Skip to main content

Advertisement

Log in

Low Stress Tendon Fatigue is a Relatively Rapid Process in the Context of Overuse Injuries

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

To stimulate healing and prevent tendinosis through optimized physical exercise, it is important to elucidate the tendon response to repetitive mechanical loading. However, the study of this response is challenging due to complex cell–matrix interactions. In an initial approximation, the authors examined tendon mechanical response only, and did not consider cellular activity. The authors investigated the hypothesis that mechanical degradation occurs relatively rapidly (<24 h) even at very low stress levels. The authors subjected rat tail tendons to mechanical loadings oscillating between 0 and 1.5 MPa up to one of three fatigue levels: 4% strain, 8% strain, or rupture. Using non-destructive mechanical tests, changes in tendon strain and compliance over the entire fatigue testing period were evaluated. Using microscopy techniques, the structural evidence of mechanical degradation was examined. The changes in tendon strain and compliance progressed nonlinearly and accelerated before rupture which took place around the 15-h mark. Histological analyses revealed a higher degree of alteration in the collagen network at increased fatigue levels. At rupture, local zones of damage with low fibril density were evident. These results imply that a repair process must act rapidly at critical sites; otherwise, enzymatic degradation could cause further damage in the manner of a vicious cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. An, K. N. In vivo force and strain of tendon, ligament, and capsule. In: Functional Tissue Engineering, edited by F. Guilak, D. L. Butler, S. A. Goldstein, and D. Mooney. New York: Springer-Verlag, 2003, pp. 96–105.

    Chapter  Google Scholar 

  2. Andres, B. M., and G. A. C. Murrell. Treatment of tendinopathy: what works, what does not, and what is on the horizon. Clin. Orthop. Relat. Res. 466:1539–1554, 2008.

    Article  PubMed  Google Scholar 

  3. Arnoczky, S. P., M. Lavagnino, and M. Egerbacher. The mechanobiological aetiopathogenesis of tendinopathy: is it the over-stimulation or the under-stimulation of tendon cells? Int. J. Exp. Pathol. 88:217–226, 2007.

    Article  PubMed  Google Scholar 

  4. Arnoczky, S. P., M. Lavagnino, J. H. Whallon, and A. Hoonjan. In situ cell nucleus deformation in tendons under tensile load: a morphological analysis using confocal laser microscopy. J. Orthop. Res. 20:29–35, 2002.

    Article  PubMed  Google Scholar 

  5. Bruneau, A., C. Champagne, P. Cousineau-Pelletier, G. Parent, and E. Langelier. Preparation of rat tail tendons for biomechanical and mechanobiological studies. J. Vis. Exp. 41, 2010.

  6. Butler, S. L., S. S. Kohles, R. J. Thielke, C. Chen, and R. Vanderby, Jr. Interstitial fluid flow in tendons or ligaments: a porous medium finite element simulation. Med. Biol. Eng. Comput. 35:742–746, 1997.

    Article  PubMed  CAS  Google Scholar 

  7. Chae, Y., G. Aguilar, E. J. Lavernia, and B. J. Wong. Characterization of temperature dependent mechanical behavior of cartilage. Lasers Surg. Med. 32:271–278, 2003.

    Article  PubMed  Google Scholar 

  8. Clavert, P., J. F. Kempf, F. Bonnomet, P. Boutemy, L. Marcelin, and J. L. Kahn. Effects of freezing/thawing on the biomechanical properties of human tendons. Surg. Radiol. Anat. 23:259–262, 2001.

    Article  PubMed  CAS  Google Scholar 

  9. Cousineau-Pelletier, P., and E. Langelier. Relative contribution of mechanical degradation, enzymatic degradation, and repair of the extracellular matrix on the response of tendons when subjected to under- and over-mechanical stimulations in vitro. J. Orthop. Res. 28:204–210, 2010.

    PubMed  Google Scholar 

  10. Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues (2nd ed.). New York: Springer-Verlag, 568 pp., 1993.

    Google Scholar 

  11. Fung, D., V. Wang, D. Laudier, J. H. Shine, J. Basta-Pljakic, K. J. Jepsen, M. B. Schaffler, and E. L. Flatow. Subrupture tendon fatigue damage. J. Orthop. Res. 27:264–273, 2009.

    Article  PubMed  Google Scholar 

  12. Giannini, S., R. Buda, F. Di Caprio, P. Agati, A. Bigi, V. De Pasquale, and A. Ruggeri. Effects of freezing on the biomechanical and structural properties of human posterior tibial tendons. Int. Orthop. 32:145–151, 2008.

    Article  PubMed  Google Scholar 

  13. Gordona, C. J., E. Puckettb, and B. Padnosa. Rat tail skin temperature monitored noninvasively by radiotelemetry: characterization by examination of vasomotor responses to thermomodulatory agents. J. Pharmacol. Toxicol. Methods 47:107–114, 2002.

    Article  Google Scholar 

  14. Guilak, F., A. Ratcliffe, and V. C. Mow. Chondrocyte deformation and local tissue strain in articular cartilage: a confocal microscopy study. J. Orthop. Res. 13:410–421, 1995.

    Article  PubMed  CAS  Google Scholar 

  15. Haraldsson, B. T., H. Langberg, P. Aagaard, A. M. Zuurmond, B. van El, J. Degroot, M. Kjaer, and S. P. Magnusson. Corticosteroids reduce the tensile strength of isolated collagen fascicles. Am. J. Sports Med. 34:1992–1997, 2006.

    Article  PubMed  Google Scholar 

  16. Harkness, J. E., and J. E. Wagner. The Biology and Medicine of Rabbits and Rodents (3rd ed.). Philadelphia: Lea and Febiger, 241 pp., 1989.

    Google Scholar 

  17. Józsa, L., and P. Kannus. Human Tendons: Anatomy, Physiology and Pathology. Champaign: Human Kinetics, 574 pp., 1997.

    Google Scholar 

  18. Kato, Y. P., D. L. Christiansen, R. A. Hahn, S. J. Shieh, J. D. Goldstein, and F. H. Silver. Mechanical properties of collagen fibres: a comparison of reconstituted and rat tail tendon fibres. Biomaterials 10:38–42, 1989.

    Article  PubMed  CAS  Google Scholar 

  19. Ker, R. F., R. Mc. N. Alexander, and M. B. Bennett. Why are mammalian tendons so thick? J. Zool. 216:309–324, 1988.

    Article  Google Scholar 

  20. Lam, T. C., C. G. Thomas, N. G. Shrive, C. B. Frank, and C. P. Sabiston. The effects of temperature on the viscoelastic properties of the rabbit medial collateral ligament. J. Biomech. Eng. 112:147–152, 1990.

    Article  PubMed  CAS  Google Scholar 

  21. Langelier, E., D. Dupuis, M. Guillot, F. Goulet, and D. Rancourt. Cross-sectional profiles and volume reconstructions of soft tissues using laser beam measurements. J. Biomech. Eng. 126:796–802, 2004.

    Article  PubMed  Google Scholar 

  22. Lanir, Y., E. L. Salant, and A. Foux. Physico-chemical and microstructural changes in collagen fiber bundles following stretch in-vitro. Biorheology 25:591–603, 1988.

    PubMed  CAS  Google Scholar 

  23. Lavagnino, M., S. P. Arnoczky, M. Egerbacher, K. L. Gardner, and M. E. Burns. Isolated fibrillar damage in tendons stimulates local collagenase mRNA expression and protein synthesis. J. Biomech. 39:2355–2362, 2006.

    Article  PubMed  Google Scholar 

  24. Lee, T. Q., and S. L.-Y. Woo. A new method for determining cross-sectional shape and area of soft tissues. J. Biomech. Eng. 110:110–114, 1988.

    Article  PubMed  CAS  Google Scholar 

  25. McCrum, N. G., C. P. Buckley, and C. B. Bucknall. Principles of Polymer Engineering (2nd ed.). Oxford: Oxford University Press, 447 pp., 1997.

    Google Scholar 

  26. Ng, B. H., S. M. Chou, B. H. Lim, and A. Chong. The changes in the tensile properties of tendons after freeze storage in saline solution. Proc. Inst. Mech. Eng. H 219:387–392, 2005.

    PubMed  Google Scholar 

  27. Parent, G., and E. Langelier. Accuracy and precision of algorithms in estimating cross-sectional area of rat tail tendons. Meas. Sci. Technol., 2011. doi:10.1088/0957-0233/21/12/125802.

  28. Provenzano, P. P., C. Hurschler, and R. J. Vanderby. Microstructural morphology in the transition region between scar and intact residual segments of a healing rat medial collateral ligament. Connect. Tissue Res. 42:123–133, 2001.

    Article  PubMed  CAS  Google Scholar 

  29. Schechtman, H., and D. L. Bader. Fatigue damage of human tendons. J. Biomech. 35:347–353, 2002.

    Article  PubMed  CAS  Google Scholar 

  30. Scott, A., K. M. Khan, J. L. Cook, et al. Human tendon overuse pathology: histopathologic and biochemical findings. In: Tendinopathy in Athletes, edited by S. L.-Y. Woo, P. A. F. H. Renström, and S. P. Arnoczky. Malden: Blackwell Publishing, 2007, pp. 69–84.

    Chapter  Google Scholar 

  31. Screen, H. R., D. A. Lee, D. L. Bader, and J. C. Shelton. Development of a technique to determine strains in tendons using the cell nuclei. Biorheology 40:361–368, 2003.

    PubMed  CAS  Google Scholar 

  32. Wang, X. T., and R. F. Ker. Creep rupture of wallaby tail tendons. J. Exp. Biol. 198:831–845, 1995.

    PubMed  CAS  Google Scholar 

  33. Wang, X. T., R. F. Ker, and R. M. Alexander. Fatigue rupture of wallaby tail tendons. J. Exp. Biol. 198:847–852, 1995.

    PubMed  CAS  Google Scholar 

  34. Woo, S. L., T. Q. Lee, M. A. Gomez, S. Sato, and F. P. Field. Temperature dependent behavior of the canine medial collateral ligament. J. Biomech. Eng. 109:68–71, 1987.

    Article  PubMed  CAS  Google Scholar 

  35. Wren, T. A. L., D. P. Lindsey, G. S. Beaupre, and D. R. Carter. Effects of creep and cyclic loading on the mechanical properties and failure of human Achilles tendons. Ann. Biomed. Eng. 31:710–717, 2003.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by NSERC Grant 299280 and by an IRSST scholarship awarded to Gabriel Parent. The authors also thank Charles Bertrand and Melina Narlis for the preparation of specimens for histology; and Nicolas Huppé and Paule Cousineau-Pelletier for their assistance with the bioreactor and tissue isolation, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eve Langelier.

Additional information

Associate Editor Michael R. Torry oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parent, G., Huppé, N. & Langelier, E. Low Stress Tendon Fatigue is a Relatively Rapid Process in the Context of Overuse Injuries. Ann Biomed Eng 39, 1535–1545 (2011). https://doi.org/10.1007/s10439-011-0254-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0254-0

Keywords

Navigation