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Abstract
This paper focuses on the generalization ability of a dendritic neuron model (a model
of a simple neural network). The considered model is an extension of the Hodgkin-
Huxley model. The Markov kinetic schemes have been used in the mathematical
description of the model, while the Lagrange multipliers method has been applied to
train the model. The generalization ability of the model is studied using a method
known from the regularization theory, in which a regularizer is added to the neural
network error function. The regularizers in the form of the sum of squared weights
of the model (the penalty function), a linear differential operator related to the input-
output mapping (the Tikhonov functional), and the square norm of the network
curvature are applied in the study. The influence of the regularizers on the training
process and its results are illustrated with the problem of noise reduction in images
of electronic components. Several metrics are used to compare results obtained for
different regularizers.

Keywords Kinetic model of neuron · Markov kinetic schemes · Lagrange
multipliers · Generalization ability · Image processing · Noise reduction
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1 Introduction

This article is the latest part of a series reporting the present author’s research into a
set of models of biological dendritic neurons and neurons with a point-like structure.
The article presents the results of research into generalization ability of the stochastic
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kinetic model of a biological dendritic neuron, which stems from the model proposed
by A.L. Hodgkin and A.F. Huxley in [8]. Generalization ability of the stochastic
kinetic model of a biological neuron with a point-like structure was studied in [16].
Models of biological neural networks were considered in [15], which showed the
discretization of model equations in time and space, and in [13], where the training
of neural network models was discussed, albeit without analyzing the generalization
ability of these models.

The generalization ability determines whether a neural network is capable of
returning a proper solution for data that did not appear in the training set. Moreover,
ability of generalization prevents the training algorithm from over-training the neural
network.

As was shown in [16], a biological neuron model has the ability of generaliza-
tion. The model of a biological neural network understood as a biological dendritic
neuron may be assumed to have enhanced capabilities compared to the model of a
neuron with a point-like structure, as each and every point of a so-defined neural
network may perform consecutive steps of the algorithm for which the network has
been designed. Therefore, to be able to treat the results rendered by a neural network
as valid, it is necessary to consider the generalization ability of the biological neural
network model.

Currently, the most common method used to study the generalization ability of a
model of any neural network is the method adopted from the regularization theory
[2, 7]. This method consists in adding the so-called regularizer to the error function
of the network. Depending on how the regularizer is defined, it can penalize the
curvature of the neural network [10], smoothen and therefore stabilize the solution
[7], or smoothen the curvature, making the output of the network locally invariant
with respect to small perturbations of the input [6].

In this study, three kinds of regularizer are used: the penalty function, the Tikhonov
functional, and the square norm of the network curvature. The penalty function is
the sum of squared weights of the model [10], the Tikhonov functional is a linear
differential operator related to input-output mapping [7], while the network curvature
is defined as the second derivative of the output with respect to the input of the model
(second-order differential operator) [6].

To show how the regularizer impacts the training process of the model of a bio-
logical neural network, this network was used to reduce noise in images of selected
electronic components, such as a printed board or an integrated circuit. The noise was
introduced, for example, by covering the camera lens with a thin plastic film.

The model of a biological neural network was implemented in MATLAB. The
network was trained with the Lagrange multipliers method [1]. The definition of the
problem made it possible to use the embedded MATLAB fsolve function.

The paper is organized as follows. A concise mathematical description of the bio-
logical neural network model is given in Section 2. The regularizers used in the study
are described in Section 3. The application of the Lagrange multipliers method to
train the neural network model is discussed in Section 4. Section 5 presents the results
of the training process of the network. Section 6 completes the paper.
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2 Model

The paper considers the stochastic kinetic model of a biological dendritic neuron (for
simplicity, we will refer to it as a biological neural network throughout the paper).
The original model, which was used to derive the kinetic model, was proposed and
described in detail in the paper by A.L. Hodgkin and A.F. Huxley in 1952 [8]. The
biological foundations of the model have been thoroughly studied and presented in
a number of publications, e.g., in [3, 5, 8, 9, 14]; therefore, in this paper, we only
provide a concise mathematical description of the model.

The main equation describing the considered model has the following form [13]:

a

2R

∂2V

∂x2
= C

∂V

∂t
+ gNa [m3h0] (V − VNa)

+ gK [n4] (V − VK) + gL (V − VL) (1)

where V is the potential on the cell membrane, and the remaining terms (that do not
include a derivative) represent the ion current components related to the respective
types of ions (sodium, potassium, and chlorine). The variables [m3h0] and [n4] are
components of the Markov kinetic schemes (2) and (3). Their values are obtained
from the normal distribution. A detailed description of the procedure for obtaining
these values is included, among others, in [5, 12–14]. The forms of transfer functions
αi (V ) and βi (V ), which appear in the kinetic schemes, are given in Table 1 [8].
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The structure of the biological neural network considered in this paper is given
in Fig. 1. The points on the structure represent places where the potential will be

Table 1 αi (V ) and βi (V )

functions [8] i αi (V ) βi (V )

n
0.01 · (10 − V )

exp
( 10−V

10

)
− 1

0.125 · exp

(
− V

80

)

m
0.1 · (25 − V )

exp
( 25−V

10

)
− 1

4 · exp

(
− V

18

)

h 0.07 · exp

(
− V

20

)
1

exp
( 30−V

10

)
+ 1
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Fig. 1 Structure of the dendritic neuron [13]. Points on the structure represent places where the potential
will be determined

determined. To make the mathematical description easier to comprehend, we intro-
duce the symbol Vi for potential in a point placed on the branch where point i is, in
time t+�t and in the respective point of branch x : Vi = V

(t+�t)
i (x) ; by analogy we

have Viprev = V
(t)
i (x). This notation also applies to the variables [m3h0] and [n4].

The following initial condition applies in the discretization of (1) [4],

∂V
(t)
1 (0)

∂x
= − R

πa2
1

i0 (t) (4)

where [4]:

i0 (t) = I0t
2e−10t (5)

and I0 is a known value. The remaining boundary conditions are equal to 0.
Taking into consideration condition (4), we can write five equations, which

describe all points of the model of the neural network given in Fig. 1 [13]:

F1 = C
V1 − V1prev

�t
+ gNa [m3h0]1 (V1 − VNa) + gK [n4]1 (V1 − VK)

+ gL (V1 − VL) − a1I0t
2e−10t

2π�x
− a1

V2 − V1

2R�x2

F2 = C
V2 − V2prev

�t
+ gNa [m3h0]2 (V2 − VNa) + gK [n4]2 (V2 − VK)

+ gL (V2 − VL) − a1
V3 − 2V2 + V1

2R�x2

F3 = a2
1 (V3 − V2) − a2

2 (V4 − V3) − a2
3 (V5 − V3)

F4 = C
V4 − V4prev

�t
+ gNa [m3h0]4 (V4 − VNa) + gK [n4]4 (V4 − VK)

+ gL (V4 − VL) − a2
V4 − V3

2R�x2

F5 = C
V5 − V5prev

�t
+ gNa [m3h0]5 (V5 − VNa) + gK [n4]5 (V5 − VK)

+ gL (V5 − VL) − a3
V5 − V3

2R�x2
(6)

A detailed description of the discretization of a model of this type is given in [15].
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It is noticeable that a biological neural network is modeled in a similar way to an
artificial neural network. It has an input (current i0 (t)), output (the cell membrane
potential V ) while selected parameters of the model are treated as weights. In our
case, the weights are gNa, gK , and gL :

w1 = gNa = ǧNae
g̃Na

w2 = gK = ǧKeg̃K

w3 = gL = ǧLeg̃L (7)

where ǧ are the initial values of conductances, given in Table 2, while g̃ are proper
weights of the model, which are updated during the training process.

3 Generalization terms

In this paper, three types of regularizer have been used to study the generalization
ability of the biological neural network. As in dynamic neural networks, the regu-
larizer is appended to the error function of a neural network [6]. Since the network
considered in this paper is a five-point structure, the error function has the following
form [15]:

E = 1

T

5∑
i=1

(
Vi − V ∗

i

)2 + λEλ. (8)

The first term in 8 is the standard error of the neural network, where V ∗
i is the refer-

ence voltage (the target of the training) in the ith point of the neural network structure.
The term λEλ denotes the regularizer, where Eλ is the regularization functional and λ

is the regularization parameter, which ensures a trade-off between the task performed
by the regularizer and the accuracy of the network’s input-output mapping.

The first form of Eλ considered in this study is the so-called penalty function,
given with the following formula:

Eλ = 1

T

T∫

0

⎛
⎝∑

i,j

w2
ij

⎞
⎠ dt = 1

T

T∫

0

(
g2

Na + g2
K + g2

L

)
dt . (9)

To simplify the analysis, we have assumed that the weights are constants; therefore,
we can omit the integral in (9).

Table 2 Parameters of
Hodgkin-Huxley model i Vi [mV ] gi

[
mS/cm2

]

Na 115 120

K −12 36

L 10.6 0.3
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The next considered form of Eλ is the Tikhonov functional:

Eλ = 1

2T

T∫

0

‖DV ‖2 dt = 1

2T

T∫

0

����
∂V

∂I

����
2

dt, (10)

where ‖·‖ denotes the standard Euclidean norm. Since in our case the derivative of
potential V with respect to current I is a single value, the norm may be omitted in
(10).

The last considered form of Eλ is the square norm of the network curvature
(second-order differential operator):

Eλ = 1

2T

T∫

0

����
∂2V

∂I 2

����
2

dt . (11)

The regularizers vary in the way they affect the neural network. The penalty function
allows us to regularize the model’s structure, which is essential since the over-
fitting of the neural network structure may lead to over-training the network. The
Tikhonov functional introduces the additional assumption that the input-output map-
ping function should be smooth, which means that similar values of the input current
I correspond to similar values of the output potential V [7]. Finally, as a result of
minimization of the square norm of the network curvature, the derivative is locally
invariant with respect to small changes in I . The application of this regularizer allows
us to obtain a better mapping of the training set.

4 Training

The stochastic version of the kinetic model of a biological neural network is trained
using the method of Lagrange multipliers. This method searches for the minimum
(or maximum) of a certain function subject to specific constraints. In our case, we
minimize the error function (8), while the constraints are represented by the system
of equations (6). In order to find the minimum of function E, let us formulate the
following auxillary function:

L = E +
5∑

i=1

λiFi = 1

T

5∑
i=1

(
Vi − V ∗

i

)2 + λEλ +
5∑

i=1

λiFi (12)

where λi are so-called Lagrange multipliers. We calculate the derivatives of function
L with respect to all parameters of the model of the biological neural network. These
parameters are V1, V2, V3, V4, V5, g̃Na, g̃K, g̃L, λ1, λ2, λ3, λ4, and λ5. In the next
step, we equate all derivatives to zero, thus obtaining a system of equations, whose
solution is the minimum of function E. For clarity, the derivaties of (12) are given
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below as three separate systems of Eqs. (13–15). Only the system of equations (14)
changes depending on the form of regualizer used.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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(15)

If the regularizer is not applied, then P1 = P2 = P3 = 0 (or equivalently λ = 0).
For the regularizer in the form of the penalty function, we have:

⎧⎨
⎩

P1 = 2
T

g2
Na

P2 = 2
T

g2
K

P3 = 2
T

g2
L

(16)
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For the Tikhonov functional and for the square norm of the network curvature, P1, P2,
and P3 take the following form:

⎧⎪⎪⎨
⎪⎪⎩

P1 = C
�t

P1prevS−gNa[m3h0]1Q

S2

P2 = C
�t

P2prevS−gK [n4]1Q

S2

P3 = C
�t

P3prevS−gLQ

S2

(17)

where:

S = C

�t
+ gNa [m3h0]1 + gK [n4]1 + gL + a1

2R (�x)2
(18)

Q = C

�t

(
∂V

∂I

)

prev

+ 1

2π�x

(
2a1I0te

−10t − 10a1I0t
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)
(19)

for the Tikhonov functional, and:

Q = C

�t

(
∂2V

∂I 2

)

prev

+ 1

2π�x

(
2a1I0e

−10t − 40a1I0te
−10t + 100a1I0t

2e−10t
)

(20)
for the square norm of the network curvature.

5 Results

In order to assess the influence of the regularizer on the process of training a neu-
ral network model, we conducted a test consisting in noise reduction in images
of electronic components. Figures 2(A1) and 3(A1) show two original images, to
which noise was added in the following way: the lens was covered with thin plastic
film before taking the picture (Fig. 2(B1, C1)), and the image was digitally blurred
(Fig. 3(B1, C1)). The histograms in Figs. 2 and 3 (A2, B2, C2) depict the difference
between the original pictures and their distorted versions.

The task of the neural network model was to gradually reduce the noise in the
images. The image was fed in the form of current I to the neural network input. The
potential V obtained at any output point of the neural network structure was assumed
to represent the denoised image, ideally as close to the original as possible. All final
points of the considered structure rendered the same response as the neural network
structure was symmetric.

In the test, we considered various values of the regularization factor λ (λ = 0.01,

0.02, 0.1, 0.2, 0.5, 1, 2, 5, 10), as well as the case λ = 0 (which is equivalent to
not having a regularizer at all). We considered a number of measures to compare the
results of the training process with and without the regularizer.

The first measure is the training time. Example training times of a biological neu-
ral network model for an approximately 100,000 pixel image are given in Table 3.
Except for one case, the training time improves up to two times compared to the
training time for the case without the regularizer (λ = 0).

The root mean square error (RMSE) is the second measure. Example RMSE
results for a reconstructed image of approximately 100,000 pixels are given in
Table 4. For λ = 0 (no regularizer used), RMSE is of the order of 10−2. The addition



Regularization theory in the study of generalization ability of a... 1801

Fig. 2 Image of a circuit board (A1) and two noisy versions of the image, (B1) and (C1), obtained by
placing a thin plastic film against the camera lens. Figures (A2), (B2), and (C2) are the histograms of
(A1), (B1), and (C1) respectively

of the penalty function and the Tikhonov functional to the error function had a neg-
ligible impact on RMSE for most values of λ, while the introduction of the square
norm of the network curvature improved the RMSE by one order of magnitude.

Finally, the fsolve MATLAB function allows us to determine the so-called first-
order optimality measure, which says how close the obtained solution is from the
sought solution. This measure is related to the Karush-Kuhn-Tucker conditions of
the method of Lagrange multipliers [11]. The measure must be zero at a minimum (a
sufficient condition for optimality of a solution), but a point with the measure equal
to zero may not be a minimum.
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Fig. 3 Image of integrated circuits (A1) and its two noisy versions, (B1) and (C1). Figures (A2), (B2), and
(C2) are the histograms of (A1), (B1), and (C1), respectively

Figure 4 shows the minimal, maximal, and average distance between the vectors
representing the original image and the image reconstructed by the model of a bio-
logical neural network. Except for individual cases, these values improve when a
regularizer is added to the error function, compared to the case when λ = 0.

Figure 5 features example images which have been poorly reconstructed by the
neural network model. The respective histograms in Fig. 5 show the difference
between the reconstructions and the original images. The most difficult areas to be
reconstructed are the edges and the dark parts of the images. Poor reconstruction of
images may take place when the model is over-trained and consequently it cannot
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Table 3 Example training time
for a biological neural network
model, for different regularizers
and different values of λ

λ Penalty Tikhonov Curvature

0 2224.8936

0.01 1002.5165 3861.6031 1445.3085

0.02 999.6127 1242.6350 1000.4943

0.1 1005.8427 1272.6241 1002.3842

0.2 1010.0208 1302.0676 1002.4459

0.5 1010.1994 1283.0306 1001.4347

1 1011.1937 1282.3941 1008.6745

2 1010.9655 1265.2496 1003.3383

5 1010.3824 1264.6278 1005.6711

10 1010.8224 1260.9133 1010.0293

Table 4 Example values of
RMSE between original image
and images reconstructed by a
biological neural network
model, for different regularizers
and different values of λ

λ Penalty Tikhonov Curvature

0 0.0107

0.01 0.0084 0.0118 0.0057

0.02 0.0115 0.0144 0.0034

0.1 0.0127 0.0122 0.0034

0.2 0.0076 0.0074 0.0033

0.5 0.0135 0.0149 0.0033

1 0.0114 0.0101 0.0033

2 0.0070 0.0105 0.0033

5 0.0160 0.0138 0.0033

10 0.0100 0.0081 0.0033

Fig. 4 Minimal, maximal, and mean distance between vectors representing the original image and the
image reconstructed by a biological neural network model, for different regularizers and for λ = 0
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Fig. 5 Poor reconstructions of original images from Figs. 2 and 3 ((A1), (B1)). Histograms (A2) and (B2)
show the difference between the reconstructions and the original images

find a solution if the processed image is not in the training set. Also, during initial-
ization, the values of weights are selected randomly; as a result, the algorithm which
calculates the minimum error function may find a local minimum which it cannot
leave. However, these situations are exceptional in case of the presented model of a
biological neural network. In most cases, the network is able to reconstruct images
which are very close to the original.

6 Summary

The paper analyzed the generalization ability of a stochastic kinetic model of a bio-
logical neural network. The neural network model was based on the Hodgkin-Huxley
model extended with Markov’s kinetic schemes, which describe in detail the pro-
cesses taking place on the cell membrane. The generalization ability of the model
was studied using a method known from the regularization theory, which consists in
adding a regularizer to the error function of the biological neural network model.

The following forms of regularizer were studied: the penalty function, the
Tikhonov functional, and the square norm of the network curvature. Different regu-
larizers affect the training process of the neural network structure in a different way,
which results from the way they change the neural network structure (it is minimized)
or the input-output mapping (it is smoothened). The results presented in the paper
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show that the use of the regularizer improves the measures used in comparisons, such
as RMSE or the first-order optimality measure. The most visible effect is that of the
square norm of the network curvature, thanks to which RMSE is improved by up to
one order of magnitude, and the first-order optimality measure is improved by several
orders of magnitude, from values of the order 102 to values of the order 108.
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