇h(xk)〉+ c

2
‖Lx − zk+c−1yk‖2+ 1

2
‖x−xk‖2

Mk
1

}
.

On the other hand, (17) becomes

c(Lxk+1 − zk+1 + c−1yk) + Mk
2 (zk − zk+1) ∈ ∂g(zk+1),

which is equivalent to

zk+1 = argmin
z∈G

{
g(z) + c

2
‖Lxk+1 − z + c−1yk‖2 + 1

2
‖z − zk‖2

Mk
2

}
.

Consequently, the iterative scheme (13)–(15) reads as follows:

xk+1 = argmin
x∈H

{
f (x) + 〈x − xk, ∇h(xk)〉 + c

2
‖Lx − zk + c−1yk‖2 + 1

2
‖x − xk‖2

Mk
1

}
(19)

zk+1 = argmin
z∈G

{
g(z) + c

2
‖Lxk+1 − z + c−1yk‖2 + 1

2
‖z − zk‖2

Mk
2

}
(20)

yk+1 = yk + c(Lxk+1 − zk+1), (21)

which is the algorithm formulated and investigated by Banert et al. in [3]. The case
when h = 0 and Mk

1 , Mk
2 are constant for every k ≥ 0 has been considered in the

setting of finite dimensional Hilbert spaces by Shefi and Teboulle [38] (see also [27]).
We want to emphasize that when h = 0 and Mk

1 = Mk
2 = 0 for all k ≥ 0, the iterative

scheme (19)–(21) collapses into the classical version of the ADMM algorithm.

Remark 5 For all k ≥ 0, consider the particular choices Mk
1 := 1

τk
Id −cL∗L for

τk > 0, and Mk
2 := 0.

(i) Let k ≥ 0 be fixed. Relation (13) (written for xk+2) reads

xk+2 =
(
τ−1
k+1 Id +A

)−1 [
cL∗(zk+1 − c−1yk+1) + τ−1

k+1x
k+1 − cL∗Lxk+1 − Cxk+1

]
.

From (15), we have

cL∗(zk+1 − c−1yk+1) = −L∗(2yk+1 − yk) + cL∗Lxk+1;
hence,

xk+2 =
(
τ−1
k+1 Id +A

)−1 [
τ−1
k+1x

k+1 − L∗(2yk+1 − yk) − Cxk+1
]

= Jτk+1A

(
xk+1 − τk+1Cxk+1 − τk+1L

∗(2yk+1 − yk)
)

. (22)

On the other hand, by using (3), relation (14) reads as folloes:

zk+1 = Jc−1B

(
Lxk+1 + c−1yk

)
= Lxk+1 + c−1yk − c−1JcB−1

(
cLxk+1 + yk

)

which is equivalent to

cLxk+1 + yk − czk+1 = JcB−1

(
cLxk+1 + yk

)
.
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By using again (15), this can be reformulated as follows:

yk+1 = JcB−1

(
yk + cLxk+1

)
. (23)

The iterative scheme in (22)–(23) generates, for a given starting point (x1, y0) ∈
H × G and a fixed c > 0, a sequence (xk, yk)k≥1 as follows:

yk+1 = JcB−1

(
yk + cLxk+1

)
(24)

xk+2 = Jτk+1A

(
xk+1 − τk+1Cxk+1 − τk+1L

∗(2yk+1 − yk)
)

. (25)

When τk = τ for all k ≥ 1, the algorithm (24)–(25) recovers a numerical scheme
for solving monotone inclusion problems proposed by Vũ in [41, Theorem 3.1]. More
precisely, the error-free variant of the algorithm in [41, Theorem 3.1] formulated for
a constant sequence (λn)n∈N equal to 1 and employed to the solving of the primal-
dual pair (6)–(4) (by reversing the order in Problem 1, that is, by treating (6) as the
primal monotone inclusion and (4) as its dual monotone inclusion) is nothing else
than the iterative scheme (24)–(25).

In case C = 0, (24)–(25) becomes for all k ≥ 0

xk+1 = JτkA

(
xk − τkL

∗(2yk − yk−1)
)

(26)

yk+1 = JcB−1

(
yk + cLxk+1

)
, (27)

which, in case τk = τ for all k ≥ 1 and cτ‖L‖2 < 1, is nothing else than the
algorithm introduced by Boţ, Csetnek, and Heinrich in [8, Algorithm 1, Theorem
2] applied to the solving of the primal-dual pair (6)–(4) (by reversing the order in
Problem 1).

(ii) Considering again the variational setting as described in Problem 2, the
algorithm (24)–(25) reads for all k ≥ 0

yk+1 = proxcg∗
(
yk + cLxk+1

)

xk+2 = proxτk+1f

(
xk+1 − τk+1∇h(xk+1) − τk+1L

∗(2yk+1 − yk)
)

.

When τk = τ > 0 for all k ≥ 1, one recovers a primal-dual algorithm investi-
gated under the assumption 1

τ
− c‖L‖2 >

η
2 by Condat in [20, Algorithm 3.2,

Theorem 3.1].

Not least, (26)–(27) reads in the variational setting (which corresponds to the case
h = 0) for all k ≥ 0

xk+1 = proxτkf

(
xk − τkL

∗(2yk − yk−1)
)

yk+1 = proxcg∗
(
yk + cLxk+1

)
.

When τk = τ > 0 for all k ≥ 1, this iterative schemes becomes the algorithm
proposed by Chambolle and Pock in [14, Algorithm 1, Theorem 1] for solving in
case h = 0 the primal-dual pair of optimization problems (9)–(8) (in this order).
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2.2 Convergence analysis

In this subsection, we will address the convergence of the sequence of iterates gen-
erated by Algorithm 3. One of the tools we will use in the proof of the convergence
statement is the following version of the Opial Lemma formulated in the setting of
variable metrics (see [17, Theorem 3.3]).

Lemma 6 Let S be a nonempty subset of H and (xk)k≥0 be a sequence in H. Let
α > 0 and Wk ∈ Pα(H) be such that Wk � Wk+1 for all k ≥ 0. Assume that:

(i) for all z ∈ S and for all k ≥ 0: ‖xk+1 − z‖Wk+1 ≤ ‖xk − z‖Wk ;
(ii) every weak sequential cluster point of (xk)k≥0 belongs to S.

Then, (xk)k≥0 converges weakly to an element in S.

We present the first main theorem of this manuscript.

Theorem 7 Consider the setting of Problem 1 and assume that the set of primal-
dual solutions to the primal-dual pair of monotone inclusions (4)–(5) is nonempty.
Let (xk, zk, yk)k≥0 be the sequence generated by Algorithm 3 and assume that Mk

1 −
η
2 Id ∈ S+(H), Mk

1 � Mk+1
1 , Mk

2 ∈ S+(G), Mk
2 � Mk+1

2 for all k ≥ 0. If one of the
following assumptions:

(I) there exists α1 > 0 such that Mk
1 − η

2 Id ∈ Pα1(H) for all k ≥ 0;
(II) there exist α, α2 > 0 such that Mk

1 − η
2 Id +L∗L ∈ Pα(H) and Mk

2 ∈ Pα2(G)

for all k ≥ 0;
(III) there exists α > 0 such that Mk

1 − η
2 Id +L∗L ∈ Pα(H) and 2Mk+1

2 � Mk
2 �

Mk+1
2 for all k ≥ 0;

is fulfilled, then there exists (x, v), a primal-dual solution to (4)–(5), such that
(xk, zk, yk)k≥0 converges weakly to (x,Lx, v).

Proof Let S ⊆ H × G × G be defined by

S = {(x, Lx, v) : (x, v) is a primal-dual solution to (4)–(5)}. (28)

Let (x∗, Lx∗, y∗) ∈ S be fixed. Then it holds

−L∗y∗ − Cx∗ ∈ Ax∗ and y∗ ∈ B(Lx∗).

Let k ≥ 0 be fixed. From (16) and the monotonicity of A, we have

〈cL∗(zk − Lxk+1 − c−1yk)+Mk
1 (xk − xk+1)− Cxk +L∗y∗ + Cx∗, xk+1 − x∗〉 ≥ 0,

while from (17) and the monotonicity of B, we have

〈c(Lxk+1 − zk+1 + c−1yk) + Mk
2 (zk − zk+1) − y∗, zk+1 − Lx∗〉 ≥ 0.

Since C is η-cocoercive, we have

η〈Cx∗ − Cxk, x∗ − xk〉 ≥ ‖Cx∗ − Cxk‖2.
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We consider first the case when η > 0.
Summing up the three inequalities obtained above, we get

c〈zk − Lxk+1, Lxk+1 − Lx∗〉 + 〈y∗ − yk, Lxk+1 − Lx∗〉 + 〈Cx∗ − Cxk, xk+1 − x∗〉
+〈Mk

1 (xk − xk+1), xk+1 − x∗〉 + c〈Lxk+1 − zk+1, zk+1 − Lx∗〉 + 〈yk − y∗, zk+1 − Lx∗〉
+〈Mk

2 (zk − zk+1), zk+1 − Lx∗〉 + 〈Cx∗ − Cxk, x∗ − xk〉 − η−1‖Cx∗ − Cxk‖2 ≥ 0. (29)

According to (15), we also have

〈y∗ − yk, Lxk+1−Lx∗〉+〈yk−y∗, zk+1 − Lx∗〉 = 〈y∗ − yk, Lxk+1 − zk+1〉
= c−1〈y∗ − yk, yk+1 − yk〉. (30)

By expressing the inner products through norms, we further derive

c

2

(
‖zk − Lx∗‖2 − ‖zk − Lxk+1‖2 − ‖Lxk+1 − Lx∗‖2

)

+ c

2

(
‖Lxk+1 − Lx∗‖2 − ‖Lxk+1 − zk+1‖2 − ‖zk+1 − Lx∗‖2

)

+ 1

2c

(
‖y∗ − yk‖2 + ‖yk+1 − yk‖2 − ‖yk+1 − y∗‖2

)

+ 1

2

(
‖xk − x∗‖2

Mk
1

− ‖xk − xk+1‖2
Mk

1
− ‖xk+1 − x∗‖2

Mk
1

)

+ 1

2

(
‖zk − Lx∗‖2

Mk
2

− ‖zk − zk+1‖2
Mk

2
− ‖zk+1 − Lx∗‖2

Mk
2

)

+ 〈Cx∗ − Cxk, xk+1 − xk〉 − η−1‖Cx∗ − Cxk‖2 ≥ 0.

By expressing Lxk+1 − zk+1 through relation (15) and by taking into account that

〈Cx∗ − Cxk, xk+1 − xk〉 − η−1‖Cx∗ − Cxk‖2 =
−η

∥∥∥∥η−1
(

Cx∗ − Cxk
)

+ 1

2

(
xk − xk+1

)∥∥∥∥
2

+ η

4
‖xk − xk+1‖2, (31)

we obtain

1

2
‖xk+1 − x∗‖2

Mk
1

+ 1

2
‖zk+1 − Lx∗‖2

Mk
2 +c Id

+ 1

2c
‖yk+1 − y∗‖2

≤ 1

2
‖xk − x∗‖2

Mk
1

+ 1

2
‖zk − Lx∗‖2

Mk
2 +c Id

+ 1

2c
‖yk − y∗‖2

− c

2
‖zk − Lxk+1‖2 − 1

2
‖xk − xk+1‖2

Mk
1

− 1

2
‖zk − zk+1‖2

Mk
2

− η

∥∥∥∥η−1
(

Cx∗ − Cxk
)

+ 1

2

(
xk − xk+1

)∥∥∥∥
2

+ η

4
‖xk − xk+1‖2.
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From here, using the monotonicity assumptions on (Mk
1 )k≥0 and (Mk

2 )k≥0, it yields

1

2
‖xk+1 − x∗‖2

Mk+1
1

+ 1

2
‖zk+1 − Lx∗‖2

Mk+1
2 +c Id

+ 1

2c
‖yk+1 − y∗‖2

≤ 1

2
‖xk − x∗‖2

Mk
1

+ 1

2
‖zk − Lx∗‖2

Mk
2 +c Id

+ 1

2c
‖yk − y∗‖2

− c

2
‖zk − Lxk+1‖2 − 1

2
‖xk − xk+1‖2

Mk
1 − η

2 Id
− 1

2
‖zk − zk+1‖2

Mk
2

−η

∥∥∥∥η−1
(

Cx∗ − Cxk
)

+ 1

2

(
xk − xk+1

)∥∥∥∥
2

. (32)

In case η = 0, similar arguments lead to the inequality

1

2
‖xk+1 − x∗‖2

Mk+1
1

+ 1

2
‖zk+1 − Lx∗‖2

Mk+1
2 +c Id

+ 1

2c
‖yk+1 − y∗‖2

≤ 1

2
‖xk − x∗‖2

Mk
1

+ 1

2
‖zk − Lx∗‖2

Mk
2 +c Id

+ 1

2c
‖yk − y∗‖2

− c

2
‖zk − Lxk+1‖2 − 1

2
‖xk − xk+1‖2

Mk
1

− 1

2
‖zk − zk+1‖2

Mk
2
. (33)

By using telescoping arguments, one can easily see that both (32) and (33) imply
∑
k≥0

‖zk−Lxk+1‖2 <+∞,
∑
k≥0

‖xk−xk+1‖2
Mk

1 − η
2 Id

<+∞,
∑
k≥0

‖zk−zk+1‖2
Mk

2
<+∞.

(34)
Consider first the hypotheses in assumption (I).
Discarding the negative terms on the right-hand side of both (32) and (33), it fol-

lows that statement (i) in Opial Lemma (Lemma 6) holds, when applied in the product
space H×G×G, for the sequence (xk, zk, yk)k≥0, for Wk := (Mk

1 , Mk
2 +c Id, c−1 Id)

for k ≥ 0, and for S defined as in (28).
Since Mk

1 − η
2 Id ∈ Pα1(H) for all k ≥ 0 with α1 > 0, from (34), we get

xk − xk+1 → 0 (k → +∞) (35)

and

zk − Lxk+1 → 0 (k → +∞). (36)

A direct consequence of (35) and (36) is

zk − zk+1 → 0 (k → +∞). (37)

From (15), (36), and (37), we derive

yk − yk+1 → 0 (k → +∞). (38)

The relations (35)–(38) will play an essential role when verifying assumption (ii)
in the Opial Lemma for S taken as in (28). Let (x, z, y) ∈ H × G × G be such that
there exists (kn)n≥0, kn → +∞ (as n → +∞), and (xkn, zkn, ykn) converges weakly
to (x, z, y) (as n → +∞).
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From (35), we obtain that (Lxkn+1)n∈N converges weakly to Lx (as n → +∞),
which combined with (36) yields z = Lx. We use now the following notations for
n ≥ 0:

a∗
n := cL∗(zkn − Lxkn+1 − c−1ykn) + M

kn

1 (xkn − xkn+1) + Cxkn+1 − Cxkn

an := xkn+1

b∗
n := ykn+1 + M

kn

2 (zkn − zkn+1)

bn := zkn+1.

From (16), we have for all n ≥ 0

a∗
n ∈ (A + C)(an). (39)

Further, from (17) and (15), we have for all n ≥ 0

b∗
n ∈ Bbn. (40)

Furthermore, from (35), we have

an converges weakly to x (as n → +∞). (41)

From (38) and (37), we obtain

b∗
n converges weakly to y (as n → +∞). (42)

Moreover, (15) and (38) yield

Lan − bn converges strongly to 0 (as n → +∞). (43)

Finally, we have

a∗
n + L∗b∗

n = cL∗(zkn − Lxkn+1) + L∗(ykn+1 − ykn)

+M
kn

1 (xkn − xkn+1) + L∗Mkn

2 (zkn − zkn+1)

+Cxkn+1 − Cxkn .

By using the fact that C is η-Lipschitz continuous, from (35)–(38), we get

a∗
n + L∗b∗

n converges strongly to 0 (as n → +∞). (44)

Let us define T : H × G ⇒ H × G by T (x, y) = (A(x) + C(x)) × B−1(y) and
K : H × G → H × G by K(x, y) = (L∗y,−Lx) for all (x, y) ∈ H × G. Since C

is maximally monotone with full domain (see [4]), A + C is maximally monotone,
too (see [4]); thus, T is maximally monotone. Since K is s skew operator, it is also
maximally monotone (see [4]). Due to the fact that K has full domain, we conclude
that

T + K is a maximally monotone operator. (45)

Moreover, from (39) and (40), we have

(a∗
n + L∗b∗

n, bn − Lan) ∈ (T + K)(an, b
∗
n) ∀n ≥ 0. (46)

Since the graph of a maximally monotone operator is sequentially closed with respect
to the weak×strong topology (see [4, Proposition 20.33]), from (45), (46), (41), (42),
(43), and (44), we derive that

(0, 0) ∈ (T + K)(x, y) = (A + C, B−1)(x, y) + (L∗y,−Lx).
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The latter is nothing else than saying that (x, y) is a primal dual solution to (4)–
(5), which combined with z = Lx implies that the second assumption of the
Opial Lemma is verified, too. In conclusion, (xk, zk, yk)k≥0 converges weakly to
(x, Lx, v), where (x, v) a primal-dual solution to (4)–(5).

Consider now the hypotheses in assumption (II).
We start by showing that the relations (35)–(38) are fulfilled in this situation, too.

Indeed, in this case, we derive from (34) that (36) and (37) hold. From (15), (36), and
(37), we obtain (38). Finally, the inequalities

α‖xk+1 − xk‖2 ≤ ‖xk+1 − xk‖2
Mk

1 − η
2 Id

+ ‖Lxk+1 − Lxk‖2

≤ ‖xk+1 − xk‖2
Mk

1 − η
2 Id

+ 2‖Lxk+1 − zk‖2 + 2‖zk − Lxk‖2 ∀k ≥ 0

yield (35).
On the other hand, notice that both (32) and (33) yield

∃ lim
k→+∞

(
1

2
‖xk − x∗‖2

Mk
1

+ 1

2
‖zk − Lx∗‖2

Mk
2 +c Id

+ 1

2c
‖yk − y∗‖2

)
; (47)

hence, (yk)k≥0 and (zk)k≥0 are bounded. Combining this with (15) and the condition
imposed on Mk

1 − η
2 Id +L∗L, we derive that (xk)k≥0 is bounded, too. Hence, there

exists a weak convergent subsequence of (xk, zk, yk)k≥0. By using the same argu-
ments as in the proof of (I), one can see that every sequential weak cluster point of
(xk, zk, yk)k≥0 belongs to the set S defined in (28).

In the remaining of the proof, we show that the set of sequential weak clus-
ter points of (xk, zk, yk)k≥0 is a singleton. Let (x1, z1, y1), (x2, z2, y2) be two such
sequential weak cluster points. Then, there exist (kp)p≥0, (kq)q≥0, kp → +∞ (as
p → +∞), kq → +∞ (as q → +∞), a subsequence (xkp , zkp , ykp )p≥0, which con-
verges weakly to (x1, z1, y1) (as p → +∞), and a subsequence (xkq , zkq , ykq )q≥0,
which converges weakly to (x2, z2, y2) (as q → +∞). As shown above, (x1, z1, y1)

and (x2, z2, y2) belong to the set S (see (28)); thus, zi = Lxi , i ∈ {1, 2}. From (47),
which is true for every primal-dual solution to (4)–(5), we derive

∃ lim
k→+∞

(
E(xk, zk, yk; x1, Lx1, y1) − E(xk, zk, yk; x2, Lx2, y2)

)
, (48)

where, for (x∗, Lx∗, y∗) the expression E(xk, zk, yk; x∗, Lx∗, y∗) is defined as

E(xk, zk, yk; x∗, Lx∗, y∗) = 1

2
‖xk −x∗‖2

Mk
1
+ 1

2
‖zk −Lx∗‖2

Mk
2 +c Id

+ 1

2c
‖yk −y∗‖2.

Further, we have for all k ≥ 0

1

2
‖xk − x1‖2

Mk
1

− 1

2
‖xk − x2‖2

Mk
1

= 1

2
‖x2 − x1‖2

Mk
1

+ 〈xk − x2, M
k
1 (x2 − x1)〉,

1

2
‖zk − Lx1‖2

Mk
2 +c Id

− 1

2
‖zk − Lx2‖2

Mk
2 +c Id

= 1

2
‖Lx2 − Lx1‖2

Mk
2 +c Id

+ 〈zk − Lx2,

(Mk
2 + c Id)(Lx2 − Lx1)〉,
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and

1

2c
‖yk − y1‖2 − 1

2c
‖yk − y2‖2 = 1

2c
‖y2 − y1‖2 + 1

c
〈yk − y2, y2 − y1〉.

Applying [36, Théorèème 104.1], there exists M1 ∈ S+(H) such that (Mk
1 )k≥0

converges pointwise to M1 in the strong topology (as k → +∞). Similarly, the
monotonicity condition imposed on (Mk

2 )k≥0 implies that supk≥0 ‖Mk
2 + c Id ‖ <

+∞. Thus, according to [17, Lemma 2.3], there exists α′ > 0 and M2 ∈ Pα′(G) such
that (Mk

2 +c Id)k≥0 converges pointwise to M2 in the strong topology (as k → +∞).
Taking the limit in (48) along the subsequences (kp)p≥0 and (kq)q≥0 and using

the last three relations above, we obtain

1

2
‖x1 − x2‖2

M1
+ 〈x1 − x2, M1(x2 − x1)〉 + 1

2
‖Lx1 − Lx2‖2

M2
+ 〈Lx1 − Lx2,M2(Lx2 − Lx1)〉

+ 1

2c
‖y1 − y2‖2 + 1

c
〈y1 − y2, y2 − y1〉= 1

2
‖x1 − x2‖2

M1
+ 1

2
‖Lx1 − Lx2‖2

M2
+ 1

2c
‖y1 − y2‖2,

hence,

−‖x1 − x2‖2
M1

− ‖Lx1 − Lx2‖2
M2

− 1

c
‖y1 − y2‖2 = 0,

thus, ‖x1 − x2‖M1 = 0, Lx1 = Lx2 and y1 = y2. Since,
(
α + η

2

)
‖x1 − x2‖2 ≤ ‖x1 − x2‖2

M1
+ ‖Lx1 − Lx2‖2,

we obtain that x1 = x2. In conclusion, (xk, zk, yk)k≥0 converges weakly to an
element in S (see (28)).

Finally, consider the hypotheses in assumption (III). We start by refining the
inequalities obtained in (32) and (33).

By considering the relation (18) for consecutive iterates and by taking into account
the monotonicity of B, we derive

〈zk+1 − zk, yk+1 − yk + Mk
2 (zk − zk+1) − Mk−1

2 (zk−1 − zk)〉 ≥ 0;
hence,

〈zk+1−zk, yk+1−yk〉 ≥ ‖zk+1 − zk‖2
Mk

2
+ 〈zk+1 − zk, Mk−1

2 (zk−1 − zk)〉

≥ ‖zk+1 − zk‖2
Mk

2
− 1

2
‖zk+1 − zk‖2

Mk−1
2

− 1

2
‖zk−zk−1‖2

Mk−1
2

.

Substituting yk+1 − yk = c(Lxk+1 − zk+1) in the last inequality, it follows:

‖zk+1 − zk‖2
Mk

2
− 1

2
‖zk+1 − zk‖2

Mk−1
2

− 1

2
‖zk − zk−1‖2

Mk−1
2

≤ c

2

(
‖zk − Lxk+1‖2 − ‖zk+1 − zk‖2 − ‖Lxk+1 − zk+1‖2

)
. (49)
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In case η > 0, adding (49) and (32) leads to the following:

1

2
‖xk+1 − x∗‖2

Mk+1
1

+ 1

2
‖zk+1−Lx∗‖2

Mk+1
2 +c Id

+ 1

2c
‖yk+1−y∗‖2+ 1

2
‖zk+1−zk‖2

3Mk
2 −Mk−1

2

≤ 1

2
‖xk − x∗‖2

Mk
1

+ 1

2
‖zk − Lx∗‖2

Mk
2 +c Id

+ 1

2c
‖yk − y∗‖2 + 1

2
‖zk − zk−1‖2

Mk−1
2

− η

∥∥∥∥η−1
(
Cx∗ − Cxk

)
+ 1

2

(
xk − xk+1

)∥∥∥∥
2

− 1

2
‖xk+1 − xk‖2

Mk
1 − η

2 Id

− c

2
‖zk+1 − zk‖2 − 1

2c
‖yk+1 − yk‖2.

Taking into account that according to (III), we have 3Mk
2 − Mk−1

2 � Mk
2 , we can

conclude that for all k ≥ 1 it holds

1

2
‖xk+1 − x∗‖2

Mk+1
1

+ 1

2
‖zk+1 − Lx∗‖2

Mk+1
2 +c Id

+ 1

2c
‖yk+1 − y∗‖2 + 1

2
‖zk+1 − zk‖2

Mk
2

≤ 1

2
‖xk − x∗‖2

Mk
1

+ 1

2
‖zk − Lx∗‖2

Mk
2 +c Id

+ 1

2c
‖yk − y∗‖2 + 1

2
‖zk − zk−1‖2

Mk−1
2

−1

2
‖xk+1 − xk‖2

Mk
1 − η

2 Id
− c

2
‖zk+1 − zk‖2 − 1

2c
‖yk+1 − yk‖2. (50)

Similarly, we obtain in case η = 0 for all k ≥ 1, the inequality

1

2
‖xk+1 − x∗‖2

Mk+1
1

+ 1

2
‖zk+1 − Lx∗‖2

Mk+1
2 +c Id

+ 1

2c
‖yk+1 − y∗‖2 + 1

2
‖zk+1 − zk‖2

Mk
2

≤ 1

2
‖xk − x∗‖2

Mk
1

+ 1

2
‖zk − Lx∗‖2

Mk
2 +c Id

+ 1

2c
‖yk − y∗‖2 + 1

2
‖zk − zk−1‖2

Mk−1
2

−1

2
‖xk+1 − xk‖2

Mk
1

− c

2
‖zk+1 − zk‖2 − 1

2c
‖yk+1 − yk‖2. (51)

Using telescoping sum arguments, we obtain that ‖xk+1 − xk‖Mk
1 − η

2 Id → 0, yk −
yk+1 → 0 and zk − zk+1 → 0 as k → +∞. Using (15), it follows that L(xk −
xk+1) → 0 as k → +∞, which, combined with Mk

1 − η
2 Id +L∗L ∈ Pα(H), k ≥ 0,

further implies that xk − xk+1 → 0 as k → +∞. Consequently, zk − Lxk+1 → 0 as
k → +∞. Hence, the relations (35)–(38) are fulfilled. On the other hand, from both
(50) and (51), we derive

∃ lim
k→+∞

(
1

2
‖xk − x∗‖2

Mk
1

+ 1

2
‖zk − Lx∗‖2

Mk
2 +c Id

+ 1

2c
‖yk − y∗‖2 + 1

2
‖zk − zk−1‖2

Mk−1
2

)
.

By using that

‖zk − zk−1‖2
Mk−1

2
≤ ‖zk − zk−1‖2

M0
2

≤ ‖M0
2‖‖zk − zk−1‖2 ∀k ≥ 1,

it follows that limk→+∞ ‖zk − zk−1‖2
Mk−1

2
= 0, which further implies that (47) holds.

From here, the conclusion follows by arguing as in the proof provided above in the
setting of assumption (II).
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Remark 8 (i) Choosing as in Remark 5 Mk
1 := 1

τk
Id −cL∗L, with (τk)k≥0 a mono-

tonically nondecreasing sequence of positive numbers and τ := supk≥0 τk ∈ R,
and Mk

2 := 0 for all k ≥ 0, we have

〈
x,

(
Mk

1 − η

2
Id

)
x
〉
≥

(
1

τk

−c‖L‖2− η

2

)
‖x‖2 ≥

(
1

τ
−c‖L‖2− η

2

)
‖x‖2 ∀x ∈ H.

This shows that under the assumption 1
τ

− c‖L‖2 >
η
2 (which recovers the one

in Algorithm 3.2 and Theorem 3.1 in [20]) the operators Mk
1 − η

2 Id belong for
all k ≥ 0 to the class Pα1(H), with α1 := 1

τ
− c‖L‖2 − η

2 > 0.
(ii) Let us briefly discuss the condition considered in (II):

∃α > 0 such that L∗L ∈ Pα(H). (52)

By taking into account [4, Fact 2.19], one can see that (52) holds if and only if
L is injective and ran L∗ is closed. This means that if ran L∗ is closed, then (52)
is equivalent to L is injective. Hence, in finite dimensional spaces, namely, if
H = R

n and G = R
m, with m ≥ n ≥ 1, (52) is nothing else than saying that

L has full column rank, which is a widely used assumption in the proof of the
convergence of the classical ADMM algorithm.

Remark 9 In the finite dimensional variational case, the sequences generated by the
classical ADMM algorithm, which corresponds to the iterative scheme (19)–(21) for
h = 0 and Mk

1 = Mk
2 = 0 for all k ≥ 0, are convergent, provided that L has

full column rank. This situation is covered by the theorem above in the context of
assumption (III).

Remark 10 An anonymous referee asked whether it is possible to perform a similar
analysis for a slight modification of Algorithm 3, in which (15) is replaced through

yk+1 = yk + cν(Lxk+1 − zk+1), (53)

where ν ∈
(

0,
√

5+1
2

)
. It has been noticed in [28] that the numerical performances of

the classical ADMM algorithm for convex optimization problems, under the use of a
relaxation parameter ν > 1, outperform the ones obtained when ν = 1.

In this remark, we give a positive answer to the question posed by the reviewer.
To this end, we consider as follows Algorithm 3 with (15) replaced by (53), where

1 < ν <
√

5+1
2 , and work under the hypotheses (III) of Theorem 7. We will prove

that one can derive in this new setting inequalities, which are similar to (50) and (51),
respectively.

Let k ≥ 0 be fixed. Take first η > 0. We have relation (29), while instead of (30)
we get

〈y∗ − yk, Lxk+1 − Lx∗〉 + 〈yk − y∗, zk+1 − Lx∗〉
= 〈y∗ − yk, Lxk+1 − zk+1〉 = (cν)−1〈y∗ − yk, yk+1 − yk〉
= (cν)−1〈y∗ − yk+1, yk+1 − yk〉 + cν‖L xk+1 − zk+1‖2. (54)



344 R. I. Boţ, E. R. Csetnek

Further, we have

c〈zk − Lxk+1, Lxk+1 − Lx∗〉 + c〈Lxk+1 − zk+1, zk+1 − Lx∗〉
= c〈zk − Lxk+1, Lxk+1 − Lx∗〉 + c〈Lxk+1 − zk+1, zk+1 − Lxk+1〉

+c〈Lxk+1 − zk+1, Lxk+1 − Lx∗〉
= c〈zk − zk+1, Lxk+1 − Lx∗〉 − c‖Lxk+1 − zk+1‖2

= c〈zk − zk+1, Lxk+1 − zk+1〉 + c〈zk − zk+1, zk+1 − Lx∗〉 − c‖Lxk+1 − zk+1‖2

= 1

ν
〈zk − zk+1, yk+1 − yk〉 + c〈zk − zk+1, zk+1 − Lx∗〉 − c‖Lxk+1 − zk+1‖2,

which, combined with (54) and (29), leads to

1

ν
〈zk − zk+1, yk+1 − yk〉 + c〈zk − zk+1, zk+1 − Lx∗〉 − c‖Lxk+1 − zk+1‖2

+(cν)−1〈y∗ − yk+1, yk+1 − yk〉 + cν‖Lxk+1 − zk+1‖2

+〈Mk
1 (xk − xk+1), xk+1 − x∗〉 + 〈Mk

2 (zk − zk+1), zk+1 − Lx∗〉
+〈Cx∗ − Cxk, xk+1 − xk〉 − η−1‖Cx∗ − Cxk‖2 ≥ 0. (55)

In order to estimate the term 1
ν
〈zk − zk+1, yk+1 − yk〉, we use the monotonicity of

B. Notice that (18) becomes in this case

yk + 1

ν
(yk+1 − yk) + Mk

2 (zk − zk+1) ∈ Bzk+1.

From here, we obtain that for all k ≥ 1

〈zk+1 − zk, yk + 1

ν
(yk+1 − yk) + Mk

2 (zk − zk+1) − yk−1 − 1

ν
(yk − yk−1)

−Mk−1
2 (zk−1 − zk)〉 ≥ 0;

hence,

1

ν
〈zk+1 − zk, yk+1 − yk〉 +

(
1 − 1

ν

)
〈zk+1 − zk, yk − yk−1〉 ≥

‖zk+1 − zk‖2
Mk

2
− 1

2
‖zk+1 − zk‖2

Mk−1
2

− 1

2
‖zk − zk−1‖2

Mk−1
2

.

For β := cν2 (this choice for β will be clarified later), we have for all k ≥ 1, the
inequality

β‖zk+1 − zk‖2 + β−1‖yk − yk−1‖2 ≥ 2〈zk+1 − zk, yk − yk−1〉.
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By expressing the inner products through norms, we derive from (31) and (55) for all
k ≥ 1

1

2

(
1 − 1

ν

)(
β‖zk+1 − zk‖2 + 1

β
‖yk − yk−1‖2

)
− c(1 − ν)‖Lxk+1 − zk+1‖2

+ c

2

(
‖zk − Lx∗‖2 − ‖zk − zk+1‖2 − ‖zk+1 − Lx∗‖2

)

+ 1

2cν

(
‖y∗ − yk‖2 − ‖yk+1 − yk‖2 − ‖yk+1 − y∗‖2

)

+1

2

(
‖xk − x∗‖2

Mk
1

− ‖xk − xk+1‖2
Mk

1
− ‖xk+1 − x∗‖2

Mk
1

)

+1

2

(
‖zk − Lx∗‖2

Mk
2

− ‖zk − zk+1‖2
Mk

2
− ‖zk+1 − Lx∗‖2

Mk
2

)

−η

∥∥∥∥η−1
(

Cx∗ − Cxk
)

+ 1

2

(
xk − xk+1

)∥∥∥∥
2

+ η

4
‖xk − xk+1‖2

−‖zk+1 − zk‖2
Mk

2
+ 1

2
‖zk+1 − zk‖2

Mk−1
2

+ 1

2
‖zk − zk−1‖2

Mk−1
2

≥ 0.

The coefficient of ‖zk+1 − zk‖2 is
β

2

(
1 − 1

ν

)
− c

2
= − c

2
(1 + ν − ν2). Taking

into account (53), it yields that the coefficient of ‖Lxk − zk‖2 is
1

2

ν − 1

ν

1

β
c2ν2 =

c

2

(
1 − 1

ν

)
. On the other hand, the coefficient of ‖Lxk+1−zk+1‖2 is −c(1−ν)−cν

2
=

c
ν − 2

2
, while we have

c
ν − 2

2
= − c

2

(
1 − 1

ν

)
+ c

2
ν−1(−1 − ν + ν2).

Taking into account the monotonicity of (Mk
1 )k≥0 and (Mk

2 )k≥0, and that 3Mk
2 −

Mk−1
2 � Mk

2 for all k ≥ 1, we finally obtain

1

2
‖xk+1 − x∗‖2

Mk+1
1

+ 1

2
‖zk+1 − Lx∗‖2

Mk+1
2 +c Id

+ 1

2cν
‖yk+1 − y∗‖2 + 1

2
‖zk+1 − zk‖2

Mk
2

+ c

2

(
1 − 1

ν

)
‖Lxk+1 − zk+1‖2

≤ 1

2
‖xk − x∗‖2

Mk
1

+ 1

2
‖zk − Lx∗‖2

Mk
2 +c Id

+ 1

2cν
‖yk − y∗‖2

+1

2
‖zk − zk−1‖2

Mk−1
2

+ c

2

(
1 − 1

ν

)
‖Lxk − zk‖2

−1

2
‖xk+1 − xk‖2

Mk
1 − η

2 Id
− c

2
(1 + ν − ν2)‖zk+1‖zk+1 − zk‖2

−zk‖2 − c

2
ν−1(1 + ν − ν2)‖yk+1 − yk‖2. (56)
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In a similar way, we obtain in case η = 0 for all k ≥ 1, the inequality

1

2
‖xk+1 − x∗‖2

Mk+1
1

+ 1

2
‖zk+1 − Lx∗‖2

Mk+1
2 +c Id

+ 1

2cν
‖yk+1 − y∗‖2

+1

2
‖zk+1 − zk‖2

Mk
2

+ c

2

(
1 − 1

ν

)
‖Lxk+1 − zk+1‖2

≤ 1

2
‖xk − x∗‖2

Mk
1

+ 1

2
‖zk − Lx∗‖2

Mk
2 +c Id

+ 1

2cν
‖yk − y∗‖2

+1

2
‖zk − zk−1‖2

Mk−1
2

+ c

2

(
1 − 1

ν

)
‖Lxk − zk‖2

−1

2
‖xk+1 − xk‖2

Mk
1

− c

2
(1 + ν − ν2)‖zk+1 − zk‖2

− c

2
ν−1(1 + ν − ν2)‖yk+1 − yk‖2. (57)

In other words, we obtain (56) instead of (50) and (57) instead of (51), respectively.
By using the same arguments as in the proof of Theorem 7, we obtain the convergence
of the ADMM algorithm for monotone operators modified according to (53).

3 Convergence rates under strong monotonicity and by means
of dynamic step sizes

We state the problem on which we focus throughout this section.

Problem 11 In the setting of Problem 1, we replace the cocoercivity of C by the
assumptions that C is monotone and μ-Lipschitz continuous for μ ≥ 0. Moreover,
we assume that A + C is γ -strongly monotone for γ > 0.

Remark 12 If C is a η-cocoercive operator for η > 0, then C is monotone and
η-Lipschitz continuous. Though, the converse statement may fail. The skew opera-
tor (x, y) �→ (L∗y,−Lx) is for instance monotone and Lipschitz continuous and
not cocoercive. This operator appears in a natural way when considering formulat-
ing the system of optimality conditions for convex optimization problems involving
compositions with linear continuous operators (see [13]). Notice that due to the cele-
brated Baillon-Haddad Theorem (see, for instance, [4, Corollary 8.16]), the gradient
of a convex and Fréchet differentiable function is η-cocoercive if and only if it is
η-Lipschitz continuous.

Remark 13 In the setting of Problem 11, the operator A+L∗ ◦B ◦L+C is strongly
monotone; thus, the monotone inclusion problem (4) has at most one solution. Hence,
if (x, v) is a primal-dual solution to the primal-dual pair (4)–(5), then x is the unique
solution to (4). Notice that the problem (5) may not have an unique solution.

We propose the following algorithm for the formulation of which we use dynamic
step sizes.



ADMM for monotone operators: convergence analysis and rates 347

Algorithm 14 For all k ≥ 0, let Mk
2 : G → G be a linear, continuous, and self-

adjoint operator such that τkLL∗ + Mk
2 ∈ Pαk

(G) for αk > 0 for all k ≥ 0. Choose
(x0, z0, y0) ∈ H×H× G. For all k ≥ 0, the generated the sequence (xk, zk, yk)k≥0
is as follows:

yk+1 =
(
τkLL

∗ + Mk
2 + B−1

)−1 [
−τkL(zk − τ−1

k xk) + Mk
2 yk

]
(58)

zk+1 =
(

θk

λ
− 1

)
L∗yk+1 + θk

λ
Cxk + θk

λ

(
Id +λτ−1

k+1A
−1

)−1

×
[
−L∗yk+1 + λτ−1

k+1x
k − Cxk

]
(59)

xk+1 = xk + τk+1

θk

(
−L∗yk+1 − zk+1

)
, (60)

where λ, τk, θk > 0 for all k ≥ 0.

Remark 15 We would like to emphasize that when C = 0 Algorithm 14 has a similar
structure to Algorithm 3. Indeed, in this setting, the monotone inclusion problems (4)
and (6) become

find x ∈ H such that 0 ∈ Ax + (L∗ ◦ B ◦ L)x (61)

and, respectively,

find v ∈ G such that 0 ∈ B−1v +
(
(−L) ◦ (A−1) ◦ (−L∗)

)
v. (62)

The two problems (61) and (62) are dual to each other in the sense of the Attouch-
Théra duality (see [2]). By taking in (58)–(60) λ = 1, θk = 1 (which corresponds to
the limit case μ = 0 and γ = 0 in the Eq. 66 below) and τk = c > 0 for all k ≥ 0,
then the resulting iterative scheme reads as follows:

yk+1 =
(

c LL∗ + Mk
2 + B−1

)−1 [
−c L(zk − c−1xk) + Mk

2 yk
]

zk+1 =
(

Id +c−1A−1
)−1 [

−L∗yk+1 + c−1xk
]

xk+1 = xk + c
(
−L∗yk+1 − zk+1

)
.

This is nothing else than Algorithm 3 employed to the solving of the primal-dual
system of monotone inclusions (62)–(61), that is, by treating (62) as the primal mono-
tone inclusion and (61) as its dual monotone inclusion (notice that in this case we
take in relation (14) of Algorithm 3 Mk

2 = 0 for all k ≥ 0).

We chose the parameters involved in Algorithm 14 such that

μτ1 < 2γ, (63)

λ ≥ μ + 1, (64)

σ0τ1‖L‖2 ≤ 1, (65)
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and for all k ≥ 0

θk = 1√
1 + τk+1λ−1(2γ − μτk+1)

(66)

τk+2 = θkτk+1 (67)

σk+1 = θ−1
k σk (68)

τkLL∗ + Mk
2 � σ−1

k Id (69)

τk

τk+1
LL∗ + 1

τk+1
Mk

2 � τk+1

τk+2
LL∗ + 1

τk+2
Mk+1

2 . (70)

Remark 16 Fix an arbitrary k ≥ 1. From (58), we have

− τkL(zk − τ−1
k xk) + Mk

2 yk ∈ M̃2
k
yk+1 + B−1yk+1, (71)

where
M̃2

k := τkLL∗ + Mk
2 . (72)

Due to (60), we have

−τkz
k = τkL

∗yk + θk−1(x
k − xk−1),

which combined with (71) delivers

M̃2
k
(yk − yk+1) + L

[
xk + θk−1(x

k − xk−1)
]

∈ B−1yk+1. (73)

Fix now an arbitrary k ≥ 0. From (3) and (59), we have

−L∗yk+1 + λ

θk

(
zk+1 + L∗yk+1

)
− Cxk = −L∗yk+1 + λ

τk+1
xk − Cxk

− λ

τk+1
J(τk+1/λ)A

×
[
xk + τk+1

λ

(
−L∗yk+1 − Cxk

)]
.

By using (60), we obtain

xk+1 = J(τk+1/λ)A

[
xk + τk+1

λ

(
−L∗yk+1 − Cxk

)]
. (74)

Finally, the definition of the resolvent yields the relation

λ

τk+1

(
xk − xk+1

)
− L∗yk+1 + Cxk+1 − Cxk ∈ (A + C)xk+1. (75)

Remark 17 Taking into consideration the above remark, in particular Eq. 74, one can
notice that in Algorithm 14, the sequences (xk)k≥0 and (yk)k≥0 can be generated
independently of the sequence (zk)k≥0. More precisely, for (x0, x1, y1) ∈ H×H×G
given starting points, one has for all k ≥ 1

yk+1 =
(
τkLL∗ + Mk

2 + B−1
)−1 [

L(xk + θk−1(x
k − xk−1)) + (τkLL∗ + Mk

2 )yk
]

(76)

xk+1 = J(τk+1/λ)A

[
xk + τk+1

λ

(
−L∗yk+1 − Cxk

)]
. (77)
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The sequence (zk)k≥1 can be then obtained by

zk = θk−1

τk

(xk − xk+1) − L∗yk ∀k ≥ 1.

Remark 18 The choice

τkLL∗ + Mk
2 = σ−1

k Id ∀k ≥ 0 (78)

leads to so-called accelerated versions of primal-dual algorithms that have been inten-
sively studied in the literature. Indeed, in this setting, (76)–(77) becomes for all
k ≥ 1

yk+1 = JσkB
−1

[
yk + σkL(xk + θk−1(x

k − xk−1))
]

xk+1 = J(τk+1/λ)A

[
xk + τk+1

λ

(
−L∗yk+1 − Cxk

)]
,

which is Algorithm 5 in [9]. Not least, in the variational case when A = ∂f and
B = ∂g, and for C = 0 and λ = 1, we obtain for all k ≥ 0

yk+1 = proxσkg
∗
[
yk + σkL

(
xk + θk−1(x

k − xk−1)
)]

xk+1 = proxτk+1f

(
xk − τk+1L

∗yk+1
)

,

which is the numerical scheme considered by Chambolle and Pock in [14, Algorithm 2].
We also notice that condition (78) guarantees the fulfillment of both (69) and (70),

due to the fact that the sequence (τk+1σk)k≥0 is constant (see (67) and (68)).

Remark 19 Assume again that C = 0 and consider the variational case as described
in Problem 2. From (71) and (72), we derive for all k ≥ 1 the relation

0 ∈ ∂g∗(yk+1) + τkL
(
L∗yk+1 + zk − τ−1

k xk
)

+ Mk
2

(
yk+1 − yk

)
,

which in case Mk
2 ∈ S+(G) is equivalent to

yk+1 = argmin
y∈G

[
g∗(y) + τk

2

∥∥∥L∗y + zk − τ−1
k xk

∥∥∥2 + 1

2
‖y − yk‖2

Mk
2

]
.

Algorithm 14 becomes in case λ = 1

yk+1 = argmin
y∈G

[
g∗(y) + τk

2

∥∥∥L∗y + zk − τ−1
k xk

∥∥∥2 + 1

2
‖y − yk‖2

Mk
2

]

zk+1 = (θk − 1) L∗yk+1 + θk argmin
z∈H

[
f ∗(z) + τk+1

2

∥∥∥−L∗yk+1 − z + τ−1
k+1x

k
∥∥∥2

]

xk+1 = xk + τk+1

θk

(
−L∗yk+1 − zk+1

)
,

which can be regarded as an accelerated version of the iterative scheme (19)–(21)
from Remark 4.

We present the main theorem of this section.
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Theorem 20 Consider the setting of Problem 11 and let (x, v) be a primal-dual
solution to the primal-dual system of monotone inclusions (4)–(5). Let (xk, zk, yk)k≥0
be the sequence generated by Algorithm 14 and assume that the relations (63)–(70)
are fulfilled. Then, we have for all n ≥ 2

λ‖xn − x‖2

τ 2
n+1

+ 1 − σ0τ1‖L‖2

σ0τ1
‖yn − v‖2 ≤

λ‖x1 − x‖2

τ 2
2

+
‖y1 − v‖2

τ1LL∗+M1
2

τ2
+ ‖x1 − x0‖2

τ 2
1

+ 2

τ1
〈L(x1 − x0), y1 − v〉.

Moreover, lim
n→+∞ nτn = λ

γ
, hence one obtains for (xn)n≥0 an order of convergence

of O( 1
n
).

Proof Let k ≥ 1 be fixed. From (73), the relation Lx ∈ B−1v (see (7)) and the
monotonicity of B−1 we obtain〈

yk+1 − v, M̃2
k
(yk − yk+1) + L

[
xk + θk−1(x

k − xk−1)
]

− Lx
〉
≥ 0

or, equivalently,

1

2
‖yk − v‖2

M̃2
k − 1

2
‖yk+1 − v‖2

M̃2
k − 1

2
‖yk − yk+1‖2

M̃2
k

≥
〈
yk+1 − v, Lx − L

[
xk + θk−1(x

k − xk−1)
]〉

. (79)

Further, from (75), the relation −L∗v ∈ (A + C)x (see (7)) and the γ -strong
monotonicity of A + C we obtain〈
xk+1 − x,

λ

τk+1

(
xk − xk+1

)
− L∗yk+1 + Cxk+1 − Cxk + L∗v

〉
≥ γ ‖xk+1 − x‖2

or, equivalently,

λ

2τk+1
‖xk − x‖2 − λ

2τk+1
‖xk+1 − x‖2 − λ

2τk+1
‖xk − xk+1‖2

≥ γ ‖xk+1−x‖2 + 〈xk+1 − x, Cxk−Cxk+1〉 + 〈yk+1 − v, Lxk+1−Lx〉. (80)

Since C is μ-Lipschitz continuous, we have that

〈xk+1 − x, Cxk − Cxk+1〉 ≥ −μτk+1

2
‖xk+1 − x‖2 − μ

2τk+1
‖xk+1 − xk‖2,

which combined with (80) implies

λ

2τk+1
‖xk − x‖2 ≥

(
λ

2τk+1
+ γ − μτk+1

2

)
‖xk+1 − x‖2 + λ − μ

2τk+1
‖xk+1 − xk‖2

+〈yk+1 − v, Lxk+1 − Lx〉. (81)
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By adding the inequalities (79) and (81), we obtain

1

2
‖yk−v‖2

M̃2
k + λ

2τk+1
‖xk−x‖2 ≥ 1

2
‖yk+1−v‖2

M̃2
k

+
(

λ

2τk+1
+ γ − μτk+1

2

)
‖xk+1−x‖2

+1

2
‖yk − yk+1‖2

M̃2
k

+λ − μ

2τk+1
‖xk+1 − xk‖2

+
〈
yk+1−v, L

[
xk+1−xk−θk−1(x

k−xk−1)
]〉

. (82)

Further, we have
〈
L

[
xk+1−xk−θk−1(x

k−xk−1)
]
, yk+1−v

〉
= 〈L(xk+1 − xk), yk+1 − v〉

−θk−1〈L(xk − xk−1), yk − v〉
+θk−1〈L(xk − xk−1), yk − yk+1〉

≥ 〈L(xk+1 − xk), yk+1 − v〉
−θk−1〈L(xk − xk−1), yk − v〉
−θ2

k−1‖L‖2σk

2
‖xk−1 − xk‖2

−‖yk − yk+1‖2

2σk

.

By combining this inequality with (82), we obtain (after dividing by τk+1)

‖yk − v‖2
M̃2

k

2τk+1
+ λ

2τ 2
k+1

‖xk − x‖2 ≥
‖yk+1 − v‖2

M̃2
k

2τk+1

+
(

λ

2τ 2
k+1

+ γ

τk+1
− μ

2

)
‖xk+1 − x‖2

+
‖yk − yk+1‖2

M̃2
k

2τk+1
− ‖yk − yk+1‖2

2τk+1σk

(83)

+λ − μ

2τ 2
k+1

‖xk+1 − xk‖2

−θ2
k−1‖L‖2σk

2τk+1
‖xk − xk−1‖2

+ 1

τk+1
〈L(xk+1 − xk), yk+1 − v〉

−θk−1

τk+1
〈L(xk − xk−1), yk − v〉.
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From (69) and (72), we have that the term in (83) is nonnegative. Further, noticing
that (see (66), (67), (68), and (65))

θk−1

τk+1
= 1

τk

λ

2τ 2
k+1

+ γ

τk+1
− μ

2
= λ

2τ 2
k+2

,

τk+1σk = τkσk−1 = ... = τ1σ0

and
‖L‖2σkθ

2
k−1

τk+1
= τk+1‖L‖2σk

τ 2
k

= τ1‖L‖2σ0

τ 2
k

≤ 1

τ 2
k

,

we obtain (see also (64) and (70))

‖yk − v‖2
M̃2

k

2τk+1
+ λ

2τ 2
k+1

‖xk − x‖2 ≥
‖yk+1 − v‖2

M̃2
k+1

2τk+2
+ λ

2τ 2
k+2

‖xk+1 − x‖2

+ 1

2τ 2
k+1

‖xk+1 − xk‖2 − 1

2τ 2
k

‖xk − xk−1‖2

+ 1

τk+1
〈L(xk+1 − xk), yk+1 − v〉

− 1

τk

〈L(xk − xk−1), yk − v〉.
Let n be a natural number such that n ≥ 2. Summing up the above inequality from
k = 1 to n − 1, it follows:

‖y1 − v‖2
M̃2

1

2τ2
+ λ

2τ 2
2

‖x1 − x‖2 ≥
‖yn − v‖2

M̃2
n

2τn+1
+ λ

2τ 2
n+1

‖xn − x‖2

+ 1

2τ 2
n

‖xn − xn−1‖2 − 1

2τ 2
1

‖x1 − x0‖2

+ 1

τn

〈L(xn − xn−1), yn − v〉

− 1

τ1
〈L(x1 − x0), y1 − v〉.

The inequality in the statement of the theorem follows by combining this relation
with (see (69))

‖yn − v‖2
M̃2

n

2τn+1
≥ ‖yn − v‖2

2σnτn+1
,

1

2τ 2
n

‖xn−xn−1‖2+ 1

τn

〈L(xn−xn−1), yn−v〉 ≥ −‖L‖2

2
‖yn−v‖2 and σnτn+1 = σ0τ1.

Finally, we notice that for any n ≥ 0 (see (66) and (67))

τn+2 = τn+1√
1 + τn+1

λ
(2γ − μτn+1)

.
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From here, it follows that τn+1 < τn for all n ≥ 1 and lim
n→+∞ nτn = λ/γ (see

[9, page 261]). The proof is complete.

Remark 21 In Remark 18, we provided an example of a family of linear, continuous
and self-adjoint operators (Mk

2 )k≥0 for which the relations (69) and (70) are fulfilled.
In the following, we will furnish more examples in this sense.

To begin, we notice that simple algebraic manipulations easily lead to the
conclusion that if

μτ1 ≤ γ, (84)

then (θk)k≥0 is monotonically increasing. In the examples below, we replace (63)
with the stronger assumption (84).

(i) For all k ≥ 0, take

Mk
2 := σ−1

k Id .

Then (69) trivially holds, while (70), which can be equivalently written as

1

θk−1
LL∗ + 1

τk+1
Mk

2 � 1

θk

LL∗ + 1

τk+2
Mk+1

2 ,

follows from the fact that (τk+1σk)k≥0 is constant (see (67) and (68)) and
(θk)k≥0 is monotonically increasing.

(ii) For all k ≥ 0, take

Mk
2 := 0.

Relation (70) holds since (θk)k≥0 is monotonically increasing. Condition (69)
becomes in this setting

σkτkLL∗ � Id ∀k ≥ 0. (85)

Since τk > τk+1 for all k ≥ 1 and (τk+1σk)k≥0 is constant, (85) holds, if

LL∗ ∈ P 1
σ0τ1

(G). (86)

Provided that G is finite dimensional, (86) holds if and only if
σ0τ1λmin(LL∗) ≥ 1, where λmin(LL∗) denotes the smallest eigenvalue of LL∗.
Since σ0τ1‖L‖2 ≤ 1, this is possible only in the particular case when LL∗ =

1

σ0τ1
Id. The resulting iterative scheme can be regarded as an accelerated

version of the classical ADMM algorithm (see Remark 4).
(iii) For all k ≥ 0, take

Mk
2 := τk Id .

Relation (70) holds, since (θk)k≥0 is monotonically increasing. On the other
hand, condition (69) is equivalent to the following:

σkτk(LL∗ + Id) � Id . (87)

Since τk > τk+1 for all k ≥ 1 and (τk+1σk)k≥0 is constant, (87) holds, if

σ0τ1LL∗ � (1 − σ0τ1) Id . (88)
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In case of σ0τ1 ≥ 1 (which is allowed according to (65) if ‖L‖2 ≤ 1), this is
obviously fulfilled. Otherwise (when σ0τ1 < 1), in order to guarantee (88), we
have to impose that

LL∗ ∈ P 1−σ0τ1
σ0τ1

(G). (89)

When G is finite dimensional, (89) holds if and only if σ0τ1(1+λmin(LL∗)) ≥
1.

4 Numerical experiments

In this section, we will compare the performances of Algorithm 14, for differ-
ent choices of the sequence of matrices (Mk

2 )k≥0, in the context of solving an
image denoising problem. We considered in our numerical experiments the convex
optimization problem

inf
x∈[0,255]n

{
1

2
‖x − b‖2 + rT Vaniso(x)

}
, (90)

where x ∈ R
n stands for the vectorized colored image X ∈ R

M×N , n = 3MN , and
xi,j = Xi,j represents the value of the pixel in the ith row and the j th column, for
1 ≤ i ≤ M, 1 ≤ j ≤ N . Further, b ∈ R

n denotes the observed noisy image, r > 0
a regularization parameter and TV : Rn → R, the discrete anisotropic total variation
mapping.

Recall that the discrete anisotropic total variation mapping TVaniso : Rn → R,

TVaniso(x) =
M−1∑
i=1

N−1∑
j=1

|xi+1,j − xi,j | + |xi,j+1 − xi,j |

+
M−1∑
i=1

|xi+1,N − xi,j | +
N−1∑
j=1

|xM,j+1 − xM,j |,

can be written as follows:

TVaniso(x) = ‖Lx‖1 ∀x ∈ R
n,

where L : Rn → R
n × R

n, xi,j �→ (
L1xi,j , L2xi,j

)
, with

L1xi,j =
{

xi+1,j − xi,j , if i < M

0, if i = M
and L2xi,j =

{
xi,j+1 − xi,j , if j < N

0, if j = N
,

is a linear operator.
Let be f : Rn → R, f = δ[0,255]n , the indicator function of [0, 255]n, g : Rn ×

R
n → R, g(y1, y2) = r‖(y1, y2)‖1, and h : Rn → R, h(x) = 1

2‖x − b‖2. Solving
(90) means solving the monotone inclusion problem

find x ∈ R
n such that 0 ∈ Ax + (L∗ ◦ B ◦ L)x + Cx, (91)

for A = ∂f, B = ∂g, C = ∇h. Notice that C is 1-Lipschitz continuous and 1-
strongly monotone.
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We solved (91) with Algorithm 14 (actually by using the formulation (76)–(77))
for three different choices of the sequence of matrices (Mk

2 )k≥0, namely, (I) Mk
2 =

σ−1
k Id −τkL

∗L, k ≥ 0, (see Remark 18); (II) Mk
2 = σ−1

k Id, k ≥ 0; and (III) Mk
2 =

τk Id, k ≥ 0, (see Remark 21 (i) and (iii)).
In all three implementations, for updating the sequence (xk)k≥2, we used the

closed form the proximal operator of the function λ−1τk+1f , which requires in every
iteration nothing more than the calculation of the projection on the box [0, 255]n. On
the other hand, for updating the sequence (yk)k≥2, we used two different approaches.
For the choice (I) of the sequence (Mk

2 )k≥0, the algorithm required only the closed
formula of the proximal operator of σkg

∗, which is the projection on the box
[−r, r]2n. For the choices (II)–(III), of the sequence (Mk

2 )k≥0, we determined in every
iteration

yk+1 =
(
τkLL∗ + Mk

2 + ∂g∗)−1 [
L(xk + θk−1(x

k − xk−1)) + (τkLL∗ + Mk
2 )yk

]

or, equivalently,

yk+1 = argmin
y∈Rn×Rn

[
g∗(y) − 〈y, L(xk + θk−1(x

k − xk−1))〉 + 1

2
‖y − yk‖2

τkLL∗+Mk
2

]

(92)
by executing some steps of FISTA (see [5]).

Fig. 1 The original image, the noisy image (corrupted with Gaussian noise with standard devi-
ation σ = 10) and the obtained reconstructed images for the choices (I)–(III) and a tolerance
error of ε = 10−6
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We used in the numerical experiments a 256×256 test image (see Fig. 1) corrupted
with Gaussian noise with standard deviation σ ∈ {10, 20, 30}, took λ = 2 and as
regularization parameter r = 0.07. We stopped the algorithm when the difference
of two consecutive primal iterates was less than a given error tolerance ε > 0. In
Fig. 1, we show the original image, the corrupted image, and the reconstructed images
obtained for the four different choices (I)–(IV) for a tolerance error of ε = 10−6.

In Table 1, we compare the performances of the three iterative schemes in case
σ = 10 in terms of the number of iterations and CPU time in seconds needed to
achieve two different tolerance errors. Prior to the comparisons we did for all schemes
a parameter tuning in order to determine which choice of the initial step sizes σ0 and
τ1 provides the highest value for the structural similarity index (SSIM). In Fig. 2 ,we
show the dependence of the SSIM value on (σ0, τ1) for the cases (I) and (II) and on

Fig. 2 The parameter tuning surfaces/curves generated by the SSIM values as functions of the
initial step sizes



ADMM for monotone operators: convergence analysis and rates 357

Table 1 Performance evaluation of Algorithm 14; the entries refer to the number of iterations and the
CPU times in seconds

ε = 10−4 ε = 10−6

Choice (I): Mk
2 = σ−1

k Id −τkL
∗L 14 (0.85s) 107 (5.02s)

Choice (II): Mk
2 = σ−1

k Id 18 (3.21s) 115 (41.79s)

Choice (III): Mk
2 = τk Id 16 (3.00s) 110 (42.42s)

τ1 for case (III). In case (III), we took σ0 = 1
τ1(1+λmin(LL∗))

, which proved to be the

best choice.
The entries in Table 1 show that the iterative schemes that correspond to the

choices (II) and (III) are, in terms of the number of iterates, as fast as the scheme that
corresponds to (I). The differences in CPU time (which are substantial only for low
tolerance errors) are caused by the fact that for the choices (II) and (III) inner loops
are done in each iteration. One could possibly improve the CPU times in these two
settings by solving (92) with numerical algorithms which are better adapted to outer
loop.
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