Skip to main content
Log in

Development of a Finite Element Model for Blast Brain Injury and the Effects of CSF Cavitation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Blast-related traumatic brain injury is the most prevalent injury for combat personnel seen in the current conflicts in Iraq and Afghanistan, yet as a research community, we still do not fully understand the detailed etiology and pathology of this injury. Finite element (FE) modeling is well suited for studying the mechanical response of the head and brain to blast loading. This paper details the development of a FE head and brain model for blast simulation by examining both the dilatational and deviatoric response of the brain as potential injury mechanisms. The levels of blast exposure simulated ranged from 50 to 1000 kPa peak incident overpressure and 1–8 ms in positive-phase duration, and were comparable to real-world blast events. The frontal portion of the brain had the highest pressures corresponding to the location of initial impact, and peak pressure attenuated by 40–60% as the wave propagated from the frontal to the occipital lobe. Predicted brain pressures were primarily dependent on the peak overpressure of the impinging blast wave, and the highest predicted brain pressures were 30% less than the reflected pressure at the surface of blast impact. Predicted shear strain was highest at the interface between the brain and the CSF. Strain magnitude was largely dependent on the impulse of the blast, and primarily caused by the radial coupling between the brain and deforming skull. The largest predicted strains were generally less than 10%, and occurred after the shock wave passed through the head. For blasts with high impulses, CSF cavitation had a large role in increasing strain levels in the cerebral cortex and periventricular tissues by decoupling the brain from the skull. Relating the results of this study with recent experimental blast testing suggest that a rate-dependent strain-based tissue injury mechanism is the source primary blast TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Ackerman, M. J. The visible human project. Proc. IEEE 86:504–511, 1998.

    Article  Google Scholar 

  2. Bain, A. C., and D. F. Meaney. Tissue-level thresholds for axonal damage in an experimental model of central nervous system white matter injury. J. Biomech. Eng. 122:615, 2000.

    Article  PubMed  CAS  Google Scholar 

  3. Bass, C. R., M. B. Davis, K. A. Rafaels, S. Rountree, et al. A methodology for assessing blast protection in explosive ordinance disposal bomb suits. Int. J. Occup. Saf. Ergon. 11:347–361, 2005.

    PubMed  Google Scholar 

  4. Bass, C. R., M. B. Panzer, K. A. Rafaels, G. W. Wood, et al. Brain injuries from blast. Ann. Biomed. Eng. 40:185–202, 2012.

    Article  PubMed  Google Scholar 

  5. Bass, C. R., K. A. Rafaels, and R. S. Salzar. Pulmonary injury risk assessment for short-duration blasts. J. Trauma 65:604–615, 2008.

    Article  PubMed  Google Scholar 

  6. Bazant, Z. P. Spurious reflection of elastic waves in nonuniform finite element grids. Comput. Methods Appl. Mech. Eng. 16:91–100, 1978.

    Article  Google Scholar 

  7. Bloomfield, I. G., I. H. Johnston, and L. E. Bilston. Effects of proteins, blood cells and glucose on the viscosity of cerebrospinal fluid. Pediatr. Neurosurg. 28:246–251, 1998.

    Article  PubMed  CAS  Google Scholar 

  8. Bolander, R., B. Mathie, C. Bir, D. Ritzel, et al. Skull flexure as a contributing factor in the mechanism of injury in the rat when exposed to a shock wave. Ann. Biomed. Eng. 39:2550–2559, 2011.

    Article  PubMed  Google Scholar 

  9. Chafi, M., G. Karami, and M. Ziejewski. Biomechanical assessment of brain dynamic responses due to blast pressure waves. Ann. Biomed. Eng. 38:490–504, 2010.

    Article  PubMed  CAS  Google Scholar 

  10. Champion, H. R., J. B. Holcomb, and L. A. Young. Injuries from explosions: physics, biophysics, pathology, and required research focus. J. Trauma 66:1468–1477, 2009.

    Article  PubMed  Google Scholar 

  11. Cronin, D. S., C. P. Salisbury, J.-S. Binette, K. Williams, et al. Numerical modeling of blast loading to the head. Paper Presented at PASS, Brussels, Belgium, 2008.

  12. Elkin, B. S., and B. Morrison, III. Region-specific tolerance criteria for the living brain. Stapp Car Crash J. 51:127–138, 2007.

    PubMed  Google Scholar 

  13. Frey, B., S. Franz, A. Sheriff, A. Korn, et al. Hydrostatic pressure induced death of mammalian cells engages pathways related to apoptosis or necrosis. Cell. Mol. Biol. 50:459–467, 2004.

    PubMed  CAS  Google Scholar 

  14. Galford, J. E., and J. H. McElhaney. A viscoelastic study of scalp, brain, and dura. J. Biomech. 3:211–221, 1970.

    Article  PubMed  CAS  Google Scholar 

  15. Gordon, C. C., T. Churchill, C. E. Clauser, B. Bradtmiller, et al. Anthropometric Survey of US Army Personnel: Methods and Summary Statistics. Natick, MA: U.S. Army Natick Research Design and Engineering Center, Natick/TR-89/044, 1989.

  16. Gross, A. G. A new theory on the dynamics of brain concussion and brain injury. J. Neurosurg. 15:548–561, 1958.

    Article  PubMed  CAS  Google Scholar 

  17. Hallquist, J. O. LS-DYNA Keyword User’s Manual. Livermore, CA: Livermore Software Technology Corporation, 2007.

    Google Scholar 

  18. Herbert, E., S. Balibar, and F. Caupin. Cavitation pressure in water. Phys. Rev E. 74:041603, 2006.

    Article  Google Scholar 

  19. Holland, C. M., E. E. Smith, I. Csapo, M. E. Gurol, et al. Spatial distribution of white-matter hyperintensities in alzheimer disease, cerebral amyloid angiopathy, and healthy aging. Stroke 39:1127–1133, 2008.

    Article  PubMed  Google Scholar 

  20. Hyde, D. W. Conwep 2.1.0.8, Conventional Weapons Effects Program. Vicksburg, MS: United States Army Corps of Engineers, 2004.

    Google Scholar 

  21. Iremonger, M. J. Physics of detonation and blast waves. In: Scientific Foundations of Trauma, edited by G. J. Cooper, and et al. Oxford: Butterworth Heinemann, 1997, pp. 189–199.

    Google Scholar 

  22. Kaster, T., I. Sack, and A. Samani. Measurement of the hyperelastic properties of ex vivo brain tissue slices. J. Biomech. 44:1158–1163, 2011.

    Article  PubMed  CAS  Google Scholar 

  23. Kleiven, S., and W. N. Hardy. Correlation of an FE model of the human head with local brain motion-consequences for injury prediction. Stapp Car Crash J. 46:123–144, 2002.

    PubMed  Google Scholar 

  24. Lubock, P., and W. Goldsmith. Experimental cavitation studies in a model head-neck system. J. Biomech. 13:1041–1052, 1980.

    Article  PubMed  CAS  Google Scholar 

  25. Lynnerup, N., J. G. Astrup, and B. Sejrsen. Thickness of the human cranial diploe in relation to age, sex and general body build. Head Face Med. 1:1–13, 2005.

    Article  Google Scholar 

  26. Mahmadi, K., S. Itoh, T. Hamada, N. Aquelet, et al. Numerical studies of wave generation using spiral detonating cord. Mater. Sci. Forum 465–466:439–444, 2004.

    Article  Google Scholar 

  27. Manas, P., and B. M. Mackey. Morphological and physiological changes induced by high hydrostatic pressure in exponential and stationary-phase cells of escherichia coli: relationship with cell death. Appl. Environ. Microbiol. 70:1545–1554, 2004.

    Article  PubMed  CAS  Google Scholar 

  28. McElhaney, J. H. Dynamic response of bone and muscle tissue. J. Appl. Phys. 21:1231–1236, 1966.

    CAS  Google Scholar 

  29. McElhaney, J. H., J. L. Fogle, J. W. Melvin, R. R. Haynes, et al. Mechanical properties on cranial bone. J. Biomech. 3:495–511, 1970.

    Article  PubMed  CAS  Google Scholar 

  30. Moore, D. F., A. Jerusalem, M. Nyein, L. Noels, et al. Computational biology—modeling of primary blast effects on the central nervous system. Neuroimage. 47:T10–T20, 2009.

    Article  PubMed  Google Scholar 

  31. Moore, D. F., R. A. Radovitzky, L. Shupenko, A. Klinoff, et al. Blast physics and central nervous system injury. Future Neurol. 3:243–250, 2008.

    Article  Google Scholar 

  32. Moss, W. C., M. J. King, and E. G. Blackman. Skull flexure from blast waves: a mechanism for brain injury with implications for helmet design. Phys. Rev. Lett. 103:108702, 2009.

    Article  PubMed  Google Scholar 

  33. Nelson, T. J., T. Clark, E. T. Stedje-Larsen, C. T. Lewis, et al. Close proximity blast injury patterns from improvised explosive devices in Iraq: a report of 18 cases. J. Trauma 65:212–217, 2008.

    PubMed  Google Scholar 

  34. Nicolle, S., M. Lounis, and R. Willinger. Shear properties of brain tissue over a frequency range relevant for automotive impact situations: new experimental results. Stapp Car Crash J. 48:239–258, 2004.

    PubMed  Google Scholar 

  35. Nusholtz, G. S., B. Wylie, and L. G. Glascoe. Cavitation/boundary effects in a simple head impact model. Aviat. Space Environ. Med. 66:661–667, 1995.

    PubMed  CAS  Google Scholar 

  36. Nusholtz, G. S., E. B. Wylie, and L. G. Glascoe. Internal cavitation in simple head impact model. J. Neurotrauma 12:707–714, 1995.

    Article  PubMed  CAS  Google Scholar 

  37. Nyein, M. K., A. M. Jason, L. Yu, C. M. Pita, et al. In silico investigation of intracranial blast mitigation with relevance to military traumatic brain injury. Proc. Natl Acad. Sci. USA 107:20703–20708, 2010.

    Article  PubMed  CAS  Google Scholar 

  38. Okie, S. Traumatic brain injury in the war zone. N. Engl J. Med. 352:2043–2047, 2005.

    Article  PubMed  CAS  Google Scholar 

  39. Owens, B. D., J. F. Kragh, Jr., J. C. Wenke, J. Macaitis, et al. Combat wounds in operation Iraqi freedom and operation enduring freedom. J. Trauma 64:295–299, 2008.

    Article  PubMed  Google Scholar 

  40. Panzer, M. B., C. R. Bass, and B. S. Myers. Numerical study of the role of helmet protection in blast brain injury. Paper presented at PASS, Quebec City, QC, 2010.

  41. Panzer, M. B., B. S. Myers, and C. R. Bass. Mesh considerations for finite element blast modeling in biomechanics. Comput. Methods Biomech. 2012. doi:10.1080/10255842.2011.629615.

  42. Panzer, M. B., C. R. Bass, K. A. Rafaels, J. Shridharani, et al. Primary blast survival and injury risk assessment for repeated blast exposures. J. Trauma. 2012. doi:10.1097/TA.0b013e31821e8270.

  43. Prange, M. T., D. F. Meaney, and S. S. Margulies. Defining brain mechanical properties: effects of region, direction, and species. Stapp Car Crash J. 44:205–213, 2000.

    PubMed  CAS  Google Scholar 

  44. Rafaels, K. A. Blast brain injury risk. Doctoral dissertation, University of Virginia, Charlottesville, VA, 2011.

  45. Rafaels, K. A., C. R. Bass, R. S. Salzar, M. B. Panzer, et al. Survival risk assessment for primary blast exposures to the head. J. Neurotrauma 28:2319–2328, 2011.

    Article  PubMed  Google Scholar 

  46. Richmond, D. R., J. T. Yelverton, E. R. Fletcher, and Y. Y. Phillips. Physical correlates of eardrum rupture. Ann. Otol. Rhinol. Laryngol. 140:35–41, 1989.

    CAS  Google Scholar 

  47. Ruan, J. S., T. Khalil, and A. I. King. Human head dynamic response to side impact by finite element modeling. J. Biomech. Eng. 113:276–283, 1991.

    Article  PubMed  CAS  Google Scholar 

  48. Sack, I., B. Beierbach, U. Hamhaber, D. Klatt, et al. Non invasive measurement of brain viscoelasticity using magnetic resonance elastography. NMR Biomed. 21:265–271, 2008.

    Article  PubMed  Google Scholar 

  49. Schneiderman, A. I., E. R. Braver, and H. K. Kang. Understanding sequelae of injury mechanisms and mild traumatic brain injury incurred during the conflicts in Iraq and Afghanistan: persistent postconcussive symptoms and posttraumatic stress disorder. Am. J. Epidemiol. 167:1446–1452, 2008.

    Article  PubMed  Google Scholar 

  50. Taylor, P. A., and C. C. Ford. Simulation of blast-induced early-time intracranial wave physics leading to traumatic brain injury. J. Biomech. Eng. 131:061007, 2009.

    Article  PubMed  Google Scholar 

  51. Terrio, H., L. A. Brenner, B. J. Ivins, J. M. Cho, et al. Traumatic brain injury screening: preliminary findings in a US army brigade combat team. J. Head Trauma Rehabil. 24:14–23, 2009.

    Article  PubMed  Google Scholar 

  52. Valk, P. E., and W. P. Dillon. Radiation injury of the brain. Am. J. Neuroradiol. 12:45–62, 1991.

    PubMed  CAS  Google Scholar 

  53. Warden, D. L. Military TBI during the Iraq and Afghanistan wars. J. Head Trauma Rehabil. 21:398, 2006.

    Article  PubMed  Google Scholar 

  54. Wardlaw, A. and J. Goeller. Cavitation as a possible traumatic brain injury (TBI) damage mechanism. Paper presented, College Park, MD, 2010.

  55. Wilkins, M. L. Use of artificial viscosity in multidimensional fluid dynamic calculations. J. Comput. Phys. 36:281–303, 1980.

    Article  Google Scholar 

  56. Wood, G. W., M. B. Panzer, J. K. Shridharani, K. A. Matthews, et al. Attenuation of blast overpressure behind ballistic protective vest. Paper presented at PASS, Quebec City, QC, 2010.

Download references

Acknowledgments

This work funded in part by the Multidisciplinary Research Initiative (MURI) program (W911MF-10-1-0526; University of Pennsylvania as prime institution) through the Army Research Office (ARO). We also acknowledge the support of the James H. McElhaney Biomechanics Fellowship for one of the authors (M.B. Panzer).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew B. Panzer.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 1062 kb)

Supplementary material 2 (PDF 1653 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panzer, M.B., Myers, B.S., Capehart, B.P. et al. Development of a Finite Element Model for Blast Brain Injury and the Effects of CSF Cavitation. Ann Biomed Eng 40, 1530–1544 (2012). https://doi.org/10.1007/s10439-012-0519-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0519-2

Keywords

Navigation