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Abstract In boundary integral methods it is often necessary to evaluate layer poten-
tials on or close to the boundary, where the underlying integral is difficult to evaluate
numerically. Quadrature by expansion (QBX) is a new method for dealing with such
integrals, and it is based on forming a local expansion of the layer potential close to
the boundary. In doing so, one introduces a new quadrature error due to nearly sin-
gular integration in the evaluation of expansion coefficients. Using a method based
on contour integration and calculus of residues, the quadrature error of nearly sin-
gular integrals can be accurately estimated. This makes it possible to derive accurate
estimates for the quadrature errors related to QBX, when applied to layer potentials
in two and three dimensions. As examples we derive estimates for the Laplace and
Helmholtz single layer potentials. These results can be used for parameter selection
in practical applications.
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1 Introduction

At the core of boundary integral equation (BIE) methods for partial differential
equations (PDEs) lies the representation of a solution u as a layer potential,

u(x) =
∫

�

G(x, y)σ (y)dSy, (1)

where � is a smooth, closed contour (in R
2) or surface (in R

3), σ(y) is a smooth
density defined on �, and G(x, y) is a Green’s function associated with the current
PDE of interest. The Green’s function is typically singular along the diagonal x = y,
which leads to the integrand being singular for x ∈ �. We will refer to this as a sin-
gular integral. The layer potential u is smooth on either side of �, but the error when
computing it using a regular quadrature method grows exponentially as x approaches
�. This is because G develops an increasingly sharp peak, which requires more and
more quadrature points to be accurately resolved, even though it is smooth. In this
case we say that the integral is nearly singular, since we evaluate G close to its sin-
gularity. For an introduction to methods for nearly singular integration, we refer to
[11, 14] and the references therein.

In this paper we discuss the use of residue calculus for estimating the error com-
mitted when computing a nearly singular integral using a regular quadrature method.
The error estimates are derived in the limit n → ∞, n being the number of discrete
quadrature points, but turn out to be accurate also for moderately large n. Throughout
we shall use the symbol � to mean “asymptotically equal to”, such that

a(n) � b(n) if lim
n→∞

a(n)

b(n)
= 1. (2)

The discussion is limited to the Gauss-Legendre rule and the trapezoidal rule, which
are perhaps the two most common quadrature rules in the BIE field. The kernels that
we consider are related to a new method for singular and nearly singular integra-
tion, called quadrature by expansion (QBX) [2, 8, 11]. Specifically, we consider two
classes of kernels that appear when applying QBX to the single layer potential of
Laplace’s equation in two and three dimensions, also referred to as the single layer
harmonic potential,

G(x, y) =
{
log |x − y| in R

2,

|x − y|−1 in R
3.

(3)

This paper is organized as follows: In Section 2 we introduce QBX and the relevant
kernels for studying the quadrature errors associated with the method. In Section 3 we
discuss the required framework for estimating quadrature errors, and use it to derive
error estimates for our kernels. Finally, in Section 4 we show how our results can be
used to compute quadrature error estimates that are useful in practical applications.
The results provided in Section 4 are for model geometries; in Appendix we include
results for a more complex geometry.
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2 Quadrature by expansion (QBX)

The central principle of QBX [11] is the observation that a layer potential is smooth
away from �, such that it locally can be represented using a Taylor expansion around
an expansion center x0. Given a quadrature rule and a target point x on �, the method
can be summarized as:

1. Pick an expansion center x0 at a distance r from x in the normal direction, such
that x0 lies in the quadrature rule’s region of high accuracy.

2. Compute a local expansion of the potential around x0, truncated to some
expansion order p.

3. Evaluate the local expansion at x.

The expansion is convergent inside the ball of radius r centered at x0, and at the point
of intersection of the ball and � [8], as illustrated in Fig. 1. We can therefore use
QBX to compute the potential both when it is singular and nearly singular, as long as
our target point lies inside the domain of convergence of a local expansion.

Two-dimensional single layer potential In two dimensions it is convenient to let
R
2 = C, and work with the complex version formulation for the single layer

potential,

u(z) = Re
∫

�

σ(w(t)) log(z − w(t))dt, (4)

where w(t) is an arc length parametrization of the contour � ∈ C. at a center z0 using
the series expansion of log(1 − ω), |ω| < 1, we get [8]

u(z) = Re
∞∑

j=0

aj (z − z0)
j , (5)

Fig. 1 QBX geometry. The local expansion formed at x0 is valid inside the ball of radius r and at x
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where the expansion coefficients aj are given by

a0 =
∫

�

σ(w(t)) log(w(t))dt, (6)

aj = −
∫

�

σ(w(t))

j (w(t) − z0)j
dt, j > 0. (7)

Truncating the expansion to order p and denoting by ãj the coefficients computed
using a quadrature rule, we define our QBX approximation of the potential as

ũ(z) = Re
p∑

j=0

ãj (z − z0)
j . (8)

Three-dimensional single layer potential In three dimensions an expansion of the
Green’s function about a center x0 is formed using the spherical harmonic addition
theorem [9],

1

|x − y| =
∞∑
l=0

4π

2l + 1

l∑
m=−l

|x − x0|l
|y − x0|l+1

Y−m
l (θx, ϕx)Y

m
l (θy, ϕy), (9)

where Ym
l is the spherical harmonic of degree l and order m,

Ym
l (θ, ϕ) =

√
2l + 1

4π

(l − |m|)!
(l + |m|)!P

|m|
l (cos θ)eimϕ. (10)

Here P m
l is the associated Legendre function, and (θx, ϕx) and (θy, ϕy) are the

spherical coordinates of x − x0 and y − x0. The local expansion is then

u(x) =
∞∑
l=0

|x − x0|l
l∑

m=−l

αm
l Y−m

l (θx, ϕx), (11)

with the expansion coefficients αm
l given by

αm
l = 4π

2l + 1

∫
�

|y − x0|−l−1Ym
l (θy, ϕy)σ (y)dSy. (12)

Again truncating the expansion at order p and letting α̃m
l denote coefficients

approximated by quadrature, we get our QBX approximation

ũ(x) =
p∑

l=0

|x − x0|l
l∑

m=−l

α̃m
l Y−m

l (θx, ϕx). (13)

2.1 Error analysis of QBX

The error when computing a layer potential using QBX can be divided into two com-
ponents: the truncation error and the quadrature error. The truncation error comes
from limiting the local expansion to a finite number of terms, and was analyzed by
Epstein et al. [8]. The quadrature error comes from evaluating the integrals (7) and
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(12) using a discrete quadrature rule. To see the separation of errors we add and sub-
tract the exact expansion coefficients to the QBX approximation. For the single layer
in two dimensions we then get the separation as

u(z) − ũ(z) = u(z) − Re
p∑

j=0

aj (z − z0)
j

︸ ︷︷ ︸
truncation error eT

+Re
p∑

j=0

(aj − ãj )(z − z0)
j

︸ ︷︷ ︸
quadrature error eQ

.
(14)

In [8, Thm 2.2] it is shown that there is a constant Mp,� such that if σ ∈ Cp(�), then

|eT | ≤ Mp,�‖σ‖Cp(�)r
p+1 log

1

r
, (15)

where r is the distance from � to the expansion center. In three dimensions we
similarly have (assuming for the moment x0 = 0)

eT = u(x) −
p∑

l=0

|x|l
l∑

m=−l

αm
l Y−m

l (θx, ϕx), (16)

eQ =
p∑

l=0

|x|l
l∑

m=−l

(αm
l − α̃m

l )Y−m
l (θx, ϕx). (17)

Here a generalization of the results in [8, Thm 3.1] gives that there is a constant M�,δ ,
δ > 0, such that if σ belongs to the Sobolev space H 3+p+δ(�), then

|eT | ≤ Mp,δ‖σ‖H 3+p+δ(�)r
p+1. (18)

If we let h be a characteristic length of the discretization of �, and furthermore keep
the ratio r/h constant under grid refinement, then a consequence of the truncation
error estimates is that eT converges with order p + 1 under refinement,

eT = O
(
hp+1

)
. (19)

In [8] and [11] it is argued that if the quadrature error can be maintained at a fixed
level ε, then

|u − ũ| = O
(
ε + hp+1

)
, (20)

such that QBX is convergent with order p + 1 until hitting the “floor” given by ε.
Turning to the quadrature error eQ, one can in practical applications observe that

it grows with the expansion order p, such that there for a given problem exists an
optimal p where the total error eT + eQ has a minimum. To control eQ (and thereby
the minimum error) one can interpolate σ to a finer grid before computing the coef-
ficients, a technique usually referred to as “upsampling” [2] or “oversampling” [11].
This works because at large p the difficulties lie in accurately resolving the kernels
in Eqs. 7 and 12, not σ itself.

The quadrature error eQ has for the two-dimensional case been discussed in [8]
and [2]. In [8] an upper bound, which did not explicitly show the dependence on
p, was derived for the case when � is discretized using Gauss-Legendre panels. In
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[2, Thm 3.2], a bound including the p-dependence was derived for � discretized
using the trapezoidal rule.

In what follows of this paper we shall develop quadrature error estimates, not
bounds, that accurately predict the order of magnitude of |aj − ãj | and |αm

l − α̃m
l |

in the asymptotic region of n → ∞. We will do this for the n-point trapezoidal and
Gauss-Legendre quadrature rules on certain geometries. To that end, we will consider
two different classes of kernels (depicted in Fig. 2),

fp(z) = 1

(z − z0)p
, z, z0 ∈ C, (21)

gp(x, y) = 1(
(x − x0)2 + (y − y0)2

)p , x, y, x0, y0 ∈ R, (22)

where the respective singularities z0 and (x0, y0) of the kernels are assumed to lie
close to, but not on, the interval of integration. The kernel fp is relevant when ana-
lyzing the computation of aj , which we will refer to as the complex kernel. The
corresponding kernel for αm

l is gp, and we will refer to it as the Cartesian kernel.

3 Estimating quadrature errors

The purpose of quadrature is to numerically approximate the definite integral of a
function f over some interval �,

I[f ] =
∫

�

f (x)dx, (23)

where � is typically a subset of the real line or a closed curve in the complex plane.
This approximation is computed through an n-point quadrature rule, using a set of
nodes xi ∈ � and weights wi ,

Qn[f ] =
n∑

i=1

f (xi)wi. (24)

Fig. 2 Examples of the kernels fp (21) and gp (22) on [−1, 1], with z0 = iy0 and (x0, y0) = (0, 0.4).
The real part of the complex kernel fp is shown to illustrate how it oscillates (in absolute value |f2p = gp|
on this interval)
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For an n-point interpolatory quadrature rule, the weights wi are determined by inte-
grating the polynomials of degree n − 1 that interpolate f at the nodes xi . The error
of the approximation is given by the remainder term

Rn = I−Qn, (25)

which converges to zero as n → ∞ unless the function is ill-behaved in some way,
e.g. if f has a singularity on �. As practitioners of quadrature, we typically want to
know the relationship between Rn and f in order to make our computations efficient
and reliable. Luckily, most quadrature rules come equipped with a number of error
bounds involving f in one way or another. However, most such bounds are useful
only if f is analytic in the whole complex plane, or in a large region around �. In
Section 3.1.1 we give an example where an error bound for the Gauss-Legendre rule
wildly overestimates the actual error.

We now consider what happens when f is meromorphic, i.e. analytic everywhere
except for at a set of poles. The focus of our present work is the case when f has
poles close to �. Then the best way of obtaining accurate estimates of Rn is to use
contour integrals in the complex plane, using the theory of Donaldson and Elliott
[6]. The key principle is that the quadrature rule Qn can be connected to a rational
function qn(z), which has simple poles at the quadrature nodes xi , and residues at
those poles equal to the quadrature weights wi . If C is a contour enclosing �, on and
within which the complex continuation of f is analytic, then

Qn[f ] = 1

2πi

∫
C

f (z)qn(z)dz. (26)

There also exists a characteristic function m(z) such that we can express the integral
over � as a contour integral,

I[f ] = 1

2πi

∫
C

f (z)m(z)dz. (27)

We define the remainder function

kn(z) = m(z) − qn(z), (28)

which is analytic in the complex plane with � deleted. Using kn we can express the
remainder as a contour integral,

Rn[f ] = 1

2πi

∫
C

f (z)kn(z)dz. (29)

As |z| tends to infinity, kn tends to zero at least likeO(|z|−n) for interpolatory quadra-
ture [7], so by taking C to infinity we see that interpolatory quadrature is exact for
polynomials of degree < n. If f has one or more poles zj enclosed by C, we deform
the contour integral to include small circles enclosing those poles (see e.g. the illus-
tration in [7]). Letting the radius of the circles go to zero, the remainder is given by
the integral over C minus the residues at the poles,

Rn[f ] = 1

2πi

∫
C

f (z)kn(z)dz −
∑
j

Res
[
f (z)kn(z), zj

]
. (30)
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For reference we here state the definition of the residue of a function g(z) which has
an order p pole at z0:

Res [g(z), z0] = 1

(p − 1)! lim
z→z0

dp−1

dzp−1

(
(z − z0)

pg(z)
)
. (31)

If the poles of f are close to �, then the remainder Rn[f ] is typically dominated by
the corresponding residues, and the contribution from the contour integral is negli-
gible. If f (z)kn(z) goes to zero as C is taken to infinity for some n ≥ N , then the
remainder is equal to the sum of the residues for those n.

Given a meromorphic integrand f and a quadrature rule Qn, our ability to estimate
Rn depends on our knowledge of kn(z) and our ability to compute the residues of
f (z)kn(z) at the poles. For some quadrature rules we have closed form expressions
for kn(z), while for others we only have asymptotic estimates valid for large n. In
what follows we shall summarize the relevant formulas for the Gauss-Legendre and
trapezoidal quadrature rules and apply them to our model kernels.

3.1 The Gauss-Legendre quadrature rule

The n-point Gauss-Legendre quadrature rule [1, ch. 25] belongs to the wider class of
Gaussian quadrature, and is extensively used in applications where the integrand is
not periodic. It is by convention defined for the interval [−1, 1],

I[f ] =
∫ 1

−1
f (x)dx. (32)

The weights and nodes of the quadrature rule Qn are associated with Pn(x), the
Legendre polynomial of degree n. The nodes are the roots of Pn,

Pn(xi) = 0, i = 1, . . . , n, (33)

and ordered, such that xi < xi+1. The weights are given by

wi = 2

(1 − x2
i )P ′

n(xi)2
. (34)

In our analysis of the kernels fp and gp we will stay on the standard interval
[−1, 1] on the real axis. Setting

z0 = a + ib, (x0, y0) = (a, b), (35)

with

− ∞ < a < ∞, b > 0, (36)

our target kernels are then

fp(z) = 1

(z − z0)p
, (37)

gp(x) = 1

((x − a)2 + b2)p
. (38)
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3.1.1 Classic error estimate

There exists a classic error estimate for the Gauss-Legendre rule, available in e.g.
Abramowitz and Stegun [1, eq. 25.4.30], stating that on an interval of length L the
error is given by

|Rn[f ]| ≤ L2n+1(n!)4
(2n + 1)[(2n)!]3 ‖f (2n)‖∞. (39)

The most important interpretation of this result is that n-point Gauss-Legendre
quadrature will integrate polynomials of degree up to 2n − 1 exactly. In practice the
estimate is only useful for very smooth integrands, due to the high derivative of f in
the estimate. Consider the example of f = g1 with a = 0, which can be found in
Brass and Petras [5],

f (x) = 1

x2 + b2
, b > 0, � = [−1, 1]. (40)

The norm of the derivative is given by

‖f (2n)‖∞ = |f (2n)(0)| = (2n)!
b2n+2

. (41)

Inserting this into the estimate and applying Stirling’s formula,
√
2πnn+ 1

2 e−n < n! < 2
√

πnn+ 1
2 e−n, (42)

we get that

|Rn[f ]| ≤ 4π

b2(2b)2n
. (43)

This bound goes to infinity exponentially fast for b < 1/2, while in practice Gauss-
Legendre quadrature exhibits exponential convergence for this integrand.

There exists a large number of error estimates involving lower order derivatives of
the integrand, available in the work by Brass et al. [4, 5]. Alternatively, one can esti-
mate the error through a contour integral, which is what we will do in the following
section.

3.1.2 Contour integral

An expression for estimating the error of Gaussian quadrature as a contour integral
was found by Barrett [3] for certain cases, and later generalized by Donaldson and
Elliott [6]. The below derivation follows that of Barrett [3].

It can be shown for Gauss-Legendre quadrature that the weights are given by

wi = 1

P ′
n(xi)

∫ 1

−1

Pn(t)

t − xi

dt, (44)

where xi are the zeros of Pn(x). The weights can also be computed as the residues of
the function

qn(z) = 1

Pn(z)

∫ 1

−1

Pn(z) − Pn(t)

z − t
dt, (45)
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at the nodes xi ,

wi = Res[qn, xi] = lim
z→xi

(z − xi)qn(z). (46)

It follows that

Qn[f ] =
n∑

i=1

f (xi)wi = 1

2πi

∫
C

f (z)qn(z)dz, (47)

where C now contains [−1, 1]. It can also be seen that since

f (t) = 1

2πi

∫
C

f (z)

z − t
dz, (48)

we can write

I[f ] = 1

2πi

∫
C

f (z)m(z)dz, (49)

where

m(z) =
∫ 1

−1

dt

z − t
(50)

It follows that the remainder function kn(z) in Eqs. 28–30 is given by

kn(z) = m(z) − qn(z) = 1

Pn(z)

∫ 1

−1

Pn(t)

z − t
dt. (51)

While we do not have a closed form expression for kn(z), it can in the limit n → ∞
be shown to satisfy [3, 6]

kn(z) � cn

(z + √
z2 − 1)2n+1

, (52)

where

cn = 2π(�(n + 1))2

�(n + 1/2)�(n + 3/2)
� 2π. (53)

While this is an asymptotic result valid for n → ∞, we shall see that it provides an
accurate approximation of kn also for moderately large n.

In the following analysis we will need derivatives of kn, for the residue at high
order poles. The first two derivatives are

k′
n(z) � kn(z)

−(2n + 1)√
z2 − 1

, (54)

k′′
n(z) � kn(z)

(
(2n + 1)2
√

z2 − 1
2

+ z(2n + 1)
√

z2 − 1
3

)
. (55)

From Eqs. 54 and 55 we can induce that the qth derivative of kn will have the form

k
(q)
n (z) � kn(z)

((
− 2n + 1√

z2 − 1

)q

+ O
(
(2n + 1)q−1

))
, (56)
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such that we for large n can use the approximation

k
(q)
n (z) � kn(z)

(
− 2n + 1√

z2 − 1

)q

. (57)

3.1.3 Complex kernel

We now wish to study the Gauss-Legendre rule applied to the complex kernel (37)
on [−1, 1]. The integral is then

I[fp] =
∫ 1

−1

dx

(x − z0)p
, (58)

which has a pole of order p at z0. Letting C in Eq. 30 enclose [−1, 1] and z0, the
integrand fp(z)kn(z) vanishes as we take C to infinity. The remainder is given by the
residue,

Rn[fp] = −Res

[
kn(z)

(z − z0)p
, z0

]
= −k

(p−1)
n (z0)

(p − 1)! . (59)

Using the estimate (57) for the derivatives of kn, we get the following estimate for
the remainder:

Theorem 1 Let fp(x) = (x − z0)
−p with z0 = a + ib, with −∞ < a < ∞,

b > 0 and p ∈ N. The magnitude of the remainder when using the n-point Gauss-
Legendre rule to compute

∫ 1
−1 fp(x)dx is then in the asymptotic limit n → ∞ given

by

|Rn[fp]| � 2π

(p − 1)!

∣∣∣∣∣∣∣
2n + 1√
z20 − 1

∣∣∣∣∣∣∣

p−1

1

|z0 +
√

z20 − 1|2n+1
. (60)

Proof The proof follows from Eqs. 52, 57 and 59.

We have (see e.g. [3]) that the factor |z + √
z2 − 1|2n+1 is constant on an ellipse

with foci at ±1, and consequently that it has a minimum when Re z = 0. The decay
rate for a general z0 = a+ib is therefore bounded by the decay rate given by z0 = ib,

1

|z0 +
√

z20 − 1|2n+1
≤ 1

|b + √
b2 + 1|2n+1

. (61)

Assuming b � 1 and discardingO
(
b2
)
terms, we can simplify the result of Theorem

1 to

|Rn[fp]| � 2π

(p − 1)! (2n)p−1e−2bn, (62)

where a(n) � b(n) now denotes “approximately less than or equal to” in the
limit n → ∞, in the sense that for a K(n) such that a(n) ≤ K(n), then
limn→∞ K(n)/b(n) ≈ 1. Although just an approximation, the result in Eq. 62
compares very well to numerical experiments, as shown in Fig. 3.
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Fig. 3 Gauss-Legendre rule quadrature error for fp(x) on [−1, 1], with estimate computed using (62)

3.1.4 Cartesian kernel

Let us now consider the Cartesian kernel (38) and the quadrature error when
computing

I[gp] =
∫ 1

−1

dx

((x − a)2 + b2)p
(63)

using Gauss-Legendre quadrature. The case of p = 1 was studied by Elliott, Johnston
& Johnston [7], and following their example we write the complex extension of gp as

gp(z) = 1

((z − a)2 + b2)p
= 1

(z − z0)p(z − z0)p
, (64)

which has poles at z0 and z0,

z0 := a + ib. (65)

Letting the contour C enclose [−1, 1] and the poles, we see that the integrand vanishes
as we take C to infinity, and we are left with a remainder determined by the residues,

Rn[gp] = −
∑

w={z0,z0}
Res

[
kn(z)

(z − z0)p(z − z0)p
, w

]
, (66)

with kn as defined in Eq. 52. These residues are easily evaluated as

Res

[
kn(z)

(z − z0)p(z − z0)p
, z0

]
= 1

(p − 1)!
dp−1

dzp−1

(
kn(z)

(z − z0)p

)
z=z0

. (67)
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Carrying out the full computations for p = 1, 2, 3, we get

Rn[g1] = −1

b
Im[kn(z0)], (68)

Rn[g2] = −Re
[
k′
n(z)

]
2b2

+ Im [kn(z)]

2b3
, (69)

Rn[g3] = − Im[k′′
n(z0)]
8b3

− 3Re[k′
n(z0)]

8b4
+ 3i Im[kn(z0)]

8b5
. (70)

For large n, the dominating term will be the one with the highest kn-derivative, so we
can make the approximation

Res
[
gp(z)kn(z), z0

] � 1

(p − 1)!
k
(p−1)
n (z0)

(z0 − z0)p
. (71)

We combine (57), (71), z0 − z0 = 2ib and kn(z0) = kn(z0), to get

Theorem 2 Let gp(x) = ((x − a)2 + b2)−p with −∞ < a < ∞, b > 0 and p ∈ N,
and let Rn[gp] denote the remainder when using the n-point Gauss-Legendre rule to

compute
∫ 1
−1 gp(x)dx. Then, in the asymptotic limit n → ∞,

|Rn[gp]| � 2

(p − 1)!(2b)p
×
{

| Im[k(p−1)
n (z0)]| if p odd,

|Re[k(p−1)
n (z0)]| if p even,

(72)

where z0 = a + ib and

k
(q)
n (z) �

(
− 2n + 1√

z2 − 1

)q 2π

(z + √
z2 − 1)2n+1

. (73)

Proof The proof follows from Eqs. 57, 66 and 71.

Repeating the argument of Section 3.1.3, we can by assuming b � 1 estimate the
largest error for all a as

|Rn[gp]| � 2π

(p − 1)!bp
np−1e−2bn, (74)

which provides a relatively clear view of how the error depends on p, b and n.
Figure 4 shows experimental results using both this estimate and Theorem 2, as well
as the results obtained when including all terms of the differentiation in Eq. 67. The
left column of Fig. 4 shows results for a 
= 0, in which case the error has an oscilla-
tory behavior in n. These oscillations are bounded by the case a = 0, shown to the
right. The top row shows results for p = 1, where our estimates are very accurate.
The center row shows that our estimates lose accuracy for small n at p = 5, though
that loss can be recovered by including all derivatives, as in the bottom row.

3.2 The trapezoidal rule

For periodic integrands, the trapezoidal rule is typically the quadrature rule of choice.
It is easy to implement, has an even point distribution and converges exponentially
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Fig. 4 Gauss-Legendre quadrature error for gp(x) on [−1, 1], “Full expression” is computed using
Eqs. 66–67, “Estimate” using Eq. 72 and “Simple estimate” using Eq. 74
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fast. In our analysis we will assume the interval of integration to be the unit circle,
parametrized in an arc length parameter t . Without loss of generality we can then
assume the singularity to lie on the x-axis at a distance b from the boundary,

z0 = 1 + b, (x0, y0) = (1 + b, 0), (75)

with b > 0. Our target kernels are then

fp(z(t)) = 1

(z(t) − z0)p
, (76)

gp(x(t), y(t)) = 1

((x(t) − x0)2 + y(t)2)p
. (77)

The kernel f1 corresponding to p = 1 is essentially that of the Laplace double
layer potential. A bound on the quadrature error for this potential was derived in
[2, Thm 2.3] for � a general curve discretized using the trapezoidal rule. This bound
corresponds to the result in Theorem 3 (below) for p = 1 and � the unit circle.

3.2.1 Contour integral

We here state the necessary results for error estimation using contour integrals for
two cases: integral over a periodic interval and integral over a circle in the complex
plane. These results and more can be found in the thorough review by Trefethen
and Weideman [15]. It is worth noting that the remainder functions (79) and (82)
for the trapezoidal rule are exact, in contrast to the asymptotic results used in the
Gauss-Legendre case.

Integral over a periodic interval For a 2π -periodic function f we approximate the
integral I[f ] = ∫ 2π0 f (x)dx using the trapezoidal rule

Qn[f ] = 2π

n

n∑
k=1

f (xk), xk = 2πk/n. (78)

To compute Rn[f ], we let C be the rectangle [0, 2π ] ± ia, a > 0, traversed in the
positive direction. The sides of rectangle cancel due to periodicity, so we need only
consider the top and bottom lines. The appropriate remainder function is given by
[15]

kn(z) = 2πi

{ −1
e−inz−1

Im z > 0,
1

einz−1
Im z < 0.

(79)

Integral over circle in the complex plane For a function f (z) on the unit circle we
have z = eit , such that

I[f ] =
∫ 2π

0
f (eit )dt, (80)

and

Qn[f ] = 2π

n

n∑
k=1

f (zk), zk = e2πik/n. (81)
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For the contour integral we let C be the circle |z| = r > 1, and the remainder function
is then given by [15]

kn(z) = −2π

z(zn − 1)
. (82)

3.2.2 Complex kernel

Integrating fp (76) on the unit circle in the complex plane, we wish to compute

I[fp] =
∫ 2π

0

dt

(z(t) − z0)
p , (83)

with z(t) = eit and z0 = 1 + b. Letting C enclose the unit circle and z0, we can
compute the remainder of the trapezoidal rule as

Rn[fp] = 1

2πi

∫
C

kn(z)

(z − z0)p
dz − Res

[
kn(z)

(z − z0)p
, z0

]
, (84)

with kn as defined in Eq. 82. Taking C to infinity the integral vanishes, and the error
is given by the residue at z0, where there is a pole of order p such that

Rn[fp] = − 1

(p − 1)!k
(p−1)
n (1 + b). (85)

If we evaluate the derivative analytically, this expression is exact. For large n we can
estimate kn as,

kn(z) � −2πz−(n+1) (86)

such that

k
(p−1)
n � −2π(−1)p−1 (n + 1) · · · (n + p − 1)

(p − 1)! z−(n+p). (87)

We can simplify the product in the numerator through

(n + 1) · · · (n + p − 1) � (n + p)p−1. (88)

Putting it all together, we get the following result:

Theorem 3 Let fp(z) = (z − z0)
−p with p ∈ N, |z0| = 1 + b and b > 0, and

let Rn[fp] be the quadrature error when computing
∫ 2π
0 fp(eit )dt using the n-point

trapezoidal rule. In the limit n → ∞ we then have that

|Rn[fp]| � 2π
(n + p)p−1

(p − 1)! (1 + b)−(n+p). (89)

Proof The proof follows from Eqs. 85, 87 and 88.

The expression in Theorem 3 gives a very good estimate of the error. In Fig. 5 we
compare it to numerical results for p = 1 and p = 10, and in both cases it captures
the region of exponential convergence very well.
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Fig. 5 Trapezoidal rule quadrature error for fp(z) on the unit circle, compared to the estimate in Theorem 3

3.2.3 Cartesian kernel

Integrating gp (77) on the unit circle with (x0, y0) = (1+ b, 0), our target integral is

I[gp] =
∫ 2π

0

dt(
(cos t − x0)2 + sin2 t

)p , (90)

where t is an arc-length parameter describing the unit circle. Letting gp(z) be the
complex extension of gp(t), we can write

gp(z) = 1(
1 + x2

0 − 2x0 cos z
)p . (91)

This function has poles at z0 and z0,

z0 = i log x0 = i log(1 + b). (92)

It is also periodic on the interval [0, 2π ], so we let C be the rectangle [0, 2π ] ± ia,
a > 0, traversed in the positive direction, and take the remainder function as defined
in Eq. 79. Letting a go to infinity the contribution from the contour vanishes, and the
remainder is given by the residues at the poles,

Rn[gp] = −
∑

w={z0,z0}
Res

[
gp(z)kn(z), w

]
. (93)

To compute the residue at z0 we begin with the definition (31)

Res
[
gpkn, z0

] = 1

(p − 1)! lim
z→z0

dp−1

dzp−1

(
(z − z0)

p

(1 + x2
0 − 2x0 cos z)p

kn(z)

)
. (94)
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Taking the limit for the first few p we note that the residues from z0 and z0 are equal,
such that we can express the remainder as

Rn[g1] = 2ikn(z0)

b(b + 2)
, (95)

Rn[g2] = 2k′
n(z0)

b2(b + 2)2
+ 2i(b(b + 2) + 2)kn(z0)

b3(b + 2)3
, (96)

Rn[g3] = − ik′′
n(z0)

b3(b + 2)3
+ 3(b(b + 2) + 2)k′

n(z0)

b4(b + 2)4
+ O(kn(z0)). (97)

When n is large we can estimate the remainder function as

kn(z) � 2πi

{−einz Im z > 0,
e−inz Im z < 0,

(98)

such that
k
(q)
n (z0) � −2πi(in)q(1 + b)−n. (99)

For large n the remainder will be dominated by the highest derivative of kn, so we
can simplify to get the following result:

Theorem 4 Let gp(x, y) = ((x − x0)
2 + y2)−p with p ∈ N, x0 = 1 + b and b > 0,

and let |Rn[gp]| be the quadrature error when computing ∫ 2π0 gp(cos t, sin t)dt using
the n-point trapezoidal rule. For n → ∞ the error is then asymptotically given by

|Rn[gp]| � 4π

(p − 1)!(b2 + 2b)p

np−1

(1 + b)n
. (100)

Proof The proof follows from Eqs. 92, 93, 94 and 99.

Figure 6 shows the estimate of Theorem 4 applied for p = 1 and p = 5 with
b = 0.2. The exponential convergence is well captured, though at low n and large p

Fig. 6 Trapezoidal rule quadrature error for gp(z) on the unit circle, with estimate given by Theorem 4
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some accuracy is sacrificed by our simplifications. If the point (x0, y0) is not on the
x-axis, but still on the circle of radius 1 + b, then the error has wiggles similar to
those present in Fig. 4. The result in Theorem 4 then follows the maximum of those
wiggles.

3.3 Comments

We now have asymptotically accurate estimates of Rn[fp] and Rn[gp] for the trape-
zoidal and Gauss-Legendre rules on simple model geometries (unit circle and line
segment). The derivations of these four estimates all follow the same basic recipe,
which for an integrand f and remainder function kn can be summarized as follows:

(i) Find the poles {zi} of f .
(ii) Take the error to be the residues of knf at {zi}.
(iii) If necessary, simplify the result by keeping only the term that dominates as

n → ∞. In the examples we have considered, this has been the one with the
highest derivative of kn.

A few comments are also in order before we move on to applying our results to more
general problems.

Non-integer poles Our derivations of error estimates for fp and gp are only valid
for integer p. In practice we want to estimate the error for kernels like |x − x0|−q ,
q ∈ N, which means that p also takes half-integer values. Instead of carrying out
new derivations for p half-integer, we simply note that the estimates we already have
work well in practice also for half-integers, as long as the factorial is computed using
the gamma function,

(p − 1)! = �(p), (101)

which is true for integer p.

Taking the density into account When computing the QBX coefficients (7) and
(12), we typically have kernels like fp or gp times a non-constant density σ . For the
2D coefficients aj in Eq. 7 we for example have the integrand σ(z)fj (z). With a
pole of order j in fj at z0 the residue contains all the derivatives of σ up to σ (j−1)

evaluated at z0, so a minimum requirement is that those derivatives are bounded.
Let us now assume σ to be smooth everywhere, which in the BIE setting is quite
reasonable. The only residue to consider is then the one at z0, which is dominated by
the highest derivative of kn,

Res
[
σ(z)fj (z)kn(z), z0

] � σ(z0)Res
[
fj (z)kn(z), z0

]
. (102)

Depending on σ , the error may also have a contribution from the contour C, as the
contour integral may be non-vanishing at infinity. This contribution can however be
safely neglected in the asymptotic region, as the contribution from the poles then
dominates the error, at least for poles close to the domain of integration.

As a concrete example, let us now consider the density σ(x) = xkeimx multiplied
with gp, integrated on [−1, 1] using Gauss-Legendre quadrature. (A density like this
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with k or m nonzero would appear when using a discretization that corresponds to a
polynomial or a Fourier series that is integrated term by term.) The integrand

h(x) = σ(x)gp(x) = xkeimx

((x − a)2 + b2)p
, (103)

is analytic everywhere expect at the poles z0 = a + ib and z0, so we can compute the
error as the contour integral of knh over C plus the residues. As C tends to infinity
the integral does not vanish for any n, since then |kn(z)h(z)| � |z|k−2p−2n−1em|z|.
Taking C to be a circle of radius R � 1,

|
∫
C

kn(z)h(z)dz| = O
(
Rk−2p−2n−1emR

)
≤ O

(
Rk−2nemR

)
. (104)

Minimizing the rightmost bound with respect to R gives Rmin = 2n−k
m

, such that

|
∫
C

kn(z)h(z)dz| ≤ O
((

2n − k

me

)k−2n
)

� O
(
n−2n

)
, (105)

We have σ smooth everywhere, so we use the simplification (102) of keeping only
the highest order derivative in kn, such that

Rn[h] � σ(z0)Res(gpkn, z0) + σ(z0)Res(gpkn, z0) + O(n−2n). (106)

The last term has faster than exponential decay, so the contribution from the poles
will dominate the error. Inserting (71),

|Rn[h]| � (|σ(z0)| + |σ(z0)|) |k(p−1)
n (z0)|

(p − 1)!(2b)p
(107)

= |z0|k(emb + e−mb)
|k(p−1)

n (z0)|
(p − 1)!(2b)p

. (108)

We can thus get an error estimate for h by taking our previous results for the kernel
fp, multiplied by the density σ evaluated at the poles of fp.

Our experience is that the above reasoning holds true also in the general case, such
that we can estimate the quadrature error for an arbitrary, smooth density using the
error estimate for the kernel times the density evaluated at the poles. In practice we
can simplify this even further by using the values of the density on �, since that is
what we have access to in a numerical implementation. If xc is the point on � closest
to z0, we then use that σ(z0) ≈ σ(xc) if r small and σ smooth. For a nearly singular
kernel f this allows us to use existing error estimates by writing

Rn[σf ] ≈ σ(xc)Rn[f ]. (109)

4 Applications

In the previous section we showed how to develop quadrature error estimates for
the kernels fp and gp, when integrated on model geometries using the trapezoidal
and Gauss-Legendre quadrature rules. We will in this section show how these error
estimates can be used to estimate the quadrature errors of QBX. Before we do that,
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however, we will show an example of how we can use our results to estimate the error
when evaluating a nearly singular layer potential using regular quadrature.

4.1 Double layer potential in two dimensions

To see how our results can be used when working with the double layer potential, we
now consider an example from Helsing & Ojala [10, sec. 10.1]. We then consider the
two-dimensional double layer potential in complex form

u(z) =
∫

�

σ(w) Im

[
dw

w − z

]
, (110)

where σ is the solution to an interior Dirichlet problem with a known reference
solution1 uref(z). The boundary is starfish-shaped with parametrization

z(t) = (1 + 0.3 cos 5t)eit , −π ≤ t ≤ π, (111)

and is divided into 35 panels �i of equal length in t . Each panel is discretized using
a 16-point Gauss-Legendre quadrature rule, for a total of 560 discretization points.
Computing u(z) in the interior using the Gauss-Legendre quadrature results in large
errors close to the boundary. This can be seen in Fig. 7a, which shows the relative
pointwise error

e(z) = |u(z) − uref(z)|
‖uref(z)‖∞

. (112)

An accurate estimate of e(z) for � discretized using the trapezoidal rule can be
observed in [2, Fig. 1]. To estimate e(z) when using Gauss-Legendre panels, we can
use our results from Section 3.1.3 to estimate the error ei from each panel �i , and
then sum them together,

e(z) =
Npanels∑
i=1

ei(z). (113)

(In practice it suffices to use the contribution from the two closest panels, as the
closest panel completely dominates the error except for when z is close to the edge
between two panels). Replacing each panel with a corresponding flat panel, we can
generalize the results of Theorem 1 to estimate the error from panel �i as

ei(z) �
2π‖σ‖L∞(�i )

|z0 +
√

z20 − 1|2n+1
, (114)

where z0 is the location of the pole z under the transformation that takes �i to [−1, 1].
We approximate the imaginary part of z0 as Im z0 = 2 d/L, where L is the length of
�i and d is the shortest distance from z to �i . The real part Re z0 is approximated as
the real part of z after applying the scaling and rotation that takes the endpoints of �i

to −1 and 1.
Evaluating the estimate (114) in the interior produces an error plot which in “eye-

ball norm” is identical to that in Fig. 7a. If we are more careful and compare the

1We refer to [10] for details on uref and how to compute σ .
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(a) (b)

Fig. 7 Error when evaluating the double layer potential on a starfish domain using 35 Gauss-Legendre
panels with 16 points each

level sets of the error and the estimate (Fig. 7b), we see that the correspondence is
extremely good for panels that are close to flat, while the estimate suffers some inac-
curacy for curved panels. Increasing the number of panels improves the accuracy of
the estimate (Fig. 8), as the individual panels then are less curved. By removing the
absolute value in the denominator of Eq. 114 and instead taking the imaginary part
of the whole expression we can also reproduce the small-scale oscillations of the true
error, though that has small practical relevance.

These results suggest that our error estimates are useful for estimating the magni-
tude of quadrature errors due to the near singularity of the integral. This allows for a
cheap way of determining when one needs to use a special quadrature method, such
as QBX or the one outlined in [10].

4.2 QBX in two dimensions

Let us now return to the QBX quadrature error for the single layer potential in two
dimensions, which we introduced in Section 2. We let � be a curve divided into N

panels of length h, and compute the coefficients ãj at an expansion center zc from

Fig. 8 Same plots as in Figure 7, but with 70 Gauss-Legendre panels
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Eq. 7 using n-point Gauss-Legendre quadrature on each panel. We then have from
Eq. 14 that the quadrature error is

eQ(z) = Re
p∑

j=0

(aj − ãj )(z − zc)
j , |z − zc| ≤ r, (115)

which is bounded by

|eQ| ≤
p∑

j=0

|aj − ãj |rj . (116)

This error is discussed in Epstein et al. [8], where they use the standard Gauss-
Legendre error estimate (39) to get

|eQ| ≤ Cn(p, �)

(
h

4r

)2n
‖ϕ‖C2n , (117)

from which it is concluded that r > h/4 is required for the quadrature to converge.
This does however not give any information about the rate at which the quadrature
error grows with p. Nor does it give any practically useful information about the
quadrature error, since it is easy to numerically verify that r < h/4 works just fine
as long as n is large enough. In fact, the standard Gauss-Legendre error estimate is
overly pessimistic for this type of integrand, as discussed in Section 3.1.1.

Using the result in Eq. 62, as follows from Theorem 1, and generalizing as dis-
cussed in Section 3.3, we can estimate the quadrature error on the interval [−1, 1] for
a function of type h(z) = σ(z)(z − z0)

−j as

|Rn[h]| � |σ(z0)| 2π

(j − 1)! (2n)j−1e−2n Im z0 , (118)

under the assumption Im z0 � 1 and σ smooth. Using a change of variables from an
interval of length h to [−1, 1] and setting z0 = 2ir/h, we can estimate the quadrature
error for a single coefficient as

|ãj − aj | � C(�, h)
1

j !
(
4n

h

)j−1

e−4nr/h‖σ‖L∞(�r ), (119)

where �r is the strip of width r stretching from � into the domain. In practice we can
use ‖σ‖L∞(�r ) ≈ ‖σ‖L∞(�) if r small and σ smooth. For � a perfectly flat panel the
constant would be C(�, h) = 2π , and in practice C is close to 2π if the panels on a
general � are close to flat, since the error is dominated by that from the panel closest
to zc. Putting (116) and (119) together allows us to estimate the quadrature error as

|eQ| � C(�, h)
h

4n

⎡
⎣

p∑
j=0

1

j !
(
4nr

h

)j
⎤
⎦ e−4nr/h‖σ‖L∞(�r ). (120)

Discarding the term corresponding to j = 0 (which is small) and using Stirling’s
formula (42), we can simplify this to

|eQ| � C′(�, h)
h

n

p∑
j=1

1√
j

(
4nre

jh

)j

e−4nr/h‖σ‖L∞(�r ). (121)
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This expression gives a reasonably clear of view of how the error depends on the
involved variables, and Fig. 9 shows that it captures the behavior of the quadrature
error quite well. The quotient 4r/h appears here too, but without any type of bound;
the convergence in n will just stall as r/h → 0. Interestingly, the estimate (121) is
similar to the bound on the quadrature error derived in [2, Thm 3.2] for the double
layer potential using the trapezoidal rule.

The sum over j in Eqs. 120 and 121 makes the expressions a bit cumbersome to
interpret, though we can deduce that the error will in some parameter regions grow
exponentially in p. Recognizing that the sum in Eq. 120 is the truncated exponential
sum, we can write

p∑
j=0

1

j !
(
4nr

h

)j

≤ e4nr/h, (122)

such that, surprisingly, the quadrature error has an approximate upper bound inde-
pendent of p,

|eQ| � C(�, h)
h

4n
‖σ‖L∞(�r ). (123)

Alternatively, we can use the definition of the incomplete gamma function �(n, x)

for integer n,

�(n + 1, x) = n!e−x
n∑

j=0

xj

j ! =
∫ ∞

x

tne−tdt, (124)

to put the estimate of Eq. 120 in a form that may not be easier to interpret, but at least
is more compact,

|eQ| � C(�, h)
h

4np!�(p + 1, 4nr/h)‖σ‖L∞(�r ). (125)

Fig. 9 Error components (14) of 2D QBX on the unit circle, using density σ = (sin θ)10, measured at
all nodes by comparing to a highly resolved reference solution. Numerical setup is N = 20, n = 100
and r/h = 0.1. The quadrature error eQ and its upper bound are estimated using Eqs. 120 and 123 with
C = 2π , while the decay of the truncation error eT roughly follows (15)
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4.3 QBX in three dimensions

For the single layer potential in three dimensions, we need to estimate the quadrature
error in Eq. 12. The surface quadrature on � is assumed to be a tensor product quadra-
ture rule, such that the surface is sliced into one-dimensional cross sections. We will
here show how to develop estimates for a simple square Gauss-Legendre patch, but
results for the more complicated case of a spheroid can be found in Appendix. Before
doing that, however, we need to work out two preliminaries: (i) How to relate the
remainder of a composite surface quadrature to the remainders of the corresponding
one-dimensional quadrature rules. (ii) How to account for the magnitude and nearly
singular behavior of the spherical harmonics component of the kernel in Eq. 12.

Surface quadrature remainder Let I2 denote a composite surface integral that is
independent of the order of integration, and let the subscript Is denote an integral
carried out in the variable s,

I2[f (s, t)] := It Is[f (s, t)] =
∫∫

�

f (s, t)dsdt. (126)

Applying a tensor product quadrature rule over the surface, we get

I2 f = Qn,t Qn,s f︸ ︷︷ ︸
=:Q2

n f

+Rn,t Qn,s f + Qn,t Rn,s f + Rn,t Rn,s f. (127)

Assuming the quadratic remainder term to be negligible and that Qn,α ≈ Iα , we can
approximate the remainder of the surface quadrature as

R2
n f := (I2 −Q2

n)f ≈ (Is Rn,t + It Rn,s)f. (128)

So the surface remainder is approximately equal to the integrals of the one-
dimensional remainders, which is what one would expect.

Spherical harmonics kernel For 3D QBX, our goal is to compute the quadrature
error eQ (17),

eQ =
p∑

l=0

|x − x0|l
l∑

m=−l

(αm
l − α̃m

l )Y−m
l (θx, ϕx), (129)

where

αm
l − α̃m

l = 4π

2l + 1
R2

n,y

[
|y − x0|−l−1Ym

l (θy, ϕy)σ (y)
]
. (130)

We can simplify this by using the Legendre polynomial addition theorem [9],

Pl(cos θ) = 4π

2l + 1

l∑
m=−l

Y−m
l (θx, ϕx)Y

m
l (θy, ϕy), (131)
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where θ is the angle between x − x0 and y − x0. Using this, we can simplify the
quadrature error to

eQ =
p∑

l=0

|x − x0|l R2
n,y

[
|y − x0|−l−1Pl(cos θ)σ (y)

]
. (132)

Our task is then to estimate the quadrature error of the kernel

Kl(x, y) = Pl(cos θ)

|y − x0|l+1
, (133)

which we shall refer to as the Legendre kernel. We are mainly interested in the
quadrature error when QBX is used for singular integration, so we will assume x ∈ �,
such that

x0 − x = rn̂ and min
y∈�

|y − x0| = r. (134)

In order to estimate R2
n[Kl], let us now consider the integral along a curve that is

the intersection of � and a plane containing the expansion center x0 = (x0, y0, z0).
We name the curve γ and assume without loss of generality that it lies in the xz-plane,
such that y = (x, 0, z) and x0 = (x0, 0, z0). Then,

|y − x0| =
√

(x − x0)2 + (z − z0)2 ≥ r. (135)

Also assuming x0 − x = rẑ, we have that

cos θ = z − z0

|y − x0| . (136)

So cos θ contains the inverse of the distance to x0, which is nearly singular for small
r . At the same time, the Legendre polynomial Pl(cos θ) is a degree l polynomial in
cos θ . From our analyses of the Cartesian kernel gp (22) we know that the quadrature
error increases rapidly with increasing powers of the inverse distance, so we can
approximate it using the leading term of the polynomial. From Rodrigues’ formula

Pl(x) = 1

2l l!
dl

dxl
(x2 − 1)l, x ∈ [−1, 1], (137)

we can derive that

Pl(cos θ) = (2l)!
2l(l!)2 cos

l θ + O(cosl−1 θ). (138)

Inserting (136), we get

Pl(cos θ) = (2l)!
2l(l!)2

(z − z0)
l

|y − x0|l + O
(

(z − z0)
l−1

|y − x0|l−1

)
. (139)
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Keeping only the leading term and inserting into (133), we see that the quadrature
error for the Legendre kernel Kl can be estimated by studying the quadrature error of
the function

ψl(x, z) = Bl

(z − z0)
l

(
(x − x0)2 + (z − z0)2

)l+ 1
2

, (140)

Bl = (2l)!
2l(l!)2 , (141)

since on γ

Rn[Kl(x, ·)] ≈ Rn[ψl]. (142)

The magnitude of the spherical harmonics Bl can be simplified using Stirling’s

formula n! ≈ √
2πnn+ 1

2 e−n,

Bl ≈
{
1, for l = 0,
2l/

√
πl, for l ≥ 1

(143)

An error estimate for ψl follows from our results for the Cartesian kernel gp (22) in
Theorems 2 and 4, since

ψl(x, z) = Bl(z − z0)
lg

l+ 1
2
(x, z). (144)

In fact, a good estimate of the error is obtained by analyzing the simpler form

ψl(x, z) = Blr
lg

l+ 1
2
(x, z), (145)

where r = minx∈� |x − x0|.

4.3.1 Gauss-Legendre patch

When forming a quadrature rule for a general surface �, a straightforward method
that is often used in BIE methods is to divide the surface into approximately square
patches, and then use an n × n tensor product Gauss-Legendre rule on each patch
(which then looks like Fig. 10). Denoting the patches �i , the QBX expansion
coefficients at a center x0 are then computed as

αm
l = 4π

2l + 1

∑
i

∫
�i

|y − x0|−l−1Ym
l (θy, ϕy)σ (y)dSy, (146)

with the approximate coefficients α̃m
l computed using the associated quadrature rule

for each patch. To be able to estimate the QBX quadrature error eQ (17) we need to

Fig. 10 An n × n

Gauss-Legendre patch
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be able to estimate the quadrature error from each patch when evaluating (146) using
Gauss-Legendre patches.

We now focus on the error from a single Gauss-Legendre patch, in the special
case of it being square and flat. For that we let � be the patch (x, y, z) ∈ [−1, 1] ×
[−1, 1]×{0}, and let x0 = (x0, y0, r) be a point close to �. We consider the simplified
form of the quadrature error (132),

eQ =
p∑

l=0

|x − x0|l R2
n [Kl(x, ·)σ (·)] , (147)

where Kl is the Legendre kernel (133). To estimate the quadrature error of Kl on the
patch, we consider the quadrature error of the equivalent kernel 
l ,


l(x, y) = Blr
lg2

l+ 1
2
(x, y), (148)

which is the 2D analogue of Eq. 145 and satisfies R2
n Kl ≈ R2

n 
l . Here g2
p is the

Cartesian kernel over the patch, defined as

g2
p(x, y) = 1

((x − x0)2 + (y − y0)2 + r2)p
. (149)

Evaluating the integral of g2
p on � using the tensor product Gauss-Legendre rule, we

can expect (and verify) that the error for a given r is largest for x0 above the center
of the patch, x0 = y0 = 0. By symmetry we then have that Ix Rn,y = Iy Rn,x , so we
can use the results in Eqs. 74 and 101 with b2 = y2 + r2 to estimate Rn,x[g2

p], which
gives us

R2
n[g2

p] ≈ 2 Iy Rn,x[g2
p] � 2

∫ 1

−1

2πnp−1

�(p)(y2 + r2)
p
2
e−2n

√
y2+r2dy. (150)

We compute an approximation of this integral by expanding the square root around
y = 0,

∫ 1
−1(y

2 + r2)−p/2e−2n
√

y2+r2dy ≈ r−p
∫ 1
−1 e−2n(r+y2/(2r))dy

= r−pe−2nr
√

πr/n erf(
√

n/r).
(151)

We are considering large n and small r , so erf(
√

n/r) ≈ 1, such that∫ 1

−1
(y2 + r2)−p/2e−2n

√
y2+r2dy ≈ r−pe−2nr

√
πr/n. (152)

This means that the result of the integration in y is approximately equal to multiplying
the value of the integrand at y = 0 with δ = √

πr/n, independent of the integration
bounds (as long as the interval is wider than δ). An interpretation of this is that most
of the error comes from a strip of width δ centered around y = 0. Finally combining
(148), (150) and (152), we get the estimate for 
l on a patch,

R2
n[
l] � 4π

3
2

�(l + 1/2)
nl−1e−2nr . (153)

We now consider a slightly more general case, where the patch is of size h × h.
The corresponding change of variables from a unit square patch in the integral of 
l
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allows us to use the results in Eq. 153 with the additional factor (2/h)l−1 and the
change r → 2r/h. It follows that the quadrature error for the Legendre kernel Kl on
a flat Gauss-Legendre patch with sides h can be estimated as

R2
n[Kl] � 4π

3
2 Bl

�(l + 1
2 )

(
2n

h

)l−1

e−4nr/h, (154)

where r is the distance from the expansion center to the patch.
We now let xt = (xt , yt , 0), −1 ≤ xt , yt ≤ 1, be a target point on the patch � and

x0 = (x, y, r) be the corresponding expansion center. Using (109) gives us

R2
n[Klσ ] ≈ σ(xt )R

2
n[Kl]. (155)

Inserting this, Eqs. 141 and 154 into (147) gives us the final expression for the QBX
quadrature error,

|eQ(xt )| � |σ(xt )|h
n

p∑
l=0

2π
3
2 (2l)!

�(l + 1
2 )(l!)2

(nr

h

)l

e−4nr/h. (156)

The accuracy of this estimate is demonstrated in Fig. 11, which shows the QBX errors
for xt at the center of the patch, xt = (0, 0, 0). The grid has 96 × 96 points, r = 0.2
and σ is a two-dimensional polynomial of degree 15 with random coefficients. This
would correspond to using a 16th order patch with factor 6 oversampling.

To put our result in Eq. 156 in a more general form, we simplify it one step further.
From Stirling’s formula (42) we have that �(l +1/2) ≈ Clle−l . Combining this with
(143) and discarding the l = 0 term allows us to estimate the 3D QBX quadrature
error on a Gauss-Legendre patch as

|eQ| � C
h

n

p∑
l=1

1√
l

(
4nre

hl

)l

e−4nr/h‖σ‖L∞(�). (157)

This is completely analogous to the 2D QBX result for Gauss-Legendre panels (121).

Fig. 11 The error components (16) and (17) of 3D QBX when applied to a Gauss-Legendre patch and
compared against a reference solution. The quadrature error eQ is well approximated by the estimate (156),
while the decay rate of the truncation error eT follows (18)
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4.3.2 Complex geometries

So far we have developed error estimates for simple geometries, but the frame-
work can be extended to more complex geometries in a straightforward fashion,
though the computations may be cumbersome. As an example of how one can
proceed, in Appendix we develop QBX quadrature error estimates for � being
a spheroid, discretized using both the trapezoidal and Gauss-Legendre quadrature
rules. Another possibility would be to extend the previous section’s estimates for the
Gauss-Legendre patch, to account for the patch having curvature. This might be use-
ful when estimating quadrature errors on a general surface which has been divided
into patches.

4.4 Helmholtz kernel

As a final example, we shall briefly consider the use of QBX when solving the
Helmholtz equation (∇2+ω2)u = 0 in two dimensions. This is the application which
has been considered in the majority of the QBX implementations to date [2, 11, 13].
Jumping straight into the details of the Helmholtz single layer potential (which can
be found in any of the above references), the quadrature error at an expansion center
x0 is then given by

eQ(x) =
p∑

l=−p

Jl(ω|x − x0|)e−ilθx (αl − α̃l). (158)

The expansion coefficients are computed as

αl = i

4

∫
�

H
(1)
l (ω|y − x0|)eilθy σ (y)dSy, l ∈ {−p . . . p}, (159)

where θy is the polar angle of y − x0. Here H
(1)
l is the Hankel function of the first

kind and order l, defined as

H
(1)
l (r) = Jl(r) + iYl(r), (160)

where Jl is the Bessel function and Yl is the Neumann function, both of order l. As
r → 0, Jl goes smoothly to zero, while Yl is singular. For our analysis based on
residue calculus, we need the leading order term of the singularity, which is given by
the power series of the Neumann function [12, §10.8],

Yl(r) = −2l(l − 1)!
π

r−l + O
(
r−l+2

)
, l > 0. (161)

We now let � be the interval x ∈ [−1, 1] and x0 = (a, b), b > 0, such that
y = (x, 0) and |y − x0| = √(x − a)2 + b2. We can then write |y − x0| = |x − z0|,
where z0 = a + ib. Using (161), the Hankel function in the integrand of Eq. 159 can
then be approximated as

H
(1)
l (ω|x − z0|) ≈ −i

2l(l − 1)!
πωl

|x − z0|−l , (162)
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since we know that the residue at z0 will be dominated by the highest order pole. We
futher define θ to be the angle between x − z0 and a − z0 in the complex plane. The
exponential factor in the integrand is then

eilθ = (cos θ + i sin θ)l =
(

x − a + ib

|x − z0|
)l

=
(

x − z0

|x − z0|
)l

, (163)

such that

H
(1)
l (ω|x − z0|)eilθ ≈ −i

2l(l − 1)!
πωl

(x − z0)
l

|x − z0|2l . (164)

But
(x − z0)

l

|x − z0|2l = (x − z0)
l

(x − z0)l(x − z0)l
= 1

(x − z0)l
= fl(x), (165)

so the Helmholtz QBX kernel is in fact well approximated by the complex kernel fl

(37) times a factor depending on ω and l,

H
(1)
l (ω|x − z0|)eilθ ≈ −i

2l(l − 1)!
πωl

fl(x). (166)

Integrating this using the Gauss-Legendre rule, it follows directly from Theorem 1
that

∣∣∣Rn

[
H

(1)
l (ω|x − z0|)eilθ

]∣∣∣ ≈ 2

(
2

ω

)l

∣∣∣∣∣∣∣
2n + 1√
z20 − 1

∣∣∣∣∣∣∣

l−1

1

|z0 +
√

z20 − 1|2n+1
. (167)

We now let � be a flat Gauss-Legendre panel of length h, and z0 be a point at
a distance r from �. Including the variable change to [−1, 1] and following the
simplifications in Eqs. 62 and 109, we can then write

|αl − α̃l | = 1

4

∣∣∣Rn

[
H

(1)
l (ω|x − z0|)eilθ σ

]∣∣∣ � h

8n

(
8n

hω

)l

e−4nr/h‖σ‖L∞(�), (168)

which is sharpest when z0 lies on the line that extends normally from the center of �.
We are now ready to insert (168) into (158). First, however, we assume that |x −

x0| = r and approximate the Bessel function using the first term of its power series
[12, §10.2],

Jl(ωr) = 1

l!
(ωr

2

)l + O
(

1

(l + 1)!
(ωr

2

)l+1
)

, l > 0. (169)

Discarding the negligible term corresponding to l = 0, rewriting the sum in Eq. 158
using positive l (since |Jl | = |J−l | and |Yl | = |Y−l |), and applying Stirling’s for-
mula l! ≈ √

2πl(l/e)l , we finally get the QBX quadrature error for the Helmholtz
kernel,

|eQ| � 1

4
√
2π

h

n

p∑
l=1

1√
l

(
4nre

hl

)l

e−4nr/h‖σ‖L∞(�). (170)
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Table 1 Order of magnitude of relative error, scaled with common factor (p−1)!, for h = fp and h = gp

O
(‖h‖−1∞ Rn[h](p − 1)!) Gauss-Legendre Trapezoidal

Complex kernel fp (2nb)pe−2nb (nb)p(1 + b)−n

Cartesian kernel gp (nb)pe−2nb (nb/2)p(1 + b)−n

Computed from estimates (62), (74), (89) and (100), using O
(‖fp‖∞

) = b−p and O
(‖gp‖∞

) = b−2p ,
where b is the distance from � to the singularity

Remarkably, this estimate is identical (up to a constant) to that of the Laplace sin-
gle layer potential in both two (121) and three (157) dimensions, even though the
underlying PDE is different. It works just as well as the previous estimates, though
the nature of our simplifications makes the accuracy better for small r and ω. For
r/h = 1/2 (which is quite large), the estimate seems to have acceptable performance
at least up to ωh = 20.

5 Conclusions

The model kernels which we have considered, fp(z, w) = |z−w|−p and gp(x, y) =
|x−y|−2p, can be found in two and three dimensional BIE applications in general (for
small p), and in QBX in particular. Using the method of contour integrals, we have in
Section 3 derived accurate estimates (Theorems 1–4) of the quadrature errors when
integrating these kernels close to a singularity using the n-point Gauss-Legendre and
trapezoidal quadrature rules (on [−1, 1] and the unit circle, respectively). These esti-
mates are not in the form of bounds, which is what one classically seeks in numerical
analysis. Instead, they are asymptotic equalities valid in the limit n → ∞. Their
key feature is that they predict the magnitude of the errors surprisingly well also for
small n, as we have seen throughout this paper. Extracting the dominating features of
our estimates, we arrive at the summary presented in Table 1, which shows how the
quadrature errors depend on n, b and p.

By applying suitable generalizations, we have in Section 4 of this paper demon-
strated how to use our results when working with BIEs and QBX. These results
are approximations rather than asymptotic equalities, but nevertheless provide error
estimates which are accurate enough to be used for parameter selection in practical
applications. Explicit estimates have been developed for Gauss-Legendre panels in
two dimensions, and for flat Gauss-Legendre patches and spheroids (Appendix) in
three dimensions. Though these results may prove useful by themselves, the more
important result is that the methodology used to derive them can be generalized to
other kernels and geometries in a straightforward manner.

The QBX quadrature error eQ for the Laplace single layer potential in two (14) and
three (12) dimensions is well captured by our estimates (121) and (157), when using
Gauss-Legendre as the underlying quadrature. For the Helmholtz single layer poten-
tial in two dimensions, the corresponding estimate is Eq. 170. A common feature of
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these estimates is that most of their dependence on the parameters2 n, p, r and h is
captured by

|eQ| ∼ h

n

p∑
l=1

1√
l

(
4nre

hl

)l

e−4nr/h‖σ‖L∞(�). (171)

This is in turn very similar to the results for the spheroid (213) derived in Appendix,
and to the bound for the double layer potential in two dimensions derived by Barnett
[2, Thm 3.2]. Taken together, these expressions provide a better understanding of the
QBX quadrature error, which appears to have similar behavior independent of kernel
and dimension. Previous results by Epstein et al. [8] for the truncation error (15,18)
provide insight into the truncation error and establish the analytic foundation for the
method. Putting these together with the results presented here, it is now possible to
understand the complete error spectrum when working with QBX both in two and
three dimensions.

We have in this paper focused on estimates for the harmonic single layer potential
in two and three dimensions. We have also shown how to derive an estimate for
the Helmholtz single layer potential in two dimensions, and derivation of similar
estimates for other kernels should follow along the same lines.
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Appendix: QBX quadrature error on spheroid

We will now carry out essentially the same analysis as for the Gauss-Legendre patch
in Section 4.3.1, but for the specific case when the surface � is a spheroid (see
Fig. 12), defined as

x2 + y2

a2
+ z2

c2
= 1. (172)

The spheroid is denoted “oblate” when a > c, and “prolate” when c > a. Using a
parametrization {s ∈ [0, π ], t ∈ [0, 2π)}, we can describe the surface as

x = a cos s sin t, (173)

y = a sin s sin t, (174)

z = c cos t. (175)

2Gauss-Legendre quadrature order n, expansion order p, expansion center distance r and integration
domain size h.

http://creativecommons.org/licenses/by/4.0/
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Fig. 12 A spheroid with
semi-axes (a) and (c)

A straightforward quadrature for this surface is to use a tensor product quadrature
with the trapezoidal rule in the (periodic) s-direction and the Gauss-Legendre rule in
the t-direction. These two quadrature rules will then operate along cross sections that
are circles and half-ellipses, as shown in Fig. 13.

To estimate the 3D QBX quadrature error as formulated in Eq. 132, we will work
with the Legendre kernel Kl (133) on the spheroid. Considering the quadrature of
Kl (133) on � with the point x0 at a distance r away, we can expect the largest
quadrature errors to come from the two cross sections (a circle in s and a half-ellipse
in t) that are closest to x0. To estimate the total error R2

n[Kl] on � we first need to
estimate RT

n,s[ψl] and RG
n,t [ψl] on these cross sections, with ψl as defined in Eq. 144

and T and G denoting the trapezoidal and Gauss-Legendre quadrature errors. Once
we have those estimates, we can approximate the integrals It RT

n,s[ψl] and Is RG
n,t [ψl].

It then follows from the properties of ψl (142) and our approximation of the surface
quadrature error (128) that

|R2
n[Kl]| ≈ | It RT

n,s[ψl]| + | Is RG
n,t [ψl]|. (176)

Trapezoidal rule on circular cross section For the trapezoidal rule operating along
the circular cross sections of the ellipse, we can expect the largest quadrature error at

(a) (b)

Fig. 13 Cross sections of a spheroid with x0 at a distance r away
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an expansion center outside the middle (equatorial) cross section, which has radius a

(Fig. 13a), since that is where the node distribution is sparsest. That cross section is
described by

(x(s), y(s)) = (a cos s, a sin s), s ∈ [0, 2π), (177)
and we can without loss of generality set x0 = (a + r, 0, 0), such that

ψl(s) = Bl(a sin s)l(
(a cos s − (a + r))2 + (a sin s)2

)l+ 1
2

. (178)

Rewriting the integral (where now |x′(s)| = a),∫ 2π

0
ψl(s)ads = Bl

al

∫ 2π

0

sinl sds
(
(cos s − (1 + r/a))2 + sin2 s

)l+ 1
2

, (179)

we can use Theorem 4 with b = r/a, p = l+ 1
2 and the factorial generalization (101)

to estimate the quadrature error as

|RT
n,s[ψl]| � 4πaBl

�(l + 1
2 )(2a)l

√
r(r + 2a)

nl− 1
2

(1 + r/a)l+n
, (180)

where we have used that the contribution from the numerator at the poles is

| sin(±i log(1 + b))|l =
(

b2 + 2b

2b + 2

)l

. (181)

To get the surface quadrature error we need to integrate this error across all cross
sections of the spheroid. Knowing that the quadrature error is local due to its fast
spatial decay, we simplify by integrating on the extension of the circular cross section
into an infinite cylinder of radius a, on which we integrate the estimate (180) after
substituting r → √

z2 + r2. We consider only the factor (1 + a−1
√

r2 + z2)−l−n,
and expand the square root around z = 0. This leaves us with the integral

∫ ∞

−∞

(
1 + 1

a

(
r + z2

2r

))−l−n

dz =
√
2πr(a + r)

(1 + r/a)l+n

�(l + n − 1
2 )

�(l + n)
. (182)

For large n we have
�(l + n − 1

2 )

�(l + n)
≈ n−1/2, (183)

so we can interpret the result as the quadrature error coming from a strip of width√
2πr(a + r)/n. Inserted into (180), this gives us the desired estimate for the

trapezoidal rule quadrature error on the cylinder,

| It RT
n,s[ψl]| ≈ 4πaBl

�(l + 1
2 )(2a)l

√
π(a + r)

n(a + r/2)

nl− 1
2

(1 + r/a)l+n
. (184)

We simplify this under the assumption r � a to arrive at our final error estimate for
the trapezoidal rule error when integrating ψl on a spheroid:

| It RT
n,s[ψl]| ≈ Bl

�(l + 1
2 )

4π3/2a

n

( n

2a

)l 1

(1 + r/a)l+n
(185)
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Gauss-Legendre rule on half-elliptical cross section When considering the Gauss-
Legendre rule, we can without loss of generality limit ourselves to the cross section
where x > 0 and y = 0 (Fig. 13b), given by

x(t) = (x(t), z(t)) = (a sin t, c cos t), s ∈ [0, π]. (186)

On this curve the outward (non-unit) normal is given by

n(t) = (c sin t, a cos t). (187)

Let x0 = (x0, z0) be a point at a distance r from the curve, and let (xc, zc) =
(x(tc), z(tc)) be the point on the curve that is closest to x0 (s.t. |x0 − xc| = r). Then

x0 =
(

a + rc

|n(tc)|
)
sin tc, (188)

z0 =
(

c + ra

|n(tc)|
)
cos tc, (189)

where |n(tc)| =
√

a2 cos2 tc + c2 sin2 tc. We nowwant to estimate to quadrature error
for the integral

I[ψl ] =
∫ π

0
ψl(t)|x′(t)|dt, (190)

where

ψl(t) = Bl(c cos t)l(
(a sin t − x0)2 + (c cos t − z0)2

)l+ 1
2

, (191)

|x′(t)| =
√

a2 cos2 t + c2 sin2 t . (192)

Series expanding the denominator to second order around tc, we get

ψl(t) ≈ Bl(c cos t − z0)
l

(
k(tc)2(t − tc)2 + r2

)l+ 1
2

, (193)

where

k(tc) =
√

acr + |n(tc)|3
|n(tc)| . (194)

Changing variables from t ∈ [0, π ] to u ∈ [−1, 1], we can write the integral as

I[ψl] ≈
(
2

π

)2l
Bl

k(tc)2l+1

∫ 1

−1

(c cos t (u) − z0)
l |x′(t (u))|

(
(u − ur)2 + u2i

)l+ 1
2

du (195)

where the integrand now has poles at u0 and u0,

u0 = ur + iui, (196)

ur = (2tc − π)/π, (197)

ui = 2r

πk(tc)
. (198)
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The problem is now in the form considered in Section 3.1.4, such that we can estimate
the quadrature error. Evaluating the numerator at the poles t0 = tc + ir/k(tc), we get
a contribution that we for r/k(tc) � 1 can approximate as

|c cos(tc + ir/k(tc)) − z0|l |x′(tc + ir/k(tc))| ≈ rl |x′(tc)| = rl |n(tc)|. (199)

Insertion into the quadrature error estimate (72) gives, after some refactoring,

|RG
n,t [ψl]| � Bl

�(l + 1
2 )

2π3/2|n(tc)|
(πk)l

√
rk

∣∣∣∣∣∣∣
2n + 1√
u20 − 1

∣∣∣∣∣∣∣

l− 1
2 ∣∣∣∣u0 +

√
u20 − 1

∣∣∣∣
−(2n+1)

, (200)

where u0 = u0(tc) and k = k(tc). This cumbersome expression accurately captures
both the order of magnitude and convergence rate of the error for all variations of
the geometrical quantities a, c, r, tc. The rate of the exponential convergence in n is
determined by the base

β(tc) =
∣∣∣∣u0 +

√
u20 − 1

∣∣∣∣
−1

< 1. (201)

The closer the base is to unity, the slower the convergence. To find an upper bound of
the error estimate for a given geometry a, c and distance r , we need to find the point

t∗ = argmax
tc∈[0,π]

β(tc). (202)

By studying the convergence rate for varying aspect ratios a/c and tc ∈ [0, π ], as
illustrated in Fig. 14, we can divide the problem of determining t∗ into two cases:

(i) a ≤ c

The base β has a maximum at t∗ = π/2, i.e. at the middle of the interval,
and our variables then simplify to

|n(t∗)| = c, (203)

k =
√

c2 + ar, (204)

u0 = ib (205)

b = 2r/π
√

c2 + ar. (206)

Assuming b small and discarding O
(
b2
)
terms, we can simplify the resulting

error estimate to

|RG
n,t [ψl]| � Bl

�(l + 1
2 )

π2cb

r3/2

(
nb

r

)l−1/2

e−2bn. (207)

Also approximating k ≈ c (since ar � c2), such that b ≈ 2r/πc, results in a
very compact expression:

|RG
n,t [ψl]| � Bl

�(l + 1
2 )

2π√
r

(
2n

πc

)l− 1
2

e−4nr/πc. (208)

(ii) a > c The base β is symmetric about π/2 with two maxima of equal magnitude
in the interval, as shown in Fig. 14b. Here we have no closed form expression
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(a) (b)

Fig. 14

for t∗, so to find the worst case error estimate for a given a, c, r we have to
solve (202) numerically and use the results in Eq. 200.

To get the error contribution from the entire surface, we would need to integrate the
estimate as the cross section of Fig. 13b is rotated around the z-axis. As an approx-
imation, we instead extend the cross section to infinity in the positive and negative
y-directions, and integrate the estimates (200) and (208) on the resulting surface,
with r → √

y2 + r2. Repeating the process used for the Gauss-Legendre patch in
Section 4.3.1 and for the circular cross section above, it can be shown that the inte-

grated error is approximately equal to that from a strip of width π
√

r
2n max(a, c).

(a) (b)

Fig. 15 Legendre kernel quadrature error R2
n[Kl ] for the n-point Gauss-Legendre (GL) and trapezoidal

(Tz) rules on one oblate and one prolate spheroid, when the quadrature in the other direction is fully
resolved. Estimates computed using (185), (209) and (210)
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Putting this together with the above results, we arrive at the final estimate for the
Gauss-Legendre error when integrating ψl on the spheroid:

| Is RG
n,t [ψl]| ≈ |RG

n,t [ψl]|π
√

r

2n
max(a, c), (209)

where RG
n [ψl] is estimated using (207) or (208) for a ≤ c and (200) otherwise. Using

(208) for a ≤ c, the final expression can be written

| Is RG
n,t [ψl]| ≈ Bl

�(l + 1
2 )

π5/2c

n

(
2n

cπ

)l

e−4nr/cπ . (210)

Total error To test the estimates for the Legendre kernel Kl on a spheroid, we
compute the error estimate (176) using (185), (209) and (210). To isolate the Gauss-
Legendre and trapezoidal rule errors, we vary the number of nodes n in one direction
at a time, while the number of nodes in the other direction is set so large that the
quadrature in that direction is fully resolved. The results, computed for one oblate and
one prolate spheroid up to l = 10 and shown in Fig. 15, confirm that our estimates
are accurate.

Putting the results together in the same way as for the Gauss-Legendre patch of
Section 4.3.1, the estimate for the QBX quadrature error on a spheroid becomes

|eQ(xt )| � |σ(xt )|∑p

l=0 rl
(| It RT

n,s[ψl]| + | Is RG
n,t [ψl]|

)
. (211)

An example of this estimate is shown in Fig. 16. Using the result

Bl

�(l + 1/2)
≈ Cl−1/2

(
2e

l

)l

, (212)

and applying the (quite crude) approximation (1+ r/a)n+l ≈ enr/a to the trapezoidal
rule results, we can see that (211) for a ≤ c behaves like

|eQ| � C
∑p

l=1

[
a

n
√

l

(
nre
al

)l
e−nr/a + c

n
√

l

(
4nre
πcl

)l

e−4nr/cπ

]
‖σ‖l∞(�). (213)

Fig. 16 QBX error components (16) and (17) measured on the surface of a spheroid, a = 1, c = 2, with
σ = 1, r = 0.2 and a 400 × 200 grid (nt × ns ). Estimate computed using (211)
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This is similar to the results for the Gauss-Legendre patch (157).
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