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Abstract The impact of the scaling parameter c on the accuracy of interpo-
lation schemes using radial basis functions (RBFs) has been pointed out by
several authors. Rippa (Adv Comput Math 11:193–210, 1999) proposes an
algorithm based on the idea of cross validation for selecting a good such
parameter value. In this paper we present an alternative procedure, that can be
interpreted as a refinement of Rippa’s algorithm for a cost function based on
the euclidean norm. We point out how this method is related to the procedure
of maximum likelihood estimation, which is used for identifying covariance
parameters of stochastic processes in spatial statistics. Using the same test
functions as Rippa we show that our algorithm compares favorably with cross
validation in many cases and discuss its limitations. Finally we present some
computational aspects of our algorithm.
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1 Introduction

Suppose that f : � → R with � ⊂ R
d is a d-variate, real valued function that

we want to reconstruct based on its values f = ( f1, . . . , fN)′ at locations X =
{x1, . . . , xN}.

In Radial Basis Function (RBF) interpolation the interpolant s f,X of f is of
the form

s f,X(x) =
N∑

i=1

αi φ(‖x − xi‖) +
Q∑

k=1

βk pk(x), x ∈ � (1)

where φ(‖ · ‖) : � → R is a conditionally positive definite function on � with
respect to a finite-dimensional subspace P of C(�) with basis p1, . . . , pQ.
Typically P is the space of all polynomials of a certain degree but in principle
other choices are also possible. In the special case where φ is positive definite
(P = {0}) the second term in (1) is missing.

The coefficients α = (α1, . . . , αN)′ and β = (β1, . . . , βQ)′ are determined
by the interpolation conditions

s f,X(xi) = fi, i = 1, . . . , N (2)

and, for conditionally positive definite RBFs, by the additional requirement

N∑

i=1

αi p j(xi) = 0 j = 1, . . . , Q (3)

If X is P-unisolvent, then the linear system defined by (2) and (3) is solvable.
The solution is unique, if P is the space of polynomials of a certain degree
[19, Sec. 8.5].

Each pair (φ, P) can be associated with some native Hilbert space(
Nφ(�), | · |Nφ(�)

)
[19, Ch. 10], and it is usually assumed that f ∈ Nφ(�). The

RBF interpolant s f,X has the special property, that it has minimal (semi-)norm
| · |Nφ(�)

under all functions s ∈ Nφ(�) that interpolate the data f at the data
points X [19, Sec. 13.1].

Table 1 shows some examples of commonly used RBFs. Usually, a scaled
version φc(‖ · ‖) = φ

(
1
c ‖ · ‖) of these prototype RBFs is used in (1) and

Table 1 Some commonly
used RBFs Gaussians φ(r)=e−r2

Matérn functions φ(r)= Kγ−d/2(r) rγ−d/2

2γ−1 �(γ )
γ > d

2

Inverse φ(r)=(1+r2)γ γ <0
multiquadrics

Multiquadrics φ(r)=(−1)�γ � (1 + r2)γ γ >0, γ /∈ N

Powers φ(r)=(−1)�γ /2� rγ γ >0, γ /∈ 2N

Thin-plate splines φ(r)=(−1)�γ /2+1� rγ log(r) γ ∈2N
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several authors [1, 4, 8, 14] have pointed out the big impact the choice of c
can have on the accuracy of the interpolant.

This choice is limited by the fact that the system of Eqs. 2 and 3 becomes
ill-conditioned for big values of c. Several articles [6–8] have been dedicated
to developing algorithms that are able to compute a stable solution of these
systems for any value of the scaling parameter. They also give illustrations of
how RBF interpolation errors vary with c for some test cases where results
are available both with ill-conditioning present and with its effect eliminated.
From these it can be seen that for very big values of the scaling parameter big
interpolation errors are caused mainly by ill-conditioning. If this effect cannot
be eliminated, the choice of c is limited to values that allow a stable calculation
of the interpolant but this interpolant need not be optimal.

When ill-conditioning is not an issue for the relevant range of parameter val-
ues, there usually is a value of c that minimizes the interpolation errors. These
typically go down rapidly if c is increased until the trend is reversed [12] due to
fact that RBF interpolants near the flat limit (i.e. c → ∞) behave very similar
to polynomial interpolants. This can produce Runge-type oscillations or other
undesired artifacts near the boundaries blowing up the approximation errors.
The curves in the left plot of Fig. 1 show how the root mean square (RMS)
interpolation errors for Franke’s test function (F1 from the Appendix) depend
on c. Interpolation is carried out with inverse multiquadrics based on 81 data
points with three different alignments (see Section 4 for details). All curves
assume a minimum at a value of c for which the condition number is moderate.
Note the big impact of the choice of node locations on interpolation accuracy:
alignment C-81 concentrates many node locations near the boundaries which
reduces the undesired oscillations for big c’s dramatically. The price for this,
however, is a reduced node density in the interior which for F1 entails a lower
optimal interpolation accuracy than obtained for E-81 and H-81.

The right plot of Fig. 1 shows an instance of a test function (F6 from the
Appendix) where the optimal c is outside the range of values for which stable
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Fig. 1 RMSE curves for test function F1 (left) and F6 (right) with inverse multiquadrics for
different alignments of 81 node locations: equidistant points, tensor-product Chebyshev point and
Halton points
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solutions are obtained. In this case a good procedure should select the best c
that guarantees a stable solution.

While a variety of ad-hoc criteria for the choice of c have been proposed
in the literature (e.g. [4, 11]), Rippa was the first to propose an algorithm
based on the idea of leave-one-out cross validation (LOOCV), which is used in
the statistics literature for a variety of parameter identification problems. We
will give a brief review of this algorithm in Section 2 below and point out two
aspects that could be criticized with this procedure.

In Section 3 we suggest a modification of the LOOCV-principle that takes
these points into account and we show the connection to maximum likelihood
estimation, a procedure used for identifying covariance parameters of stochas-
tic processes in spatial statistics.

In Section 4, using some of the test functions from [14], we compare the
performance of our procedure with that of two LOOCV-procedures (based on
l1- and l2-norm of the LOOCV-errors) in selecting a value c that yields near-
minimal RMSE.

In Section 5 we comment on the implementation of our algorithm and
discuss a computationally efficient, approximative variant.

2 A short review of LOOCV and criticism

Cross validation is a very general idea that has long been used in the statistic
literature. The algorithm proposed by Rippa corresponds to one of its variants
called “leave-one-out” cross validation (LOOCV). In the RBF context the idea
is to split off one single data point xk at a time, calculate the partial fit s f,[−k] to
all data pairs except (xk, fk) and from it the approximation error εk at xk:

εk := fk − s f,[−k](xk), k = 1, . . . , N

The parameter c is then chosen as the minimizer of some norm l p of the error
vector ε = (ε1, . . . , εN)′ , having in mind that ‖ε‖p should behave similar to
‖ f − s f,X‖Lp(�). Indeed, [14] notes that in his experiments the graphs of the
RMS error (which can be interpreted as a discrete approximation of ‖ f −
s f,X‖L2(�)) are very similar to the graphs of ‖ε‖1 and ‖ε‖2 .

A more recent paper by [3] discusses extensions of Rippa’s algorithm that
can be applied in the setting of iterated approximate moving least squares
approximation of function value data and for RBF pseudo-spectral methods
for the solution of partial differential equations.

Another way of looking at LOOCV in the RBF context would be to
interpret εk as the value at xk of the error function ek := s f,X − s f,[−k] , which is
the error function of the surrogate problem of interpolating s f,X based on the
data at the locations X \ {xk}. This will be the starting point for a modification
of LOOCV in the next section.

Although LOOCV was shown to work well for a variety of test functions and
usually picks a value of c quite close to the optimal one, it might be possible
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to further improve on it, since it does not fully account for the geometry of X,
which can imply a loss of efficiency:

1. The fact that the same data (X, f) is used for the calculation of every
component εk, either as value to be predicted or as data the interpolant is
fitted to, can lead to distortions, especially with irregular patterns of data
points.
To see this assume that the distance between two data points xi and x j

is small compared with the average distance between data points. Then
s f,[−i](xi) is determined mainly by fj and vice versa, so that the components
εi and εj basically contain the same information about f − sf,X . This
“redundancy” is not accounted for by LOOCV.

2. As already noted in the introduction (see especially Fig. 1), the accuracy of
s f,[−k] as a predictor for fk does not only depend on c, but strongly depends
on the geometry of X. Prediction at data points near the boundaries or at
isolated data points is more difficult (this is nicely illustrated in [2], Ch.
1) and hence, even for a good choice of c, the corresponding εk is usually
bigger than for data points in the interior or in densely sampled areas of �.
This is also not taken into account by LOOCV.

3 Variations to the LOOCV-algorithm

In this section we make two proposals on how the two aspects just mentioned
can be taken into account, which will lead to an alternative procedure for
selecting c.

As a first step we propose to replace the leave-one-out principle by a
sequential approach, i.e. instead of using the data at all points X \ {xk} to
predict fk, we only use the data at the points {x1, . . . , xk−1} =: Xk−1.

Denoting by s f,Xk the corresponding interpolant with the convention that
s f,X0 ≡ 0 , the approximation errors now considered are

ε̃k := fk − s f,Xk−1(xk), k = Q + 1, . . . , N

ε̃k can be interpreted as the value at xk of the error function ẽk := s f,Xk −
s f,Xk−1 which is now only defined for k > Q. In this sequence of N − Q
surrogate interpolation problems each data pair is still used several times, but
it now holds that

(ẽi, ẽ j)Nφ(�)
= 0, for all Q < i �= j ≤ N (4)

which follows from Lemma 10.24 in [19] by noting that for i < j

ẽi ∈
{ j−1∑

n=1

αn φ (‖ · −xn‖) :
j−1∑

n=1

αn p(xn) = 0 for all p ∈ P

}
+ P

In other words: the error functions ẽk are pairwise orthogonal with respect
to the native space norm corresponding to φ and hence can be expected to
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yield essentially different information about the interpolation behavior of the
given data.

As a second variation to LOOCV we propose to take into account the
magnitude of the approximation errors that can be expected on the basis of
the geometry of X, and use it to weight the components of ε accordingly. The
need for such an adjustment becomes even more necessary when passing from
ε to ε̃ since the interpolants used to calculate the latter are based on a different
amount of data which also heavily affects the potential accuracy.

A natural way to do so is to weight each component by the reciprocal power
function that corresponds to the respective prediction, i.e. to pass from ε̃k to

˜̃εk := ε̃k

Pφ,Xk−1(xk)
, k = Q + 1, . . . , N (5)

where

Pφ,Xk−1(xk) = sup
g∈Nφ(�)

|g|Nφ(�)
�= 0

|(g − sg,Xk−1)(xk)|
|g|Nφ(�)

= sup
g∈Nφ(�)

sg,Xk−1 = 0

|g(xk)|
|g|Nφ(�)

(6)

is the norm of the pointwise error functional of the interpolation process (see
Definition 4.1.1 and Lemma 4.1.5 of [15]). It does not depend on f but gives
information about the potential interpolation accuracy due to the geometry of
Xk, and is therefore an ideal measure for the magnitude of ε̃k.

Moreover, when the euclidean norm of ˜̃ε is used as the cost function to
be minimized, one gets a nicely interpretable, and conveniently computable
expression:

∥∥∥ ˜̃ε
∥∥∥

2

2
=

N∑

n=Q+1

(ẽn(xn))
2

P 2
φ,Xn−1

(xn)
=

N∑

n=Q+1

∣∣ẽn
∣∣2
Nφ(�)

= ∣∣s f,X
∣∣2
Nφ(�)

. (7)

The second equality follows from the fact, that ẽn is of the form (1) with X =
Xn and hence is known to minimize the native space norm over all functions
g with the same values on Xn, so that it attains the maximum in (6). The last
equality follows by writing s f,X as a telescope sum and repeated use of (4).

A particular consequence of (7) is that
∥∥∥ ˜̃ε
∥∥∥

2
has the desirable property that

it does not depend on the ordering of x1, . . . , xN . Therefore in the following
we will concentrate on the l2-norm of our weighted errors.

Minimizing
∥∥∥ ˜̃ε
∥∥∥

2
is however not yet the final solution, because the weight-

ing by the reciprocal power function entails a serious problem: while it ac-
counts for the different magnitudes of the ε̃k, it induces a bias towards selecting
small values of c.

This can be explained by noting that Pφ,Xk−1(xk) itself depends on φ (and
hence on c), and so ˜̃εk gets small not only if the interpolation is good, but
also if the power function is big. Numerical experiments (see e.g. [2], Sec.
17.1.2) suggest that the power function gets smaller if c is increased (at least
as long as ill-conditioning does not play a role). From heuristic arguments in
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the framework of spatial statistics, where Pφ,Xk−1(xk) also appears as a measure
of accuracy and bigger c’s can be interpreted as a stronger similarity of the
function values at close-by data sites, it can be assumed that this relation
between c and Pφ,Xk−1(xk) holds in general. This explains the preference of
small values of c.

Example 1 This bias is most explicit if φ is of the power type (see Table 1).
Noting that in this case φc(·) = c−γ φ(·) one can easily verify that

α(c) := cγ · α, β(c) := β

solves the corresponding system (2), (3). Now cγ cancels out in (1), so the in-
terpolants s(c)

f,X corresponding to φc do not depend on c, and a good procedure
should automatically account for that. However, noting (cf. [19], Ch. 10) that

|s f,X |Nφ(�)
=

N∑

i, j=1

αi α j φ(‖xi − x j‖) (2)=
N∑

j=1

α j

(
f j −

Q∑

k=1

βk pk(x j)

)
(3)= α′f,

one obtains for the scaled interpolant

|s(c)
f,X |Nφ(�)

= (
α(c))′ f = cγ · α′f = cγ · |s f,X |Nφ(�)

so a minimization of
∥∥∥ ˜̃ε
∥∥∥

2
would select c = 0.

The above arguments show, that an additional factor ψ(c) is needed that
penalizes big values of the power functions involved. A first idea might be to
use the arithmetic mean

ψ2
A(c) = 1

N − Q

N∑

n=Q+1

P 2
φ,Xn−1

(xn). (8)

However, the values of P 2
φ,Xk−1

(xk), k = Q + 1, . . . , N have very different
magnitudes so ∂ψ2

A/∂c would be dominated by the first terms in (8). Using
the geometric mean

ψ2
G(c) = N−Q

√√√√
N∏

n=Q+1

P 2
φ,Xn−1

(xn) (9)

instead, amounts to averaging on a logarithmic scale, and this seems much
more appropriate since the terms

∂

∂c
log
(
P 2

φ,Xk−1
(xk)

) =
∂
∂c P 2

φ,Xk−1
(xk)

P 2
φ,Xk−1

(xk)
, k = Q + 1, . . . , N

can more reasonably be assumed to be of the same magnitude, so that the
dependence of the penalty factor ψG on c is uniformly based on all the power
functions involved.
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Using ψG is plausible, but seems to be an ad hoc choice only. Yet, it has
another desirable property:

Proposition 1 Let A = (φc(‖xi − x j‖)
) ∈ R

N×N and P = (pj(xi)
) ∈ R

N×Q the
matrices corresponding to the linear system (2), (3). Then ψG has the
representation

ψ2
G(c) ∼ N−Q

√

(−1)Q

∣∣∣∣
A P
P′ 0

∣∣∣∣ = N−Q

√ ∣∣A
∣∣ ∣∣P′ A−1 P

∣∣ (10)

with a proportionality constant that does not depend on c.
In particular ψG is independent of the ordering of x1, . . . , xN.

Proof We write the system (2), (3) in the form

(
0 P′
P A

)(
β

α

)
=
(

0
f

)

and prove the assertion of the proposition by induction.
Let An ∈ R

n×n and Pn ∈ R
n×Q denote the sub-matrices of A and P that

correspond to the system for the first n data points only, further let

Mn :=
(

0 P′
n

Pn An

)
,

an :=(φc(‖xn−x1‖), . . . , φc(‖xn−xn−1‖)
)′ and pn :=(p1(xn), . . . , pQ(xn)

)′.
Let’s first assume, that

{
p1, . . . , pQ

}
is a Lagrange basis of P . In this case

PQ = IdQ and we have

∣∣MQ
∣∣ =

∣∣∣∣
0 IdQ

IdQ AQ

∣∣∣∣ = (−1)Q

∣∣∣∣
IdQ AQ

0 IdQ

∣∣∣∣ = (−1)Q

Now let Q < n ≤ N. If Mn is written in block form as Mn−1 augmented by
the n-th row and n-th column

Mn =
⎛

⎝
0 P′

n−1 pn

Pn−1 An−1 an

p′
n a′

n φ(0)

⎞

⎠

with Schur complement

Sn = φ(0) −
(

pn

an

)′ ( 0 P′
n−1

Pn−1 An−1

)−1 ( pn

an

)
.

Then, using basic results about block matrices (cf. e.g. [13]), we obtain
∣∣Mn

∣∣ =∣∣Mn−1

∣∣ · Sn, and it remains to show that Sn = P 2
φ,Xn−1

(xn).
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To see this look at the interpolant sg,Xn of the values gk = δkn, k = 1, . . . , n
at the data points in Xn. Its native space norm is then found to be

|sg,Xn |2Nφ(�)
= α′

g g =
(

βg

αg

)′ (0
g

)
=
(

0
g

)′
M−1

n

(
0
g

)
= S−1

n

where the last equality is a result about the inversion of block matrices.
For sg,Xn however, we can use the same arguments as for ẽn in (7) to see that

it attains the maximum in (6) and we obtain

Pφ,Xn−1(xn) = |sg,Xn(xn)|
|sg,Xn |Nφ(�)

= 1

S−1/2
n

=
√

Sn

and hence, by induction, the first representation in (10) follows after horizon-
tally and vertically switching the four blocks of MN to the usual form.

The second representation in (10) follows by noting that the Schur comple-
ment with respect to these four blocks is given by S = −P′ A−1 P and applying
once again the calculation rule for determinants of block matrices.

If
{

p1, . . . , pQ
}

is not a Lagrange basis, there exists a regular matrix T so
that

(
p̃1, . . . , p̃Q

) := (p1, . . . , pQ
)

T

is a Lagrange basis, and hence P̃ = PT has the desired form.
But then, we have
∣∣A
∣∣ ∣∣P′ A−1 P

∣∣ = ∣∣A
∣∣ ∣∣T ′ P′ A−1 P T

∣∣ /
∣∣T|2 = ∣∣A

∣∣
∣∣∣ P̃′ A−1 P̃

∣∣∣ /
∣∣T|2

so the determinant only changes by a factor that is independent of c. ��

We can now give a short explicit formulation for our proposed procedure
for selecting a good value c∗ of the scaling parameter:

c∗ = argminc

{
ψ2

G · ∣∣s f,X
∣∣2
Nφ(�)

}

= argminc

{
N−Q

√

(−1)Q

∣∣∣∣
A P
P′ 0

∣∣∣∣ ·
(

f
0

)′ ( A P
P′ 0

)−1 ( f
0

) }
(11)

Remark 1 (Example 1 continued)
With the same arguments used to explain (7) we see that for the power type

RBFs from Example 1 it holds that

P(c)
φ,Xk−1

(xk) =
∣∣ẽ(c)

k (xk)
∣∣

∣∣ẽ(c)
k

∣∣
Nφ(�)

=
∣∣ẽk(xk)

∣∣

cγ · ∣∣ẽk
∣∣
Nφ(�)

= c−γ · Pφ,Xk−1(xk)

where we used that ẽ(c)
k is of the form (1) and therefore

∣∣ẽ(c)
k

∣∣
Nφ(�)

= cγ · ∣∣ẽk
∣∣
Nφ(�)

.
As a consequence, the cost function in (11) is constant for power type RBFs,

which reasonably reflects the fact that their corresponding interpolants are
scale invariant.
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Remark 2 (Interpretation)
Both factors in (11) can be interpreted with respect to their role in the

minimization procedure. While the minimization of ψG aims at choosing c so
that the power functions in the corresponding native space become small, the
minimization of |s f,X |Nφ(�)

aims at choosing values of c for which f has small
native space norm. Both objectives are desirable in the light of the standard
bound on approximation errors

| f (x) − s f,X(x)| ≤ Pφ,X(x) · | f |Nφ(�)

and (11) realizes a compromise between the two objectives for the sequence of
orthogonal surrogate interpolation problems created from the data.

Such a compromise seems reasonable also in the light of the discussion in
Sec. 17.1.2 of [2], where it is noted that the power function is a useful indicator
for a good scale parameter but that the dependence of | f |Nφ(�)

on c should
somehow be acknowledged.

Remark 3 (Connection to spatial statistics)
In spatial statistics, a procedure called “Kriging” is used for the interpolation

of paths of spatial stochastic processes (cf. e.g. [16] for details). Kriging is
identical to RBF interpolation, but in the statistical context the term τ · φ(‖xi −
x j‖) has the additional interpretation as the covariance of the function values
at xi and x j where the additional parameter τ ∈ (0, ∞) denotes the process
variance.

One popular approach taken there to identify τ and the Kernel parame-
ters is the method of maximum likelihood estimation (MLE) which under
the additional assumption of Gaussian distribution and for given covariance
parameters assigns a likelihood to the observed values of f . The logarithm of
this likelihood is given by (see [16], pp. 169–171)

l(c, τ ; f) = − N − Q
2

log(2π) − 1

2
log
(|τ A| |P′ (τ A)−1 P|)

−1

2
f′
(
(τ A)−1 + (τ A)−1 P

(
τ−1 S

)−1
P′ (τ A)−1

)
f

= − N − Q
2

log(2π) − N − Q
2

log(τ ) − 1

2
log
(|A| |P′ A−1 P|)

− 1

2τ
f′
(

A−1 + A−1 PS−1 P′ A−1
)

f (12)

where S = −P′ A−1 P is again the Schur complement of the matrix
(

A P
P′ 0

)
.

The parameters are then chosen as the maximizers of this (log-)likelihood.
Now for any fixed value of c the maximizer of (12) in τ is given by

τ ∗ = 1

N − Q
f′
(

A−1 + A−1 PS−1 P′ A−1
)

f
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Plugging this back into (12) yields the so-called prof ile log-likelihood

l(c; f) = − N − Q
2

log(2π) − N − Q
2

(1 − log(N − Q))

− N − Q
2

log
(
f′
(

A−1 + A−1 PS−1 P′ A−1
)

f
)

−1

2
log
(|A| |P′ A−1 P|) (13)

and since

|s f,X |2Nφ(�)
= α′f = f′

(
A−1 + A−1 PS−1 P′ A−1

)
f (14)

one can see that maximizing (13) in c is equivalent to (11). In the context of
spatial statistics the MLE is usually considered superior in terms of accuracy
compared to other common methods.

Remark 4 (Limits of applicability)
A crucial difference to the situation in spatial statistics arises when f ∈

Nφ(�) (note that this is a common, but not a necessary assumption in RBF
interpolation). While in spatial statistics the adjusted error components ˜̃εk in
(5) are indeed all of the same magnitude, this cannot be true if f ∈ Nφ(�). In
fact this implies ˜̃εk → 0 as k → ∞ which follows from (7) and from the fact
that |s f,X |Nφ(�)

≤ | f |Nφ(�)
.

If the sequence
(|s f,Xn |Nφ(�)

)
n∈N

converges to | f |Nφ(�)
only slowly, then for

moderate N and 1 ≤ n ≤ N the increase should be approximately linear and
so the weighting in (5) is reasonable. If the convergence is quite fast however,
then the decrease of the magnitude of ˜̃εk in k is clearly visible even for
moderate N, as shown in Section 4. As a consequence, the first components
have a stronger influence on the minimization process, and since they are based
on fewer data points, they will typically favor bigger values of c.

Remark 5 (Disadvantages of our weighting of the errors)
There is another substantial difference to the situation in spatial statistics.

In that framework the model assumptions usually imply that the behavior
of f does not radically differ from one subdomain of � to another. In the
framework of numerical analysis, however, there is no such assumption, and so
it may happen that just near the boundaries, where approximation is generally
more difficult anyway, the function f has a structure that is particularly hard
to recover. In this case LOOCV is likely to perform better than our method
since the big approximation errors near the boundaries will be reflected in
big LOOCV error components corresponding to data sites in this area. Due
to the weighting in (5) the dominance of those error components is reduced
in procedure (11) and a value of c is typically selected that works well in the
interior but worse than the LOOCV choice near the boundaries where the
really big errors occur.
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It should be noted, however, that varying the scale parameter is not the
most appropriate way to deal with the challenges of approximation near
the boundaries anyway. Various RBF edge correction strategies have been
proposed (see [5] for an overview) and shown to be quite effective.

Remark 6 (Selecting the other RBF parameters)
Many of the examples of RBFs in Table 1 contain another parameter γ , the

choice of which is sometimes even more crucial, e.g. in the case of Matérn type
RBFs, where it determines the smoothness of the native space f is supposed
to belong to. In the absence of prior knowledge about an appropriate value for
γ , both (11) and LOOCV can of course be used to select a good value for both
c and γ simultaneously. For (11) this is successful practice in spatial statistics.

4 Numerical examples

In this section we compare the performance of procedure (11), denoted by
MLE, with that of Rippa’s LOOCV algorithm based on the l1-norm (CV1),
and the l2-norm (CV2) of ε.

4.1 Experimental design

Experiments are conducted for several test functions f on [0, 1]2 (see appendix
for definitions and plots), mostly taken from [14]. Since the choice of the node
locations is another important factor with big impact on accuracy and on the
appropriate choice of c we use different numbers N and different alignments
of data points:

– equidistant points (E-N)
– tensor-product Chebyshev points (C-N)
– Halton points (H-N)

The tensor-product Chebyshev points are taken from [2] and have the advan-
tage that they provide more information about f near the boundaries where
the approximation accuracy is often lower. Halton points are an example of a
quasi-random number sequence and we use them to represent the situation of
scattered data. For details about their definition we refer to [10] and [20].

For a given point set X and given RBF φ the corresponding interpolant
s f,X is calculated and its values on an equidistant 100 × 100 grid on [0, 1]2 are
compared with those of f . As a criteria for the quality of the interpolation we
calculate the RMSE, the root of the mean squared interpolation errors f (x) −
s f,X(x), on this grid for different choices of c within a reasonable range. From
this RMSE-curve the optimal c can be read off.

Following the observation of Rippa that the results are comparable for
Gaussian, multiquadric and inverse multiquadric RBFs, we have only used the
latter in our experiments.
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Table 2 Relative
performance of MLE over
CV2 with respect to the
RMSE achieved by using
inverse multiquadrics with
cMLE or cCV2, respectively

F0 F1 F3 F5 F6 F9 F14 F15

E-25 + + − − − −−
C-25 ++ + + − − − +
H-25 + + + − − − −
E-81 −− + + + ++ ic ++ + + + ic
C-81 −− ++ + + + ic + ic
H-81 + − − − − − ic ic

E-289 ic ++ − ic ic + ic
C-289 ic ic ic + ic
H-289 ic −− ic ic ic ic

4.2 General remarks on the results

The different test functions we study exhibit very different qualitative behav-
iors with respect to the optimal choice of the scaling parameter. As already
discussed in the introduction, F6 is an example of a function that calls for
relatively big values of c which leads to ill-conditioned systems even for
N = 81. The same problem arises with F15 (for N = 81/289), F0, F5 (for
N = 289), and F3 (for H-289). Whenever we suspected from the appearance
of the RMSE-curve that ill-conditioning is present for the relevant range of c,
we did not use it for the comparison of the algorithms and marked these cases
with “ic” instead.

4.3 Comparison of the different algorithms

In Table 2 we give an overview of the relative performance of MLE and
CV2 (which has, according to Section 3, the closest relation to MLE) by
comparing the RMSEs of the interpolants corresponding to cMLE and cCV2. The
coding is as follows: if RMSE(cCV2) is more than 5%/20%/100% larger than
RMSE(cMLE) (i.e. MLE performs better) we put +/ + +/ + ++. Conversely, if

Table 3 Optimal c and c selected by the different algorithms for test function F5 together with the
RMSEs of the corresponding approximations

copt RMSE(copt) cMLE RMSE(cMLE) cCV1 RMSE(cCV1) cCV2 RMSE(cCV2)

E-25 0.27 1.468 · 10−3 0.20 4.104 · 10−3 0.20 4.104 · 10−3 0.40 4.747 · 10−3

C-25 0.18 7.560 · 10−3 0.28 1.073 · 10−2 0.16 8.259 · 10−3 0.37 1.258 · 10−2

H-25 0.31 5.789 · 10−3 0.34 5.882 · 10−3 0.42 6.719 · 10−3 0.39 6.330 · 10−3

E-81 0.58 4.012 · 10−6 0.59 5.355 · 10−6 0.62 2.002 · 10−5 0.69 7.297 · 10−5

C-81 0.39 5.230 · 10−5 0.54 1.180 · 10−4 0.77 2.357 · 10−4 0.95 3.644 · 10−4

H-81 0.45 1.006 · 10−5 0.61 4.268 · 10−5 0.46 1.050 · 10−5 0.48 1.255 · 10−5

E-289 0.66 2.345 · 10−10 0.78 3.633 · 10−10 0.71 1.422 · 10−9 0.71 1.422 · 10−9

C-289 0.78 7.099 · 10−11 0.77 1.054 · 10−10 0.72 3.009 · 10−10 0.72 3.009 · 10−10

H-289 0.71 1.004 · 10−9 0.76 1.946 · 10−9 0.67 1.039 · 10−9 0.67 1.039 · 10−9



118 M. Scheuerer

Table 4 Optimal c and c selected by the different algorithms for test function F14 together with
the RMSEs of the corresponding approximations

copt RMSE(copt) cMLE RMSE(cMLE) cCV1 RMSE(cCV1) cCV2 RMSE(cCV2)

E-25 0.15 1.723 · 10−1 0.46 1.914 · 10−1 0.67 2.065 · 10−1 0.57 1.992 · 10−1

C-25 0.52 2.452 · 10−1 0.55 2.453 · 10−1 7.50 2.781 · 10−1 7.50 2.781 · 10−1

H-25 0.27 1.320 · 10−1 0.25 1.330 · 10−1 0.21 1.396 · 10−1 0.21 1.396 · 10−1

E-81 0.17 4.640 · 10−2 0.29 4.887 · 10−2 1.37 1.547 · 10−1 1.39 1.565 · 10−1

C-81 0.44 1.024 · 10−1 0.38 1.026 · 10−1 1.54 1.111 · 10−1 1.54 1.111 · 10−1

H-81 0.27 4.006 · 10−2 0.23 4.009 · 10−2 0.21 4.050 · 10−2 0.24 4.006 · 10−2

E-289 0.21 3.576 · 10−3 0.23 3.611 · 10−3 0.31 4.240 · 10−3 0.29 3.997 · 10−3

C-289 0.47 1.655 · 10−2 0.30 1.705 · 10−2 0.50 1.663 · 10−2 0.57 1.675 · 10−2

H-289 0.22 4.058 · 10−3 0.21 4.154 · 10−3 0.21 4.154 · 10−3 0.21 4.154 · 10−3

RMSE(cMLE) exceeds RMSE(cCV2) by 5%/20%/100% we put −/ − −/ − −−. If
both methods perform similar the cell is left empty.

Overall MLE performs slightly superior but it does not outperform CV2 as
clearly as it often does in statistical applications. Some of the effects leading to
an inferior performance can be explained via Remarks 4 and 5 from above.

For test function F5 and F14 results are given in detail (Tables 3 and 4)
since this pair of test functions can be used to illustrate the caveat about our
algorithm we pointed out in Remark 4. We observe that F5 can be interpolated
well even with few data points. The consequence is a fast convergence of
the native-space norms of interpolants which can be seen in Fig. 2 for the
point set C-81 (to avoid big jumps that blur the overall trend, the sequence
of data points was reordered: for k = 2, . . . , N we let xk the maximizer of
| f (x) − s f,Xk−1(x)|). While for F14 the native-space norms increase almost
linearly and the increments ˜̃ε2

k are really of the same magnitude, those for F5
noticeably tend to 0 and hence have decreasing influence on the selection of c.
The resulting bias towards bigger values of c, that can be expected according
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Fig. 2 Sequences of the native-space norms
(|s f,Xn |Nφ(�)

)
n=1,...,N for F5 (left) and F14 (right). The

norms are calculated for point set C-81 with c = copt and c = cMLE. The cMLE-curves are rescaled so
that their values for n = 81 coincide with those of the copt-curves
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Fig. 3 Approximation errors of the interpolation of F15 on 25 equidistant points for c = copt (=
1.45) (left) and c = cMLE (= 0.71) (right)

to Remark 4, can be observed in Table 3. The sequence of the native-space
norms calculated with c = cMLE (also depicted in Fig. 2) illustrates how MLE
tries to “correct” the different magnitudes of ˜̃ε2

k. It should be noted, however,
that this systematic error is often compensated by the smaller dispersion cMLE

around the optimal c compared to cCV1 and cCV2.
The bad performance of MLE with test function F6 and F15 can be partly

explained via Remark 5. While a good reconstruction near the corners requires
relatively big values of c this does not necessarily hold for the interior. For
reasons pointed out in Remark 5 our procedure reduces the emphasis of error
components near the boundaries, and therefore the selected values of c tend
to be too small (see Fig. 3).

5 Computational issues

First of all, we shall explain how the target function in (11) can be calculated in
a stable and efficient way. It is equivalent (but more convenient) to minimize
its logarithm:

Algorithm 1 (Calculation of the log target function for given c)

1. Calculate the singular value decomposition A = U DV ′ of A
2. Issue a warning message if the condition of A exceeds a certain threshold
3. Calculate U ′ P, P′V, U ′f, f′V, and from it

• S = −P′ A−1 P = −(P′V) D−1 (U ′ P)

• |s f,X |2Nφ(�)
= (f′V)

(
D−1 + D−1(U ′ P)S−1(P′V)D−1

)
(U ′f) (see (14))
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4. Calculate
log
(
ψ2

G(c)
) = 1

N−Q (log |A| + log | − S|) = 1
N−Q

(∑
i log(Dii) + log | − S|)

5. The log target function is then log
(
|s f,X |2Nφ(�)

)
+ log

(
ψ2

G(c)
)

When P = {0} all terms involving P or P′ vanish. Minimization of the log
target function should be carried out such that only those values of c are
considered that do not lead to ill-conditioned systems.

Computational costs and stability The computationally most expensive step is
the singular value decomposition of A. Such a step, however, is also needed
for the calculation of RBF expansion coefficients when direct solvers are used,
and so the computational costs are of the same order O(N3) (which is also the
order of the LOOCV-procedures).

The log determinant of A can then be obtained as a sum of logarithms and
its calculation is just as stable as the calculation of |s f,X |Nφ(�)

. In fact we even
found that the MLE target function (11) depends more smoothly on c than
those of the LOOCV-procedures (see Fig. 4), which encourages the use of
gradient based optimization procedures.

Approximative schemes For big N even the order O(N3) of the computa-
tional costs is too high and moreover the calculations become increasingly
unstable. In the spatial statistics literature a number of approximative schemes
for the statistical counterpart of (11) have been proposed, and we shall briefly
outline one of them that can easily be transferred to the present setup. Its main
idea is to turn back to the original representation of the cost function with the
two factors

∥∥∥ ˜̃ε
∥∥∥

2

2
=

N∑

n=Q+1

(
fn − s f,Xn−1(xn)

)2

P2
φ,Xn−1

(xn)
and ψ2

G = N−Q

√√√√
N∏

n=Q+1

P 2
φ,Xn−1

(xn)

(15)
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and to assume that s f,Xn−1 and P 2
φ,Xn−1

can be approximated well by s f,X̄n−1
and

P 2
φ,X̄n−1

, where X̄n−1 is a subset of Xn−1 containing at most M (some fixed
number) points:

Algorithm 2 (Calculation of the approximate log target function for given c
and M)

1. For n = Q + 1, . . . , N :

• Choose an interpolation set X̄n−1 ⊂ Xn−1 for fn of size min(M, n − 1)

• Calculate the interpolant s f,X̄n−1
and the power function Pφ,X̄n−1

at xn

2. The approximate log target function is then

log

⎛

⎝
N∑

n=Q+1

(
fn − s f,X̄n−1

(xn)
)2

P2
φ,X̄n−1

(xn)

⎞

⎠ + 1

N − Q

N∑

n=Q+1

log
(

P 2
φ,X̄n−1

(xn)
)

The computational cost can thus be reduced to an order of O(NM3) which
can be a substantial saving if M � N, and the smaller equation systems of size
M + Q are also more stable than the original one. The M data points chosen
from Xn−1 are typically those closest to xn. If the optimal scale is expected to
be large, however, the approximation can be improved considerably if some
points further apart are also included (see [17] for a detailed discussion).

Note that the approximate cost function is no longer independent of the
ordering of X. Our experiments with test functions F9 and F14 (for these
examples the optimal c is still within a range of values that lead to stable
interpolants for N = 1,089) do not entirely confirm the observation of [18]
and [17] that the differences for different orderings are small. When we keep
the original, very systematic ordering (row by row in our experiment with E-
1089) the approximation in the test case F14 is very bad. However, when using
some random permutation of the original ordering, the values of c selected by
Algorithm 2 are usually close to cMLE.

In Table 5 we give results for point set E-1089. The interpolation sets Xn−1 in
Algorithm 2 are chosen to be the 50 closest neighbors of xn from Xn−1. For the
random orderings the intervals containing all c’s from 20 different experiments
are given.

Table 5 Optimal c and c selected by the different algorithms (Algorithm 2 is denoted by AMLE)
for test function F9 and F14 and point set E-1089

copt cMLE cAMLE (orig. ord.) cAMLE (rand. ord.) cCV1 cCV2

F9 0.08 0.1 0.1 {0.1} 0.14 0.215
F14 0.21 0.21 0.35 [0.21, 0.23] 0.24 0.25
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6 Discussion

In this paper we have introduced a procedure for selecting a near-optimal value
for the parameter c in RBF interpolation. Our procedure (11) was motivated
as an extension of the LOOCV-algorithm proposed by Rippa and was shown
to be equivalent to the so-called maximum likelihood estimator that is used for
a similar problem in spatial statistics.

Numerical experiments were presented that showed that our procedure is
superior to LOOCV in some test cases but that it can fail in situations where
either the native space norm of the sequence of interpolants converges very
fast to that of the function f to be interpolated, or where the behavior of f in
the interior of the domain of interest is very different from its behavior near
the boundaries of this domain. Overall it performs comparable to the LOOCV
procedures, but it has a more solid mathematical background.

The importance of a good choice of c was motivated by showing that
one often needs to compromise between a good approximation accuracy in
the interior, which often improves as c increases, and near the boundaries,
where big c’s can produce undesired artifacts. Another way of dealing with
these conflicting objectives is to let the shape parameter vary spatially, rather
than assigning a single value to it (cf. e.g. [9]). This idea is very effective in
combination with local node clustering allowing to improve the resolution
wherever this might be needed while the parameter c in these areas is chosen
such that the local refinement does not entail any Runge-type errors.

It may be worthwhile goal to extend procedure (11) so that it can be used
to select a scale parameter that may vary spatially (e.g. depending on the local
node density) but is adapted to the particular function f to be approximated.
This seems to be quite challenging because with spatially varying c the solid
mathematical ground of reproducing kernel Hilbert spaces is left, and it is not
even clear how the definition (6) of the power function can be extended to this
framework. The discussion in Section 2, however, suggests that procedure (11)
may be more adapted to the situation of clustered nodes than LOOCV, and
may help to achieve a further improvement of approximation accuracy with
minimal number of data points.

We conclude that (11) is a good alternative to Rippa’s algorithm for
selecting the parameter c in RBF interpolation with further potential of
improvement. Whenever prior knowledge about the nature of f suggests that
the caveats mentioned in Remarks 4 and 5 do not apply its use can definitely
be recommended.
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Appendix: The test functions

The test functions used above are a selection of those used in [14] with the same
enumeration. Examples F2 and F4 have been omitted due to their similarity
to F14 and F5 respectively, in lieu thereof an additional test function F0 was
added which is a superposition of some trigonometric functions and therefore
quite different from the other examples (Figs. 5, 6, 7 and 8).

Note that not all of the test functions (F9 is an obvious exception) are in the
native space of inverse multiquadrics.

F1 = 0.75 exp

(
− (9x − 2)2 + (9y − 2)2

4

)
+ 0.75 exp

(
− (9x + 1)2

49
− 9y + 1

10

)

+ 0.5 exp

(
− (9x − 7)2 + (9y − 3)2

4

)
− 0.2 exp

(−(9x − 4)2 − (9y − 7)2
)

F0 =
5∑

i=1

(−1) i cos
(
(−1.5) ix + 3 i/2 y

)
, F3 = 1.25 + cos(5.4 y)

6 (1 + (3 x − 1)2)

F5 = exp
(− 81

4 ((x − 0.5)2 + (y − 0.5)2)
)

3
(Scaled Gaussian Kernel)

F6 =
√

64 − 81((x − 0.5)2 + (y − 0.5)2)

9
− 0.5
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F9 =

⎧
⎪⎪⎨

⎪⎪⎩

1 if y − ξ ≥ 1/2,

2(y − ξ) if 0 ≤ y − ξ ≤ 1/2,

(cos(4πr(ξ, y) ) + 1)/2 if r(ξ, y) ≤ 1/4,

0, otherwise

where

r(ξ, y) =
√(

ξ − 3

2

)2

+
(

y − 1

2

)2

, ξ = 2.1 x − 0.1

F14 = tanh
(

− 3
(
0.595576 (y + 3.79762)2 − x − 10

))+ 1

F15 =
(

1 − x
2

)6 (
1 − y

2

)6 + 1000 (1 − x)3 x3 (1 − y)3 y3 + y6
(

1 − x
2

)6

+ x6
(

1 − y
2

)6
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