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Abstract—The oviduct was long considered a largely passive
conduit for gametes and embryos. However, an increasing
number of studies into oviduct physiology have demon-
strated that it specifically and significantly influences gamete
interaction, fertilization and early embryo development.
While oviduct epithelial cell (OEC) function has been
examined during maintenance in conventional tissue culture
dishes, cells seeded into these two-dimensional (2-D) condi-
tions suffer a rapid loss of differentiated OEC characteristics,
such as ciliation and secretory activity. Recently, three-
dimensional (3-D) cell culture systems have been developed
that make use of cell inserts to create basolateral and apical
medium compartments with a confluent epithelial cell layer
at the interface. Using such 3-D culture systems, OECs can
be triggered to redevelop typical differentiated cell properties
and levels of tissue organization can be developed that are
not possible in a 2-D culture. 3-D culture systems can be
further refined using new micro-engineering techniques
(including microfluidics and 3-D printing) which can be used
to produce ‘organs-on-chips’, i.e. live 3-D cultures that bio-
mimic the oviduct. In this review, concepts for designing bio-
mimic 3-D oviduct cultures are presented. The increased
possibilities and concomitant challenges when trying to more
closely investigate oviduct physiology, gamete activation,
fertilization and embryo production are discussed.
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ABBREVIATIONS
2-D Two-dimensional
3-D Three-dimensional
ARTs Assisted reproductive techniques
BM Basal membrane
COC Cumulus oocyte complex
EGF Endothelial growth factor
ESR1 Estrogen receptor 1
FCM Fluorescent confocal microscopy
FGF-10 Fibroblast growth factor 10
FOXIJ1 Forkhead box protein 1

GJ Gap junctions
GPX4 Glutathione peroxidase 4
HSB90B1 Heat shock protein 90 beta member 1

ICSI Intracytoplasmic sperm injection
IVP In vitro embryo production
MUCI16 Mucin 16

OEC Oviduct epithelial cells

OVGP1  Oviductal glycoprotein 1

PAXS Paired box 8
PGR Progesterone receptor
TGF-p Transforming growth factor beta

THE OVIDUCT

The oviduct, or fallopian tube, was first described
by Fallopius in 1561 as a presumably passive channel
to hold or transport gametes and early embryos in
mammals.”> The oviduct is a convoluted tube consist-
ing of longitudinal and circular muscular, and a
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stromal layer lined by a simple cuboidal to columnar
epithelium containing both ciliated and secretory
cells.® 190123 The ciliated cells are important for ga-
mete transport and sperm interaction, in particular
helping to create a ‘sperm reservoir’; while the secre-
tory cells are responsible for producing oviduct fluid; a
mixture of specific cell secretions and serum transu-
date.">1963118 T adult mammals (including the wo-
man), four anatomical segments can be distinguished
along the length of the oviduct; the infundibulum,
ampulla, isthmus and utero-tubal junction, respec-
tively'"'*? (Fig. 1c). The fimbriae of the infundibulum
are responsible for capturing the cumulus oocyte
complex (COC) and ensuring its transport from the
ovary into the oviductal tube. The epithelium of the
ampulla is highly folded, has the largest diameter of
any oviductal segment and is the specific site where
fertilization takes place' (Fig. 1b). The ampulla con-
nects to the much narrower isthmic tube (Fig. 1a).
Prior to fertilization, sperm entering the oviductal
isthmus from the uterus bind to isthmic epithelial cells
which help to prolong sperm viability (the formation of
a so called “sperm reservoir”).'”?198:112° A [imited
number of these bound sperm will be released at
around the time of ovulation, undergoing the final
changes required to achieve fertilizing capacity as they
do so, and migrate into the ampullary region'? where
they will encounter the mature oocyte (Fig. 1c). After
fertilization, the developing embryo will migrate along
the isthmic tube towards the utero-tubal junction. At
the morula (16 cell) stage, the embryo will exit the
oviduct and enter the uterine lumen (Fig. 1c), where it
will develop further and undergo a series of compli-
cated interactions with the endometrium in prepara-
tion for implantation. The oviductal vasculature is
composed of branches of the uterine and ovarian
arteries and veins, allowing local exchange of
metabolites, hormones and signaling molecules
between the oviduct, uterus and ovary.””

The oviduct is an active organ that orchestrates
dynamic changes in its luminal fluid composition to
provide optimal microenvironments for gamete matu-
ration/activation, fertilization and early embryo
development.®* It is the first environment to which an
embryo is exposed, and contributes vital factors that
affect embryonic development and help atune it to
predicted external environmental circumstances during
the first 2-6 days post-fertilization, depending on the
species”®!'® (Table 1). The successful development of
conditions for in vitro production (IVP) of embryos for
various species has in part been the reason for the
relative neglect of the importance of the oviductal
microenvironment in early development.”® That the
oviduct could be successfully by-passed supported the
supposition that it was little more than a passive tube
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for temporarily hosting gametes and embryos.”® Nev-
ertheless, it has become clear that not only are fertil-
ization and embryo development less efficient in vitro
than in vivo, but the embryos produced are qualita-
tively different; a number of studies have now
demonstrated the importance of the oviduct for sperm
storage and activation,2332:44:50.53.60.61.73.74.81.91.92.95
oocyte modification,'”¥>38 fertilization and early
embryo development®>336-38.68.70.79.97117 (g 9g),

STUDYING OVIDUCT FUNCTION

Due to its intra-abdominal location, it is difficult to
access the delicate interior of the oviduct for experi-
mental studies in situ. It is possible to ligate and excise
the oviduct from experimental animals and given
reproductive stages and to fix the tissues for histolog-
ical or other microscopic investigation.'>*’ It is also
possible to harvest epithelial cells from recovered ovi-
ducts. Methods to culture these oviduct epithelial cells
(OECQ) can differ with respect to cell isolation tech-
niques, culture conditions and duration, medium used
and supplements included.''> The aim of the present
review is to describe how 3-D culture systems can be
designed and modified such that contained OECs mi-
mic their in vivo physiology as closely as possible. In
this respect, the OECs should at least have a similar
morphological appearance and differentiation charac-
teristics and be connected to neighboring cells by tight
junctions to form a confluent epithelial cell monolayer.
The OECs should also resemble in vivo oviduct
epithelial cells with respect to protein expression, cil-
iary and secretory activity, and responses to physio-
logical stimuli.'"?

An ideal in vitro oviduct model should at least allow
the possibility to mimic the hormonal changes that
occur in the afferent vasculature in the lead up to, and
following, ovulation. Moreover, the system should al-
low the addition and removal of fluids and gametes
into the luminal compartment, promote fertilization
and allow the culture of embryos to at least the com-
pact morula stage of development (Fig. 2b). These
conditions cannot be met when oviduct epithelial cells
are simply plated into a petri dish or a cell culture
flask. When oviduct epithelial cells are grown in such
2-D cultures they rapidly dedifferentiate into flattened
cells without cilia or secretory activity, and also almost
completely lose the ability to bind sperm'®* or to
promote fertilization in vitro.”* Interestingly, with the
aid of cell inserts separate compartments (conform
Fig. 3) can be created since the medium in the culture
dish is separated from the medium in the cell insert,
resulting in a basolateral (petri dish) and an apical (cell
insert) compartment. OECs can be cultured to con-
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FIGURE 1. Histological images from bovine oviduct sections of (a) the isthmus (b) the ampulla (with an enlargment of a folded
area to show the organization of the cuboid to columnar epithelial cells; black arrows indicate ciliated cells). Note the thicker
stroma and muscular wall, and smaller lumen, of the isthmus (a) compared to the ampulla (b), and the higher degree of folding of
the ampulla. (c) A schematic view of the entire length of the oviduct including the different segments: the utero-tubal junction, the
isthmus, the isthmus-ampullary junction, the ampulla and the infundibulum, respectively. In this schematic view, the various
reproductive processes are listed in chronological and spatial order: (1) entry of sperm from the uterine lumen and establishment
of a sperm reservoir in the isthmus; (2) at the time of ovulation, the released COC will be captured by the infundibulum, and
biochemical changes in the oviduct milieu will stimulate sperm release form the reservoir, and migration to the site of fertilization;
(3) the COC will be transported through the ampulla and fertilized by one of the capacitated spermatozoa while, during transport,
the COC will gradually lose its cumulus mass; (4) the fertilized oocyte (zygote) will continue its development until the first cell
cleavage event; (5) the 2-cell embryo, and after successive cleavages 4, 8 and 16 cell stages are formed (the latter is termed a
morula); (6) the morula stage leaves the oviduct via the UTJ and will develop further and implant within the uterus. Black bars = 50
um, yellow bar = 10 um.

fluence on the cell insert and by removing the medium
in the insert an air-liquid interface is created that in-
duces the OECs to establish polarity comparable to
that seen in situ in the oviduct and to differentiate into
active secretory and ciliated cells,'?!4-2439.77:90.93
Interestingly, there are no reports of embryo pro-
duction in these 3-D cell insert-based OEC systems,
presumably at least in part because in the insert filters,

on which the epithelial cells grow, neither the medium
in the petri dish nor that in the cell insert can be per-
fused to mimic the endocrine changes that will in turn
influence OEC function during the peri-ovulatory
period. A number of recently introduced technologies
may help overcome these short comings: (1) advances
in three-dimensional (3-D) printing within biomedical
engineering have allowed the creation of scaffolds for

% BIOMEDICAL ENGINEERING SOCIETY™

www.bmes.org



1734

Pre-ovulation

Sperm entry

=

Oviduct Lumen

Sperm reservoir

AR

@ o®
RegE = = gog =

Micro-capillary

Estrogen

ina propria

Lam

Pre-ovulation

v

Sperm
Introduction

Apical Compartment

Sperm binding to ciliate cells

~°
o

Estrogen

Basolateral
compartment

E BIOMEDICAL ENGINEERING SOCIETY™

www.bmes.org

FERRAZ et al.

|
I Post-ovulation
I - COC entry
=) '>"°3€£‘o -
15 o Eebean
= OGS R . <
| © &, &3P QKB Fertilization First cleavages Morula exit
< S EESS 2
] ©%:
=
I ) E,%
“r-u‘ {7
I = B
=
Y V\Aq/v - A
| S0 = o
% % s e"e 4 0% %
oo e®

A
0= = | T,
o CION

Micro-capillary

Progesterone

Post-ovulation

\

COC introduction

A

Morula Collection

First cleavages

and release

Activation of secretion

OE{:; activation

Progesterone



Designing 3-Dimensional In Vitro Oviduct Culture Systems 1735

<«FIGURE 2. Schematic representation of the oviduct, includ-
ing its microenvironment before and after ovulation, and of
the ideal in vitro model of the oviduct. (a): the oviduct
epithelium consists of ciliated and non-ciliated (secretory)
cells held together in a confluent monolayer of communicat-
ing cells by gap junctions (GJ). This epithelium is attached to
the luminal side of the basal membrane (BM) which is, in turn,
connected to the stroma (containing fibroblast cells and
endothelial blood supply) at its peripheral side. Sperm can
enter the oviduct and bind to the ciliated cells. This results in
the formation of a sperm reservoir during the pre-ovulatory
period, under the influence of elevated circulating estrogen
concentrations. Ovulation coincides with a switch in endo-
crine environment in the capillary blood flow of the oviduct.
This change stimulates secretory activity in the oviduct
epithelium which triggers the release of bound sperm from
the isthmus, aids capture of the cumulus-oocyte-complex
(COC) and migration of sperm into the ampulla of the oviduct.
In the post-ovulatory period, the oviduct is under the influ-
ence of progesterone which should promote fertilization and
embryo development to the morula stage, when the embryo is
ready to leave the oviduct and enter the uterus for further
development and implantation. (b) A separation of two com-
partments with a porous filter, apical reservoir (medium inside
the insert) and basolateral reservoir (medium in petri dish), is
necessary to mimic the oviduct lumen and lamina propria of
the in vivo oviduct, respectively (conform (a)). The double
perfusion system can be used to simulate peri-ovulatory
changes in the blood supply (in the basolateral compartment)
and introduce gametes and collect embryos, as would take
place in the oviduct in vivo (a).

TABLE 1. Embryo development within the oviduct of differ-
ent species (timing is recorded as days after fertilization)

Species 2-cells 4-cells 8-cells Morula
Woman 1.5 days 2 days 3 days 4 days
Cow 1.5 days 2 days 2.5 days 3.5 days
Sow 0.75h 1.5 days 2 days 4.5 days
Mare 1 day 1.5 days 3 days 5.5 days
Ewe 1 day 1.5 days 2 days 3 days
Mouse 1.5 days 2 days 2.5 days 3 days

—p N5 ETT

apical
compartment

porous
membrane

FIGURE 3. Porous membrane cell culture inserts. In this
culture system two compartments are formed (apical and
basolateral) that are separated by a porous membrane and a
confluent layer of oviduct epithelial cells. This cell culture
insert only allows static fluid culture.

live cells, microfluidic devices, and tools for medical
imaging.®” Since the technology allows rapid printing
of prototypes directly from computer-based designs, it
is possible to quickly (hours or days) produce novel
devices on demand.®® The typical folding of the ovi-
duct epithelium (Fig. 1) could be mimicked using these
modern 3-D printing approaches. (2) More accurate
and miniaturized cell perfusion systems are being
developed using microfluidic circuits. When micro-
perfusion of both the basolateral (petri dish) and apical
(insert) compartments can be achieved, this will mim-
ick the peri-ovulatory hormone changes while simul-
taneously permitting introduction and collection of
gametes and embryos, and sampling of cell secretions.
Combining these technologies could result in the cre-
ation of a reliable in vitro oviduct model to study ga-
mete activation, gamete interaction, fertilization, early
embryo development and in vitro embryo production.
Ultimately, it would be hoped that the embryos pro-
duced would be more similar to in vivo embryos than
IVP embryos produced using current systems. In the
following sections, the differences between current
OEC culture systems are described in more detail. The
type of information that can be gathered from each
approach, and their shortcomings, are dealt with.
These are further discussed with respect to the antici-
pated requirements when designing new 3-D culture
systems for enhanced gamete maturation, fertilization
and early embryo production.

APPROACHES TO STUDY OVIDUCT
FUNCTION

In vivo and Ex Vivo

In situ research of oviduct function is difficult due to
its intra-abdominal location and tortuous morphology.
A single study has reported in vivo imaging of pre-
labeled sperm cells in the oviduct, using fibered fluo-
rescent confocal microscopy (FCM) in the ewe.® FCM
allowed individual spermatozoa to be observed with
high resolution in situ in the female genital tract, and
moreover to quantitatively track their transit through
the uterus and entrance into the oviduct.?®

Most investigations of oviduct function described as
“in vivo™ are actually ex vivo experiments, because the
organ was first removed from the animal. These studies
are also not entirely in vitro because the organ, or at
least a part of it, is intact.''® Usually, such ex vivo
intact organ experiments are hampered by a rapid loss
of cell viability, which significantly limits the duration
of any experiments (several minutes to a few hours).
Nevertheless, ex vivo organ incubations have been
widely used to study sperm migration through the
oviduct by video microscopy’’ >*193:107-108 414 epiflu-
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FIGURE 4. Fluorescent staining for nuclei (blue, Hoechst33342), actin filaments (red, phalloidin) and cilia (green, indirect
immunofluorescent labeling of acetylated alpha tubulin) in different in vitro oviduct epithelial cell (OEC) culture techniques. (a) An
equine 2-D OEC culture without secondary cilia. (b) A bovine OEC explant vesicle showing ciliated and non-ciliated cells (note; we
did not stain this specimen for phalloidin as confluent contact between the cells in this epithelial vesicle is known to remain intact).
(c) and (d) Equine OECs cultured on porous membranes for 6 weeks at an air-liquid interface; note the presence of ciliated and non-
ciliated cells in C and D, and the columnar shape of the cells with nuclei at the base and cilia at the apical aspect of the cells in D.
Equine images were provided by H.H.W.H (data unpublished) and bovine image by M.A.M.M.F. (data unpublished). Bars = 25 ym.

orescence microscopy.®’ These techniques are espe-
cially applicable to species, like the hamster and the
mouse, with a transparent wall to the ampullary region
or entire oviduct.'”’However, ex vivo approaches are
further limited in that they allow only the imaging of
physically detectable changes, such as cilia beating and
gamete/embryo movement within the oviduct. In
addition, the imaging must be done after collecting the
oviducts post-mortem or after surgical removal or by
using laparoscopy under general anesthesia, all of
which are laborious and invasive procedures.
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In Vitro

The most commonly reported method for investi-
gating oviduct function in vitro oviduct is the mono-
layer culture (2-D culture; Fig. 4a). 2-D culture of
OECs is hampered by a rapid loss of typical differen-
tiated OEC properties, such as ciliation, columnar cell
morphology, cell polarity, secretory granules and bul-
bous protrusions. 3404748 10LI04ILS The e of 2-D
culture was nevertheless a useful first step in trying to
understand the roles of the oviduct during gamete
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interaction and early embryo development. Even
though OEC morphology is not preserved during 2-D
culture, several studies demonstrated interactions
between the OECs and spermatozoa, indicating that
OECs and/or their secretions could influence sperm
function.?3%81112 Additionally, there is evidence of
beneficial effects of OECs in 2-D culture on the early
embryo via OEC-derived embryotrophic growth fac-
tors,''* a decreased oxygen tension and avoidance of
the block to embryonic genome activation.”®7-84

Another in vitro model used to study gamete inter-
action and embryo development is the oviduct explants
(Fig. 4b). Oviduct explants are aggregates of epithelial
and stromal cells that organize to form motile, everted
vesicles with active cilia on the outer surface.**-¢%5¢
OECs in oviduct explants are able to maintain their
differentiated morphology as characterized by sec-
ondary cilia, numerous mitochondria and rough
endoplasmic reticulum,®® and expression of oviductal
epithelial cell markers such as oviductal glycoprotein 1
(OVGPI1), glutathione peroxidase 4 (GPX4) and
forkhead box protein 1 (FOXJ1).”! One drawback at
least for bovine material is the limited viability of the
explants that, within hours to days, lose their differ-
entiated state with the epithelial cells becoming flat and
non-ciliated which appears not to be such a problem
for equine material.®**® Another disadvantage is the
fact that the system doesn’t mimick the air-liquid
interface as it happens in vivo needing a large volume
of medium during culture, therefore not mimicking
oviductal conditions properly.

Three-dimensional culture using inserts with porous
membranes and air-liquid interfaces (Figs. 3¢ and 3d)
have been developed in recent years. This technique
allows cultured OECs to retain their polarized
columnar epithelial cell characteristics, and has been
applied successfully to OECs from various mammalian
species.14’16’34"‘0’92’94 Within the inserts, seeded OECs
first form a confluent layer on the porous membrane.
Subsequently, the medium from the apical aspect is
removed to establish an air-liquid interface. As a re-
sult, the cells receive metabolites only from the basal
surface, a trick that induces apical-basolateral polarity.
Moreover, the OECs start to re-differentiate and begin
to express secondary cilia on their apical surface from
2-3 weeks post-confluence and are able to maintain the
polarized state during long term culture (for at least 6
more weeks). The resulting polarized OECs are able to
bind introduced sperm'****? and secrete factors into
medium film of the insert that triggers the release of
previously bound sperm.*® Moreover, the OECs are
responsive to endocrine stimulation, as demonstrated
by an increase in the expression of prostaglandin
receptor (PGR), estrogen receptor 1 (ESR1) and

epithelial markers such as mucin 16 (MUC16), OVGP1
and heat shock protein 90 beta member 1 (HSB90B1),
when exposed to estrogens, and a decrease in the same
markers when stimulated by progesterone.'® Despite
all the potential advantages of 3-D OEC -cultures,
current well inserts do not permit live imaging or
perfusion studies. Moreover, theses 3-D OEC systems
lack the tubular folded architecture of the oviduct.
These shortcomings are likely to limit their use to study
gamete interactions and early embryo development in
any detail.

Organoid Models

Two different methods for developing oviduct or-
ganoids have been described**->%33 and, in both, it was
possible to maintain differentiated OECs within a
folded tubular structure reminiscent of the in vivo
oviduct: (1) In the first method, small pieces of oviduct
were cultured inside an alginate matrix. These orga-
noids were maintained in culture for 7 days and ex-
pressed normal oviductal epithelial cell markers, such
as OVGPI1, paired box 8 (PAXS), E-cadherin and
cytokeratin; they also preserved a columnar epithelium
with a mix of ciliated and non-ciliated cells.”* (2) The
second method for organoid culture was based on the
existence of adult stem cells in the distal part of the
oviduct.*#8:89120 Kegsler and collaborators® isolated
these adult stem cells and cultured them in a Matrigel
matrix supplemented with a cocktail of growth factors,
including epidermal growth factor (EGF), fibroblast
growth factor 10 (FGF-10) and transforming growth
factor beta (TGF-p). The cells were able to proliferate
and form spheroids, with folds appearing during the
second week of culture. The resulting organoids also
presented highly polarized columnar epithelial cells
orientated with the apical side into the sphere’s lumen.
The mature organoids presented both PAX-8 positive
secretory cells and PAX-8 negative, but acetylated
tubulin positive, ciliated cells and were able to main-
tain this morphology during long term culture (up to
8 months). Demonstrating a fully differentiated
epithelium, with both ciliated and secretory cells, that
can communicate directly (by the interaction between
the sperm cell and the cilia, the sperm reservoir) or
indirectly (by secreting factors into its Iumen) with
gametes and embryos. Although organoid culture can
preserve oviduct morphology and OEC polarization, it
has limitations in that the luminal compartment of the
organoid is only accessible for gametes or embryos via
micro-puncturing. Thus, expensive micromanipulators
are required and technical expertise must be developed
to further study gamete activation, fertilization and

embryo development.
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FIGURE 5. The 3-D printed oviduct-on-a-chip cultures. Also in this culture systems two compartments are formed (apical and
basolateral) that are separated by a porous membrane and a confluent layer of oviduct epithelial cells. Note the inlets and outlets
for independent perfusion of the apical and basolateral compartments, and the folded U-shape structure, that are introduced into

the 3-D printed oviduct-on-a-chip.

Microfluidics

Research into microfluidics and reproductive events
have increased in the past years, and relatively new
papers on microfluidics and gamete development have
been  published.152021:24:31.41.42,52.56.62.78.99. 111,121,124
In most cases, these papers relate to sperm migration,
and none have included OECs in the model. Interest-
ingly, microfluidics devices have been designed to
study sperm rheotaxis, movement, thermotaxis and
chemotaxis, thereby mimicking physical and chemical
factors that sperm encounter during their passage
through the female tract (for a detailed description see
Suarez and Wu'%). Zhang and collaborators'** in-
cluded oviductal fluid to help select sperm cells via a
microfluidics system. Using this combination, they
were able to observe sperm migration and select sperm
with better motility and DNA integrity, concluding
that it was a useful tool for selecting sperm for IVF
procedures. It was also demonstrated that sperm rely
more on the channel geometry than chemotaxis (i.e.
sperm cells preferentially swim along boundaries and,
when two boundaries intersect, the cells will follow the
corner, swimming along one-dimensional folds®*). Al-
though the folding of the oviduct is more complex than
the walls of a fabricated microchannel, these results
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suggest that the 3-D architecture of the compartment
in which sperm migrate is important and that the
topography of the oviduct wall may help guide the
spermatozoa to the oocyte in vivo.**

Angione and collaborators* engineered a microflu-
idic device that allows precise and flexible handling of
individual oocytes and embryos. Their system allowed
perfusion and live imaging of the introduced oocytes or
developing embryos that could be used for both clini-
cal and research IVF purposes. Nevertheless, most
current embryo culture systems are static,''! although
interest in microfluidic devices for embryo culture
systems has increased in recent years. Potential benefits
of a dynamic (microfluidic) embryo culture system are
continuous removal of harmful products and replen-
ishment of substrates, disruption of unwanted envi-
ronmental gradients, physical stimulation and
activation of signaling pathways.” Mechanical stim-
ulation of bovine embryos in a microfluidic device
increased the proportion of 2-cell embryos developing
into 8-cell embryos, when a constrictive channel was
used (increasing from 23.9 to 56.7%).>> Mechanical
shear stresses imposed should not however be too
harsh because embryos degenerate at values above
1.2dyn/cm.>'*! A “womb-on-a-chip” was designed to

111
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establish a dynamic co-culture between endometrial
cells and the embryo.”® This system allows investiga-
tion of the interaction between the embryo and secre-
tions from the endometrial cells, moreover the co-
culture resulted in improved murine blastocyst rates.’®
Nevertheless, a similar approach using microfluidics
combined with OECs to enhance embryo production
has not yet been reported.

3-D Printing

Micro-engineered 3-D cell cultures, in which cells
are maintained in micro-3-D fabricated devices that
mimic tissue- and organ-specific micro-architecture,*
have recently attracted attention. These approaches
promote levels of cell differentiation and polarization
that are not readily achieved by normal 2-D cultures.
Nowadays, 3-D printing offers a fast prototyping
process technology, such that researchers can design
and print devices in a short period of time.** Combined
with microfluidics, these techniques can lead to rapid
creation and refinement of organs-on-a-chip to study
human and animal organ-specific physiology and may,
thereby, offer better in vitro organ models for research
into aspects of physiology, disease and toxicology.*

3-D printing has been used to fabricate various tis-
sues including bone, cartilage, skin, heart tissue, and
vascular tubes.®® To our surprise, we were the first to
use 3-D printing technology in combination with
microfluidics for assisted reproduction, when devel-
oping an oviduct-on-a-chip model.”” We designed and
3-D printed, using the stereolithography technique, a
tubular like insert in which OECs could be cultured at
an air-liquid interface and acquire and maintain
epithelial polarization and differentiated cell state
during long-term culture. The 3-D culture and polar-
ization of OECs in our 3-D printed inserts resembles
that of the cell insert approach with porous membranes
(Fig. 3). However with the new 3-D OEC system, live
imaging is possible, sperm can bind to the apical side of
the OEC and be released. Furthermore, the system
promotes normal fertilization and is easy to manipu-
late (i.e. for adding or removing gametes, embryos and
cell secretions). The system also allows independent
double perfusion (i.e. of the apical and basolateral
medium compartments independently; Fig. 5) while
maintaining a tubular morphology that could be made
more complex to better mimic the oviduct. Further-
more the cells can keep a polarized state for long term
cultures (at least six weeks), without loosing ciliation
and ability to promote sperm activation (Ferraz et al.,
unpublished results).

Therefore, the oviduct-on-a-chip is a step forward for
mimicking the interaction between gametes and em-
bryos and the maternal oviductal environment. This

will yield a better and more accessible bio-mimicking
tool to study oviduct physiology and improve under-
standing of reproductive health and disease, as well as
for screening toxicological compounds and novel
drugs.

IMPROVEMENTS IN OVIDUCT MODELLING
Vi4 BIOENGINEERING

Better 3-D cell culture systems to bio-mimic the
oviduct can help to improve our understanding of
in vivo processes that take place in this organ, and
should help to improve the efficacy of assisted repro-
ductive technologies (ARTs). The oviduct has an
essential function in guiding and regulating sperm
activation, oocyte maturation, fertilization and early
embryo development.?®38:31:689L114 - A petter under-
standing of how the oviduct orchestrates these pro-
cesses could aid in the development of better sperm
storage and cryopreservation techniques.”>'% More-
over, improved oocyte maturation and IVP results,
including a reduction in polyspermic fertilization
and parthenogenetic activation, can also be
achieved.'" 18436880 Apother aspect of improved IVP
embryo quality could be survival after cryopreserva-
tion, reduced lipid content and avoidance of epigenetic
changes that can impair embryo development or off-
spring health,>79-222746.67.87.97.98.100.113 " nventional
in vitro fertilization (IVF) and embryo production has
species specific problems. For instance, equine oocytes
cannot be fertilized in vitro unless intracytoplasmic
sperm injection (ICSI) is used, which requires expen-
sive and dedicated technology and is labour inten-
sive.»0>192 For cattle, it is known that /VP embryos
are of lower quality and have reduced cryosurvival
compared to embryos flushed from the uterus.®>!1%:11°
Both examples, clearly indicate that the oviductal
environment is more conducive to producing good
quality embryos than any in vitro system tested to date.
Future studies will reveal whether or not the oviduct-
on-a-chip approach will offer a superior oviduct-like
environment for improved embryo production. A
working oviduct-on-a-chip system would also offer a
novel approach to reproductive toxicology testing or
pharmaceutical agent screening, and for male and fe-
male infertility testing.

As we move from 2-D cultures to micro-engineered
organs-on-a-chip, new challenges will undoubtedly
arise. For instance, optimizing biological (cell) and
non-biological (materials) culture requirements, opti-
mizing/allowing cell polarization, differentiation and
preventing possible toxic effects of the materials used.
A multidisciplinary approach will be necessary to solve
the likely challenges and maximally exploit the new
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opportunities the organ-on-a-chip technique will offer.
In the more distant future, more complex bioengi-
neered tissues (such as multilayered oviduct, follicles
and endometrial cell cultures) could be combined to
create a female-reproductive-tract-on-a-chip. How-
ever, at present we believe that the oviduct-on-a-chip
technology is closer to being ready, and has more
obvious immediate applications in the field of ART.
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