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Abstract
While evenness is understood to be maximal if all types (species, genotypes, alleles, 
etc.) are represented equally (via abundance, biomass, area, etc.), its opposite, maxi-
mal unevenness, either remains conceptually in the dark or is conceived as the type 
distribution that minimizes the applied evenness index. The latter approach, how-
ever, frequently leads to conceptual inconsistency due to the fact that the minimizing 
distribution is not specifiable or is monomorphic. The state of monomorphism, how-
ever, is indeterminate in terms of its evenness/unevenness characteristics. Indeed, 
the semantic indeterminacy also shows up in the observation that monomorphism 
represents a state of pronounced discontinuity for the established evenness indices. 
This serious conceptual inconsistency is latent in the widely held idea that even-
ness is an independent component of diversity. As a consequence, the established 
evenness indices largely appear as indicators of relative polymorphism rather than as 
indicators of evenness. In order to arrive at consistent measures of evenness/uneven-
ness, it seems indispensable to determine which states are of maximal unevenness 
and then to assess the position of a given type distribution between states of maximal 
evenness and maximal unevenness. Since semantically, unevenness implies inequal-
ity among type representations, its maximum is reached if all type representations 
are equally different. For given number of types, this situation is realized if type 
representations, when ranked in descending order, show equal differences between 
adjacent types. We term such distributions “stepladders” as opposed to “plateaus” 
for uniform distributions. Two approaches to new evenness measures are proposed 
that reflect different perspectives on the positioning of type distributions between 
the closest stepladders and the closest plateaus. Their two extremes indicate states of 
complete evenness and complete unevenness, and the midpoint is postulated to rep-
resent the turning point between prevailing evenness and prevailing unevenness. The 
measures are graphically illustrated by evenness surfaces plotted above frequency 
simplices for three types, and by transects through evenness surfaces for more types. 
The approach can be generalized to include variable differences between types (as 
required in analyses of functional evenness) by simply replacing types with pairs 
of different types. Pairs, as the new types, can be represented by their abundances, 
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for example, and these can be modified in various ways by the differences between 
the two types that form the pair. Pair representations thus consist of both the dif-
ference between the paired types and their frequency. Omission of pair frequencies 
leads to conceptual ambiguity. Given this specification of pair representations, their 
evenness/unevenness can be evaluated using the same indices developed for simple 
types. Pair evenness then turns out to quantify dispersion evenness.

Keywords  Concept of evenness · Functional evenness · Unevenness · Evenness 
index · Type representation · Diversity index · Abundance · Representation 
distribution · Variable difference · Neighborhood evenness · Variational evenness · 
Dispersion evenness

1  Introduction

There is general agreement on the concept of evenness as far as its one extreme 
of complete evenness is concerned. The concept is built on the representation of 
types in collections of objects, and it is oriented at the degree to which the types 
are represented equally. Types could be alleles or genotypes represented by their 
frequencies in populations, species represented by their abundances in communi-
ties, crop varieties represented by the area they cover or the biomass they yield in 
cultivation, etc. Hence, the focus is set on the representation of types but not on 
their numbers. This contrasts with common notions of diversity which comprise 
both numbers of types and their representations.

The latter explains the widespread habit to conceive diversity as combining 
number of types with the evenness of their representations. Quoting Hurlbert 
(1971, and further citations in this paper), “Species diversity is a function of 
the number of species present (species richness or species abundance) and the 
evenness with which the individuals are distributed among these species (spe-
cies evenness or species equitability)”. The conceptual demands of the evenness 
notion on diversity measures was operationally specified as “transfer of abun-
dance” (or principle of transfers) by Patil and Taillie (1982) and reformulated as 
the evenness criterion by Gregorius (2010): “diversity never decreases as the dif-
ference in frequency between two types decreases while the sum of their frequen-
cies remains the same”). Strictly speaking, it is this criterion (further generaliza-
tions can be found in Grabchak et al. (2016)) that justifies the central conception 
of evenness as a component of diversity and allows transformation of each diver-
sity measure into an “effective number” of types.

Other approaches to measuring evenness abandon the diversity concept alto-
gether and turn directly to measures of distance of observed from ideal type dis-
tributions, where the ideal is defined by a uniform distribution (all type represen-
tations equal). These approaches are chiefly motivated by problems encountered 
with diversity-based evenness indices that are due to the assessment of distribu-
tional characteristics and statistical inestimability of indices [Pielou (1969,  p. 
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234); Peet (1975, p. 497); Gregorius (1990); Bulla (1994)]. Bulla even reverses 
the relationship between diversity and evenness by recommending the product of 
his evenness measure with the number of types as a measure of diversity.

In all of the above-addressed work, the focus is set on complete evenness, and devia-
tions from this ideal structural state are quantified in terms of normalized measures of 
diversity or distances of the observed type distribution from the ideal state. The smaller 
the values of the respective measures become, the larger the incongruence with the 
ideal state is scored. The structural characteristics of the type distributions which real-
ize the minimal evenness, if they exist, could then be viewed to provide in some sense 
an idea of the absence of evenness. Yet, conceptual specifications of this idea are rarely, 
if ever, pondered. This is unfortunate, since it deprives us of any attempts to associate 
the absence of evenness with relevant ecological or evolutionary processes.

As a first step, common methods of quantifying evenness will therefore be checked 
for consistency of their lower bounds with notions of the absence of evenness. Remain-
ing inconsistencies will be treated by turning from the absence of evenness to a concept 
of unevenness that is based on the specification of desirable structural characteristics 
of type representations. The measurement of evenness will then be designed to cover 
the continuum between complete evenness and complete unevenness. Herewith, the 
leading thought is that less evenness is not the same as more unevenness unless maxi-
mal unevenness is as definitely defined as maximal evenness is. As a consequence, the 
notion of maximum unevenness must be purely conceptually defined as is true for the 
notion of maximum evenness.

To appreciate the wide scope of applications, it is useful to consider that type repre-
sentations are not just limited to the above-mentioned features but may also reflect rela-
tions among community members such as smallest or average difference of a type from 
other types in the community, as are applied in work on functional diversity. Several 
measures will be introduced in order to allow choices to be made according to intuitive 
access or data structure and to encourage adaptation of one’s own models.

The recently increasing interest in functional traits and their variation (commonly 
though improperly referred to as “functional diversity”) chiefly focuses on charac-
teristics of the distribution of trait differences (however measured) in collections of 
organisms (especially communities or populations). In this context, the entities of 
consideration can be of different kind, such as individuals, types (species, genetic 
types, etc), and also pairs of those. The latter entities, pairs, are especially relevant 
in the assessment of functional variation in that pair differences and occurrence fre-
quencies of pair types jointly determine functional relations among the members of 
communities. They will receive special consideration in a separate section which 
offers a conceptual solution for the measurement of functional evenness that avoids 
the shortcomings of currently favored indices.

2 � Established Methods of Measuring Evenness

As was mentioned before, the established indices of evenness can be distinguished 
into diversity-based and distance-based methods, both of which assume their 
respective maximal values (usually 1) only for uniform type representations. In the 
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following, a brief demonstration will be provided of the distributional characteristics 
that can be associated with index values below the maximum and particularly as the 
values approach their lower bounds. The results will be discussed with respect to 
their compatibility with the basic conceptual requirements imposed on the indices as 
well as their statistical implications.

Throughout this paper, the relative representations qi of s types are assumed to be 
ranked in descending order such that q1 ≥ q2 ≥ … ≥ qs > 0 with 

∑s

i=1
qi = 1 . Uni-

form distributions of s types, i.e., q1 = q2 = … = qs = 1∕s , will be referred to as 
“plateaus” of length s. Whenever s is specified, the stipulation implies that qi = 0 for 
all i > s.

Let us start with the probably most frequently applied diversity index, Simpson’s 
index (Simpson 1949). This index is used in different versions, among which the 
probability of sampling with replacement two different types, i.e., 1 −

∑s

i=1
q2
i
 , is 

usually preferred for both intuitive and conceptual reasons. The effective number 
of types involved in this index equals 1∕

∑s

i=1
q2
i
 , and it appears as one of the family 

Na ∶= (
∑s

i=1
qa
i
)

1

1−a of diversity indices derived by Hill (1973) as effective numbers 
of Rényi’s family of entropy measures (Rényi 1961) (effective Simpson number = 
N2 ; the limit for a → 1 exists and equals N1 = exp(−

∑s

i=1
qi ⋅ ln qi) ). The charac-

teristic of Na as an effective number of types becomes apparent from Na = s for s 
equally represented types, irrespective of the parameter a.

The by far most common transformation of the diversities Na into an evenness 
measure is Na∕s for s types (for various variants of this family of measures, see e.g. 
Table 2 in Tuomisto (2012) or Table 1 in Kvålseth (2015)). The conceptual incon-
sistency of this measure shows up directly when considering a series of type distri-
butions with constant number s of types, along which all representations are positive 
and tend to zero with the exception of the first. A non-trivial example is provided by 
models of resource apportioning that follow a finite geometric progression with the 
distribution

where 0 < x < 1 for the parameter x. Applying L’Hôpital’s rule, one obtains as the 
limit for x → 1 , qi = 1∕s for i = 1,… , s and thus a uniform distribution for s types. 
Moreover, as x → 0 , one obtains at the limit q1 = 1 and qi = 0 for i > 1 . At the same 
time Na → 1 , in accordance with the limiting distribution consisting of a single type 
(monomorphism). The evenness or unevenness state of monomorphism is, however, 
unresolved unless declared otherwise (such as “uniformity” by extending the con-
cept from multiple types to a single type). Thus Na∕s → 1∕s for all s, even though 
the limiting distribution always is the same (consisting of a single type). Thus the 
same distribution receives different index values.

This discrepancy can be avoided by transforming Na∕s into (Na − 1)∕(s − 1) , 
so that one obtains an index that varies between 0 and 1 for s > 1 [see e.g. Jost 
(2010), Eq. (3)]. This index would converge to 0 as Na tends to 1 and s (the num-
ber of types with positive representation) remains greater than one. Of course, 
at the limit the index is not defined, since s = 1 holds there. Moreover, since the 

(1)qi =
xi ⋅ (1 − x)

x ⋅ (1 − xs)
= xi−1 ⋅

1 − x

1 − xs
, i = 1,… , s
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index is supposed to measure evenness, a value of 0 should indicate the “absence” 
of evenness, and the associated limiting state would be monomorphism. One 
would therefore be obliged to consider monomorphism as a state of the absence 
of evenness, even though otherwise the evenness state of monomorphism is con-
sidered to be unresolved.

The discrepancy indeed has practical relevance, for example in population 
genetics, where so-called “minor polymorphisms” (Lewontin 1974) resemble 
geometric progressions (Eq. 1) for x close to zero in that they consist of a single 
dominant allele and a number of rare alleles. More frequently, however, minor 
polymorphisms are found to resemble the form

(L-shaped distribution), to which the above deliberations apply identically for 
small x. L-shaped distributions are a special case of mixtures of distributions as are 
typical for models of migration in population genetics or community ecology. Sec-
tion 3.2 gives a geometric illustration of L-distributions along abundance transects. 
For more examples of type distributions and their underlying statistical models, see 
e.g. Sect. 2.2 in Heip et al. (1998).

The pitfall of normalizing indices by numbers of types was pointed out long 
ago. For example, Pielou  (1969,  p.  234) noted that evenness measures that are 
normalized in this way cannot be estimated. Obviously, even for large sample 
sizes, the existence of rare types in the sampled community may cause only small 
changes in the estimate of Na when sampling is repeated, but the number of types 
may change noticeably.

Hill (1973) was already aware of this drawback. He suggested an alternative by 
making use of the fact that Na ≤ Nb for a > b > 0 with equality only for uniform 
distributions. His evenness index Na∕Nb does not seem to be used, however. One 
of the reasons is probably the arbitrariness in the choice of levels a and b [see e.g. 
Ricotta (2003)]. Another reason might be that there is no definite greatest lower 
bound for Na∕Nb which could be associated with structural characteristics of type 
distributions that indicate lowest evenness. In addition, the index also assumes 
its maximal value of 1 for monomorphism, which suggests that monomorphism 
is a state of complete evenness, as opposed to its previous characterization as the 
“absence” of evenness. Again one arrives at inconsistent conclusions.

The conceptual inconsistency of the index Na∕s applies analogously to the 
occasionally used index of evenness suggested by Bulla (1994). The index is 
based on a measure of distance between a distribution of s types and the cor-
responding uniform distribution of these s types. The distance measure is 
d =

1

2
⋅

∑s

i=1
�qi − 1∕s� , which relates to the well-known Manhattan distance 

between the distribution q and the uniform distribution. It has a least upper bound 
of d = 1 − 1∕s for given s that is reached if q represents a single type (monomor-
phism). Bulla’s evenness index can then be stated in the form 1 − d∕(1 − 1∕s) . 
It is immediately realized that the conceptual inconsistency demonstrated above 
for the diversity-based method Na∕s (or (Na − 1)∕(s − 1) ) of quantifying even-
ness applies identically to Bulla’s index (also see Ricotta et al. (2014)). The same 

(2)q1 = 1 − (s − 1) ⋅ x∕s, qi = x∕s for i = 2,… , s and 0 ≤ x ≤ 1
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holds when d is replaced by any other appropriate distance measure between dis-
tributions [Chao and Ricotta (2019)].

To avoid this problem, Gregorius (1990) suggested that the distance be mini-
mized between the observed type distribution and all possible uniform type distribu-
tions. The minimization removes the explicit dependence of evenness measurement 
on the number of types, which is the major cause of the conceptual shortcoming of 
the common measures. In fact, assessment of the evenness of a type distribution 
should by basic perception not be a matter of number of types but rather only of 
their representations. While the distance minimization approach apparently realizes 
this principle, it can be shown that for given number of types the greatest lower 
bound (infimum) of the minimal distances increases with the number of types (Gre-
gorius 1990). Yet, the characteristics of the type distributions that realize or become 
arbitrarily close to the respective lower bound again remain unspecified.

In other cases, the lower bound of a measure can be determined together with 
the distribution for which it is realized. This requires specification of additional 
conditions under which this can be achieved. Among these conditions is first of 
all that the representations of types remain properly positive as the lower bound is 
approached and finally realized. The condition is mandatory for retaining the num-
ber of types, since otherwise the number of types to be considered would be suc-
cessively reduced as more and more types reach zero representation. Moreover, the 
condition implies that collections are of finite size, since for infinite size, the relative 
type abundances can approach values of zero arbitrarily closely without changing 
the number of types. Consequently, in a finite collection, the lowest representation 
of a type is reached if it occurs only once.

The situation where all but one of the types occur only once (of course the num-
ber of types in a collection is not allowed to exceed the collection size) is referred 
to as maximal unevenness by Bulla (1994) and Kvålseth (2015), since their indi-
ces are minimized under these conditions. The distribution of maximal unevenness 
therefore is L-shaped (Eq. 2), and it is conditional on two parameters, the number 
of types (s) and the lower threshold abundance for type presence  (x). Essentially, 
this idea of a state of maximal unevenness underlies all of the common measures 
of evenness, though this is rarely stated explicitly [see the compilation of Scheiner 
(2019)]. In fact, Jost (2010) and more recently Chao and Ricotta (2019) addressed 
monomorphism as a conceptual criterion for maximal unevenness.

Conceptual reasoning why this situation specifies maximal unevenness, other 
than that it reaches the lower bound of specific evenness measures, is not provided. 
Both authors (Bulla and Kvålseth) do admit that their specification of maximal une-
venness is problematic when considering increasing collection size. In fact, their 
reluctance can chiefly be ascribed to the above-mentioned problem of conceptual 
inconsistency. It also recognizes the problem of “inestimability of evenness”, in that 
when samples are taken from base collections of effectively infinite size, the true 
state of maximal unevenness would be the presence of only a single type, but the 
assessment of evenness in terms of complete unevenness is then questionable.

In the approach of Jost (2010), it is assumed that all components involved in the 
evenness notion are specified in terms of numbers equivalents (effective numbers), 
among which diversity (with emphasis on Hill numbers) takes a central position. 
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The number of types (richness) is conceived to result from independent combina-
tion (in form of a product) of diversity and “some other independent quantity  X” 
(also named “inequality factor”), which is concluded in the further analysis to be 
interpretable as a measure of unevenness that is equal to the multiplicative inverse of 
the common index Na∕s of evenness, i.e. X = s∕Na . In this approach, the notions of 
evenness and unevenness are thus divided into different measures rather than being 
reflected in a single measure. Moreover, X has no upper bound, so that ideas of max-
imum unevenness are without substance. The above-mentioned problem of concep-
tual inconsistency remains.

In essence, it appears that the common indices proposed for the quantification 
of evenness [see e.g. Table 1 in Kvålseth (2015) and Table 1 in Chao and Ricotta 
(2019)], and especially those normalized to range within the unit interval, indicate 
complete evenness for values of 1 and indicate effective monomorphism for values 
close to 0. This observation is reminiscent of ideas of concentration of overall mass 
to a single type, for which a value of 0 indicates complete concentration and a value 
of 1 indicates equal distribution of mass over types, akin to the Gini index used in 
economics. Alternatively, in ecology the term “dominance” is used to refer to the 
same situation based on relative species abundances in which one or a few species 
dominate the species spectrum by their abundance [for a more detailed study, see 
Fung et al. (2015)]. The common evenness indices might therefore just as well be 
referred to as inverse indices of concentration or as inverse indices of dominance. 
Indeed, both concentration and dominance decrease as types become more evenly 
distributed.

An even more comprehensive description can be arrived at if one realizes both 
extremes of the common indices in terms of polymorphism. In this context, the min-
imal and maximal values indicate monomorphism and full polymorphism, respec-
tively. Herewith “full polymorphism” is to be understood in the light of the limit 
set by the number of types occurring in the collection, so that the polymorphism 
is “full” in the sense that all types are equally abundant. From this perspective, the 
common approaches to measuring evenness are actually revealed to be characteristic 
of measures of relative polymorphism.

This ambivalence calls for a novel kind of approach to the measurement of even-
ness that involves a consistent concept of unevenness. Since the notion of evenness 
itself is unaffected, the questions to be treated are the same as before, with the dif-
ference that unevenness receives the significance which it initially was arguably 
intended to have.

3 � Concepts of Un‑evenness

It has become clear by now that most of the shortcomings of the common meas-
ures of evenness go back to a disregard of (1) distribution characteristics (espe-
cially rare types) that lead to discontinuous transitions from polymorphism (more 
than one type with positive representation) to monomorphism, and (2) specifica-
tion of the characteristics of type distributions that realize or come close to the 
greatest lower bounds (infima) of the respective index. The latter calls to attention 
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the concept of unevenness that is thought to appear as small index values and the 
associated idea of low evenness. Simply conceiving of ever smaller values of the 
established measures of evenness as increasing unevenness is conceptually not 
justified.

When the opposite of evenness is to be characterized, the challenge is to define 
complete unevenness as the analogue and counterpart of complete evenness. Appar-
ently, the concept of the analogue is not as obvious as the concept of complete even-
ness. Though various approaches are conceivable, it seems compelling to conceive 
of unevenness as the negation of evenness and thus the entailment of inequality of 
type representations in the first place. Following this, the question is as to the exist-
ence and structure of a state of maximal inequality in type representations. Herewith 
it must be taken into consideration that this state has to be specified for type distri-
butions and thus for relative type representations that sum up to 1.

Maximization of inequality in representations is therefore difficult to envision 
without suitable ordering of the representations, such as the presently used ranking 
in descending order. Here it becomes immediately clear that simply enlarging dif-
ferences in representation between individual objects may not increase the overall 
inequality, since it may rather increase equality between the representations of other 
types. In its extreme form, this occurs as the concentration of mass to one or a few 
types increases, which, in turn, entails the above-argued conceptual inconsistency. 
Consequently, overall inequality in representation can only be enlarged by distribut-
ing the differences between types as equably as possible. In other words, unevenness 
should increase as all types become equally differently represented.

Because of the uni-dimensionality of representations and the linear ordering 
implied by their ranking, maximal unevenness can be realized only if all steps in 
the ranked distribution have equal height. This distributional form is characterized 
by a linear descent of the representations and can be visualized as a stepladder. It 
will serve in the following as the reference for complete unevenness among a given 
number of types.

Stepladders are thus distributions q of the form qi = ai with

They can also be conceived of as a finite arithmetic progression with increments 
(step-heights) of ai − ai+1 = 1∕[

1

2
s ⋅ (s + 1)] . The relative step-heights are then given 

by (ai − ai+1)∕a1 = 1∕s for i = 1,… , s as required (recall that as+1 = 0).
A distribution of maximal (or complete) unevenness can now be described for 

any given number of types by a stepladder characteristic, just as maximal (or com-
plete) evenness is reached for a given number of types if all of them are equally 
represented. These two distributional characteristics set the limits between which the 
assessment of evenness or unevenness should operate. Since statements of uneven-
ness as well as of evenness require consideration of at least two types, situations of 
monomorphism must remain indeterminate in both cases. In fact, a monomorphic 
distribution could be considered as a stepladder consisting of a single step and as a 
plateau consisting of a single type.

(3)ai =
s + 1 − i

1

2
s ⋅ (s + 1)

for i = 1,… , s
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Diversity-based methods of assessing evenness cannot provide information on 
unevenness, since measures of diversity generally do not produce characteristic val-
ues that are associated with states of complete unevenness. Besides, the assessment 
of evenness basically relies on the proximity of a given type distribution to an ideal 
reference distribution, such as uniformity, and by this requires measures of distance 
between distributions in the first place. Measures of diversity, however, are aimed at 
properties of individual distributions rather than differences between such distribu-
tions, which makes them difficult to transform into meaningful distance measures. 
The following deliberations on measuring evenness/unevenness therefore take a dif-
ferent and largely diversity-independent route.

3.1 � Measures of Evenness/Unevenness

There are several ways to design measures that range between states of com-
plete evenness and unevenness. Two approaches will be introduced in the follow-
ing because they have intuitive appeal and demonstrate the possibility of looking 
at evenness from different perspectives. One approach is based on the distances of 
a type distribution from states of complete evenness and unevenness (the generic 
approach), and the other again uses the two distances but applies them to the dis-
tribution of step-heights in the ranked distribution as an indication of the deviation 
from states of complete evenness and unevenness (the step-height approach). We 
will start with an example from the generic approach, since this approach builds on 
perceptions that are more familiar from previous work on the topic. In a second step, 
a measure will be introduced that is based on the step-height approach.

3.1.1 � The Generic Approach

Let u(k) denote a uniform distribution of k types (plateau of length k), and let a(l) be 
a stepladder of length l. Note that the stepladder consists of components

For the plateau, one has ui(k) = 1∕k for i = 1,… , k and ui(k) = 0 for i > k.
The distances of a type distribution q from the two reference distributions u(k) 

and a(l) can then be written as d[q, u(k)] and d[q, a(l)]. Among the many distance 
measures d between distributions, p-norm based distances (or simply p-distances) 
are probably among those most frequently applied. In the case of the distributions q 
and a, for example, they take the form d[q, a(l)] = dp[q, a(l)] =

�∑
i �qi − ai(l)�p

�1∕p 
with p ≥ 1 . In the above-referenced paper of Bulla, the distance d =

1

2
d1 is used, and 

only distances d[q, u(s)] are considered for which s equals the number of types real-
ized in the distribution q.

As the present concept is built on classifying and quantifying the closeness 
of a given distribution either to a plateau or to a stepladder, the primary task is 

(4)
ai(l) =

l + 1 − i
1

2
l ⋅ (l + 1)

for i = 1,… , l

and ai(l) = 0 for i > l
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to determine and compare the distances from the nearest plateau and the near-
est stepladder. One thus needs to know the values � ∶= mink=1,2,… d[q, u(k)] and 
� ∶= minl=1,2,… d[q, a(l)] as the minimal distances of the distribution q from a pla-
teau u and a stepladder a, respectively. � was previously used by Gregorius (1990) 
for the measurement of evenness. Equality of � and � can then be considered to be 
a transition situation, a turning point, or a state of indeterminacy between evenness 
and unevenness.

The minimization of distances once more emphasizes the fact that ever larger 
distances from states of complete evenness should not a priori be considered as 
increasing closeness to states of complete unevenness, especially if these states 
are not explicitly defined. The same reasoning applies in the reverse direction, i.e., 
increasing distance from states of complete unevenness does not necessarily imply 
higher evenness, even though states of maximal evenness are properly defined. It is, 
in fact, conceivable that q may undergo changes along which their distances from 
both plateaus and stepladders increase, so that the two distances need not be nega-
tively correlated. This, however, has no bearing on the assessment of evenness, since 
it is determined by the relation between values of two distances rather than by their 
absolute values. Therefore the quotient

would be a consistent measure of evenness in the sense that e1 becomes 1 for com-
plete evenness of q [when it equals one of the u(k)], and it becomes 0 for complete 
unevenness of q [when it equals one of the a(l)]. The two minimization processes 
also guarantee that e1 is independent of the number of types and prevent discontinu-
ous changes in e1. Such changes occur when rare types are added to q, as may easily 
happen for increasing sample size.

For purposes of geometric illustration, it might be helpful to picture e1 as defin-
ing a surface above a frequency simplex, as is done in Fig. 4 in Sect. 3.2.

To find limits for the plateau and stepladder length below which the respec-
tive minimal distances � and � must be realized, consider the minimal frequency 
qs in q and recall that qs ≤ 1∕s . For a plateau of length k with 1∕k ≤ qs (and thus 
k ≤ s ), one obtains 2(1 − x) as its d1-distance from q, where x = s∕k . The distance 
thus increases with increasing k, so that the minimal distance � must be realized for 
a plateau of length k with k ≤ 1∕qs ≤ s . Along the same line of thought, consider 
that the maximal frequency of the stepladder is 1∕ 1

2
(l + 1) ≤ qs . Since qs ≤ 1∕s , this 

implies l ≥ 2s − 1 . The d1-distance of this stepladder from q is 2(1 − x) , now with 
x =

∑s

i=1
ai(l) , so that the distance increases with  l. The minimal distance � must 

therefore be realized for a stepladder of length l with l ≤ 2s − 1.

3.1.1.1  The Significance of Monomorphism  The index e1 is not defined for � = � = 0 . 
Yet, for distributions of at least two types (polymorphism), � = 0 cannot be realized 
simultaneously with � = 0 , since this would imply that the distribution is a plateau as 
well as a stepladder. Coincidence of both, however, could only be conceivable for mono-
morphism, in which case the stepladder would consist of a single step. Hence, 𝜆 + 𝜋 > 0 

e1 ∶=
�

� + �
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always holds for polymorphic distributions. Monomorphism, in contrast, can be argued 
to be excluded from evenness deliberations, since any assessment of evenness or une-
venness requires the comparison of different objects. Yet, especially for L-shaped dis-
tributions with one highly dominant and several rare types (minor polymorphism), the 
vicinity to monomorphic states is inevitable. Therefore, distances from monomorphism 
gain significance independently of its evenness/unevenness interpretation.

That consideration of monomorphism is actually essential, becomes evident when 
realizing that for a distribution approaching monomorphism (such as the geometric dis-
tribution in Eq. (1) with its parameter x approaching 0), the minimal distances � and � 
are both obtained for the same limiting distribution, namely monomorphism. Hence, 
� = � and thus e1 = 0.5 ultimately hold, which is in complete conceptual accordance 
with the fact that no decision can be made in favor of evenness or unevenness at this 
limit. Furthermore, e1 = 0.5 continues to hold until the distribution includes types with 
sufficient representation to recognize tendencies towards either evenness or unevenness. 
This holds for all appropriate distance measures (including the dp’s). It is this property 
that confirms the conceptual consistency of the method underlying the design of e1.

The situation of minor polymorphism will be returned to in more detail in Sect. 3.2 
for suitable example distributions.

3.1.2 � The Step‑Height Approach

Another perspective of looking at evenness is less conventional but still intuitively 
obvious. It focuses on step-heights in the ranked distribution and their variability as an 
indicator of evenness. Step-heights are given by qi − qi+1 for the individual types, and 
since their sum equals q1 , one obtains for the distribution of step-heights the relative 
quantities hi ∶= (qi − qi+1)∕q1 . With a stepladder a(k) of length k, step-heights are all 
the same, i.e., hi = h�

i
(k) = 1∕k for i = 1,… , k and h�

i
(k) ∶= 0 for i > k . For a uniform 

distribution (plateau), all step-heights are zero with the exception of the one that marks 
the end (or length) of the plateau. The p-distance of the step-height distribution h from 
the step-height distribution h�(k) then reads

(recall that hi = 0 for i > s).
As mentioned above, the step-height distribution of plateaus, denoted by h��(k) , is 

degenerate in the sense that for a plateau u(k) of length k, the k-th component equals 1 
while all other components are zero, i.e., h��

i
(k) = 1 for i = k and h��

i
(k) = 0 for i ≠ k . 

Hence, the dp-distance, for example, of the step-height distribution h from the step-
height distribution of a plateau of length k becomes

For p = 1 , this reduces to d1[h, h��(k)] = 2(1 − hk) . Also recall that d1 ≥ dp.

dp[h, h
�(k)] =

(∑

i

|hi − h�
i
(k)|p

)1∕p

=
(∑

i>k

h
p

i
+

k∑

i=1

|hi − (1∕k)|p
)1∕p

dp[h, h
��(k)] =

(
(1 − hk)

p +
∑

i∶i≠k

h
p

i

)1∕p
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Following the same construction principle as before, i.e., determining the posi-
tion of type distributions between the closest stepladders and closest plateaus, type 
distributions are now to be replaced by their corresponding step-height distributions. 
The appropriate distances are then �h = mink d[h, h

��(k)] and �h = mink d[h, h
�(k)] , 

so that the evenness index becomes

with e2 = 0 only if q is a stepladder (complete unevenness), and e2 = 1 only if q is 
a plateau (complete evenness). It is again straightforward to show that �h is realized 
for some h�(k) with k ≤ s . The same holds for �h since �h = 1 −maxk hk.

It is readily verified that the explanations on the significance of monomorphism 
given for the generic approach to e1 (Sect. 3.1.1) apply identically to the step-height 
approach to e2: for distributions strongly but not completely concentrated on a sin-
gle type (minor polymorphism), one has e2 = 0.5 . Further details are presented in 
Sect. 3.2, including illustrations of e2 as an evenness surface above the frequency 
simplex.

3.2 � Illustration of the Evenness Indices

General characteristics of the new evenness/unevenness measures can be demon-
strated with the help of graphical representations of evenness. These include “even-
ness surfaces” that are drawn for the highest-dimensional case that is geometrically 
representable, namely for s = 3 types, and “evenness curves” that follow one-dimen-
sional transects (or lines) through the frequency simplex for any number of types. 
The following demonstrations are based on p-distances of order p = 1 (i.e., d = d1 ), 
because these are familiar from and allow comparison with the above-cited earlier 
approaches to the assessment of evenness and because they operate on untrans-
formed differences between type representations.

All distributions that consist of at most s types form the frequency simplex Ss−1 , 
an (s − 1)-dimensional subset of s-dimensional real space (the one dimension is lost 
because each frequency qi equals 1 minus the sum of the others). The simplex Ss−1 
has one plateau of length s in its center, and plateaus of shorter length are located on 
its edges. For s of any size, the simplex Ss−1 has s! = s ⋅ (s − 1)... ⋅ 2 internal steplad-
ders with s types, and stepladders with fewer types are located on its edges.

Evenness can be visualized for s = 3 . The corresponding simplex S2 can be drawn 
as a two-dimensional triangle on the plane (Fig. 1). The one plateau of length 3 is 
located in the center, surrounded by the six stepladders of length 3. The three pla-
teaus and six stepladders of length 2 lie on the edges of the triangle, and the three 
monomorphisms are at the corners (Fig. 2). Evenness can be plotted vertically above 
each distribution in the triangle. When viewed from a suitable angle, the resulting 
three-dimensional evenness surface demonstrates the main characteristics of even-
ness (see Figs. 3 and 4).

To demonstrate the differences between the new measures and the evenness indi-
ces of Bulla (1994) and Simpson (1949), these two indices are graphed as surfaces 

e2 =
�h

�h + �h
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over the simplex S2 for s = 3 in Fig. 3. Both are seen to assume their maximum of 1 
only for the plateau (1∕3, 1∕3, 1∕3) of length 3 at the center of the simplex. Both 
ignore the distributions on the three edges of the simplex, where one of the types is 
of frequency 0, even though each edge contains a plateau of length 2 for the other 
two types and thus a point of highest evenness for s = 2 . This confirms their depend-
ence on the inestimable number of types s (Pielou 1969). Moreover, Bulla’s index 
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Fig. 1   The frequency simplex S2 as the set of all frequency distributions with at most s = 3 types. Left 
panel: S2 embedded in 3-dimensional real space ℝ3 . Right panel: Equivalent representation of S2 as 
viewed from the origin (0,0,0) of ℝ3 . As an example, the distribution q = (0.2, 0.5, 0.3) lies at the black 
dot

0

Plateaus

Stepladders

0.2 0.4 0.6 0.8 1

Monomorphisms

Fig. 2   Special distributions of the simplex S2 . Of the four plateaus (red), the plateau (1∕3, 1∕3, 1∕3) of 
length 3 lies at the center of the triangle and each of the three plateaus (1∕2, 1∕2, 0) , (1∕2, 0, 1∕2) and 
(0, 1∕2, 1∕2) of length  2 lies at the center of one of the edges. Of the 12 stepladders (blue), the six 
stepladders of length 3 specified by (3∕6, 2∕6, 1∕6) and its five permutations surround the central pla-
teau, and two of the six stepladders of length 2 specified by (2∕3, 1∕3, 0) and its five permutations flank 
the plateau of length 2 on each edge. Each of the three vertices represents one of the monomorphisms 
(1, 0, 0), (0, 1, 0) and (0, 0, 1). The frequencies of all distributions within the wedge (dotted lines) are 
ranked in descending order, i.e., q1 ≥ q2 ≥ q3 . (Color figure online)
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approaches its minimum of 0 as distributions approach monomorphism at the cor-
ners of the simplex, for example the L-shaped distributions mentioned above. Simp-
son’s index assumes its minimum of 0 there. Their assessment of monomorphism 
as minimal evenness contradicts the conclusion drawn above that monomorphism is 
actually of indeterminate evenness.

The measures e1 and e2 show similar behavior that is very different from the 
indices of Bulla and Simpson, as is demonstrated for s = 3 by the evenness surfaces 
graphed over the simplex S2 in Fig. 4. Red shading marks distributions with a ten-
dency toward evenness, in that they are closer to a plateau of any length than to a 
stepladder of any length. Blue shading marks distributions with a tendency toward 
unevenness, in that they are closer to a stepladder than to a plateau of any length. 

Fig. 3   Surfaces of two widely used indices of evenness graphed over the frequency simplex S2 for s = 3 
types: a Surface of the evenness index of Bulla (1994) seen from an upper viewpoint (left panel) and 
projected onto S2 (right panel). b Surface of the evenness index based on Simpson’s diversity (Simpson 
1949) seen from the same upper viewpoint (left panel) and projected onto S2 (right panel). Color scale: 
from black for index value 0 to white for 1
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Both measures have peaks (maximal turning points) of evenness 1 not only for 
the plateau (1∕3, 1∕3, 1∕3) at the center of the simplex but also for the plateau of 
length 2 that lies on each of the three edges of the simplex. Both measures also have 
minimal turning points of evenness 0 within the interior of the simplex, namely for 
the six stepladders with three types, as well as on each edge for the two stepladders 
with two types. The large ”shelf” of evenness 0.5 (white) surrounding each of the 

Fig. 4   Evenness surfaces of the new measures e1 and e2 for s = 3 types graphed above the simplex S2 . 
a e1-surface seen from an upper viewpoint (left panel) and projected onto S2 (right panel). b e2-surface 
seen from the same upper viewpoint (left panel) and projected onto S2 (right panel). Color scale: blue 
for evenness 0 to white for 0.5 to red for 1. In both projections (right panels), only the sector of the 
simplex is fully colored for which the frequencies of the distributions are ranked in descending order 
q1 > q2 > q3 ; the rest of the simplex is shown in paler colors. The positions of the extreme values coin-
cide for e1 and e2. In the left panels, the four peaks for which e1 = e2 = 1 holds correspond to the four 
plateaus, and the low points for which e1 = e2 = 0 holds correspond to the twelve stepladders (see 
Fig.  2). The indeterminacy of evenness/unevenness at the three monomorpic vertices is reflected by 
their evenness values of e1 = e2 = 0.5 ; this indeterminacy is maintained as the two other types begin to 
appear at low frequencies, visible as the large white shelves at the corners. Between the extreme points, 
the contours of the e1- and e2-surfaces differ. Most prominent in the right panels are the narrower peaks, 
the wider low points and the larger shelves around monomorphism for e2 as compared to e1. (Color fig-
ure online)
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three monomorphic corners of the simplex indicates that evenness is indeterminate 
not only for complete monomorphsim but also as individuals of the other two types 
begin to appear, as proven above for arbitrary number of types.

The differences between e1 and e2 are easy to see in the right panels of Fig. 4, 
in which only those distributions with frequencies ranked in descending order are 
graphed in full color. Comparing the proportion of distributions with evenness 
greater than 0.5 (red shading around the peaks), e1 assigns more distributions a ten-
dency toward evenness than e2. In like manner, comparing the proportion of distri-
butions with evenness less than 0.5 (blue shading around the low points), e1 assigns 
more distributions a tendency toward unevenness than e2. This is balanced by the 
higher proportion of distributions of indeterminate evenness 0.5 (white shelves) for 
e2 than for e1. Thus for s = 3 , e1 is more definitive about evenness than e2. A rea-
son for this is proposed at the end of this section.

It is more difficult to see whether this difference between e1 and e2 is maintained 
when distributions have more than three types, since evenness can no longer be 
drawn in three dimensions as a surface over a two-dimensional simplex. It is, how-
ever, possible to compare e1 and e2 as ”evenness curves” along one-dimensional 
transects (lines) through higher-dimensional simplices. For example, for two distri-
butions q and q′ , the set of linear combinations (1 − x) ⋅ q + x ⋅ q� forms a line of 
distributions through the simplex from q to q′ , where the parameter x runs from 0 to 
1. An evenness curve can then be plotted as a function of x.

Problems in picturing evenness arise in particular as the number of types 
increases while the dominant type remains at properly positive representation. This 
can be demonstrated most efficiently with the help of L-shaped distributions when 
considering them as a linear combination of a completely uniform distribution (with 
proportion x) and a distribution consisting of a single type (with proportion 1 − x ). In 
formal terms, L-distributions then become straight lines q = x ⋅ u(s) + (1 − x) ⋅ u(1) 
connecting the vector u(1) with u(s) in the frequency simplex. The linearity of p-dis-
tances  d then implies d[q, u(s)] = (1 − x) ⋅ d[u(s), u(1)] . When applied to Bulla’s 
index (with d = d1 ), this yields x for the index and is thus independent of the number 
of types (compare Fig. 3). Hence, the index tends to 0 with x tending to 0, which 
again confirms the inconsistency of the index. In contrast, Simpson’s evenness index 
N2∕s (as well as (N2 − 1)∕(s − 1) ) tends to 0 with increasing s and for constant x, 
which reveals another kind of inconsistency of this diversity-based type of evenness 
measure.

By viewing evenness curves along analogous transects through simplices with 
different numbers of types, such as from the plateau of length s to a stepladder of 
length  s, it can be seen how evenness develops as the number of types increases. 
Figure 5 shows evenness curves over three sets of transects, each set with analogous 
starting and ending points for s = 3, 6 and 12 types:

Figure 5a shows the transect through the simplex Ss−1 from a monomorphic cor-
ner ( x = 0 ) to the plateau of length s at the center of the simplex ( x = 1 ). All distri-
butions on this transect are L-shaped distributions, as specified in Eq. (2). The most 
striking impression is that e1 leaves the ”shelf” of indeterminacy (0.5, as in Fig. 4) 
that starts at monomorphism at approximately the same value of x for all three s. In 
contrast, e2 leaves its shelf later than e1 and extends it farther, the larger s becomes. 
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Thus the ascent of e2 to its peak of 1 at the central plateau ( x = 1 ) is steeper than 
for e1 for all s, and it becomes even steeper as s increases. This confirms the con-
clusion from the projections in the right panels of Fig.  4 that for s = 3 , the area 
around the central plateau with tendency toward evenness is larger for e1 than for 
e2. For intermediate values of x, both measures dip down into unevenness, but this 
tendency becomes less pronounced for e1 and it disappears for e2 as s increases. 

(a) Evenness on transect from monomorphism to plateau of lengths
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(b) Evenness on transect from monomorphism to nearest stepladder of lengths
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(c) Evenness on transect from stepladder to plateau, both of lengths
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Fig. 5   Evenness along transects through the frequency simplex Ss−1 : Evenness is graphed along transects 
specified by the linear combinations (1 − x) ⋅ q + x ⋅ q

� of two distributions q and q′ , where the param-
eter x ranges from 0 to 1 and the p-distance d1 is used. The new measures e1 and e2 and, for compari-
son, the indices of Bulla (Bu) and Simpson (Si) are shown. a  L-shaped distributions from monomor-
phism (x = 0) to the plateau of length  s (x = 1) , where s = 3 (left), 6 (center), and 12 (right); b  from 
monomorphism (x = 0) to one of the nearest stepladders with s types (x = 1) for s = 3, 6, 12 [e.g. from 
(1, 0, 0) to (3∕6, 2∕6, 1∕6) ]; c from a stepladder with s types (x = 0) to the plateau of length s (x = 1) for 
s = 3, 6, 12 . For s = 3 , the evenness along these transects corresponds to the coloring in the right panels 
of Fig. 4
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These characteristics contrast with the indices of Bulla and Simpson, which show 
the full range of evenness from 0 to 1 along the transect, While e1 and e2 range only 
between mild unevenness and evenness of 1.

Figure 5b shows the transect from a monomorphic corner ( x = 0 ) to one of the 
stepladders with s types that is closest to this corner ( x = 1 ). e1 and e2 stay on their 
shelves for about the same stretch of x as they did in Fig.  5a, with e2 remaining 
indeterminate much longer than e1. After leaving their shelves, both measures tend 
toward unevenness. As s increases, the descent of e2 to its low point of 0 at the 
stepladder ( x = 1 ) begins later and is therefore steeper than for e1. While e1 and e2 
range from indeterminate to complete unevenness along the entire transect, the indi-
ces of Bulla and Simpson start at 0 and increase to high evenness.

Figure  5c shows the transect from a stepladder with s types ( e1 = e2 = 0 for 
x = 0 ) to the plateau of length s ( e1 = e2 = 1 for x = 1 ). The curves become more 
similar as s increases, but they differ in that e2 is smooth while e1 show bumps for 
small x. These bumps occur when the transect comes closest to stepladders or pla-
teaus of different lengths. While e1 and e2 cover the full range from 0 to 1, the indi-
ces of Bulla and Simpson show high evenness along the entire transect.

The evenness curves in Fig. 5 confirm the impression given by the evenness sur-
faces in Fig. 4 that e1 is more sensitive in its assessment of evenness than e2. e2 
retains the state of indeterminacy (0.5) over a much longer distance from mono-
morphism than e1, while e1 decides at a much shorter distance to show a tendency 
toward evenness or unevenness. An apparent reason can be seen in the fact that in 
the step-height approach, stepladders appear as uniform distributions and plateaus 
appear as degenerate distributions with a single non-zero component. Both distribu-
tional characteristics allow for fewer adjustments in the minimization of distances 
than is the case for the original frequencies on which e1 is based. Thus e1 allows a 
finer adjustment of its tendencies than e2 or, in other words, e1 is more decisive in 
its assessment of evenness.

3.3 � Variable Differences Between Objects

Especially when aspects of evenness are to be considered for the joint distribution of 
multiple traits, one quickly arrives at the situation where all trait combinations are 
unique and evenness considerations are without substance. Indeed, in this case each 
type occurs exactly once, so that evenness would always be maximal under the per-
spective of discrete types. Yet, the various trait combinations may differ more or less 
for the states of the individual traits, so that evenness aspects are to be supplemented 
by variable differences among the entities of interest (for a typical data set, see 
Table 1). These compound traits are determined for single objects, and they include 
phenotypic, functional, taxonomic, genetic, environmental, or geographic character-
istics, all of which may differ to variable degrees among the objects. Genealogical 
or phylogenetic traits are different in that they specify traits for pairs of objects (e.g. 
degree of relationship) rather than individual objects.

Indeed, consideration of variable differences in analyses of variation, and diver-
sity in particular, has received much attention during the last years. Essentially, this 
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is due to the availability of techniques for the identification and assessment of com-
plex traits, particularly in molecular genetics. Applications especially in ecology fre-
quently appear under the notion of functional diversity. This will be taken up in the 
next subsection with emphasis on functional evenness.

Even though the concept of evenness has been developed so far only for discrete 
traits, it can be consistently extended to arbitrarily complex traits for which differ-
ences between the trait states are defined. To this end, it must be realized that the 
contribution of the types (complex trait states) of individual objects to a collection’s 
evenness cannot be assessed independently of their difference from the types of the 
other objects in the collection. Therefore, at the outset, contributions to a collec-
tion’s evenness are determined by the trait differences between the two objects in 
every pair of objects as well as by the abundances of such pairs in the collection. 
Thus the entities of analysis are now pairs.

The challenge is then to see whether and how pairs of objects or types, their 
abundances and their differences can be packaged into a conceptually consistent 
framework of evenness measurement. Apparently, a more comprehensive definition 
of the term “representation” is needed. Continuing and generalizing the above dem-
onstrations suggests that representation be generally conceived as a prescription for 
assignment of real values to entities, where the values measure each entity’s share in 
the totality and by this specify a distribution for the entities. The representation of a 

Table 1   Evenness with variable type differences

qi,j = pair abundances, di,j = pair differences, q∗
i,j
= modified representations considering pair differences, 

e1 = generic and e2 = step-height approach to evenness, Bulla = Bulla’s evenness index, Simpson = 
evenness index based on Simpson’s diversity
Differences d are chosen to increase with abundances q, so that the unevenness in the abundances is 
expected to be enhanced by the differences. Despite many equal abundances, this leads to values of e1 
and e2 below 0.5, thus indicating tendencies towards unevenness. In contrast, the indices of Bulla and 
Simpson suggest a distribution of comparatively large evenness
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subset of entities consequently equals the sum of the representations of the included 
entities. Evenness then describes the situation in which the representations of the 
entities conform with a uniform distribution, and this applies in particular when the 
entities are pairs of objects (or types).

There are several ways in which pairs can be characterized as entities that yield a 
distribution. Ignoring differences for the time being, pairs may be defined, for exam-
ple, by mating events and characterized by mating types. The frequencies of reali-
zation of these mating types then specify their representations. Instead of mating 
events within species, encounters between two individuals of the same or of differ-
ent species affiliation could be recorded, so that pairs of species constitute the enti-
ties under consideration and the frequencies of encounter specify their representa-
tions. The latter includes the possibility of forming all potential species pairs with 
representations given by the product of the involved species abundances. In these 
cases, the respective frequency or abundance products reflect the share that each 
entity has among the totality of entities. Evenness assessment is thus legitimate, and 
the above indices of evenness/unevenness apply identically. Yet, the explicit intro-
duction of type differences require more consideration of pair characteristics, as will 
be detailed in the following.

3.3.1 � Evenness for Variable Differences (Variational Evenness)

Inclusion of differences in performance among entities into evenness deliberations 
are frequently treated in terms of “functional evenness”. As will be shown later on, 
current methods of quantifying functional evenness and its relatives apparently pass 
over the distinction that can be made between the following three levels of varia-
tion: (1) the distribution of differences, (2) the variability of differences, and (3) the 
significance of differences as representations of pairs in a collection of pairs. As to 
level  (3), it should be recalled (see above) that identifying and quantifying differ-
ences involves two objects in each case and therefore basically rests on the evalua-
tion of pairs and their properties. These properties do not per se reflect a share that 
the pairs have in the totality of pairs. In fact, pair differences cannot be a subject of 
studies of evenness unless they can be explicitly shown to be part of a representation 
of single pairs among all pairs and thus establish a pair distribution.

∙ Level (1) clearly addresses evenness, as complete evenness of the distribution 
is indicated by equal representation of all differences. In essence, differences adopt 
the role of types here, making the numerical values of the differences irrelevant. 
The numerical values can still be used in the construction of cumulative distribution 
functions as helpful characterizations of difference distributions. High evenness can 
be expected, for example, in the absence of any advantages of functional interactions 
among community members for the trait under consideration. The trait could thus be 
assessed as functionally neutral. In contrast, decreasing evenness could be caused, 
for example, by functional superiority of interactions preferably among individuals 
of similar trait expression.

∙ Level (2) is relevant when pairs are the entities of interest and where these enti-
ties are characterized by pair differences. Hence, with this focus, problems of dis-
persion and especially of variance of differences are to be studied. Distributional 
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aspects are not directly concerned, so that evenness is not an immediate issue. None-
theless, the absence of variability as insinuated by the term evenness could lead to 
the idea that there is complete evenness if there is no variation in differences. Appar-
ently, if differences of zero were included, this would imply the meaningless conclu-
sion that variation in differences is absent (and evenness is maximal) if all differ-
ences are zero. Differences of zero are to be excluded from the analysis anyway.

Under this restriction, variances of differences are used especially in phylogenetic 
analyses to quantify notions of regularity of phylogenetic structure [for a compila-
tion see Tucker et al. (2017, Appendix S1)]. In this context, the term “regularity” 
is preferred over “evenness”. Complete regularity is then realized for zero variance 
and thus for equality of all non-zero differences. Abundances are thus not regarded 
here, so that complete regularity is stated despite arbitrarily variable abundances. It 
should also be realized that complete regularity in fact implies a change in category 
of trait, in that only discrete traits can display complete regularity.

In many cases, the entities of dispersion analyses for variable differences are spec-
ified by individuals or types rather than pairs of these. For example, Euclidean rep-
resentation of data points together with Euclidean distances (Gower 1971) is often 
applied, especially for complex multi-trait characters [e.g. Villéger et  al. (2008), 
Pavoine et al. (2009)]. The pertaining analyses of variation again belong to the class 
of dispersion studies which, however, are subject to the restriction that equality of 
differences between all data points cannot be realized if the number of such points 
exceeds the number of traits (dimensions in the Euclidean space). The conceptual 
implications of this restriction for evenness considerations can be circumvented only 
by reducing analyses to selections of special pairs, as will be returned to later in con-
nection with minimal spanning trees (MSTs). In other words, without explicit refer-
ence to pairs as conceptual entities, attempts to describe and quantify evenness in 
dispersion may be problematic.

A general drawback of using variances in evenness or regularity analyses is again 
to be seen in the problem of specifying maximal variance (if it exists at all) in terms 
of minimal evenness (maximal unevenness) or in terms of minimal regularity (maxi-
mal irregularity). As indicated earlier, without such specifications, non-zero vari-
ances have no definite qualitative interpretations.

∙ Level (3) can be approached by recalling that any given representation of enti-
ties can be transferred into a new representation of the same entities by applying a 
non-negative transformation to the initial individual representations. After normali-
zation, if desired, the resulting representation appears as a modification of the initial 
distribution generated by the transformation.

This applies to pair entities as well and therefore relates to level (2). For example, 
if the initial pair representations are denoted by qi,j for each pair (i, j) of objects i and 
j with associated difference di,j , then a modification of the qi,j ’s that considers the 
differences di,j is provided by the transformation qi,j ⋅ di,j , or as relative representa-
tion, q∗

i,j
= qi,j ⋅ di,j∕

∑
k,l qk,l ⋅ dk,l (see Table 1). In most applications, the initial pair 

representations are of the form qi,j = qi ⋅ qj , with qi and qj as the object representa-
tions realized in the initial marginal distribution (see e.g. Rao (1982) and the 
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numerous applications of his average difference 
∑

k,l qk ⋅ ql ⋅ dk,l not just in the field 
of functional diversity).

With this transformation, however, one arrives at pair representations for which 
the identity pairs (i, i) prevent the attainment of a state of complete evenness, since 
di,i = 0 implies that q∗

i,i
= 0 , with the result that equality of all q∗

i,j
 cannot be realized. 

As pointed out earlier, it is therefore essential to generally exclude identity pairs 
from analyses of variational evenness.

In the latter context, it is possible to assume complete evenness for the initial 
representation (all qij identical for i ≠ j ) so as to uncover the effect of differences 
on representation. For the above example, the pair representations modified by dif-
ference would then take the form di,j∕

∑
k,l dk,l for i ≠ j . Even though this gives the 

impression that the differences themselves appear as pair representations, it should 
be recalled that it owes this claim only to a particular underlying initial pair repre-
sentation [for a compilation of relevant indices, see Scheiner (2019)]. Conversely, 
the effect of the initial representation on the evenness of the modified representation 
can be considered by setting all differences between different types equal.

Occasionally, for the pair representations qi ⋅ qj ⋅ di,j , the impression is conveyed 
that complete evenness is reached only if all types have equal representation and all 
differences between different types are equal. This claim is not true, as can be dem-
onstrated for three types by choosing arbitrary values for d1,2 as well as for all three 
qi ’s ( q1 + q2 + q3 = 1 ) and setting the remaining differences to d1,3 = d1,2 ⋅ q2∕q3 
and d2,3 = d1,2 ⋅ q1∕q3 . Moreover, the initial claim is intrinsically meaningless, since 
equality of all differences is of relevance for evenness only in connection with pair 
distributions. Equality of differences therefore indicates complete evenness only if a 
priori all involved pairs are equally represented.

In summary, the above demonstrations reveal that when evenness analyses are 
to consider variable differences between types, only level  (3) of variation with its 
modified pair representations is of relevance.

3.3.2 � Special Cases

In some applications, only certain kinds of pairs are considered in evenness analy-
sis. For example, trying to align species in a linear fashion, Villéger et  al. (2008) 
extracted minimum spanning trees (MSTs) from their difference matrices and sup-
plemented each MST-edge weight (difference) by the sum of the abundances of the 
two species defining the edge vertices. Pairs are thus specified by two species that 
flank an MST-edge whose pair representations are defined by the edge weight com-
bined with the corresponding species abundances. Though this might appear as a 
poorly argued and partially indeterminate approach to the assessment of “functional 
diversity” components (Kosman et al. 2021), its principle fits into the present pair 
representation framework and can therefore be used in evenness analyses. Yet, as 
Kosman et  al. (2021) pointed out, because of the conceptual vagueness (multiple 
MSTs) and ambiguity of the general approach of Villéger et al., application of their 
method of measuring functional evenness is not to be recommended.
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Pair differences also serve as the basis for characterizing individuals or types 
by neighbor relations, such as the smallest difference or the average difference 
of one individual from individuals of another type (in the present terminology 
minj∶j≠i di,j and 

∑
j∶j≠i di,j ⋅ qj∕(1 − qi) , respectively). The entities to be represented 

are then types and no longer pairs of types, and the character assigned to each 
type now depends on the other members of the community. The initial represen-
tation of the types is now provided by their abundances, for example, and the 
modified type representations are qi ⋅minj∶j≠i di,j and qi ⋅

∑
j∶j≠i di,j ⋅ qj∕(1 − qi) , 

respectively [for usage of the latter in measuring functional evenness, see e.g. 
Ricotta et al. (2014) or Scheiner (2019)]. Dispersion and evenness considerations 
are again distinguished by whether the focus is on variability in neighbor rela-
tions of types or on modification of type representations by neighbor relations, 
respectively.

Similar kinds of type representations can be applied to the assessment of struc-
tural diversity, where abundance and distinctness of types are the essential determi-
nants of community structure (Gregorius and Kosman 2018). In connection with an 
appropriate index, this allows specification of structural evenness. High evenness in 
structure, however, is commonly considered as a situation that opposes natural sys-
tems, since these are generally characterized by higher degrees of complexity which, 
in turn, imply irregularity. As a matter of fact, irregularity and thus unevenness plays 
a major role in studies of community stability [see e.g. May (1974)]. This underlines 
the significance of the present indices e1 and e2 with their conceptual emphasis on 
the specification of unevenness.

Neighborhood relations may, however, also be viewed as sets of pairs, where the 
two individuals forming a pair are required to meet certain criteria, such as at least 
one being the nearest spatial neighbor of the other. The spatial distances of such 
neighbors then define their difference, and all pairs are given the same representa-
tion. Computation of evenness values would then provide information on the reg-
ularity or irregularity of neighbor relations. Stepladders as situations of complete 
unevenness then appear as states of complete irregularity of neighbor distances. 
Indeed, this is intuitive in the sense that all possible neighbor distances are realized 
and vary in equal measure, so that no clumping or partitioning occurs.

Scheiner et al. (2017) took an approach which could be considered as hybrid in 
that it combines two levels of entities, individual type and pair of types. In a first 
step, pair diversity is defined by Hill numbers applied to pair representations modi-
fied by differences. Next, the number of types effectively contributing to pair diver-
sity is determined. The ideal situation underlying this effective number is char-
acterized by pair frequencies obtained from the products of all (marginal) type 
frequencies, by equal type frequencies, and by equal (non-zero) differences. Their 
functional evenness index then results in the common fashion from division of the 
effective number of types by the total number. The effective number is a strictly 
increasing function of the pair diversity, and it is less than or equal to the total num-
ber of types with equality only if the pair representations are given by the above 
ideal situation. Hence, to realize states of maximal evenness in the sense of the index 
of Scheiner et al., equality of pair representations is not sufficient, since this includes 
situations in which not all type combinations are represented (this observation will 
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be returned to in the next subsection). The minimal value of the index is realized if 
only two types exist and these form the single pair. The present criticism of concep-
tual inconsistency with respect to states of complete unevenness applies accordingly.

3.3.3 � The Role of Types in Measuring Variational Evenness

For s types realized in a set of pairs with positive representation (recall that identity 
pairs are excluded), the smallest number of such pairs is s/2 for even s and (s + 1)∕2 
for odd s, and the largest number is s(s − 1) . For any number of pairs within this 
range, equality of all pair representations and zero representation of the other pairs 
is possible. This would imply maximal evenness according to the present concept if 
pairs were considered as simple entities, ignoring the types of which they are com-
posed. The above MST example belongs to this category, since there the edges and 
their weights but not the involved vertices are relevant.

Obviously, this is undesirable if the two types that make up each pair are explic-
itly defined. Then the observed number of types (with positive representations) is 
understood to determine ideas of variational evenness/unevenness in the first place, 
and pair representations follow this pattern in some sense. In particular, a pair dis-
tribution involving s types is considered to be a plateau only if all of the s(s − 1) 
possible type combinations (and not fewer) are equally represented. In this case, the 
associated type representations also are all equal ( = 1∕s ) and therefore form a pla-
teau at the type level.

Stepladders, as states of complete variational unevenness, follow the same prin-
ciple as plateaus in that all possible type combinations are required to be realized 
(with positive representations) and their representations show stepladder structure. 
Hence, at the pair level, stepladder distributions as well as plateaus are completely 
determined by the number of types involved. They specify the states of complete 
variational unevenness and complete variational evenness. Consequently, the length 
of the plateaus and stepladders involved in the minimization of distances from the 
observed distribution of pair representations are determined by the involved num-
ber k, say, of types.

For the lengths of the plateaus and stepladders to be considered in the minimi-
zation of distances, ordered pairs [with numbers k(k − 1) ] have to be distinguished 
from unordered pairs [with numbers k(k − 1)∕2 ]. Thus in the former case, lengths 
proceed in steps of  k(k − 1) and in the latter case in steps of k(k − 1)∕2 with 
k = 2, 3, 4,… . Note that unordered pairs cannot be treated as symmetrically ordered, 
since the latter would exclude the existence of stepladders (in Table 1, evenness indi-
ces are determined for the unordered pairs resulting from the symmetrically ordered 
pairs). The resulting minima � (or �h ) as well as � (or �h ) enter the definition of the 
evenness indices e1 (or e2), as before. The indices could then be referred to as indi-
cating variational evenness according to the generic and to the step-height approach, 
respectively.
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4 � Concluding Remarks

The presently suggested indices of evenness/unevenness cannot be used to construct 
indices of diversity in the usual way by multiplying the former index by the number 
of types (richness) and subsequent transformation. This multiplicative decomposi-
tion of diversity indices relies on their interpretation as “effective numbers” of types 
and is conceived to almost be a principle of diversity measurement [see e.g. Eq. (1) 
in Tuomisto (2012)]. Yet, according to the present demonstrations, it is just this 
decomposition that implies conceptual inconsistency by not distinguishing clearly 
between the notions of evenness of type representations and concentration of mass 
to or dominance by a single type, for example.

The intrinsic reason could be seen in the fact that the evenness criterion for diver-
sity cannot be simply reversed to address aspects of unevenness. In fact, the reversal 
would read “diversity decreases as the difference in frequency between two types 
increases while the sum of their frequencies remains the same”. As can be easily 
imagined, when applying this criterion repeatedly to a sequence of decreasing type 
representations, one would again arrive at a distribution that ultimately consists of 
a single type, which reinforces the above-argued inconsistency. The same line of 
reasoning applies to Bulla’s approach, in which the evenness criterion is essentially 
replaced by the distance from a uniform distribution. This justifies the conclusion 
that indices of this kind should be addressed as indicators of the absence of con-
centration of the overall mass to or dominance by a single type or, as argued above, 
more appropriately as indicators of relative polymorphism.

The evenness criterion of diversity therefore is not suitable for describing even-
ness in terms of equality and inequality in representation among types. Conse-
quently, the present indices abandon any diversity orientation and focus solely on 
the complementary notions of equality (sameness) and inequality (differentness) of 
type representations. The fact that situations of high evenness are much less fre-
quently observed than variable representations [see e.g. Mulder et al. (2004)] obvi-
ously calls for approaches which sharpen the focus on unevenness. In particular, this 
includes specification of the state of complete unevenness with the same precision 
and intuitive appeal as is familiar from evenness. Since the evenness criterion is 
conceptually tied to notions of diversity in terms of “effective numbers” of types, it 
is not surprising that it leads to ambiguous interpretations when identically applied 
to generalized aspects of evenness. The diversity-bound evenness criterion together 
with its implied idea of diversity decomposition should therefore be abandoned as a 
defining criterion of the general notion of evenness. The present deliberations and 
demonstrations provide alternatives.

Application of the concept of measuring evenness to variable differences raises 
the question of its relation to the measurement of dispersion. The latter addresses 
first and foremost the spread of measurements and by this again summarizes differ-
ences and abundances or other representations [for a conceptual treatment see Gre-
gorius and Kosman (2017)]. It, however, provides no information on the variability 
of type differences and type representations in communities. This is well known for 
variances, for example, where the same variance can be realized in communities 
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with many individuals varying strongly in difference and in communities with indi-
viduals largely differing by the same amount.

In other words, dispersion indices report the amount of variation but not its 
distribution. The latter is covered by indices of evenness for variable differences. 
Such indices, especially of the form discussed above, thus provide essential com-
plementary and independent information on dispersion, which suggests that they be 
addressed as indicators of dispersion evenness. This feature of dispersion seems to 
be largely ignored, however, with the possible exception of a few indices listed in 
the paper of Scheiner et al. (2017).

Another evenness aspect that was already mentioned above with reference to phy-
logenetic characteristics is termed “regularity”. Tucker et al. (2017, p. 710) stated 
that “regularity metrics reflect evenness in the distribution of dissimilarity among 
species, ...” which is strongly reminiscent of dispersion evenness. Yet for example, 
the regularity indices referring to tree topology listed by Tucker et al. (2017, Appen-
dix S1) are difficult to associate with differences among species but rather seem to 
relate to ideas of network symmetry and the like.
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