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Abstract—This paper compares the frontal plane hip func-
tion of subject’s known to have had hip arthroplasty via
either the lateral (LA) or posterior (PA) surgical approaches
and a group of subjects associated with no pathology (NP).
This is investigated through the Trendelenburg test using 3D
motion analysis and classification. Here, a recent develop-
ment on the Classification and Ranking Belief Simplex
(CaRBS) technique, able to undertake n-state classification,
so termed NCaRBS is employed. The relationship between
post-operative hip function measured during a Trendelen-
burg Test using three patient characteristics (pelvic obliquity,
frontal plane hip moment and frontal plane hip power) of
LA, PA and NP subjects are modelled together. Using these
characteristics, the classification accuracy was 93.75% for
NP, 57.14% for LA, 38.46% for PA. There was a clear
distinction between NP and post-surgical function. 3/6 LA
subjects and 6/8 PA subjects were misclassified as having NP
function, implying that greater function is restored following
the PA to surgery. NCaRBS achieved a higher accuracy
(65.116%) than through a linear discriminant analysis
(48.837%). A Neural Network with two-nodes achieved the
same accuracy (65.116%) and as expected was further
improved with three-nodes (69.767%). A valuable benefit
to the employment of the NCaRBS technique is the graphical
exposition of the contribution of patient characteristics to the
classification analysis.

Keywords—N-state classification, Dempster–Shafer theory

(DST) of evidence, Ignorance, Pignistic probability, Total

hip arthroplasty.

INTRODUCTION

The considered problem throughout this paper is
total hip arthroplasty (THA), and is concerned with

identifying differences in post-operative biomechanical
function following two common surgical approaches
to THA; namely the McFarland–Osborne—direct
Lateral Approach (LA)23 and the Moore—southern
exposure posterior approach (PA).24 During both
these procedures the hip joint is replaced with pros-
thetic components; however the joint can be accessed
from different directions. Each surgical approach to
THA compromises different muscles and passive con-
straints surrounding the hip joint. It is important to
provide biomechanical feedback in vivo on different
surgical approaches and identify any changes in frontal
plane function associated with them.18,32

This paper also exposits a development on the binary
‘2-state’ classification, classification and ranking belief
simplex (CaRBS),4,5,7 which is able to undertake n-state
classification, termed n-state classification and ranking
belief simplex (NCaRBS). N-state classification is very
desirable in biomechanics research where two or more
conditions or treatment groups are being considered.
CaRBS and NCaRBS, whose operations are based on
the Dempster–Shafer theory of evidence,10,29 offer an
approach to object classification modelling based on
uncertain or evidential reasoning.9,26 Early applications
of the CaRBS technique include corporate failure and
bank rating prediction,4,5 osteoarthritic knee ana-
lysis,7,19 THA outcome from gait,32 bird gender classi-
fication6 and student performance analysis.20

The development of NCaRBS from CaRBS, is an
important step, with its exposition describing a much
more general classification technique than previously
existing with CaRBS. As the technical details will
show, the progression from CaRBS to NCaRBS is
homogeneous, with the same process for the combi-
nation of evidence (using Dempster’s combination
rule) used throughout a NCaRBS analysis. An
important continuation from CaRBS, is that with
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NCaRBS there remains the clear opportunity to visu-
alise the contribution of characteristics, in a variety
of ways, throughout a NCaRBS analysis. This is
extremely useful when assessing biomechanical mea-
sures, as it provides insight into how patient charac-
teristics contribute to an overall classification of
function for each treatment group.

With respect to THA, NCaRBS is used here to
characterise biomechanical function from a one leg
stance, commonly termed the Trendelenburg test,18 to
discern between subjects associated with the defined
surgery types (the considered states in terms of
NCaRBS), LA, PA and those with no-pathology (NP)
(to simplify writing style NP is here considered a sur-
gery type). The simultaneous analysis of these three
surgery types provides effective feedback on NP and
post-operative hip function, both in terms of discern-
ing between the surgical approaches LA and PA, and
each of them against NP.

This paper describes the THA problem, the
NCaRBS technique and its application in relation to
the THA problem, including emphasis on the eluci-
dation of the contribution of Trendelenburg stance
characteristics in the describing evidence they offer in
classifying subjects to the three surgery types.

To offer a level of comparison with the NCaRBS
results, two techniques previously employed in studies
involving biomechanical data were also considered,
namely linear discriminant analysis (LDA)21,28 and
neural networks (NNs).1,3,16 Comparisons were made
with respect to the level of correct classification when
using LDA, and level of correct classification and fit in
the case of NNs.

Total Hip Arthroplasty and Trendelenburg Test

THA is a procedure to remove the diseased parts of
an osteoarthritic hip joint and replace them with
prosthetic articulating components. The hip joint is
commonly accessed through incisions either lateral or
posterior to the joint. The primary cause of gait
disturbances following THA is the disruption of the
abductor structures. The abductors play a crucial role
during the single stance phase in gait by controlling
hip abduction and pelvic obliquity. Each surgical
approach, lateral (LA) or posterior (PA), compro-
mises different structures around the hip
joint, affecting frontal plane function to different
extents.

With respect to PA, the abductor mechanism is
preserved and the posterior joint capsule and external
rotator muscle group are compromised, affecting pos-
terior and lateral stability. In contrast, the LA pre-
serves the posterior capsule and part of the insertion of
the gluteus medius into the greater trochanter. If

migration of the abductor tendon occurs during heal-
ing, this introduces a change in the mechanical ability
of the abductors affecting frontal plane function.
Compromising the abductor muscle group can dimin-
ish the mechanical ability of the abductor mechanism
in controlling the hip joint function and pelvis orien-
tation in the frontal plane.2,12 In a study of abductor
strength, the PA was found to lead to more normal hip
abductor muscle strength than following an antero-
lateral approach.17 There is currently no consensus on
the approach to use to provide optimum patient out-
come and thus THA outcome warrants further inves-
tigation.

The Trendelenburg test,18 which is a standard clin-
ical assessment to determine the integrity of hip
abductor function, is an examination of a subject’s
posture whilst they stand on one leg. The action of
changing from a two-leg to a single-leg stance shifts the
line of gravity of the superincumbent body, producing
moments about the hip that must be balanced by a
moment arising from the force of the abductor mus-
cles. If the pelvis on the unsupported side is raised then
the Trendelenburg test is negative. In the case of a
positive Trendelenburg test, the pelvis on the unsup-
ported side falls below the horizontal position indi-
cating abductor weakness. This action moves the line
of gravity towards the supporting hip, reducing the
moment lever arm and consequently the moment that
must be counteracted by the abductors and other
passive structures to maintain stability. Therefore three
measureable characteristics are useful to quantify
during this test, pelvic obliquity which is the angle of
the pelvis in the frontal plane, fontal plane hip moment
and frontal plane hip power.

The Trendelenburg test is used routinely in a clinic
to assess hip strength and stability and is the focus of
this study. The clinician scores this test based on the
patient’s ability to perform the test and retain pelvic
elevation over time. Baker and Bitounis,2 using a
Trendelenburg test to assess abductor strength,
reported abductor weakness following the LA indi-
cated by a higher incidence of positive Trendelenburg
tests18 (where the unsupported pelvis either remained
horizontal or dropped below the horizontal position)
as compared to following the PA, whereas Downing
et al.,13 in comparing the LA and PA, did not find
significant differences in abductor strength. Both
studies used electromyography for their investigation.
In a study using three dimensional (3D) motion anal-
yses of hip function during a Trendelenburg test,32 hip
power and moment was on average greatest for NP
followed by PA and then LA, with statistical differ-
ences found between the NP and PA cohorts. No
significant differences in pelvis elevation were found.
This study further investigates whether functional
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differences can be detected during a Trendelenburg test
that are associated with LA, PA and NP, using 3D
motion analysis data from Whatling et al.32 and the
NCaRBS technique. This is the first time that the LA,
PA and NP cohorts have been classified using
NCaRBS and data from the clinical Trendelenburg test
only.

Background to the NCaRBS Technique

The NCaRBS, is a non-parametric evidence-based
technique, able to classify objects to a number of states
(rather than just two states when using CaRBS4,5,7),
using the evidence from a series of characteristics
describing them. The description of this development
(NCaRBS) will follow the description of the CaRBS
technique exposited in previous papers by Beynon.4,5,7

Referral to these studies will aid the reader in the
understanding of the role played by the Dempster–
Shafer theory (DST) of evidence,10,29 a nascent meth-
odology, underpinning CaRBS (and NCaRBS), which
has its own unique formulisation. With DST, the basis
of its operations is formulated around the formation of
bodies of evidence (BOEs), made up of mass values
representing the levels of exact belief (mass values) in
associated focal elements. Their (BOE) construction,
subsequent combination and representation are at the
heart of the operations in the NCaRBS, technique.

The general remit of the NCaRBS development of
CaRBS is to model the association of nO objects
ðo1; o2; . . . ; onOÞ, to nD states ðd1; d2; . . . ; dnDÞ, based on
their description by nC characteristics ðc1; c2; . . . ; cnCÞ.
With respect to DST, throughout the analysis the
considered frame of discernment (FoD) H is the set of
nD states, namely H ¼ fd1; d2; . . . ; dnDg. The charac-
teristic-based evidence in the classification process is
expressed through the construction of constituent
BOEs from an object’s characteristic values vi,j (ith
object, jth characteristic), to discern between the
object’s association to a state (say {dh}), its com-
plement ðnot dh � :dhf g � fd1; d2; . . . ; dh�1; dhþ1; . . . ;
dnDgÞ and a level of concomitant ignorance
( dh; :dhf g � H—evidence not able to be discerned
between dh and �dh). The construction of a constituent
BOE, defined mi,j,h(Æ) (ith object, jth characteristic, hth
state), discerning between {dh}, {�dh} and {dh, �dh},
can be best described by reference to Fig. 1.

In Fig. 1, stage (a) shows the transformation of a
characteristic value vi,j into a confidence value cfj,h(vi,j)
over the range 0–1, here using a sigmoid function,
cfj,h(vi,j) = 1/(1 + exp(2kj,h(vi,j 2 hj,h)), with control
parameters kj,h and hj,h. Stage (b) transforms a cfj,h(vi,j)
into a constituent BOE mi,j,h(Æ), made up of the three
mass values, mi,j,h({dh}), mi,j,h({�dh}) and mi,j,h({dh,
�dh}), defined by (see Beynon5 and Safranek et al.27):

mi;j;h fdhgð Þ ¼ max 0;
Bj;h

1� Aj;h
cfj;h vi;j
� �

� Aj;hBj;h

1� Aj;h

� �
;

mi;j;h f:dhgð Þ ¼ max 0;
�Bj;h

1� Aj;h
cfj;h vi;j
� �

þ Bj;h

� �
;

and mi;j;h fdh;:dhgð Þ ¼ 1�mi;j;h fdhgð Þ �mi;j;h f:dhgð Þ;

where Aj,h and Bj,h are two further control parameters.
Stage (c) shows a BOE mi,j,h(Æ); mi,j,h({dh}) = vi,j,h,1,
mi,j,h({�dh}) = vi,j,h,2 and mi,j,h({dh, �dh}) = vi,j,h,3, can
be represented as a simplex coordinate (pi,j,h,v) in a
simplex plot (equilateral triangle). For a simplex plot
with unit side, with vertices (0, 0), (1, 0) and
(0:5; 0:5

ffiffiffi
3
p

), the pj,i,v simplex coordinate (xp, yp) is
given by xp = vj,i,1 + 0.5vj,i,3 and yp ¼ 0:5

ffiffiffi
3
p

vj;i;3:.
Based on the produced constituent BOEs, mi,j,h(Æ)

j = 1,…,nC and h = 1,…,nD, describing the evidence
from the individual object oi characteristics, Demp-
ster’s rule of combination is used to combine them to
allow a final association of each object to each of the
nD states. There are a number of ways of combining
constituent BOEs within NCaRBS (offering different
inference to the evidence from the characteristics they
are combining). In general, the combination of two
constituent BOEs, mi;j1;hð�Þ and mi;j2;hð�Þ, for the same
object (oi), from two characteristics (cj,1 and cj,2)
and single state (dh), is defined ðmi;j1;h �mi;j2;hÞð�Þ, and
results in a combined BOE whose three mass values
(and focal elements) are given by (see Dempster10;
Shafer29):

ðmi;j1;h �mi;j2;hÞð�Þ ¼
0 x ¼ ;P
s1\s2¼x

mi;j1 ;h
s1ð Þmi;j2 ;h

s2ð Þ

1�
P

s1\s2¼;
mi;j1 ;h

s1ð Þmi;j2 ;h
s2ð Þ

x ¼ ;

8
><

>:

where s1 and s2 are focal elements from the constituent
BOEs, mi;j1;hð�Þ and mi;j2;hð�Þ, respectively. An example
of the combination of the BOEs, mi,1,h(Æ) and mi,2,h(Æ),
and their combination to the combined BOE mi,C,h(Æ) is
illustrated graphically based on their simplex coordi-
nate positions in the simplex plot in Fig. 1c.

This combination process can then be performed
iteratively to combine all the characteristic-based
evidence, namely the constituent BOEs mi,j,h(Æ)
j = 1,…,nC, describing an object oi to a single state dh,
producing a state BOE, defined mi,2,h(Æ) (the ‘dashed
line’ subscript shows the index not kept constant dur-
ing the combination of the respective constituent
BOEs). Alternatively, through the combination of the
constituent BOEs mi,j,h(Æ) h = 1,…,nD, for a single
object oi and characteristic cj, the discernment over the
different states produces a characteristic BOE, defined
mi,j,2(Æ).
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The respective state BOEs (or characteristic BOEs)
can be combined in a similar way to the combination
of the constituent BOEs to bring together the relevant
evidence. Moreover, for each object oi, an object BOE
is evaluated, defined mi,2,2(Æ) (reduced to mi(Æ) for
brevity), by either combining the state BOEs mi,2,h(Æ)
h = 1,…,nD, or the characteristic BOEs mi,j,2(Æ)
j = 1,…,nC, again using Dempster’s rule of combina-
tion. It is the object BOEs mi(Æ) i = 1,…,nO, that con-
tain the evidence towards the predicted associations of
the nO objects to the nD states.

The object BOEs (and other BOEs) are made up of
mass values associated with focal elements, which are
the power set of the FoD Hð¼ fd1; d2; . . . ; dnDgÞ minus
the empty set. As such, the evidence in an object BOE
cannot directly collate the associations of an object to
the individual nD states considered. To construct the
values depicting the levels of association of objects to
the individual states d1; d2; . . . ; dnD, the pignistic prob-
ability function—BetPi(Æ) is utilised.11 For an object
oi, using the object BOE mi(Æ), the BetPi dhð Þ ¼P

s1�fd1;d2;...g
sj\fdkg6¼;

mi sj
� �

= sj
�� �� value represents the level of pig-

nistic probability associating that object with the state
dh. It follows, the series of pignistic probability values

BetPi d1ð Þ;BetPi d2ð Þ; . . . ;BetPiðdnDÞ, dictates the pre-
dicted associations of the object oi to the considered
states d1; d2; . . . ; dnD, respectively.

The effectiveness of the NCaRBS technique, in
terms of modelling objects’ known associations to a
series of states, based on their associated characteris-
tics, is governed by the values assigned to the incum-
bent control parameters kj,h, hj,h, Aj,h and Bj,h,
j = 1,…,nC and h = 1,…,nD (see Fig. 1 for a descrip-
tion of their roles). This necessary configuration, that
is, assignment of values to the control parameters, is
considered as a constrained optimisation problem, and
solved here using Trigonometric Differential Evolution
(TDE).14

In summary, TDE is an evolutionary algorithm that
iteratively generates improved solutions to an optimi-
zation problem through the marginal changes in pre-
vious solutions with the differences in pairs of other
previous solutions. The necessary operating parame-
ters used throughout this paper with TDE, were (ibid.):
amplification control F = 0.99, crossover constant
CR = 0.85, trigonometric mutation probability Mt =

0.05 and number of parameter vectors NP = 200.
These values are regularly employed in analyses
employing TDE (and the original differential evolution),

FIGURE 1. Stages within the NCaRBS technique for the construction and representation of a constituent BOE mi,j,h(Æ) (Concerned
with ith object, jth characteristic, hth state), from characteristic value vi,j.
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as suggested in Fan et al.15 For further reference, see
Fan and Lampinen14 and Storn and Price,31 which both
include sections describing the sensitivity of the use of
different operating parameter values.

When the associations of a number of objects to the
states, d1; d2; . . . ; dnD, are known, say for the object
oi, through the series of association values ai d1ð Þ;
ai d2ð Þ; . . . ; aiðdnDÞ, (where

PnD
h¼1 ai dhð Þ ¼ 1), the effec-

tiveness of a configured NCaRBS system can be mea-
sured by a defined objective function (OBNCaRBS).
Using the well-known Euclidean distance (fit) between
each object’s actual ½ai d1ð Þ; ai d2ð Þ; . . . ; aiðdnDÞ� vector
of association values and pignistic probability derived
predicted values’ vector ½BetPi d1ð Þ;BetPi d2ð Þ; . . . ;
BetPiðdnDÞ�, the OBNCaRBS defined is given as:

in the limit, since
PnD

h¼1 BetPi dhð Þ ¼ 1 and
PnD

h¼1
ai dhð Þ ¼ 1, then 0 £ OBNCaRBS £ 1. Clearly the inten-
tion in any NCaRBS analysis is to minimise the
value of OBNCaRBS, so as to achieve the best possible
model fit between an object’s actual vector of associ-
ation values and pignistic probability derived predicted
values.

MATERIALS AND METHODS

In this paper, biomechanical measures from Tren-
delenburg tests (single-leg stance) were considered for,
13 PA subjects, 14 LA subjects and 16 hips with no
pathology (NP), forming a control group.32 Quanti-
fying pelvic position during Trendelenburg tests using
motion analysis allows subtle differences to be deter-
mined for the hip in a static situation,32 where signifi-
cant difference in fontal plane hip moment at 30 s into
the test was detected between LA and PA cohorts.
During the motion analysis (see Whatling et al.32),
each subject was asked to step on to a force plate, to
raise and flex the un-supporting leg, holding this po-
sition and to returning to the initial position when
instructed. In cases of minimal abductor weakness,

there may be a delayed positive Trendelenburg test.
For this reason, the Trendelenburg test was performed
for 1 min on each leg to introduce an element of fati-
gue into the abductor muscles.

The three Trendelenburg stance characteristics ana-
lysed using NCaRBS were C1: pelvic obliquity (angle of
unsupported side measured above the horizontal posi-
tion); C2: frontal plane moment; and C3: frontal plane
power acting at the hip, all measured at 30 s into single-
leg stance. These measures were selected to identify any
changes in frontal plane function (instability andmuscle
weakness) associated with the surgical approaches,
which access the joint either laterally or posteriorly.

The following sections outline the analysis
undertaken which is later reported in ‘‘Results’’ section.

Firstly the configuration of the NCaRBS model (taken
from description of NCaRBS technique in ‘‘Back-
ground to the NCaRBS technique’’ section), including
the level of model fit achieved when discerning between
LA, PA and NP subjects are described. Then the con-
tribution of the considered characteristics to discerning
between LA, PA and NP subjects in the configured
NCaRBS model is explained. Finally, details of the
comparison of this technique with two other commonly
used techniques; LDA and NN are given.

NCaRBS Configuration and Model Fit

From ‘‘Background to the NCaRBS technique’’
section, each subject’s classification to either LA, PA or
NP can be represented in vector form, namely when
known to be associated with LA (then [1, 0, 0]), PA ([0,
1, 0]) and NP ([0, 0, 1]), with the vector for subject oi
given by [ai(LA), ai(PA), ai(NP)]. Similarly, the pre-
dicted association values, in vector form for a subject oi,
are represented by [BetPi(LA), BetPi(PA), BetPi(NP)].
It follows, for the THA problem, the objective function
OBNCaRBS employed is of the form (described in
‘‘Background to the NCaRBS technique’’ section):

OBNCaRBS ¼ 1

nDnO

Xno

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BetPi d1ð Þ � ai d1ð Þð Þ2þ BetPi d2ð Þ � ai d2ð Þð Þ2þ � � � þ BetPi dnDð Þ � ai dnDð Þð Þ2

q
;

OBNCaRBS ¼ 1

3nO

Xno

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BetPi LAð Þ � ai LAð Þð Þ2þ BetPi PAð Þ � ai PAð Þð Þ2þ BetPi NPð Þ � ai NPð Þð Þ2

q
;
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used to enable the evaluation of the required control
parameters, kj,h, hj,h, Aj,h and Bj,h.

Employing the TDE algorithm for constrained
optimisation (using its own operating parameters given
earlier), with the constraints on the control parameters
in NCaRBS (kj,h, hj,h, Aj,h and Bj,h), set as; 25 £
kj,h £ 5, 23 £ hj,h £ 3, 0 £ Aj,h < 1 and 0 £ Bj,h < 0.6
(based on using a standardised data set, see Beynon),4

the objective function OBNCaRBS was optimised (min-
imised) to the value OBNCaRBS = 0.582 (this was the
best OBNCaRBS from five runs undertaken using TDE,
see Beynon et al.8 for further discussion of the impact
of re-sampling using CaRBS techniques, see also
Storn30 for brief discussion of ability of DE techniques
to attain global optimisation). Using the evaluated
control parameters, kj,h, hj,h, Aj,h and Bj,h, all the con-
stituent BOEs mi,j,h(Æ) can be constructed, and com-
bined to give the necessary object BOEs mi(Æ), from
which the pignistic probability derived predicted values
BetPi(LA), BetPi(PA) and BetPi(NP) are found.

With each triplet of pignistic probability derived
predicted values BetPi(LA), BetPi(PA) and BetPi(NP)
summing to one for each subject, they can be represented
as a simplex coordinate in a simplex plot (as in Fig. 1c).

Contribution of a Characteristic in NCaRBS Model

The contribution described here uses the general
constituent BOEs found from the configuration of a
NCaRBS system. From the description of the
NCaRBS technique, a constituent BOE mi,j,h(Æ) asso-
ciated with a characteristic value vi,j (ith subject, jth
characteristic) contains the mass values offering belief
based evidence towards a subject’s association to a
state (say {dh}—one of the surgery types LA, PA and
NP), its complement ({�dh}—not dh) and also a level
of concomitant ignorance ({dh, �dh}—evidence not
able to be discerned between dh and �dh).

From the configured NCaRBS system (using the
control parameters found), and with the merging of the
structural content of parts (a) and (b) in Fig. 1, a series
of graphs can be presented graphically showing the
contribution contained in the general constituent
BOEs formed. That is, for a constituent BOE mi,j,h(Æ),
the evaluated control parameters kj,h, hj,h, Aj,h and Bj,h

define a unique graphical representation of the evi-
dence it contains depending on respective characteris-
tic value (combing the graph parts in Figs. 1a and 1b)
which are dependent on the control parameters kj,h,
hj,h, Aj,h and Bj,h—see later in Figs. 3 and 4).

Comparison with LDA and NNs

The level of correct classification from NCaRBS
was compared with two well-known machine learning

multi-class classification techniques, namely LDA and
NNs. Comparisons to both LDA and NNs were made
with respect to the level of correct classification. The
level of fit was also compared between NN (with dif-
ferent numbers of hidden nodes considered) and
NCaRBS. It was not possible to compare the contri-
bution of each variable since this is a unique feature to
NCaRBS.

RESULTS

NCaRBS Configuration and Model Fit

Figure 2 shows the predicted associations of sub-
jects to the three surgery types, LA, PA and NP, using
the triplets of pignistic probability values, in vector
form, [BetPi(LA), BetPi(PA), BetPi(NP)]. The three
simplex plots presented show subjects’ predicted asso-
ciations in the form of their respective simplex coor-
dinates, grouped by their known actual surgery type
(LA, PA or NP), with the grey shaded regions show-
ing, for an object, where there would be predominance
to the correct surgery type (for example a subject
known to be associated with surgery type LA would be
correctly classified if their prediction value was in the
bottom left corner of the simplex plot).

To measure the appropriateness of fit of the pre-
dicted association values, the number of simplex coor-
dinates (predicted associations of subjects) that are
correctly placed in the appropriate shaded region in the
simplex plot in Fig. 2 are: 8 out of 14 LA (57.143%), 5
out of 13 PA (38.462%) and 15 out of 16 NP
(93.750%). In total there are 28 out of 43 (65.116%)
correctly classified subjects in the concomitant grey
shaded regions. This level of fit needs to be taken in
context, with only three characteristics describing each
subject, features of the considered Trendelenburg test.
Further, the intentions of the surgical types, LA and
PA, are to give the subjects the possibility of NP,
becoming like NP in all respects, so since this analysis is
post-surgical the level of fit (classification accuracy) is
in regard to how possible it was to still see differences
amongst the different subject types.

Contribution of a Characteristic in NCaRBS Model

Beyond the fit results, the NCaRBS technique is
able to offer a series of pertinent graphs elucidating the
contribution of the individual characteristics in the
predicted associations of the 43 subjects to the three
surgery types, LA, PA and NP. Following the previous
paragraph, this contribution should be considered in
terms of where difference between the surgery types
exists, based on the Trendelenburg test, and where
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these differences are noted across the three subject
characteristics (C1, C2 and C3). Two sets of graphs are
next described, which offer alternative forms of
understanding the contribution of the characteristics.

The details presented in Fig. 3 show the contribu-
tion contained in the general constituent BOEs and are
best understood by initially describing a single graph,
in this case Fig. 3a. In Fig. 3a, the constituent BOE

FIGURE 2. Predicted surgical type associations of subjects by dominant association, who’s actual associations are (a) LA, (b) PA
and (c) NP.

FIGURE 3. NCaRBS induced graphical representation of the mass values making up the constituent BOEs, mi,C?,LA(Æ), mi,C?,PA(Æ)
and mi,C?,NP(Æ), relating to C1 (pelvic obliquity, degrees), C2 (frontal moment, Nm/kg) and C3 (frontal power, W/kg) measured at 30 s
into single-leg stance, and the evidence towards the surgery types, LA, PA, and NP and against ({�LA} 5 {PA, NP}, {�PA} 5 {LA,
NP} and {�NP} 5 {LA, PA}) and ignorance {LA, PA, NP}.
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mi,C1,LA(Æ) is described, over the domain bounded by
the known C1 (Pelvic Obliquity angle) values in the
THA data set, with points and a notched box plot
presented at the top to show the specific (points) and
statistical (notched box plot) spread of the individual
C1 values.

The constituent BOE mi,C1,LA(Æ) reported in Fig. 3a
is made up of three mass values mi,C1,LA({LA}),
mi,C1,LA({PA, NP}) and mi,C1,LA({LA, PA, NP}). This
constituent BOE is discerning the evidence, from the
characteristic value vi,C1 (for C1), on a subject’s associ-
ation to the surgery type {LA} and not the surgery type
{�LA} = {PA, NP} and a level of concomitant igno-
rance (assigned to {LA, PA,NP}). The three lines shown
in Fig. 3a describe the mass values as the C1 charac-
teristic goes from its identified sample minimum of near
24.457� up to the sample maximum near 7.902�.

In more detail, as the C1 characteristic value
increases from its sample minimum of 24.457� up to
near 21.235�, there is a gradual decrease in the evi-
dence (mass) associating a subject with surgery type
LA and respective increase in the level of concomitant
ignorance in the evidence (mi,C1,LA({LA, PA, NP})).
From a C1 value near 21.235� up to near 0.942�, the
mass value mi,C1,LA({LA}) continues to decrease down
to zero, with mi,C1,LA({LA, PA, NP}) remaining con-
stant at 0.510, but an increase (from zero) in the evi-
dence towards a subject being associated with the
surgery types PA or NP (mi,C1,LA({PA, NP})). From a
C1 value near 0.942� up to its sample maximum of
7.902�, there is a continued increase in the mass value
mi,C1,LA({PA, NP}) and decrease in the level of con-
comitant ignorance mi,C1,LA({LA, PA, NP}) in the
evidence. Putting this evidence in summary terms, as
the C1 characteristic value increases across the sample
domain, there is a gradual ‘non-linear’ shift in the
evidence away from a subject having had LA approach
to THA towards them having either had the PA
approach or NP (with the level of ignorance changing
accordingly across this sample domain). Thus sug-
gesting the PA and NP surgical groups demonstrate
greater control of their abductors in maintaining a
higher angle of the pelvis on the unsporting side.
Conversely, the LA surgical group demonstrate greater
abductor weakness.17

Many of the other constituent BOEs shown in
Fig. 3 follow a similar structure, two exceptions to this
are the constituent BOEs mi,C1,PA(Æ) (Fig. 3d) and
mi,C1,NP(Æ) (Fig. 3g). For both these constituent BOEs
there are sample sub-domains of C1 (same character-
istic in both cases), for where there is only total igno-
rance in their evidence. That is, for example, in Fig. 3g
for mi,C1,NP(Æ), over the sub-domain 2.677� to 6.806�
mi,C1,NP({LA, PA, NP}) = 1.000 (so mi,C1,NP({NP}) =

0.000 and mi,C1,NP({LA, PA}) = 0.000), indicating no

evidence associating a subject to either the {NP} or
{LA, PA} sets of surgery types.

Contributions of Subject Characteristics to Surgery
Types LA, PA and NP

Individual constituent BOEs, like the BOEs dis-
cussed previously, can be combined in a variety of
ways to produce further BOEs (see the description of
NCaRBS given previously). Here, the three constituent
BOEs mi,C?,LA(Æ), mi,C?,PA(Æ) and mi,C?,NP(Æ) can be
combined to form a characteristic BOE mi,C?,2(Æ),
which represents all the evidence a particular charac-
teristic offers towards the prediction of a subject’s
surgery type. Since for each characteristic, a charac-
teristic BOE mi,C?,2(Æ) is a BOE made up of seven mass
values and focal elements (the power set of {LA, PA,
NP} minus the empty set), the pignistic probability
function constructs the values BetPi,C?(LA), BetPi,C?

(PA) and BetPi,C?(NP) (found from the concomitant
characteristic BOE), for a subject, to describe specific
levels of associations between the subjects’ character-
istics and surgery types LA, PA and NP.

It follows that sets of constructed BetPi,C?(Æ) values
can be produced from the individual characteristic
BOEs, shown over the full domains of the respective
characteristics, between the minimum and maximum
values present, see Fig. 4.

In Fig. 4, each presented graph shows the move-
ments of the BetPi,C?(LA), BetPi,C?(PA) and BetPi,C?

(NP) values, describing levels of evidential association
(in terms of pignistic probability) attributed to the
surgery types, Lateral Approach (LA), PA and No
Pathology (NP), respectively. The graphs presented
show these contributions over the range [0.033, 0.861],
the bounds found from the least and largest of any
BetPi,C?(Æ) values (instead of the full BetPi,C?(Æ) range of
[0, 1]). As in Fig. 3, point and notched box plots show
the specific (points) and statistical (notched box plot)
spread of the individual C1 values in the THA data set.
These graphs can be compared with the respective
constituent BOEs (shown in Fig. 2). The case of C1 is
next considered (Fig. 4a).

In Fig. 4a, as the C1 (Pelvic Obliquity angle) char-
acteristic increases from its sample minimum 24.457�
to the maximum 7.902�, there is a gradual, but non-
linear, decrease in the probable association of a subject
to being associated with the PA surgery type. There is a
similar gradual non-linear increase over the sample
domain of C1 in the probable association of a subject
to the NP surgery type. For the surgery type LA, the
association is less consistent, over the two sub-
domains, 24.457� to 1.198� and 1.198� to 7.902�, there
is increasing and decreasing levels of probable associ-
ation, respectively. It is interesting that for the LA
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association, the point of change in increasing and
decreasing probable association, through inspection of
the above notched box plot in Fig. 4a, is very near the
median of the sample ofC1 characteristic values. Similar
inference can be gained from the two other character-
istics, C2 (frontal plane hip moment) and C3 (frontal
plane hip power), in Figs. 4b and 4c, respectively.

As the C2 characteristic (frontal plane hip moment,
Nm/Kg) increases, see Fig. 4b, there is a gradual
increase in the probable association of a subject to the
NP surgery type. Again for the surgery type LA, the
association is less consistent with a firstly increasing
(near the median of the sample) then decreasing level
of probable association, respectively. There is also a
decrease in the probable association of a subject to
surgery type PA. This is due to a similar mean hip
frontal moment for the LA (0.49 ± 0.22 Nm/Kg) and
PA (0.59 ± 0.34 Nm/Kg) surgical types.32

As the C3 characteristic (frontal plane power,
W/Kg) increases, see Fig. 4c, unlike the previous
characteristics (see Figs. 4a and 4b), the domain shown
for it is affected by the actual spread of the charac-
teristic values from the population of subjects consid-
ered. That is, for the upper half of the shown domain,
it is associated with only six values amongst the pop-
ulation (potential outliers), as indicated by the con-
comitant notched box plot for this characteristic. It
follows, the interpretation of its contribution to discern
between the three subject types is only considered up to
near the midpoint of the presented domain. Over this
sub-domain, as the characteristic value increases, there
is an increase in the probable association of a subject
to the NP surgery type and decrease in probable
association to PA surgical.

Comparison with LDA and NNs

This section briefly describes the results from
employing the LDA and NN analysis techniques.

Linear Discriminant Analysis (LDA)

Following LDA, 8 out of 14 LA (57.143%), 3 out of
13 PA (23.077%) and 10 out of 16 NP (62.5%) were
correctly classified. In total there are 21 out of 43
(48.837%) correctly classified subjects, as indicated in
Table 1, which breaks down the actual and predicted
classification results.

The LDA predicted correct LA classification to the
same degree as NCaRBS but is not able to classify NP
and PA function as accurately as NCaRBS.

Neural Networks

Three models were considered in the NN analyses,
when one, two and three hidden nodes were employed
in the hidden layer1 (with three outputs in the output
layer). Table 2 breaks down the actual and predicted
classification results for the three cases. An objective
function OBNN,n, (where n is the number of hidden
nodes) was constructed to mimic the objective function
employed with NCaRBS (again denoting 14 LA clas-
sified subjects with vector [1, 0, 0], 13 PA as [0, 1, 0] and
16 NP [0, 0, 1]). Moreover, the objective function
employed (as with NCaRBS) was based on a Euclidean
distance measure of the three outputs from the NN and
the three vector formations of subjects classifications,
namely one of [1, 0, 0], [0, 1, 0] and [0, 0, 1] in each case.

A NN with one hidden node gave a 53.488% correct
classification rate (OBNN,1 = 0.658). This is a worse fit
and worse correct classification than with the NCaRBS

FIGURE 4. NCaRBS induced graphical representation of the contributions of subject characteristics to surgery types LA, PA and
NP, using pignistic probability values, BetPi,C?(LA), BetPi,C?(PA) and BetPi,C?(NP), from characteristic BOEs (a) contribution of C1,
(b) contribution of C2, (c) contribution of C3.

TABLE 1. Linear discriminant analysis results.

Actual LA PA NP

Predicted

LA 8 4 2

PA 5 3 5

NP 1 5 10
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model (OBNCaRBS = 0.582 and correct classification
rate of 65.116%).

A NN with two hidden nodes gave a 65.116%
correct classification rate. This gives a better fit
(OBNN,2 = 0.455) and equal correct classification to
NCaRBS. This model provides a higher classification
rate for LA (21.4% higher than NCaRBS) and PA
(7.7% higher than NCaRBS), however the ability to
classify NP is inferior to the NCaRBS model.

A NN with three hidden nodes gave a 69.767%
correct classification rate. This gives a better fit
(OBNN,3 = 0.408) and better correct classification to
NCaRBS. This model is comparable to NCaRBS in
terms of LA and NP classifications and produced a
15.4% higher classification rate for PA subjects.

For clarity and to allow direct comparison, Table 3
summarises the results with the highest classification
accuracy from theNCaRBS, LDAandNNapproaches.

DISCUSSION

This paper has exposited a new technique for n-state
classification, where objects are associated with a
number of different states and described by a series of
characteristics. The introduced technique named
NCaRBS, is shown to be an important development
on the original CaRBS technique (itself only recently
introduced4,5,7). As such, the analysis is undertaken
through uncertain reasoning, due to the operational
rudiments of NCaRBS, like CaRBS, based on the
Dempster–Shafer theory of evidence.

Throughout the exposition of NCaRBS, the THA
problem has been considered, whereby subjects with

and without hip replacement surgeries are investigated
based on certain post-operative Trendelenburg char-
acteristics. It follows, the defined three state problem,
discerning between subjects association with the sur-
gery types LA, PA or NP, is pertinent to be analysed
using NCaRBS.

The results presented include an understanding of
the evaluation of fit to a model (configuration of a
NCaRBS system), using the pignistic probability
function. This fit process is shown to require no
assumptions on the independent variables (character-
istics) uitlised, as would be necessary in regression
based analyses25 (indeed it would be non-trivial for a
regression based analysis to be performed on this
defined three state THA problem). With the model
configuration process defined an optimisation prob-
lem, here undertaken using Trigonometric Differential
Evolution (TDE), future research should investigate
the local–global optimisation issue in regard to the
impact on NCaRBS results.

This is the first application of NCaRBS to assess
outcome of THA where three surgery types, LA, PA
and NP were classified using data from static Tren-
delenburg test. Using only the three characteristics
selected, NCaRBS classified NP surgery type with
93.750% accuracy. Therefore this method was able to
distinguish between NP and post THA surgery to high
accuracy. The functional characteristics used in the
classification were able to distinguish the LA with
57.143% accuracy and PA with 38.462% accuracy.

When classifying using the three variables in combi-
nation, the PA group had two main clustered groups,
patients who exhibited NP function (75% of misclassi-
fied subjects being characterised as having NP function)

TABLE 2. Neural network results using 1, 2 and 3 hidden nodes.

Actual

One hidden node Two hidden nodes Three hidden nodes

LA PA NP LA PA NP LA PA NP

Predicted

LA 0 7 7 11 1 2 8 3 3

PA 0 8 5 6 5 2 0 7 6

NP 0 1 15 2 2 12 0 1 15

TABLE 3. Results with the highest classification accuracy from the NCaRBS, LDA and NN approaches.

Actual

NCaRBS LDA NN (3 hidden nodes)

LA PA NP LA PA NP LA PA NP

Predicted

LA 8 3 3 8 4 2 8 3 3

PA 2 5 6 5 3 5 0 7 6

NP 1 0 15 1 5 10 0 1 15

Precision 0.727 0.625 0.625 0.571 0.25 0.589 1 0.636 0.625
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anda group thatwas clearly different to bothLAandNP
function. The LA group had a larger variability in the
variables selected resulting in weaker classification
accuracy and less defined LA characteristic group. 6/8
misclassified PA subjects were classified as having NP
function, whereas only 3/6 misclassified LA subjects
were. This suggests some differences exist in frontal
plane function due to different surgical procedures, and
the PA approach restores more NP abductor strength in
the frontal plane than the LA. However, further inves-
tigation is required using different characteristics. A
suggestion for future work is to use principal compo-
nents of the pelvic obliquity, frontal moment and power
waveforms instead of discrete values taken at a specific
time point. This would ensure any changes as the subject
acts to stabilise their position and due to muscle fatigue
will be incorporated in the decision making.

It would also be beneficial to classify hip function
during level/stair gait and other daily activities. In a
study by Madsen et al.22 of the differences between
anterolateral (A–L) and posterolateral approach
(P–L), subjects were classified with the following accu-
racies; 89% for NP, 90% for A–L and 50% for P–L.
This high accuracy may be due to the investigation of
several functional variables from level gait as opposed
to 3 measures from a clinically employed Trendelenburg
Test. The subjects in this current analysis were previ-
ously classified based on gait variables using a similar
classification method32 distinguishing between the fol-
lowing groups with the following accuracies: (1) LA and
NP = 93.3%; (2) PA and NP = 86.2%; (3) LA and
PA = 55.6%. The outcomes from Madsen et al.,22

Whatling et al.,32,33 and the current study, all imply that
greater NP function is restored following PA to surgery.

A comparison was made between NCaRBS, LDA
and NN. LDA had lower classification accuracy than
NCaRBS, and NN was comparable to NCaRBS when
two or three hidden nodes are considered. Using two
nodes, classification was improved for LA and PA but
was worse for NP. Using three nodes, the classification
of PA was improved compared to NCaRBS. Clearly,
as more hidden nodes are considered with NN, the
model fit and subsequent correct classification rate
improved. It was observed that the NN classification
results were crisp (with certainty), with 0 s and 1 s
appearing the relative prediction vectors for subjects,
unlike with NCaRBS where there was ambigiuous
classification (points inside the simplex plot not at a
vertex). This is a reason as to why for NN with two
hidden nodes the level of fit is better than with
NCaRBS, but the same classification accuracy. This
would be mean, for incorrect classified cases, where
with NCaRBS a case’s position in the simplex plot
would help see the ambiguity of their incorrect classi-
fication, with NNs the incorrect classification would be

with 100% certainty even though that certainty is to
the wrong classification. This is an important point
when considering biomechanical data, which can be
conflicting or corroborating in nature. A range of
functions or outcomes is to be expected for human
subjects. They will not all function the same if they
belong in the same group and therefore being able to
see the ambiguity in classification is a necessary and
important facet, inherent with the NCaRBS technique.
A technique with the ability to quantify and visualise
the ambiguity in a classification, along with the con-
tributions of each variable to the classification, is
highly valuable. It provides useful feedback on cohorts
and individual subjects, facilitating clinical interpreta-
tion of the results. Such tools, with further develop-
ment, may be useful in clinical and rehabilitation
settings. Wickramarathne et al.34 describes measures
that facilitate the comparison of crisp (with certainty)
and more ambiguous predictions. We report precision
for each classification in Table 3, allowing direct
comparison of the results. The use of other perfor-
mance measures mentioned in this paper are beyond
this remit of the current study, but do offer a potential
way forward in future comparison focused studies.

A noticeable positive of the employment of the
NCaRBS technique is the level of elucidation able to
be undertaken on the contribution of the characteris-
tics (independent variables) used to describe the objects
(subjects) and their associations to the three states
(surgery types LA, PA, NP). This is in part due to the
homogeneity of the role played by the DST based
bodies of evidence (BOEs), in quantifying the evidence
affected by the characteristic, and in particular the
method of combination of BOEs.

Indeed, the contribution results introduce a novel
way of viewing the combination of characteristics,
namely (as shown in Fig. 3), the ability to see how, as a
characteristic values changes, the evidence towards the
association of a subject to a state (dh) and not-the-state
(�dh) changes relatively, including also the changes in
the concomitant ignorance with the characteristic
based evidence. Further, through again the use of the
pignistic probability function (shown in Fig. 4), the
contribution of a characteristic across considered
states can be investigated simultaneously.

The benefit of using the current method is the ability
to classify function into three characteristic groups and
produce simplex plots for visualisation. The contribu-
tion diagrams provide a visual explanation of the
influence of each characteristic in the classification.
This is useful when examining how the trends of each
characteristic relate to each hip condition. It is
important to be able to not only detect differences
between groups but to understand what is contributing
to this decision. Other existing algorithms are not able
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to explain this type of multivariate analysis and con-
tributions in the same way or visually.

The future pertinence of the applicability of the
NCaRBS technique will come from the increased famil-
iarity of it operations, and the way it is able to present its
findings, using the simplex plot approach to data repre-
sentation for example. There is an important future
positive of the employment of the NCaRBS technique,
not needed in this study, namely that the original CaRBS
technique4 is able to analyse incomplete data, without the
need for the management of the missing values present.
This could potentially make NCaRBS a most feasible
technique when dealing with patient datasets, and cer-
tainly something to consider in the future. This technique
is versatile and can be used for a diverse range of datasets
(including different sized data sets, see CaRBS related
papers). The current study however, has not explored the
scalability of this technique and this needs to be formally
assessed with larger datasets.

This study introduces a new application of NCaRBS
to the biomechanics field to characterise LA, PA and
NP function. From this investigation of the Trendel-
enburg test, it appears that there are three distinct
functional groups relating to NP, PA and LA, however
there is also an element of overlap in function resulting
in misclassified subjects. The power of NCaRBS has
been demonstrated on this simple analysis of three
variables from a Trendelenburg test and will be used in
future studies with larger datasets. It has also been
compared favourably to LDA and NN techniques.
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