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Abstract A 4-particles chain with different masses represents a natural generalization of the
classical Fermi-Pasta-Ulam chain. It is studied by identifying the mass ratios that produce
prominent resonances. This is a technically complicated problem as we have to solve an
inverse problem for the spectrum of the corresponding linearized equations of motion. In the
case of such an inhomogeneous periodic chain with four particles each mass ratio determines
a frequency ratio for the quadratic part of the Hamiltonian. Most prominent frequency ratios
occur but not all. In general we find a one-dimensional variety of mass ratios for a given
frequency ratio.

A detailed study is presented of the resonance 1 : 2 : 3. A small cubic term added to the
Hamiltonian leads to a dynamical behaviour that shows a difference between the case that
two opposite masses are equal and a striking difference with the classical case of four equal
masses. For two equal masses and two different ones the normalized system is integrable
and chaotic behaviour is small-scale. In the transition to four different masses we find a
Hamiltonian-Hopf bifurcation of one of the normal modes leading to complex instability
and Shilnikov-Devaney bifurcation. The other families of short-periodic solutions can be
localized from the normal forms together with their stability characteristics. For illustration
we use action simplices and examples of behaviour with time.

Keywords Inhomogeneous FPU · 1 : 2 : 3 resonance · Hamiltonian-Hopf · Symmetry
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1 Introduction

The Fermi-Pasta-Ulam (FPU) chain or lattice is an n degrees-of-freedom (dof) Hamiltonian
system that models a chain of oscillators with nearest-neighbour interaction, see [7] and
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[8]. We will describe the model in Sect. 2. There exists a huge amount of literature on the
FPU chain but nearly always regarding the classical case of equal masses, see for recent
references [4]. One should note that, although the classical case looks physically natural, its
dynamics is non-generic because of symmetries. One of the consequences is that only two
dof resonances are effective in such a chain with n particles; see [13]. In the conclusions we
will mention applications and make some observations about the classical FPU chain in the
light of the present analysis.

In this paper we will outline a research program to study the case where the masses are
different. An inhomogeneous nonlinear lattice with nearest neighbour interaction is studied
in [15] with emphasis on energy control. The case of alternating masses was studied in [9]
for a FPU chain to obtain insight in the equipartition of energy. A preliminary but important
conclusion in [9] is that for the masses considered and on long timescales no equipartition
takes place. This has been confirmed by analysis based on symmetries and normal forms
in [3].

It is understandable that only a few results were obtained for inhomogeneous lattices
as the choice of inhomogeneities, the masses of the lattice, seems to be arbitrary. We will
solve this arbitrariness by focusing on the presence of resonances induced by the choice
of masses. After referring to some basic material on Hamiltonians and normal forms we
formulate in Sect. 2 the periodic FPU α chain with arbitrary (positive) masses. In such a n

degrees-of-freedom system there exists a momentum integral that enables us to reduce to a
n − 1 dof system. An inverse problem is considered in Sect. 3: how do we find mass distri-
butions producing prominent resonances in the spectrum induced by H2(p, q), the quadratic
part? This involves the analysis of the inverse map of the vector of mass distribution to the
vector of positive eigenvalues of an associated coefficient matrix. This problem is solved
in Sect. 3 for the cases of 3 and 4 particles; in the latter case it turns out that of the four
1st order resonances that exist in general (see for the terminology [14]) 3 exist, of the 12
possible 2nd order resonances 10 exist in this FPU chain. In Sect. 4 we focus on the 1 : 2 : 3
resonance that arises for a one-dimensional variety of mass ratios. It turns out that for one
particular combination of mass ratios, the normal form of the nonlinear system is integrable.
Moving from this particular case into the variety of mass ratios, one of the periodic solutions
shows Hamilton-Hopf bifurcation that corresponds with Shilnikov-Devaney bifurcation in
this Hamiltonian system and produces a chaotic normal form.

In the conclusions we draw attention to possible applications of the present paper.
The Appendix contains general statements on the relation between mass ratios and the

spectrum induced by H2(p, q) that can be useful for future research. Table 3 summarises the
instructions for the case of 4 particles. It is shown that for a given n-dimensional eigenvector
characterizing the FPU chain, all positive solutions of an n-dimensional mass distribution
are in a compact subset of Rn. This subset is empty in some cases, for instance the impor-
tant 1 : 1 : . . . : 1 resonance does not arise for the periodic FPU α chain with four or more
particles.

1.1 Hamiltonian Formulation

For an autonomous Hamiltonian system with n dof, n independent integrals suffice for inte-
grability, in that case there will be no chaotic motion in such a system. However, in general,
Hamiltonian systems with two or more dof are non-integrable. In many cases, this phe-
nomenon was identified with homoclinic chaos as predicted by Poincaré in the nineteenth
century, see [11, vol. 3]; for a description see [17, Sects. 5.4 and 9.3].

In the seventies of last century, a number of scientists started with the computation and
analysis of normal forms of general Hamiltonian systems near equilibrium. Introductions
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and surveys of results can be found in [14, Chap. 10] and [18]. We will follow the same
terminology.

In the sequel, a periodic solution should be understood as a periodic solution for a fixed
value of the energy (iso-energetic solution), so actually it corresponds for the full Hamilto-
nian system with a family of periodic solutions parameterized by the energy.

Normal form computations for Hamiltonian systems can be carried out in various ways.
Apart from efficiency, the main point is to keep the system energy-preserving and preferably
canonical. Using for instance polar coordinates like action-angle coordinates or amplitude-
phase coordinates one can perform averaging over the angles or explicitly time to obtain a
first-order normal form. One may consult [14] or [18] for more details. An introductory text
is [16, Chaps. 11 and 12].

In Sect. 4 we will analyze periodic α-chains (FPU chains where the Hamiltonian is trun-
cated after the cubic terms), containing the 1 : 2 : 3 resonance with main objective to investi-
gate the stability of the short-periodic solutions on the energy manifold and the integrability
of the normal form. This is highly relevant for the characterization of the chaotic dynamics
of the system but, as mentioned above, it raises special problems. In the cases of vanish-
ing actions or amplitudes, for instance when studying normal modes, the procedure will
be as follows (see also Sect. 4.1). Starting with the equations of motion, we will use co-
moving coordinates (see for instance transformation (11.9-10) in Chap. 11 of [16]) to obtain
a first order normal form. This normal form is used to localize the short-periodic solutions;
the normal form conserves the energy but the transformation is not canonical. We will use
averaging-normalization as it yields rigorous approximation results (see [14]), the results
are qualitatively and quantitatively precise. The same holds when we use polar coordinates
outside the coordinate planes.

In Sect. 4, the short-periodic solutions can be computed explicitly. The next step is then
to linearize near the periodic solutions and to determine the Floquet exponents for which we
have to study coupled Mathieu equations. This is still a formidable task, but we can obtain
a first order approximation of the exponents by normalizing the coupled Mathieu equations.
This will give a number of spectral stability results in Sect. 4.

In the Appendix we outline the general procedure to obtain mass ratios that correspond
with resonance. We also give indications of the extension to periodic FPU chains with n

particles.

1.2 Outline of a Research Programme

The original Fermi-Pasta-Ulam chain [7] consists of n oscillators of equal mass with nearest-
neighbour interaction. In a neighbourhood of equilibrium, the spectrum of the linear part of
the equations of motion plays a crucial part regarding the nature of the ensuing dynamics, see
for instance [14] or [18]. Considering inhomogeneous mass distributions in FPU chains, one
can produce a great many different spectra induced by H2. Each of these cases may produce
different dynamics in the corresponding FPU chain. In Sect. 3 we will consider resonant
spectra for the case of three and more extensively four particles with periodic boundary
conditions i.e. chains where the first and the last oscillator are connected. For the case of
four particles we will focus on the rich dynamics of the 1 : 2 : 3 resonance. An outline of
possible further research follows here:

1. According to Table 1 regarding the case of four particles, we also have to study two first
order resonances (1 : 2 : 1 and 1 : 2 : 4) and ten second order resonances. Also, higher
order resonances may be worthwhile to investigate. Special attention should be given to
the 1 : 1 : 2 and 1 : 1 : 3 cases as only four special mass ratios produce these resonances.
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In such a case degenerations may arise so that we have to consider detuning phenomena,
see [14].

2. Cases of five and more particles will present many more problems.
3. The present study is restricted to so-called periodic α-chains. Including quartic terms in

the Hamiltonian (β-chains) and considering lattices with fixed begin- and end-point will
produce new results.

4. The study presented here and possibly future studies will throw light on qualitative and
quantitative differences between systems in nearest-neighbour interaction and non-local
interaction, a topic that is relevant for plasma physics and stellar dynamics.

2 The Fermi-Pasta-Ulam Chain

For the mono-atomic case of the original periodic FPU-problem (all masses equal) it was
shown in [12] for up to six degrees-of-freedom (dof) and much more general in [13], that the
corresponding normal forms are governed by 1 : 1 resonances and that these Hamiltonian
normal forms are integrable. This explains the recurrence phenomena near equilibrium, it
also shows that the classical FPU chain has symmetries to make the problem non-generic.

We will drop the original assumption of identical (mono-atomic) particles to consider the
periodic FPU-problem again. For n particles with mass mj > 0, position qj and momentum
pj = mj q̇j , j = 1 . . . n, ε ≥ 0 a small parameter, the Hamiltonian is of the form:

H(p,q) =
n∑

j=1

(
1

2mj

p2
j + V (qj+1 − qj )

)
with V (z) = 1

2
z2 + ε

α

3
z3 + ε2 β

4
z4. (1)

The quadratic part of the Hamiltonian is not in diagonal form; for n = 3,4 . . . the linearized
equations of motion can be written as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

m1q̈1 + 2q1 − q2 − qn = 0,

m2q̈2 + 2q2 − q3 − q1 = 0,

m3q̈3 + 2q3 − q4 − q2 = 0,

. . . = 0,

mnq̈n + 2qn − q1 − qn−1 = 0.

(2)

We can write for the quadratic part of H(p,q):

H2 = 1

2
pT Anp + 1

2
qT Cnq, (3)

with An the n × n diagonal matrix with at position (i, i) the value m−1
i =: ai , Cn is an n × n

matrix. For an analysis of the quadratic term H2(p, q) we need to know the eigenvalues of
AnCn. The relation between the eigenvalues of AnCn and the eigenvalues of the matrix of
coefficients of system (2) will be given below. Since the null space of Cn has dimension one,
the matrix AnCn has an eigenvalue 0 corresponding to a (translational) momentum integral.
It will turn out that the other eigenvalues of AnCn are positive, as expected. For a given set
of masses, the calculation of the remaining eigenvalues corresponding with the frequencies
of the linearized system is easy, but we are faced with another, an inverse problem. To focus
ideas, suppose that n = 4. The presence of the momentum integral implies that we have to
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consider a three degrees-of-freedom (dof) Hamiltonian problem. We know, see for instance
[14, Chap. 10] or [18], that the first order resonances are 1 : 2 : 1,1 : 2 : 2,1 : 2 : 3 and
1 : 2 : 4. The question is then if and how we can choose the masses so that these prominent
resonances are present. Of course, this problem will be more formidable if n > 4. In the next
section we determine for n = 4 the ratios of masses that produce the resonance 1 : 2 : 3. The
approach works equally well for other prescribed rations of eigenvalues, as we discuss in
the Appendix. Prominent resonances for n > 4 can be found but a systematic study of these
cases poses a difficult open algebraic problem.

3 The Spectrum Induced by H2

After a number of general considerations we will give details for the cases of three and
four particles. The first case is rather trivial as far as the spectrum goes, the case of four
particles is already quite complicated. Here we mention the main facts that we need in the
later sections. In the Appendix we will give more details.

3.1 The Matrix for Inhomogeneous FPU-Lattices and Its Eigenvalues

The linear system (2) can be written as
(

q̇

q̈

)
= M

(
q

q̇

)
, where M =

(
0 In

−AnCn 0

)
, (4)

where the matrix An is a diagonal matrix with the inverse masses m−1
j =: aj on the diagonal,

and where the matrix Cn has elements 2 on the diagonal, and −1 at positions (i, i + 1) and
(i, i − 1), with the indices taken modulo n. For instance,

C5 =

⎛

⎜⎜⎜⎜⎝

2 −1 0 0 −1
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1

−1 0 0 −1 2

⎞

⎟⎟⎟⎟⎠
.

(This matrix turns up elsewhere in mathematics. It is the affine Cartan matrix of the com-
pleted root system Ān. See e.g. [2, Déf. 3 in 1.5 of Chap. 6, and Planche I].)

The (2n) × (2n) matrix M has a double eigenvalue 0, corresponding to the momentum
integral

n∑

j=1

mj q̇j = constant. (5)

In the sequel we will choose the case of vanishing momentum integral which is not a restric-
tion of generality. If λ is a positive eigenvalue of AnCn, then i

√
λ and −i

√
λ are eigenvalues

of M , corresponding to frequencies of eigenmodes of the linearized system. So it is useful
to collect results concerning the eigenvalues of AnCn.

Proposition 3.1 For n = 3,4 . . . the matrix AnCn has one eigenvalue 0 and n − 1 posi-
tive eigenvalues λ1, . . . , λn−1, possibly coinciding. If eigenvalues coincide the corresponding
eigenspace has maximal dimension.
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Proof Since the aj = m−1
j are positive, the matrix A

1/2
n is well-defined. The symmetric

matrix A
1/2
n CnA

1/2
n has real eigenvalues, and the algebraic and geometric multiplicities of

eigenvalues coincide.
If y is an eigenvector of AnCn with eigenvalue λ, then λA−1

n y = Cny, and the scalar
product with y for both sides of the equation gives the equality

λ
∑

i

a−1
i y2

i = 2
∑

i

y2
i − 2

∑

i

yiyi−1.

(Indices taken modulo n.) So

∑

i

(2 − λ/ai)y
2
i = 2

∑

i

y1yi−1.

With Schwarz’s inequality applied to the vector (yi) and the vector (yi−1) this implies λ ≥ 0.
Equality occurs only if the vectors (yi) and (yi−1) are positive multiples of each other, which
occurs only for multiples of (1,1, . . . ,1). �

For the investigation of the linearized problem we need to understand the map R
n
>0 →

R
n−1
>0 , from a vector (a1, . . . , an) of inverse masses to a vector (λ1, . . . , λn−1) of positive

eigenvalues. The order of the eigenvalues is not determined, so we have, more precisely, a
map ρn : Rn

>0 → Sn−1\Rn−1
>0 , with the action of the symmetric group Sn−1 on the coordi-

nates. For the linearized inhomogeneous FPU-chain described by system (2), the dihedral
group Dn with 2n elements permutes the coordinate qj (generated by a shift and a reflec-
tion). This transforms system (2) into an equivalent system. Another symmetry is by scaling:
ρ(t (a1, . . . , an)) = tρ(a1, . . . , an) for t > 0.

To investigate the correspondence between eigenvalues and inverse masses we use the
equality

det(AnCn − λIn) = −λ
∏

(λj − λ),

for (λ1, . . . , λn−1) = ρ(a1, . . . , an). Comparing the coefficients of this polynomial we obtain
the equalities

pj (An) = en−j

({λ1, . . . , λn−1}
)

(1 ≤ j ≤ n − 1), (6)

with the elementary symmetric functions ek and homogeneous polynomials pj (An) in the
aj of degree n − j . This describes the structure of the set of diagonal matrices An for a
prescribed spectrum of AnCn. It is the set of points with positive coordinates in an alge-
braic set in C

n which is the intersection of n − 1 hyperplanes given by equations of degree
1,2, . . . , n − 1.

In Lemma A.2 in the Appendix we’ll show that

pn−1(An) = 2
∑

i

ai , pn−2(An) =
∑

1≤i<j≤n

ci,j aiaj , (7)

with ci,j = 3 if i − j = ±1 mod n, and ci,j = 4 otherwise. All pj (An) are invariant under
the action of the dihedral group Dn on the coordinates aj .

In the Appendix we will also show that all real solutions (a1, . . . , an) for a given eigen-
value vector (λ1, . . . , λn−1) are in a compact subset of Rn. This subset may be empty. For
all n ≥ 4 the 1 : 1 : · · · : 1 resonance does not occur for any mass distribution.
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Fig. 1 Solutions sets of inverse
masses (a1, a2, a3) for the
FPU-chain with three particles.
For the eigenvalue ratio
λ1/λ2 = 2 of matrix AnCn the
solution set is compact; it is an
ellipse in R

3
>0. For the

eigenvalue ratio λ1/λ2 = 4 the
solutions are on a larger ellipse
in R

3, which intersects R3
>0 in

three open curves

3.2 The Case of Three Particles

For n = 3 the determination of the eigenvalues for given inverse masses amounts to solving
the quadratic equation

λ2 − 2(a1 + a2 + a3)λ + 3(a1a2 + a1a3 + a2a3) = 0,

which has positive solutions.
Conversely, for all choices (λ1, λ2) of positive eigenvalues, values of a1, a2, a3 can be

found such that A3C3 has eigenvalues λ1, λ2 and 0. If λ1 = λ2 there is exactly one solution
a1 = a2 = a3 = 1

3λ (equal masses). If the eigenvalues have ratio λ1/λ2 > 1 then the corre-
sponding points (a1, a2, a3) in R

3 form an ellipse. This ellipse may or may not be contained
in the positive octant. See Fig. 1.

3.3 The Case of Four Particles

In the case n = 4 we use the scaling to restrict our further investigation to eigenvalues sat-
isfying λ1 + λ2 + λ3 = 1. Working out the polynomials in (6) for the case n = 4 we obtain
three equations for a given vector (λ1, λ2, λ3) ∈ R

3
>0:

4(a1a2a3 + a2a3a4 + a3a4a1 + a4a1a2) = λ1λ2λ3 =: ξ,

3(a1a2 + a2a3 + a3a4 + a4a1) + 4(a1a3 + a2a4) = λ1λ2 + λ2λ3 + λ3λ1 =: η,

2(a1 + a2 + a3 + a4) = 1.

(8)
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Table 1 Fibers of resonances
Ratio Fiber Ratio Fiber

(1 : 1 : √2) One point (classical case A4 = I4)

Resonances of order 1

(1 : 1 : 2) four points (1 : 2 : 2) empty

(1 : 2 : 3) four open curves (1 : 2 : 4) 12 open curves

Resonances of order 2

(1 : 1 : 1) empty (1 : 1 : 3) four points

(1 : 2 : 5) 12 open curves (1 : 2 : 6) 12 open curves

(1 : 3 : 3) empty (1 : 3 : 4) four open curves

(1 : 3 : 5) four open curves (1 : 3 : 6) 12 open curves

(1 : 3 : 7) 12 open curves (1 : 3 : 9) 12 open curves

(2 : 3 : 4) two compact curves (2 : 3 : 6) two compact curves

We call the set of (a1, . . . , a4) ∈ R
4
>0 satisfying these relations the fiber of (ξ, η) ∈ R

2
>0. In

Proposition A.5 in the Appendix we will give a precise characterization of the set of (ξ, η)

for which the fiber is non-empty.
The resonances deserve special attention. A resonance n1 : n2 : n3 in the linearized sys-

tem (2) corresponds to an eigenvalue vector of A4C4 with the ratios n2
1 : n2

2 : n2
3. We consid-

ered all resonances of order one and two, and obtained the results in Table 1. As noted in
Sect. 1.2, the resonances 1 : 1 : 2 and 1 : 1 : 3 need special attention.

In Sect. A.2.2 in the Appendix we describe how to determine the fiber explicitly by
choosing an additional parameter and solve the system of equations (8). The idea is to de-
termine successively quantities that are invariant under a decreasing sequence of subgroups
of the dihedral group D4 acting by permutation on the vector (a1, a2, a3, a4).

3.4 The Resonance 1 : 2 : 3

Here we consider the resonance that is the subject of study in the next section.
By scaling we arrange λ1 = 9

14 , λ2 = 2
7 , λ3 = 1

14 to satisfy the last equation in (8). We
follow the computational scheme in Table 3 in the Appendix. This leads to

a1, a3 = 2 + u

56
∓

√
2

112

√
u(6 − u)(16 − u)

5 − u
,

a2, a4 = 12 − u

56
∓ 1

56
√

2

√
(6 + u)(4 − u)(10 − u)

5 − u
,

(9)

where we take the minus sign for a1 and a2. The parameter u runs through the interval [0, u1)

with

u1 = 8

3
− 2

3
3
√

19 ≈ 0.887732. (10)

Figure 2 gives a plot.
We get all solutions when we let the dihedral group D4 act on the solutions that we

constructed. The branch in Fig. 2 and its image under [1,3] ∈ D4 have the point parametrized
by u = 0 in common.
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Fig. 2 One branch of the fiber
for the resonance 1 : 2 : 3 is given
by the functions a1 ≤ a3 <

a2 < a4 on the interval [0, u1).
(Horizontal axis: parameter u;
vertical axis: values of aj (u).)
The three dots on the horizontal
axis correspond to the values
0,0.534105 and 0.826713 of the
parameter u for which we will
carry out simulations in the next
section (the cases 0, 1 and 2)

Fig. 3 The fiber for the resonance 1 : 2 : 3 is contained in an ellipsoid, which we describe in spherical coordi-
nates. (Horizontally the azimuth φ, and vertically the inclination ψ . See (54).) The thick curve corresponds to
the branch of the fiber in Fig. 2. The dotted curves correspond to the translates of this branch under the dihe-
dral group D4. The thin curves indicate the boundary of the region corresponding to coordinates in R

4
>0. The

picture illustrates that the fiber for (1 : 2 : 3) consists of four open curves, and that (9) describes a fundamental
domain for the action of the dihedral group on the fiber

3.5 Illustration of the Fiber

The equations in (9) describe a curve u 	→ (a1(u), a2(u), a3(u), a4(u)) in R
4
>0 corresponding

to a one-parameter family of solutions for the inverse masses. To illustrate it we use the
second and last equation in (8), which describe an ellipsoid in the hyperplane a1 +a2 +a3 +
a4 = 1

2 . In (53) and (54) in the Appendix we’ll describe this ellipsoid in a more explicit way.
The first equation in (8) produces an intersection with this ellipsoid in some curves. The
points with positive coordinates in this intersection form the fiber.

On this ellipsoid we can use a system of spherical coordinates, mapping the ellipsoid to
the rectangle [−π,π] × [− 1

2π, 1
2π ], with boundary identifications. The image of the fiber

under this map is given in Fig. 3.

3.6 Transformation of the Hamiltonian

We form the diagonal matrix A4(u) with diagonal elements aj (u), 1 ≤ j ≤ 4. In the proof
of Proposition 3.1 we noted that A4(u)1/2C4A4(u)1/2 is a symmetric matrix (as long as
u ∈ [0, u1)), so we can find an orthogonal matrix U(u) such that A4(u)1/2C4A4(u)1/2 =
U(u)ΛU(u)T , where Λ is the diagonal matrix with diagonal elements 9

14 , 2
7 , 1

14 , and 0.
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Then the transformation matrices

K(u) = A4(u)−1/2U(u), L(u) = A4(u)1/2U(u) (11)

determine a symplectic transformation

p = K(u)y, q = L(u)x, (12)

which transforms the quadratic part in (3) of the Hamiltonian into

H2 = 1

2
yT y + 1

2
xT Λx = 1

2

4∑

j=1

(
y2

j + λjx
2
j

)
. (13)

This will produce the so-called quasi-harmonic form of the equations of motion. To see that
H2 takes the form (13) we need the existence of an orthogonal matrix U(u) diagonalizing
A4(u)1/2C4A4(u)1/2. We do not need to know U(u), K(u) or L(u) explicitly.

To transform the cubic and higher order terms of the Hamiltonian to coordinates corre-
sponding to the eigenmodes of the linearized system we need to know the transformation
matrix L(u) explicitly. It is no problem to do this numerically with MATHEMATICA or
MATLAB for any given u ∈ [0, u1). It is nicer to have U(u), and hence L(u) and K(u), sym-
bolically in terms of the parameter u. Lemma A.6 in the Appendix describes the method that
we used to obtain a symbolic description.

For the cubic term we note that (with indices modulo 4)

1

3

∑

j

(qj+1 − qj )
3 =

∑

j

(qj+1 − qj−1)q
2
j . (14)

The substitution (q1, . . . , q4)
T = L(u)(x1, . . . , x4)

T gives

H3 = ε
(
d1(u)x3

1 + d2(u)x2
1x2 + d3(u)x2

1x3 + d4(u)x2
2x1 + d5(u)x2

3x1

+ d6(u)x1x2x3 + d7(u)x3
2 + d8(u)x3

3 + d9(u)x2
3x2 + d10(u)x2

2x3

)
, (15)

with the functions dj as indicated in Table 2.

4 The 1 : 2 : 3-Resonance for the Periodic α-Lattice (n = 4)

For any possible inhomogeneous FPU α-chain with four dof we have the system:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̇1 = v1,

v̇1 = [−2q1 + q2 + q4 − εα((q1 − q4)
2 − (q2 − q1)

2)]a1,

q̇2 = v2,

v̇2 = [−2q2 + q3 + q1 − εα((q2 − q1)
2 − (q3 − q2)

2)]a2,

q̇3 = v3,

v̇3 = [−2q3 + q4 + q2 − εα((q3 − q2)
2 − (q4 − q3)

2)]a3,

q̇4 = v4,

v̇4 = [−2q4 + q1 + q3 − εα((q4 − q3)
2 − (q1 − q4)

2)]a4,

(16)
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Table 2 Coefficients of the
cubic term of the Hamiltonian,
transformed to eigenmodes, the
so-called quasi-harmonic form.
For u = 0 only d3, d6 and d10 are
non-zero

d1(u) = √
u

27
√

4 − u
√

6 − u
√

10 − u(16 − u)(u + 6)

35840
√

35(5 − u)
,

d2(u) = −√
u

3
√

3
√

10 − u
√

16 − u
√

u + 6(3u2 − 30u + 52)

4480
√

70(5 − u)
,

d3(u) = − 3
√

3
√

4 − u
√

6 − u
√

16 − u
√

u + 6(3u2 − 30u + 160)

35840
√

7(5 − u)
,

d4(u) = −√
u

√
4 − u

√
6 − u

√
10 − u(−3u2 + 30u + 68)

1120
√

35(5 − u)
,

d5(u) = −√
u

√
4 − u

√
6 − u

√
10 − u(3u2 − 30u + 64)

7168
√

35(5 − u)
,

d6(u) = −−3u4 + 60u3 − 352u2 + 520u + 960

2240
√

14(5 − u)
,

d7(u) = √
u

√
10 − u

√
16 − u(6 − u)(4 − u)

√
u + 6

420
√

210(5 − u)
,

d8(u) = u

√
4 − u

√
6 − u

√
16 − u(10 − u)

√
u + 6

21504
√

21(5 − u)
,

d9(u) = −√
u

√
10 − u

√
16 − u

√
u + 6(u2 − 10u + 28)

869
√

210(5 − u)
,

d10(u) =
√

4 − u
√

6 − u
√

16 − u
√

u + 6(u2 − 10u + 20)

1120
√

21(5 − u)
.

The coefficient α has been retained for reference to the literature; here we will take
α = 1. If a1 = · · · = a4 = 1, we have the classical periodic FPU chain with four particles;
it was shown in [12], that in this case the normal form is integrable. The implication is that
for ε small, chaos is negligible in this classical case. The case of the 1 : 2 : 3-resonance is
strikingly different as only if we have two masses equal, the normal form is integrable.

Apart from the Hamiltonian we have from (5) as a second (momentum) integral:

m1v1 + m2v2 + m3v3 + m4v4 = constant. (17)

The presence of the momentum integral results in two zero eigenvalues of the matrix M in
Eq. (4), so by reduction we have to deal essentially with a three dof system. This will be
used and explicitly shown in the next three subsections.

According to Table 1 the 1 : 2 : 3 resonance is present among the possible inhomogeneous
FPU lattices. Figure 2 gives one branch of values of inverse masses a1, . . . , a4 producing this
resonance. All vectors (a1, . . . , a4) are obtained by the action of the dihedral group D4 on
the coordinates and the scaling (a1, . . . , a4) 	→ (ta1, . . . , ta4) with t > 0.

Table 1 and Fig. 2 show that the 1 : 2 : 3-resonance appears in one case with relatively
well-balanced masses, two of which are equal. We denote this by case 0; it will turn out
in Sect. 4.1 that this case is quite special dynamically. The other cases are less balanced
regarding the masses. Case 0 corresponds to u = 0; as u increases (we have 0 ≤ u < u1

with u1 = 0.887732), the masses get less well-balanced, one of them tending to infinity. We
study the dynamical behaviour in Sect. 4.2. For numerical simulations we have singled out
two more cases indicated in Fig. 2.
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The expression for the quadratic part of the Hamiltonian H2 is:

H2 = 1

2

4∑

i=1

aip
2
i + 1

2

[
(q2 − q1)

2 + (q3 − q2)
2 + (q4 − q3)

2 + (q1 − q4)
2
]
. (18)

H2 is a first integral of the linear system (2), it is also a first integral of the normal form of
the full system (16). When using H2 from the solutions of the truncated normal form

H̄ (p, q) = H2(p, q) + εH̄3(p, q),

we obtain an O(ε) approximation of the (exact) H2(p(t), q(t)) valid for all time; for a proof
see [14, Chap. 10]. Note that in the equations we find it convenient to use the non-canonical
velocities instead of the momenta. Using the expression H2(p(t), q(t)) for the solutions of
the full system (16) shows the accuracy of the normal form and gives an impression of the
nature of the dynamics.

The normal form H̄3(p, q), written in action-angle coordinates or amplitude-phase co-
ordinates (see below), will contain certain combination angles corresponding with the reso-
nance. If H̄3 contains only one combination angle, we have an additional integral of motion
and the normal form H2 + H̄3 is integrable. In the case of two or more independent combi-
nation angles, we have to investigate the (non-)integrability of the normal form.

To display the quantitative aspects of the solutions we have the possibility of drawing an
energy- or action-simplex or as an alternative to produce a time series for explicit solutions
or integrals of the normal forms. Both techniques will be used.

As the short-periodic solutions have constant actions (or constant radii in polar coordi-
nates), the integral H2 of the normal form produces for fixed energy an action-simplex with
short-periodic solutions represented by points; the actions τi and the polar coordinates ri are
related. One way of displaying the position of short-periodic solutions and their stability on
the 5-dimensional energy manifold is the use of this action-simplex with normal modes at
the vertices and solutions in the coordinate planes at the sides. The interior of the faces may
contain short-periodic solutions in general position. Their stability is indicated by E (elliptic
i.e. imaginary eigenvalues), H (hyperbolic i.e.real eigenvalues) and C (complex eigenval-
ues with real parts non-zero). See for instance for the action simplices displaying periodic
solutions Fig. 6.

4.1 Case 0: The FPU Chain with Well-Balanced Masses

In this case we have the 1 : 2 : 3 resonance with mass values that are as much as possible
similar; we have with u = 0 in (9):

a1 = 0.0357143, a2 = 0.126804, a3 = 0.0357143, a4 = 0.301767.

Note that a1 = a3. We checked numerically that the time series H2(p(t), q(t)) based on
the original formulation of system (16) and the time series obtained from the transformed
Hamiltonian (19) produce the same result as it should.

To put system (16) in the standard form of quasi-harmonic equations we have to apply the
symplectic transformation p = K(0)y, q = L(0)x in (12). This leads with (15) and Table 2
to the transformed Hamiltonian

H(y,x) = 1

2

4∑

i=1

(
y2

i + ω2
i x

2
i

) + ε
(
d3x

2
1 + d10x

2
2 + d6x1x2

)
x3, (19)
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with

ω2
1 = 9

14
, ω2

2 = 4

14
, ω2

3 = 1

14
, ω2

4 = 0, d3 = −9

√
21

490
,

d10 = 2

√
21

245
, d6 = −3

√
14

490
.

Rescaling time t/
√

14 → t , the equations of motion for the three dof system become:

⎧
⎪⎪⎨

⎪⎪⎩

ẍ1 + 9x1 = −ε14(2d3x1x3 + d6x2x3),

ẍ2 + 4x2 = −ε14(2d10x2x3 + d6x1x3),

ẍ3 + x3 = −ε14(d3x
2
1 + d10x

2
2 + d6x1x2).

(20)

According to the Weinstein [20] result there exist at least three families of short-periodic
solutions of system (20). Inspection of the equations provides us directly with one family
given by:

x1(t) = ẋ1(t) = x2(t) = ẋ2(t) = 0, ẍ3 + x3 = 0. (21)

For fixed energy we refer to this periodic solution as the x3 normal mode; to find such an
exact solution explicitly is slightly unusual, the solution is harmonic. Additional periodic
solutions are obtained as approximations from normal forms as in [10]. In general, when
normalizing a three dof system, one recovers the three actions and one expects to find the
angles in combinations according to the actual resonances. For the 3 : 2 : 1 resonance these
are to first order after normalization the so-called combination angles φ1 − φ2 − φ3 and
2φ3 − φ2. At second order the combination angle φ1 − 3φ3 will arise etc., for details see
Sect. 10.2.1 of [14]; for instance the term ‘genuine resonance’ associated with the so-called
‘annihilators’ of H2 can be found in definition 10.2.2 of [14].

Computing the normal form (H2 + εH̄3) of system (20) to O(ε) as in [10] or [14] and as
we shall explicitly show below, only the d6 term survives in H̄3; this makes the Hamiltonian
(19) non-generic. An intermediate normal form of the equations of motion becomes:

⎧
⎪⎪⎨

⎪⎪⎩

ẍ1 + 9x1 = −ε14d6x2x3,

ẍ2 + 4x2 = −ε14d6x1x3,

ẍ3 + x3 = −ε14d6x1x2.

(22)

System (22) is called intermediate as it has still to be normalized, but the omitted terms play
no part in the normalization to first order. There is a lot of freedom in choosing coordinate
systems to compute the normal form of the equations of motion. Near the coordinate planes,
in particular to study the stability of the normal modes, we will use co-moving coordinates.
Away from the coordinate planes (solutions in general position), action-angle variables or
polar coordinates are easier to handle than co-moving coordinates. For general position or-
bits we will use in system (20) transformations xi, ẋi → ri,ψi of the form:

xi = ri cos(ωit + ψi), ẋi = −riωi sin(ωit + ψi). (23)

The actions τi are related to the r2
i , the angles φi to the arguments (ωit + ψi). Putting

χ = ψ1 − ψ2 − ψ3 and averaging over time t , the averaging-normal form equations outside
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the coordinate planes become:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ṙ1 = ε 7
6d6r2r3 sinχ,

ṙ2 = −ε 7
4d6r1r3 sinχ,

ṙ3 = −ε 7
2d6r1r2 sinχ,

χ̇ = ε 7
2 d6

cosχ

r1r2r3
(

r2
2 r2

3
3 − r2

1 r2
3

2 − r2
1 r2

2
1 ).

(24)

The integral H2 of the normal form equations becomes:

9r2
1 + 4r2

2 + r2
3 = 2E0, (25)

with E0 a positive (energy) constant. The combination angle 2φ3 − φ2 is missing; another
integral of the normal form (24) is:

2r2
2 − r2

3 = C (constant). (26)

In the original variables this integral is:

2x2
2 + 1

2
ẋ2

2 − x2
3 − ẋ2

3 = constant.

As we have three independent integrals of the normal form equations (24), the normal form
is integrable. Because of the approximative character of the normal form, this means that
chaotic motion in the original system (20) is restricted to O(ε).

Periodic solutions in general position of system (24) exist if sinχ = 0, t ≥ 0 for certain
values of the ri . From the 4th equation of system (24) we find the requirement:

r2
2 r2

3

3
− r2

1 r2
3

2
− r2

1 r2
2

1
= 0.

Eliminating r1 by the H2 integral we find after some rearrangements the condition

2r2
2 r2

3 + 4

3
r4

2 + 1

6
r4

3 = 1

3
E0

(
2r2

2 + r2
3

)
, 0 < r2 <

√
E0

2
, 0 < r3 <

√
2E0. (27)

Both for χ = 0 and for χ = π we find from condition (27) tori imbedded in the energy
manifold. The two tori consist of periodic solutions in general position connecting the x2

and x3 normal modes. Their period is O(ε) modulated by their position on the tori. The
relation between the presence of a continuous family of periodic solutions on the energy
manifold and the existence of another integral (26) is an example of a more general theory
on characteristic exponents of periodic solutions developed by Poincaré in [11, vol. 1].

Periodic Solutions in the Coordinate Planes It is clear from the intermediate normal
form (22) that the normalized equations of motion will contain all three normal modes. We
will use co-moving coordinates (y1, y2, z1, z2, u1, u2) to normalize and to study the stability:

⎧
⎪⎪⎨

⎪⎪⎩

x1 = y1 cos 3t + 1
3y2 sin 3t, ẋ1 = −3y1 sin 3t + y2 cos 3t,

x2 = z1 cos 2t + 1
2z2 sin 2t, ẋ2 = −2z1 sin 2t + z2 cos 2t,

x3 = u1 cos t + u2 sin t, ẋ3 = −u1 sin t + u2 cos t.

(28)
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The normalized variables are obtained by averaging over time t and are satisfying the sys-
tem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏ1 = ε 7
6d6(z1u2 + 1

2z2u1),

ẏ2 = −ε 7
2d6(z1u1 − 1

2z2u2),

ż1 = ε 7
4d6(−y1u2 + 1

3y2u1),

ż2 = −ε 7
2d6(y1u1 + 1

3y2u2),

u̇1 = ε 7
2d6(− 1

2y1z2 + 1
3 y2z1),

u̇2 = −ε 7
2d6(y1z1 + 1

6y2z2).

(29)

The generic picture for the existence of short-periodic solutions in the Hamiltonian 1 : 2 : 3
resonance is given in [10]. As stated above we recover three normal modes instead of gener-
ically two; this is caused by the already mentioned degenerate form of Hamiltonian (19).

The three normal modes of the normalized system are harmonic functions:

A cosmt + B sinmt, m = 3,2,1, A2 + B2 > 0.

To study their stability we linearize around the three normal modes of system (22) to obtain
coupled Mathieu-equations; we approximate the characteristic exponents by normalizing
the coupled systems. We find in these three cases after some calculations:

1. Normal mode x1: put x1 = A cos 3t + B sin 3t + w1, x2 = w2, x3 = w3.
Transforming in the linearized system by (28) and normalization we find:

ż1 = −ε
7

4
d6(Bu1 − Au2),

ż2 = ε
7

2
d6(Au1 + Bu2),

u̇1 = −ε
7

2
d6

(
Bz1 − 1

2
Az2

)
,

u̇2 = ε
7

2
d6

(
Az1 + 1

2
Bz2

)
.

The eigenvalues of the matrix describing this linear system have multiplicity 2 and are mul-
tiples of:

±
√

A2 + B2.

In the nomenclature of [14, Sect. 10.7.3] this is the unstable case HH.
It is interesting to consider the action-simplex with a number of initial conditions near the

x1 normal mode, see Fig. 4. The unstable manifold of the normal mode is two-dimensional
but the solutions, displayed by dots in the simplex, remain in a narrow strip extending to the
edge where x1 = 0. This is caused by the third integral (26) of the normal form which tells
us that the action corresponding with x1 is proportional to the action of x2.

2. Normal mode x2: put x1 = w1, x2 = A cos 2t + B sin 2t + w2, x3 = w3.
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Fig. 4 The ω = 3 normal mode (x1) exists in the case 0 and is unstable (see also Fig. 6). We consider the
time evolution of 98 initial positions near this normal mode by displaying the actions in the action-simplex at
t = 0,225,450. The evolution is based on Hamiltonian (19); ε = 0.2. The unstable manifold is two-dimen-
sional after which the action points remain near a line in the action simplex. The inclination is explained by
the expression of the third integral (26) of the normal form

Transforming in the linearized system by (28) and normalization by averaging we find:

ẏ1 = −ε 7
6 d6(Bu1 + Au2),

ẏ2 = ε 7
2 d6(Au1 − Bu2),

u̇1 = ε 7
2 d6

(
By1 − 1

3Ay2

)
,

u̇2 = ε 7
2d6

(
Ay1 + 1

3By2

)
.

The eigenvalues have multiplicity 2 and are multiples of:

±i
√

A2 + B2.

In the nomenclature of [14] this is the spectrally stable case EE, but with both positive and
negative imaginary eigenvalues coincident. A numerical calculation confirms the stability in
the sense that the solutions remain near the normal mode during a finite time.

When varying u, this will produce a Hamiltonian-Hopf bifurcation, see the next subsec-
tion.

As the normal mode is spectrally stable, it is of interest to display the behaviour of the
actions of solutions starting near this normal mode. In Fig. 5 we show that for a limited time
interval, the actions stay nearby.

3. Normal mode x3: put x1 = w1, x2 = w2, x3 = A cos t + B sin t + w3.
Transforming in the linearized system by (28) and normalization we find:

ẏ1 = −ε
7

6
d6

(
Bz1 + 1

2
Az2

)
,

ẏ2 = ε
7

2
d6

(
Az1 − 1

2
Bz2

)
,
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Fig. 5 The ω = 2 normal mode (x2) is stable in the case 0. We consider the time evolution based on Hamil-
tonian (19) of 98 initial positions near this normal mode by displaying the actions in the action-simplex at
t = 0,225,450; ε = 0.2

ż1 = ε
7

4
d6

(
By1 − 1

3
Ay2

)
,

ż2 = ε
7

2
d6

(
Ay1 + 1

3
By2

)
.

The eigenvalues have multiplicity 2 and are multiples of:

±i
√

A2 + B2.

In the nomenclature of [14, Sect. 10.7.3] this is the spectrally stable case EE, but again with
both positive and negative imaginary eigenvalues coincident. The numerical behaviour (not
shown) looks similar to Fig. 5.

Our choice of well-balanced masses involves the symmetry a1 = a3. In the sequel we will
see that other choices of masses producing 1 : 2 : 3 resonance give qualitatively different
results. It is interesting to compare the dynamics of case 0 (u = d9 = 0) with the dynamics
for u > 0. Such a comparison will be given in the next subsections.

4.2 The Hamiltonian-Hopf Bifurcation

In the preceding subsection we considered a rather symmetric case, a1 = a3, corresponding
with u = 0, producing an integrable normal form; see Sect. 3.6 and Table 2. We will now
consider the cases 0 < u < u1(= 0.887732 . . .); as u increases through the interval (0, u1)

the masses will differ more and more, producing generic Hamiltonians. To put system (16)
in the standard form of perturbed harmonic equations we have to apply again a symplec-
tic transformation, i.e. (12) from Sect. 3.6. This leads to a transformed Hamiltonian (with
rescaled frequencies) of the form H2 + εH3 with

H2 = 1

2

(
ẋ2

1 + 9

14
x2

1 + ẋ2
2 + 4

14
x2

2 + ẋ2
3 + 1

14
x2

3

)

and

{
H3 = d1x

3
1 + d2x2x

2
1 + d3x3x

2
1 + d4x

2
2x1 + d5x

2
3x1 + d6x1x2x3 + d7x

3
2 + d8x

3
3

+ d9x2x
2
3 + d10x

2
2x3,

(30)
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with all coefficients non-zero, see Table 2. After rescaling time t → t/
√

14, the equations
of motion for the three dof system can be written as:

⎧
⎪⎪⎨

⎪⎪⎩

ẍ1 + 9x1 = −ε14(3d1x
2
1 + 2d2x1x2 + 2d3x1x3 + d4x

2
2 + d5x

2
3 + d6x2x3),

ẍ2 + 4x2 = −ε14(d2x
2
1 + 2d4x2x1 + d6x1x3 + 3d7x

2
2 + d9x

2
3 + 2d10x2x3),

ẍ3 + x3 = −ε14(d3x
2
1 + 2d5x3x1 + d6x1x2 + 3d8x

2
3 + 2d9x2x3 + d10x

2
2 ).

(31)

The size of the coefficients of H3 are comparable with the size of d6 or smaller, we will give
them explicitly as examples for the cases 1 and 2 in Sect. 4.3 with less balanced masses.

In the cubic part of the normalized Hamiltonian we retain of the cubic part only the
terms with d6 and d9; the other terms are, after normalization, active only at higher order.
So, anticipating this, an intermediate normal form of the equations of motion becomes:

⎧
⎪⎪⎨

⎪⎪⎩

ẍ1 + 9x1 = −ε14d6x2x3,

ẍ2 + 4x2 = −ε14(d6x1x3 + d9x
2
3 ),

ẍ3 + x3 = −ε14(d6x1x2 + 2d9x2x3),

(32)

The Normal Form and Periodic Solutions Outside the Coordinate Planes Using trans-
formation (23) and putting φ1 − φ2 − φ3 = χ1, 2φ3 − φ2 = χ2, we find after averaging-
normalization:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṙ1 = ε 7
6 d6r2r3 sinχ1,

ṙ2 = −ε 7
4 (d6r1r3 sinχ1 + d9r

2
3 sinχ2),

ṙ3 = −ε 7
2 (d6r1r2 sinχ1 − 2d9r2r3 sinχ2),

χ̇1 = ε 7
2 [d6

cosχ1
r1r2r3

(
r2
2 r2

3
3 − r2

1 r2
3

2 − r2
1 r2

2
1 ) − d9

cosχ2
r2

( 1
2 r2

3 + 2r2
2 )],

χ̇2 = ε 7
4 (d6

r1 cosχ1
r2r3

(4r2
2 − r2

3 ) + d9
cosχ2

r2
(8r2

2 − r2
3 )).

(33)

The integral H2 of the normal form equations becomes again:

9r2
1 + 4r2

2 + r2
3 = 2E0, (34)

Periodic solutions in general position with constant amplitude have to satisfy sinχ1 =
sinχ2 = 0 or χ1 = 0,π and χ2 = 0,π . We have

cosχ1 cosχ2 = ±1, q = d9

d6
> 0.

From the last two equations of system (33) we have the conditions:

r2
2 r2

3

3
− r2

1 r2
3

2
− r2

1 r2
2

1
= ±qr1r3

(
1

2
r2

3 + 2r2
2

)
, (35)

4r2
2 − r2

3 = ±q
r3

r1

(
r2

3 − 8r2
2

)
. (36)

Eliminating r1 from (35) using (36) we obtain two equations that are quadratic in r2
2 and

r2
3 . Eliminating r1 from the H2 integral we find one equation that is quadratic in r2

2 and r2
3 .
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These expressions have to be handled for the range of q determined by u ∈ (0, u1). Using
MATHEMATICA and corresponding plots we find four positive solutions corresponding with
four periodic solutions characterized by two different phases.

We omit the stability analysis, but note that the generic case of the 1 : 2 : 3 resonance was
studied in [10] that produces four general position periodic solutions with the stability types
EE and EH .

Periodic Solutions in the Coordinate Planes Inspection of the intermediate normal form
system (32) shows that the x1 and x2 normal modes exist as solutions of this system, the
x3 normal mode does not. It is shown in [10] that the normal mode x2 is unstable. If the
instability is of class C (complex eigenvalues), a Shilnikov-Devaney bifurcation [6] may
take place resulting in chaotic dynamics originating from a neighbourhood of the complex
unstable normal mode. To avoid singularities near the normal modes we use again the co-
moving variables from transformation (28). The normalized variables satisfy the system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏ1 = ε 7
6d6(z1u2 + 1

2z2u1),

ẏ2 = −ε 7
2 d6(z1u1 − 1

2z2u2),

ż1 = ε 7
2 [ 1

2d6(−y1u2 + 1
3y2u1) + d9u1u2],

ż2 = −ε 7
2 [d6(y1u1 + 1

3 y2u2) + d9(u
2
1 − u2

2)],
u̇1 = ε 7

2 [d6(− 1
2y1z2 + 1

3y2z1) + d9(−2z1u2 + z2u1)],
u̇2 = −ε 7

2 [d6(y1z1 + 1
6 y2z2) + d9(2z1u1 + z2u2)].

(37)

We find three families of short-periodic solutions; the constants A,B are real, A2 +B2 > 0.

1. x1(t) = A cos 3t + B sin 3t, x2 = x3 = 0.
2. x2(t) = A cos 2t + B sin 2t, x1 = x3 = 0.
3. If x2(t) = 0, d6 
= 0:

⎧
⎨

⎩
x1(t) = d9

d6
( A

A2+B2 (3B2 − A2) cos 3t − B

A2+B2 (3A2 − B2) sin 3t),

x3(t) = A cos t + B sin t.
(38)

If d9 differs from zero, this family of periodic solutions moves along the x2 = 0 edge of
the simplex in Fig. 6 starting from the x3 normal mode that exists if d9 = 0.

To evaluate the stability of the periodic solutions we will linearize system (32) near these
solutions; this produces coupled Mathieu equations which we will analyze by normalization.

The x2 Normal Mode Put:

x1 = w1, x2 = A cos 2t + B sin 2t + w2, x3 = w3,

with real constants A,B,A2 + B2 > 0 and corresponding expressions for the derivatives.
We find after linearization

⎧
⎪⎪⎨

⎪⎪⎩

ẅ1 + 9w1 = −ε14d6(A cos 2t + B sin 2t)w3,

ẅ2 + 4w2 = 0,

ẅ3 + w3 = −ε14[d6w1(A cos 2t + B sin 2t) + 2d9(A cos 2t + B sin 2t)w3],
(39)
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Fig. 6 The action simplices of the cases u = 0 and 0 < u < u1; the cases 1 and 2 are typical for the family
of Hamiltonians where u 
= 0. The actions τi (related to r2

i
) form a triangle for fixed values of H2 which is

an integral of the normal forms. The frequencies have been normalized to 1,2,3 to indicate the x3, x2, x1
normal mode positions at the vertices. The black dots indicate periodic solutions, the indicated stability types
are HH (hyperbolic-hyperbolic), EE (elliptic-elliptic) and C (complex). The two (roughly sketched) curves
connecting the x2 and x3 normal modes in the left simplex correspond with two tori consisting of periodic
solutions, respectively with combination angles χ = 0 and π . The tori break up into 4 general position
periodic solutions if u > 0 (cases 1 and 2)

We study the stability of this system by normalization to find the eigenvalues of the matrix
(omitting the factor 7ε/2)

⎛

⎜⎜⎜⎜⎝

0 0 d6
3 B

d6
3 A

0 0 −d6A d6B

−d6B
d6
3 A 2d9B −2d9A

−d6A − d6
3 B −2d9A −2d9B

⎞

⎟⎟⎟⎟⎠

produce first order approximations of the characteristic exponents of system (39). For the
eigenvalues we find apart from the factor 7ε/2:

λ2 = −(
A2 + B2

)[(
1

3
d2

6 − 2d2
9

)
± 2d9

√
d2

9 − 1

3
d2

6

]
.

A sufficient condition for the complex case C to arise is

d2
6 > 6d2

9 . (40)

This condition corresponds with the condition in Table 1 of [10]. Condition (40) is satisfied
for 0 < u < u1 so that the complex case C arises for u > 0.

Another view of the eigenvalues is obtained by realizing that in Sect. 4.1 we had u = 0
resulting in d6 
= 0, d9 = 0; u = 0 gives for the x2 normal mode purely imaginary eigenvalues
with multiplicity two. As u increases (d9 
= 0), the eigenvalues move from the imaginary axis
into the complex domain. This is part of the Hamiltonian-Hopf bifurcation, see Fig. 7.

For case 2 (see Sect. 4.3) we show in the action-simplex of Fig. 8 the behaviour of
solutions starting near this complex unstable normal mode.

The x1 Normal Mode For d9 = 0 we have found in the preceding subsection the case HH.
This is a generic case of eigenvalues, so for d9 small enough and u ∈ (0, u1) the nature of
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Fig. 7 The Hamiltonian-Hopf bifurcation of a periodic solution in a three dof system as takes place for the x2
normal mode in 1 : 2 : 3 resonance of [10]. In our problem we have only the transition from the case of double
imaginary eigenvalues to complex eigenvalues as the double eigenvalues are generated by the symmetry at
the start of the interval 0 < u < u1

Fig. 8 The ω = 2 normal mode (x2) exists in the case 2 and is complex unstable (see also Fig. 6). We
consider the time evolution of 98 initial positions near this normal mode by displaying the actions in the
action-simplex at t = 0,225,450; ε = 0.2

Fig. 9 The ω = 3 normal mode (x1) exists in the case 2 and is unstable (see also Fig. 6). We consider the
time evolution of 98 initial positions near this normal mode by displaying the actions in the action-simplex
at t = 0,225,450, ε = 0.2. The behaviour is different from the case 0, see Fig. 4, as in this case the normal
form is not integrable

the instability will not change but the dynamics is very different as the normal form is not
integrable.

For case 2 (see Sect. 4.3) we show in the action-simplex of Fig. 9 the behaviour of
solutions starting near this unstable normal mode.

The Periodic Solution for x2(t) = 0 For the periodic solution (38) we put:

x1 = C cos 3t + D sin 3t, x3 = A cos t + B sin t.
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Transforming

x1 = C cos 3t + D sin 3t + w1, x2 = w2, x3 = A cos t + B sin t + w3,

and substitution into system (32), we find after linearization:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẅ1 + 9w1 = −ε14d6(A cos t + B sin t)w2,

ẅ2 + 4w2 = −ε14[d6(C cos 3t + D sin 3t)w1 + d6(A cos t + B sin t)w1

+ 2d9(A cos t + B sin t)w3],
ẅ3 + w3 = −ε14[d6(C cos 3t + D sin 3t)w2 + 2d9(A cos t + B sin t)w2].

(41)

To investigate stability we normalize near the periodic solution; apart from a factor 7ε/2,
this produces the matrix:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 d6
3 B

d6
6 A 0 0

0 0 −d6A
d6
2 B 0 0

− d6
2 B

d6
6 A 0 0 d6

D
2 + d9B −d6

C
2 + d9A

−d6A − d6
3 B 0 0 −d6C − 2d9A −d6D + 2d9B

0 0 d6D − 2d9B −d6
C
2 + d9A 0 0

0 0 −d6C − 2d9A −d6
D
2 − d9B 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Using the values of C and D given in (38), we find purely imaginary eigenvalues with
multiplicity two. The results have been summarized in Fig. 6.

4.3 Experiments for Two Cases with u > 0

The first order normal form of system (31) produces qualitatively the same dynamics for
u ∈ (0, u1). We consider a few experiments for two cases that are typical for this dynamics.

Case 1 with Less-Balanced Masses We choose for u = 0.534105 from Eqs. (9)):

a1 = 0.00510292, a2 = 0.117265, a3 = 0.0854008, a4 = 0.292231

In this case we have m1 > m3 > m2 > m4. With these mass (ai ) values the symplectic trans-
formation of Sect. 3.6 to system (31) produces the expression:

H3 = 0.0281999x3
1 − 0.0258437x2

1x2 − 0.0777574x2
1x3 − 0.0275058x1x

2
2

− 0.00252349x1x
2
3 − 0.0306229x1x2x3 + 0.0157538x3

2 + 0.000502655x3
3

− 0.0089438x2x
2
3 + 0.028527x2

2x3.

We have the case:

d6 = −0.0306229, d9 = −0.0089438.

so that the x2 normal mode is complex unstable; see Fig. 6. The H2(t) time series are shown
in Fig. 10.
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Fig. 10 The H2(t) time series (sum of the actions) based on system(32) of case 1 for two sets of initial
values. (Left) Starting near the x1 normal mode plane with x1 = 1, x2 = 0.1, x3 = 0.1, ẋi = 0, i = 1,2,3;
ε = 0.5,H2(0) ≈ 4.52. The variations of H2 start with 0.4 and are near t = 1000 0.15. Energy is
pumped into H3. (Right) The H2(t) time series starting near the complex unstable normal mode x2 with
x1 = 0.1, x2 = 1.5, x3 = 0.1, ẋi = 0, i = 1,2,3; ε = 0.5,H2(0) ≈ 4.52. The variations of H2 are 0.4. Hori-
zontal scales: time in [0,1000], vertical scales: H2 in [4.25,4.75]

Note that d9 is still fairly small with the implication that the expansion of the flow near the
x2 normal mode will not be very explosive. This may reduce the amount of chaos present
in the system. We compare with case 0 and give a few more details for different initial
conditions based on integration of system (22) and system (32). We established that in all
cases the x1 normal mode is unstable (HH ), see also Fig. 6. Starting near the x1 normal
mode in case 0, the solutions move away, guided by the two-dimensional unstable manifold
of the normal mode; the integrability of the normal form produces a fairly regular H2(t)

with variations 0.05. In Fig. 10 we display H2(t) for case 1 with the same initial conditions
showing strong variations of H2(t); its behaviour is influenced by the chaotic character of
the normal form. On this interval of time [0,1000], energy is clearly pumped into H3 but
the recurrence of the Hamiltonian system will return this on a much longer timescale.

The chaos in case 1 (and 2) is strongly influenced by the complex instability of the x2

normal mode. In case 0 this mode is stable so that H2(t) varies again with 0.05 only. Using
the same initial conditions for case 1 we find strong variations (0.4) of H2(t), but always
within the limits of the error estimates; see Fig. 10, right.

Case 2 with Less-Balanced Masses We choose for u = 0.826713 from Eqs. (9) a case
with even less balanced masses; in this case m1 is quite massive. We have:

a1 = 0.000685158, a2 = 0.11239, a3 = 0.100269, a4 = 0.286656.

With these mass (ai ) values the symplectic transformation of Sect. 3.6 to system (31) pro-
duces the expression:

H3 = 0.0352657x3
1 − 0.0272316x2

1x2 − 0.0743155x2
1x3 − 0.0366184x1x

2
2

− 0.00260064x1x
2
3 − 0.0337877x1x2x3 + 0.0181144x3

2 + 0.000760425x3
3

− 0.0105601x2x
2
3 + 0.023904x2

2x3.
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Fig. 11 We consider for case 2 the time evolution of 98 starting points near the ω = 1 vertex by displaying
the action-simplex at various times

We have the case:

d6 = −0.0337877, d9 = −0.0105601

If d9 
= 0 (the cases 1 and 2), the x3 normal mode does not exist. In Fig. 11 we show the
action-simplex for solutions starting near the x1 = x2 = 0 position, so near the ω = 1 vertex.

We computed the H2(t) time series of case 2 based on system (32); we omit the picture
as it is similar to Fig. 10, right.

4.4 Comparison with Another Hamiltonian System in 1 : 2 : 3 Resonance

It is instructive to discuss our results for the inhomogeneous FPU chain with another Hamil-
tonian system in 1 : 2 : 3 resonance, and compare the instability types of the x2 normal mode.
In this system we have a full Hamiltonian-Hopf bifurcation as sketched in Fig. 7.

For the inhomogeneous FPU lattice in 1 : 2 : 3 resonance we found complex instability
(C) of the x2 normal mode and no cases of HH instability. Both cases, HH and C lead to
a non-integrable normal form but the dynamics is different. See [5].

To illustrate the different dynamics consider the Hamiltonian presented as an example in
[18]:

H(p,q) = 1

2

(
p2

1 + q2
1

) + (
p2

2 + q2
2

) + 3

2

(
p2

3 + q2
3

) − εq2
1 (a2q2 + a3q3) − εbq1q2q3. (42)

This system is in 1 : 2 : 3 resonance but it is not derived from a FPU chain. We present
H2(t) for both instability cases in Fig. 12. The dynamics is chaotic but in the case left, the
q2 normal mode is unstable with real eigenvalues (HH); transverse homoclinic intersections
produce chaotic motion. On the right the q2 normal mode is complex unstable (C) which
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Fig. 12 Two H2(t) time series based on Hamiltonian (42). On the left x1(0) = 0.1, x2(0) = 1, x3(0) = 0.5,
and on the right x1(0) = 2, x2(0) = 1x3(0) = −0.05. For both time series we use ε = 0.5, a2 = 3, a3 = 1,
b = 1, and ẋ1(0) = ẋ2(0) = ẋ3(0) = 0. For the x2 normal mode we have instability HH on the left and
instability C on the right. In both cases the Hamiltonian flow is chaotic but in the right picture the system
has undergone Devaney-Shilnikov bifurcation. Horizontal scales: time in [0,500], vertical scales: energy in
[1.15,1.65] (left) and in [3,4.5] (right)

produces the Hamiltonian Devaney-Shilnikov phenomenon. This involves a homoclinic or-
bit surrounded by an infinite number of unstable periodic solutions producing more violent
chaotic motion as predicted in [6].

5 Conclusions

General

• For an inhomogeneous periodic FPU-chain with four particles, most frequency ratios oc-
cur for a one-dimensional variety of mass ratios. The frequency ratios 1 : 2 : 1 and 1 : 1 : 3
arise for a finite number of mass ratios, the ratios 1 : 2 : 2, 1 : 1 : 1 and 1 : 3 : 3 do not
occur at all in this FPU-chain. See Table 1.

• For any number of particles n ≥ 3 the set of mass distributions for a given frequency dis-
tribution has a relatively simple algebraic structure. For n = 4 we describe algorithmically
how to determine this set for a given frequency distribution. For n ≥ 4 there are frequency
distributions that do not correspond to any mass distribution.

• Applications.
There are many applications of chains of particles. A large number focuses on molecular
dynamics; in fact normalization was introduced and used in one of the classics on atomic
dynamics [1]. A recent result is to construct a chain of FPU cells where each cell is a
4-particles FPU system, weakly connected with identical cells; see [19]. Another appli-
cation based on normal forms and related symmetry considerations is to consider a chain
of 2n particles with alternating masses; see [9] and [3].

The Case of Four Particles in 1 : 2 : 3 Resonance

• The α-chain with four particles in 1 : 2 : 3 resonance does not contain the case of the
second normal mode with HH instability. For nearly all mass ratios it contains the second
normal mode with complex C instability showing the generic features of the general
1 : 2 : 3 resonance described in [10].
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In this sense it is very different form the classical FPU system with equal masses where
many resonances arise in the spectrum that are not effective, see [13].

• A special case of the resonance 1 : 2 : 3 has the symmetry of two opposite equal masses
and two quite different masses. Along the variety of mass ratios as a limit case one of the
masses tends to infinity.

• The symmetric case of two equal masses differs dynamically from the other cases. The
transition to four different masses corresponds to half of a Hamiltonian-Hopf bifurcation
with a Shilnikov-Devaney bifurcation producing chaotic dynamics. In a more general
context such behaviour of the 1 : 2 : 3 resonance was described in [10].

• The normalized system for the symmetric case of two equal masses is integrable and
has periodic solutions for each of the three eigenmodes (the normal modes). Moreover,
there are on the energy manifold two families of periodic solutions connecting the second
and the third eigenmode. This is a degeneration in the sense described by Poincaré [11,
vol. 1]. The symmetry in this special case makes the 1 : 2 : 3 resonance more similar to
the classical FPU problem.

• Under the transition away from the symmetric case, the eigenmodes x1 (associated with
frequency 3) and x2 (associated with frequency 2) produce a periodic solution (normal
mode) in the nonlinear system. The periodic solution that was associated to the third
eigenmode in the symmetric case moves away along an edge of the action simplex. The
two continuous families of periodic solutions of the symmetric case break up into four
periodic solutions.

• To summarize: the inhomogeneous periodic FPU α-chain with four particles is character-
ized by a non-integrable normal form, except in the symmetric case of two equal masses.
The implication is that near stable equilibrium its chaotic behaviour is not restricted to ex-
ponentially small sets as in the case of two dof systems and as in the case of the classical
FPU α-chain.

Considering Again the Classical FPU Chain

• We have shown that in the case of four particles the presence of two equal masses pro-
duces a symmetry in the dynamical system that makes the system structurally unstable.
In this perspective the model of the classical FPU chain with all masses equal is also
structurally unstable and misleading as a model.

• The averaging-normal form technique we have used is valid for an arbitrary number of
particles as long as the total energy of the chain is finite and small. This enables us to
extend the analysis to chains with many particles as was shown in [13].

• The dynamics on the energy manifold is structured by approximate invariant manifolds,
some of them valid for all time, some with finite but long validity (1/εm intervals for
some positive m). At the same time the Poincaré recurrence theorem produces relatively
short recurrence times, see [19]. Altogether this suggests that the classical FPU chain for
low energy values does not lead to equipartition of energy and is not a good model for
statistical mechanics.
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Appendix

In Sect. A.1 we discuss a few facts that are valid for any number of particles n ≥ 3. This
enables us to start studying resonances in arbitrary long chains. In Sect. A.2 we give an
overview of the relations between frequency ratios and mass ratios valid for all systems with
four particles. This might be useful for studying network models as considered in [19]. In
Sect. A.3 we discuss some details relevant for the analysis of the 1 : 2 : 3 ratio of frequencies.

A.1 Results for n Particles

Our main general result is the following.

Proposition A.1 If the number of particles is equal to 3 then each choice of eigenvalues
λ1 ≥ λ2 > λ3 = 0 occurs for some positive diagonal matrix A3.

If n ≥ 4, there are choices of eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn−1 > λn = 0 for which there
are no positive diagonal matrices An such that AnCn has these eigenvalues.

To show this we use Lemma A.2, which gives the description of the top coefficients
in (7), and Proposition A.3, which restricts the fibers to compact sets in R

n.

Lemma A.2 The polynomials pn−1 and pn−2 have the form indicated in (7).

Proof If we replace the entries −1 at positions (1, n) and (n,1) in Cn by 0 we obtain the
Cartan matrix Cn for the root system of type An. (See, e.g., [2, Déf. 3 in 1.5 of Chap. 6, and
Planche I].) The determinant of Cn is known to be n + 1.

If all aj are non-zero, the characteristic equation is equivalent to det(Cn − λA−1
n ) = 0.

We determine first the factor of (−λ)n−1. In the expansion of the determinant the term with
λ at all diagonal positions except at (j, j) is equal to

2
∏

i 
=j

(−λa−1
i

) = 2(−λ)n−1aj/(a1a2 · · ·an).

So the factor of (−λ)n−1 in det(ACn − λIn) is
∑

j 2aj = pn−1(a).
For the factor of (−λ)n−2 we have contributions of two types: Two diagonal positions

j and j + 1 (modulo n) lead to a contribution of the form det(C2)
∏

i 
=j,j+1(−λ)/ai . Two
non-adjoining diagonal positions j1, j2 contribute 2 · 2

∑
i 
=j1,j2

(−λ)/ai . This leads to the
description of pn−2(a). �

By scaling we arrange that the vectors (λ1, . . . , λn−1,0) of eigenvalues of AnCn satisfy∑n−1
j=1 λj = 1, and we put η = e2({λ1, . . . , λn−1}). Then the points of the fiber of a given

vector of eigenvalues are elements of the following set Qη:

Proposition A.3 Let n ≥ 3. For given η > 0 denote by Qη the set of points a ∈R
n satisfying

pn−2(a) = η, pn−1(a) = 1. (43)

Then

(a) If η < 1
2 − 3

4n
, then Qη is a compact quadric in the hyperplane a1 + · · · + an = 1

2 in R
n

with a non-empty intersection with R
n
>0.
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(b) If η = 1
2 − 3

4n
, then Qη consists of one point in R

n
>0.

(c) If η > 1
2 − 3

4n
, then Qη = ∅.

Proof Let P = Cn − 6In + 4E, with E the n × n-matrix with all elements equal to 1. Then,
considering a = (a1, . . . , an) as a row vector, we have

pn−2(a) = 1

2
aPaT .

There are orthogonal matrices U such that UT CnU = Λ, where Λ is the diagonal matrix
with the eigenvalues λj of Cn on the diagonal. We put the eigenvalue 0, with eigenvector e
as the last one. Then eT = U(0, . . . ,0,

√
n)T , and the last column of U is 1√

n
eT . This gives

pn−1(a) = 2
∑

j

aj = 2aeT = 2
√

n(aU)n, (44)

pn−2(a) = 1

2
a(Cn − 6In)a

T + 2aEaT = 1

2
aU(Λ − 6In)U

T aT + 1

2

(
pn−1(a)

)2
. (45)

Because of (44) the points in the hyperplane pn−1(a) = 1 can be described as

a =
(

x1, x2, . . . , xn−1,
1

2
√

n

)
UT .

We write x = (x1, . . . , xn−1). We find the equation

η = 1

2

(
x,1/(2

√
n)

)
(Λ − 6I )

(
x,1/(2

√
n)

)T + 1

2

= −
n−1∑

j=1

6 − λj

2
x2

j + 1

2
− 3

4n
. (46)

So the points run through a quadratic set in the hyperplane pn−1(a) = 1. The eigenvectors
of Cn can be chosen as (ζ k, ζ 2k, . . . , ζ nk) with ζ = e2πi/n, which leads to eigenvalues 2 −
2 cos 2πk/n ∈ [0,4]. So the 6 − λj are strictly positive. The equation becomes

n−1∑

j=1

6 − λj

2
x2

j = 1

2
− 3

4n
− η. (47)

In case (b) in the proposition the single point x = 0 corresponds to 1
2n

e ∈ R
n
>0. As η de-

creases the quadric expands in all directions, some of these stay inside R
n
>0. �

Proof of Proposition A.1 The choice λ1 = · · · = λn−1 = 1
n−1 leads to

η = e2

({λ1, . . . , λn−1}
) =

(
n − 1

2

) /
(n − 1)2 = 1

2
− 1

2(n − 1)
.

This is at most 1
2 − 3

4n
if n = 3, and strictly larger if n ≥ 4. Now use Proposition A.3. �
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Fig. 13 Region in the ξ -η-plane
corresponding to choices of
positive eigenvalues. (Horizontal
axis: ξ ; vertical axis: η.) The
cusp ( 1

27 , 1
3 ) is Φ( 1

3 , 1
3 , 1

3 ) for
Φ as in (50)

A.2 Results for systems consisting of four particles

For n = 4 Eqs. (8) determine whether points of the fibers exist. In particular, a (scaled)
choice of eigenvalues leads to parameters ξ, η > 0 which determine the equations for the
fiber. We first consider the values of (ξ, η) that can occur:

Proposition A.4 Let n = 4. The set of (ξ, η) = (e3({λ1, λ2, λ3}), e2({λ1, λ2, λ3})) where
(λ1, λ2, λ3) runs through the open triangle in R

3
>0 given by λ1 + λ2 + λ3 = 1, satisfy

0 < ξ ≤ 1

27
, 0 < η ≤ 1

3
, T (ξ, η) ≤ 0, (48)

where

T (ξ, η) = 27ξ 2 + 4η3 − 18ξη − η2 + 4ξ. (49)

Illustration in Fig. 13.

Proof We have to determine the image X of the triangle T = {(λ1, λ2, λ3) ∈R>0 : λ1 +λ2 +
λ3 = 1} under the 6 : 1 map

Φ : (λ1, λ2, λ3) 	→ (ξ, η) = (λ1λ2λ3, λ1λ2 + λ2λ3 + λ3λ1). (50)

If a point (λ1λ2, λ3) ∈ T is mapped to the boundary of the image X, then the derivative
matrix of Φ has rank less than 2 at that point. That occurs if two of the coordinates are
equal. By S3-symmetry it suffices to consider λ2 = λ3. The image of the open segment
{(1 − 2y, y, y) : 0 < y < 1

2 } consists of the points

(ξ, η) = (
y2(1 − 2y), y(2 − 3y)

)
.

These are points of the curve T (ξ, η) = 0. They run from (0,0) to the cusp at ( 1
27 , 1

3 ) and
then to (0, 1

4 ).
The boundary of T consists of three segments, one of them {(0, x,1 − x) : 0 ≤ x ≤ 1}.

The image is {(0, x(1 − x)) : 0 ≤ x ≤ 1}, the segment from (ξ, η) = (0,0) to (0, 1
4 ). By

S3-invariance the two other boundary segments have the same image.
The image X is the region enclosed by these boundary curves. �

The points (ξ, η) for which the fiber is non-empty form a subset of the region in Propo-
sition A.4. The fiber is empty for ( 1

27 , 1
3 ). We give a description of the set of (ξ, η) corre-

sponding to non-empty fibers. We omit the proof. (It can be given along the same lines as
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Fig. 14 On the left the region in (51) of points (ξ, η) corresponding to non-empty fibers. The dashed line
gives (part of) the boundary of the larger region in Proposition A.4, corresponding to choices of positive
eigenvalues. This shows that most of the possible combinations (ξ, η) correspond to a non-empty fiber. On
the right is again the region in (51), with the subregion in (52) indicated by the dashed line. The points strictly
to the right of the dashed line correspond to compact fibers

that of Proposition A.4, but takes much more work.) Below we give a computational scheme
for the determination of the fiber for given eigenvalues λ1, λ2, λ3. Following this scheme it
becomes clear whether the fiber is empty in any individual case.

Proposition A.5 The set of points (ξ, η) corresponding to a non-empty fiber is equal to
{
(ξ, η) ∈R

2
>0 : 0 < ξ ≤ 1

32
, 0 < η ≤ 2ξ + 1

4
, T (ξ, η) ≤ 0

}
, (51)

with T as defined in (49).
The points (ξ, η) for which the fiber is not compact constitute the subset

{
(ξ, η) ∈

(
0,

1

32

)
×

(
0,

5

16

)
: 8ξ 2 + η3 − 5ξη − 1

4
η2 + 9

8
ξ ≤ 0

}
. (52)

Illustrations in Fig. 14.

A.2.1 Spherical coordinates on ellipsoid

In the case n = 4 we may take the orthogonal matrix in the proof of Proposition A.3 in the
form

U =

⎛

⎜⎜⎜⎜⎜⎝

− 1
2 0 −1√

2
1
2

1
2

−1√
2

0 1
2

− 1
2 0 1√

2
1
2

1
2

1√
2

0 1
2

⎞

⎟⎟⎟⎟⎟⎠
,

corresponding to the eigenvalues 4,2,2,0. This gives

x1 = −a1 + a2 − a3 + a4

2
, x2 = a4 − a2√

2
,

x3 = a3 − a1√
2

(53)
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Table 3 Instructions to compute fibers for the case n = 4. In these instructions we assume that η 
= 4ξ + 3
16 .

Otherwise we also have to consider p13 ∈ (0, ξ) and investigate whether this leads to further solutions

(i) For given positive eigenvalues put

η = λ1λ2 + λ2λ3 + λ3λ1

(λ1 + λ2 + λ3)2
, ξ = λ1λ2λ3

(λ1 + λ2 + λ3)3
.

(ii) Choose η2 ∈ (0, 1
3 η) and determine η1 from η = 4η1 + 3η2. Determine the subinterval I1 ⊂ (0, 1

16 )

such that η1 > 0 for η2 ∈ I1.
(iii) Compute

s13 = 1 − √
1 − 16η2

4
, s24 = 1 + √

1 − 16η2

4
,

p13 = ξ/4 − s13η1√
1 − 16η2/2

, p24 = η1 − p13.

Determine the subset I2 ⊂ I1 such that p13 > 0 and p24 > 0 for η2 ∈ I2.
(iv) Compute d13 = s2

13 − 4p13 and d24 = s24 − 4p2
24. Determine I3 ⊂ I2 such that d13 ≥ 0 and d14 ≥ 0.

(v) Compute a1, a3 = 1
2 (s13 ∓ √

d13) and a2, a4 = 1
2 (s24 ∓ √

d24). Determine the subset I4 ⊂ I3 such

that aj > 0 for j = 1, . . . ,4 for η2 ∈ I4.
(vi) Apply all symmetries in the dihedral group D4 to the points (a1, . . . , a4).

Points of the fiber give points on the ellipsoid x2
1 +2x2

2 +2x2
3 = 5

16 −η in (46). Then spherical
coordinates ψ and φ are determined by

x1 = ρ sinψ, x2 = ρ√
2

cosψ cosφ, x3 = ρ√
2

cosψ sinφ,

ρ =
√

5

16
− η > 0, −π

2
≤ ψ ≤ π

2
, −π ≤ φ ≤ π.

(54)

These are the coordinates used in Fig. 3 and in the examples below.

A.2.2 Computation of fibers

The computation of fibers is guided by the use of the action of the dihedral group D4 on
the solutions. We start with the quantities ξ, η, η1, η2. These are invariant under the whole
group D4. (If a point a = (a1, a2, a3, a4) of the fiber can be found then η1 = q1(a) and
η2 = q2(a), hence invariant under D4.)

The quantity 4(−a1 +a2 −a3 +a4) = √
1 − 16η2 is invariant under the subgroup V4 ⊂ D4

generated by the permutations [1,3] and [2,4], and sent to its negative by [1,2][3,4]. The
group V4 also leaves invariant the quantities s13 = a1 + a3, s24 = a2 + a4, p13 = a1a3, and
p24 = a2a4.

In the last stage we determine a1 and a3, invariant under [2,4] and exchanged by [1,3].
Similarly a2 and a4 are invariant under [1,3] and exchanged by [2,4]. The total solution
(a1, a2, a3, a4) is changed by non-trivial elements of D4, except in cases with additional
symmetry.

In Table 3 the resulting computational scheme is described. It works under the assump-
tion that the point (ξ, η) is not on the line η = 4ξ + 3

16 . (This does not happen for the
resonances in Table 1.) The parameter u was specially adapted to the resonance 1 : 2 : 3. In
general we use η2 ∈ (0, 1

16 ) as the parameter.
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Fig. 15 Points corresponding to
the resonances 1 : 2 : 3 (◦),
1 : 2 : 2 (+), 1 : 1 : 2 (×), 1 : 3 : 6
(∗), and 2 : 3 : 4 (⊗)

This approach leads to the resonances in Table 3. We discuss the application to the reso-
nance 1 : 2 : 3, and as an example also to the resonances 1 : 1 : 2, 1 : 3 : 6, and 2 : 3 : 4, which
are typical for the different cases in Table 1.

The Resonance 1 : 2 : 3 In this case we used a real parameter u satisfying
√

1 − 16η2 =
5−u

7 . This leads to simpler expressions for the solutions, and for the transformation matrices.
Initially, u ∈ (−2,5].

In step iii. in Table 3 we find s13 = 2+u
28 and s24 = 12−u

28 . The system

p13 + p24 = η1, s13p24 + s24p13 = ξ

4
,

has no solutions for u = 5. Proceeding with u ∈ (−2,5) we find solutions for p13 and p24.
The condition that p13 is positive restricts u to the interval (−2, u1) with u1 = 8

3 − 2
3

3
√

19.
In step (iv) the requirement that the determinant s2

13 − 4p13 is non-negative gives the
restriction u ∈ [0, u1). For these values of u we find the solutions in (9).

Resonance 1 : 2 : 2 To (λ1, λ2, λ3) = ( 4
9 , 4

9 , 1
9 ) corresponds (ξ, η) = ( 16

729 , 8
27 ). In Fig. 15

it is hard to see whether it is in the region described in (51). A direct computation shows that
η > 2ξ + 1

4 , so the fiber is empty.
If we carry out the steps in the computational scheme, the set of values that η2 may have

becomes empty when we check whether d24 ≥ 0.

Resonance 1 : 1 : 2 With (λ1, λ2, λ3) = ( 2
3 , 1

6 , 1
6 ) we have (ξ, η) = ( 1

54 , 1
4 ). The corre-

sponding point in Fig. 15 seems to be on the boundary of the region for a non-empty fiber.
Indeed, it turns out that T (ξ, η) is exactly 0.

Following the computational scheme the expression for d13 in terms of η2 turns out to be
non-positive for η1 ∈ (0, 1

16 ), with a zero only at η2 = 1
18 . This leads to the solution

(a1, . . . , a4) =
(

1

12
,

2 − √
2

12
,

1

12
,

2 + √
2

12

)
. (55)

It is invariant under the substitution [13] in the dihedral group. See Fig. 16.

Resonance 1 : 3 : 6 For (λ1, λ2, λ3) = ( 18
23 , 9

46 , 1
46 ) we have (ξ, η) = ( 81

24334 , 369
2116 ). The cor-

responding point in Fig. 15 is to the left of the dashed line. This indicates that the fiber
contains open curves.
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Fig. 16 The fiber for the
resonance 1 : 1 : 2 in spherical
coordinates. The thick point
corresponds to the vector in (55),
the other points are its translates
under elements of D4. The
curved line indicates the
boundary of the region with
positive coordinates

Fig. 17 The fiber for the resonance 1 : 3 : 6 in spherical coordinates. The interior of the four triangles corre-
spond to the region with positive coordinates. The fiber consists of twelve open curves, three in each triangle.
The computational scheme determines the thickly drawn part of the fiber. It consists of two components: the
lower one is open at both of its end points; the upper one is open at one side, and ends at the point invariant
under the permutation [1,3]

The computational scheme gives solutions for

η2 ∈ [ 11

1058
, h2) ∪ (h3, h4),

with algebraic numbers h2 ≈ .112814, h3 ≈ .0501346, h4 ≈ .0548411. For η2 = 11
1058 we

find a point that is invariant under the permutation [1,3] ∈ D4. Figure 17 illustrates the fiber.

Resonance 2 : 3 : 4 For (λ1, λ2, λ3) = ( 16
29 , 9

19 , 4
29 ) we have (ξ, η) = ( 576

24389 , 244
841 ). The cor-

responding point in Fig. 15 is in the region where the fiber is compact. All aj are positive
on the ellipsoid for η = 244

841 .
The computational schema gives a family of solutions depending on η2 ∈ [ 42

841 , 99
1682 ]. The

end points give symmetric solutions: a1 = a3 for η2 = 42
841 , and a2 = a4 for η2 = 99

1682 . In
Fig. 18 we see that the fiber consists of two closed curves.

A.3 Transformation matrices for the resonance 1 : 2 : 3

In Sect. 3.4 we computed functions u 	→ aj (u), 1 ≤ j ≤ 4, on the interval [0, u1) as diagonal
elements of a diagonal matrix A4(u) such that A4(u)C4 has eigenvalues 9

14 , 4
14 , 1

14 , 0. For the
transformation to eigenmodes of the Hamiltonian we need in Sect. 3.6 a family of orthogonal
matrices u 	→ U(u) such that U(u) diagonalizes A4(u)1/2C4A4(u)1/2. For any specific value
of u such orthogonal matrices can be found numerically. Here we indicate how we obtained
a symbolic description.
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Fig. 18 The fiber for the
resonance 2 : 3 : 4 in spherical
coordinates. The thick line
corresponds to the solutions
obtained by the computational
scheme. The dashed lines are
formed by the translates under
D4 of the computed part. In this
case all points on the ellipsoid
have positive coordinates

Lemma A.6 Let A4 be a positive diagonal matrix with diagonal elements a1, . . . , a4. Let λ

be an eigenvalue of A4C4 such that λ 
= 2aj for 1 ≤ j ≤ 4. Put

μj = 1

2 − λ/aj

.

Then
(
μ1(μ2 + μ4),μ2,μ3(μ2 + μ4),μ4

)

is an eigenvector of A4C4 for the eigenvalue λ.

Proof We have

C4 − λA−1 =

⎛

⎜⎜⎜⎜⎝

μ−1
1 −1 0 −1

−1 μ−1
2 −1 0

0 −1 μ−1
3 −1

−1 0 −1 μ−1
4

⎞

⎟⎟⎟⎟⎠
.

We try to solve (C −λA−1)v = 0 with v = (p, x, q, y). The first and third lines give x +y =
μ−1

1 p = μ−1
3 q . Similarly, we get p + q = μ−1

2 x = μ−1
4 y. Since λ is an eigenvalue of A4C4

there are non-zero solutions, for which x and y both have to be non-zero. So there is a
solution with x = μ2. Then we obtain the vector in the lemma. �

Now we take for aj the expressions in (9). It is clear that 2aj (u) − λi is not identically
zero in u for any of the eigenvalues λ1, λ2, λ3, and λ4 = 0, and any aj . So we obtain vectors
vi(u), 1 ≤ i ≤ 4, that are eigenvectors of A4(u)C4 for the eigenvalue λi for generic values
of u.

The vectors wi = A4(u)−1/2vi are eigenvectors of A2(u)1/2C4A4(u)1/2. Since the four
eigenvalues are different, the wi are orthogonal. We take w̃i = n−1

i wi with ni = √
wi · wi to

get an orthonormal basis. There is the freedom to choose the sign. We multiply w̃1 with −1,
to get consistency with our earlier computations.

The w̃i can be chosen as the columns of the orthogonal matrix U(u). Then the vectors

ṽi = A4(u)1/2w̃i = n−1
i vi(u)

are the columns of the transformation matrix L(u) = A4(u)1/2U(u).
The construction of the vi allows the components to have singularities. The orthonormal-

ization removes all singularities, so the matrix elements of L(u) are continuous functions on
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[0, u1), given by algebraic expressions. An explicit expression for the other transformation
matrix K(u) = A4(u)−1/2U(u) = A4(u)−1L(u) follows easily.
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