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Abstract—Acute lung injury is characterized by heterogene-
ity of regional mechanical properties, which is thought to be
correlated with disease severity. The feasibility of using
respiratory input impedance (Zrs) and computed tomo-
graphic (CT) image registration for assessing parenchymal
mechanical heterogeneity was evaluated. In six dogs, mea-
surements of Zrs before and after oleic acid injury at various
distending pressures were obtained, followed by whole lung
CT scans. Each Zrs spectrum was fit with a model incorpo-
rating variable distributions of regional compliances. CT
image pairs at different inflation pressures were matched
using an image registration algorithm, from which distribu-
tions of regional compliances from the resulting anatomic
deformation fields were computed. Under baseline condi-
tions, average model compliance decreased with increasing
inflation pressure, reflecting parenchymal stiffening. After
lung injury, these average compliances decreased at each
pressure, indicating derecruitment, alveolar flooding, or
alterations in intrinsic tissue elastance. However, average
compliance did not change as inflation pressure increased,
consistent with simultaneous recruitment and strain stiffen-
ing. Image registration revealed peaked distributions of
regional compliances, and that small portions of the lung
might undergo relative compression during inflation. The
authors conclude that assessments of lung function using Zrs

combined with the structural alterations inferred from image
registration provide unique but complementary information
on the mechanical derangements associated with lung injury.

Keywords—Acute lung injury, Dog, Computed tomography,

Respiratory mechanics, Input impedance.

INTRODUCTION

Acute lung injury (ALI) is characterized by respi-
ratory failure in the presence of airway closure and

atelectasis, pulmonary edema, increased lung resis-
tance, and reduced lung compliance. Frank alveolar
flooding and derecruitment reduce the effective surface
area available for gas exchange. The remaining open
areas are susceptible to end-inspiratory overdistention
during positive pressure ventilation, since only a frac-
tion of the injured lung is available to receive the tidal
volume delivered with each breath. In addition, a
portion of the ventilated region may become dere-
cruited during expiration, leading to the generation of
repetitive injurious stresses caused by cyclic re-opening
during each subsequent inspiration. Over a period of
time, the mechanical stresses associated with these
phenomena can damage pulmonary epithelium and
result in the release of inflammatory mediators that
have the potential to worsen the injury. Current clini-
cal practice seeks to limit end-expiratory derecruitment
through the judicious use of positive end-expiratory
pressure (PEEP), as well as reduce inspiratory overdi-
stention with low tidal volumes.1 Mechanical hetero-
geneity in the injured lung is thus a central feature of
the pathophysiology of ALI,3,4,21 and its accurate
assessment may be extremely valuable for patient
management.12

High-resolution computed tomography (CT) pro-
vides the most detailed structural information on the
lung, and demonstrates that heterogeneity of regional
aeration and derecruitment depends on disease sever-
ity, tidal volume, and PEEP.11 More recently, other
investigators have demonstrated that parenchymal
tissue deformation determined from CT image regis-
tration may provide an anatomic map of regional
parenchymal compliance.8,14,29 Practical issues, how-
ever, make CT unsuitable for the frequent monitoring
at the bedside for ongoing ventilatory management.

Respiratory mechanical impedance (Zrs), on the
other hand, can be measured as frequently as needed
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using equipment that is readily adapted to the ICU
setting.20 Previous experimental and modeling studies
from our group have demonstrated a strong associa-
tion between changes in Zrs and mechanical heteroge-
neity of the injured lungs.21,22 Furthermore, the
magnitude and distribution of parenchymal stiffness
can be estimated from the frequency-dependence of
Zrs, thus providing a simple and noninvasive means to
quantify ‘functional’ heterogeneity under dynamic
conditions.21,22 However, Zrs yields a less direct
assessment of heterogeneity than that provided by CT,
and there exists no information as to whether the two
techniques might complement each other.5

The aim of this study was to compare the assess-
ments of regional mechanics in a canine model of ALI
using two distinct approaches: (1) quantification of
parenchymal tissue compliance distributions through
inverse modeling of measured Zrs; and (2) estimation
of regional lung strains using 3D CT image registra-
tion. The authors anticipate that these results may
provide new insight into the structure–function rela-
tionships of the injured lung, as well as a platform for
improving and optimizing conventional or oscillatory
ventilation in patients.

METHODS

Animal Preparation and Measurements

Experiments were performed in six male dogs
(average weight 25.6 ± 2.48 kg, range 22.0–33.0 kg).
All protocols were approved by the Institutional Ani-
mal Care and Use Committee. After placement of a
peripheral intravenous line, each dog was anesthetized
with thiopental (10–20 mg kg21 induction with
1–5 mg kg21 h21 maintenance infusion), orally intu-
bated and mechanically ventilated. Muscle relaxation
was achieved with vecuronium (0.7–1.3 lg kg21

min21). Baseline Zrs measurements were made at mean
airway pressure levels of 5, 10, 15, and 20 cm H2O
applied in random order using a custom-built servo-
controlled pneumatic oscillator.19 A deep inflation to
30 cm H2O for 30 s was performed before each Zrs

measurement, after which tracheal pressure was
reduced to the specified mean airway pressure. A dis-
cretized broad-band excitation waveform with spectral
energy over frequencies from 0.078 to 8.9 Hz was
generated from a D/A board (Data Translations
DT-2811, Marlboro, MA) at a rate of 40 Hz, electron-
ically low pass filtered at 10 Hz (Frequency Devices,
Inc., Ottawa, IL), and presented as the driving signal to
the oscillator. This signal was periodic over 25.6 s, and
was repeated 4–5 times such that each Zrs measurement
lasted approximately 2 min. The amplitude of the

excitation waveform was manually adjusted to yield
peak-to-peak oscillatory tracheal pressures of 2–3 cm
H2O, resulting in oscillatory volumes of 30–50 mL.
Airway flow was measured with a calibrated pneu-
motachograph (Hans Rudolph, Kansas City, MO)
coupled to a differential pressure transducer (Celesco
LCVR 0–2 cm H2O, Canoga Park, CA). Tracheal
pressure was measured with a pressure transducer
(Celesco LCVR 0–50 cm H2O) attached to a small
polyethylene catheter extending ~2 cm past the distal
end of the endotracheal tube. The resulting pressure
and flow waveforms were low pass filtered at 10 Hz
and sampled at 40 Hz by an A/D board (Data
Translations DT-2811). After each forced oscillation
measurement, whole lung helical CT scans were
obtained at the same mean airway pressure using a
Sensation-16 scanner (Siemens, Iselin, NJ) during an
8-s period of apnea at 137 kVp and 165 mA. The CT
images were reconstructed with 2.5 mm slice thickness
and a 512 9 512 matrix (voxel size 0.46 mm 9

0.46 mm 9 2.5 mm) using 175 mm field at a window
level of 2450 HU and window width of 1350 HU.
After these baseline measurements, each dog awoke
from general anesthesia, was extubated, and was
observed for several hours.

Non-survival lung injury experiments were per-
formed in the same animals 1 week after these base-
line measurements. Induction and maintenance of
general anesthesia occurred as above. After insertion
of femoral arterial and venous catheters, a Swan-
Ganz catheter was positioned into the pulmonary
artery, all using sterile technique. Systemic arterial,
pulmonary arterial, and central venous pressures were
continuously monitored. Core body temperature was
maintained at 36 ± 1 �C using radiant heat lamps.
Gas exchange was assessed by measurement of arte-
rial blood gases, and shunt fraction ( _QS

�
_QT) was

determined using standard equations.26 Lung injury
was induced with an infusion of oleic acid
(0.08 cc kg21 over 20 min) into the right atrium.
After maturation of the injury, defined by ratio of
partial pressure of arterial oxygen to fraction of
inspired oxygen (PaO2/FiO2) being less than 300, Zrs

measurements and CT scans were obtained as above.
At the conclusion of the lung injury experiment, each
animal was euthanized with an intravenous overdose
of pentobarbital (10–20 mg kg21) followed by rapid
injection of 10–15 mL saturated KCl into the right
atrium.

Respiratory Impedance Analysis

The Zrs as a function of angular frequency (x) was
computed for each condition from the sampled oscil-
latory pressure and flow waveforms using a Welch
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overlap-average periodogram technique with a 25.6-s
rectangular window and 80% overlap.34 Each time-
domain record was visually inspected to ensure no
apparent distortions occurred in the pressure or flow
oscillations, indicating the presence of nonlinear phe-
nomena such as intracycle derecruitment or flow-limi-
tation.20 After neglecting the first 500 sampled data
points (~12.5 s) to minimize transient effects, 12–20
overlapping windows were used to calculateZrs for each
animal. The heterogeneousmechanical properties of the
respiratory system were assessed by fitting a distributed
tissue compliance model to each Zrs spectrum

21:

Ẑrs xð Þ ¼
ZCmax

Cmin

P Cð Þ
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where R and I represent the resistance and inertance,
respectively, of the airways (although both parameters
are slightly influenced by small contributions from
chest wall), g represents tissue hysteresivity,10 and
a = (2/p)tan21(1/g). The variable C accounts for dis-
tributed tissue compliances, which are assumed to be
arranged in parallel and vary according to a pre-defined
probability density function P(C). These compliances
are linked to g through the ‘‘constant-phase’’ behavior
of the respiratory system.15 As in previous studies by
this author group,21,22 P(C) was allowed to follow
either hyperbolic, uniform, or linear forms. In addition,
a peaked triangular distribution function was also
developed to give a closer approximation to the com-
pliance distributions obtained from our image regis-
tration technique (see below). In all the cases, P(C) was
bounded by upper and lower values Cmin and Cmax,
respectively. For each of the four P(C) distribution
functions, closed-form expressions for Eq. (1) were
obtained using an open source symbolic manipulator
(wxMaxima 0.8.1, http://wxmaxima.sourceforge.net),
and the five independent model parameters (R, I, g,
Cmin, and Cmax) were estimated using an unconstrained
nonlinear gradient search technique (Matlab, The
Matworks, Inc. Natick, MA). The model with the
‘‘best’’ distribution function was determined from the
P(C) yielding the lowest sum-of-square differences.
From this, the authors determined the ‘‘effective’’ or
average tissue compliance ( �C) and the heterogeneity of
tissue compliances (rC) as:

�C ¼
ZCmax

Cmin

CP Cð ÞdC; rC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZCmax

Cmin

C� �Cð Þ2P Cð ÞdC

vuuut

ð2Þ

The coefficient of variation for regional compliance
was determined as CVC ¼ 100%� rC

�
�C.

Image Processing and Registration

The CT images were first analyzed by segmenting
the lung tissue contained within the pleural membrane
from chest wall and mediastinum using a semi-auto-
mated thresholding process.16 Each segmented image
was then visually inspected to ensure anatomic accu-
racy and was manually corrected for any errors due
to the difficulty of segmenting high-density flooded
regions. Total lung volume (VTOT) at each inflation
pressure was determined from the sum of all individual
voxel volumes contained within the entire segmented
lung. The total compliance from one pressure to the
next was computed from the segmented lung scans as
the change in volume divided by the corresponding
change in airway pressure (CSEG

TOT ¼ DVTOT=DPao).
Next, rigid alignment of the segmented scans was
performed, and Hounsfield unit density was converted
to 8-bit gray scale. The resulting transverse images
were then resized by half, with the size of each voxel
increasing to 0.92 mm 9 0.92 mm 9 2.5 mm. Esti-
mates of regional compliances were obtained using an
image registration algorithm in which a 3D warping
function mapped individual lung volume elements at a
specified inflation pressure to corresponding volume
elements at the next highest inflation pressure based on
surface features and local intensity differences.7,18,29

With this algorithm, an individual voxel element
n located at coordinates (x,y,z) at one specified infla-
tion pressure is assumed to be displaced to a new
location (u,v,w) at the next higher inflation pressure.
The regional deformation of this element can thus be
quantified from its Jacobian matrix Jn, which contains
the partial derivatives defining its differential expan-
sion or contraction from one pressure state to the
next6,8,29:

Jn ¼
1þ ou

ox
ou
oy

ou
oz

ov
ox 1þ ov

oy
ov
oz

ow
ox

ow
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oz
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This Jn provides an estimate of the directional tissue
strains for the element n, and thus allows for the
determination of a regional deformation field with
voxel-scale resolution. The determinant |Jn| is a scalar
quantity that can be interpreted as a ratio between the
two volume states:

Jnj j ¼
Vn þ DVn

Vn
ð4Þ

where Vn is the volume of voxel element n, and DVn is
its change in volume at the higher inflation pressure.
Thus, in this analysis, the authors determined the
percentage of lung expansion and contraction based on
the fraction of those |Jn| greater than or less than one,
respectively.
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The authors determined a local compliance Cn for
each element n in the registered lung fields by rear-
ranging Eq. (4) to solve for DVn and dividing by the
overall transrespiratory pressure change DPao:

Cn ¼
DVn

DPao
¼ Vn

DPao
Jnj j � 1ð Þ: ð5Þ

Summing Eq. (5) across all n for the registered
image yielded the Jacobian-based estimate for total
respiratory compliance, CJAC

TOT:

CJAC
TOT ¼

XN

n¼1
Cn ¼

XN

n¼1

Vn

DPao
Jnj j � 1ð Þ ð6Þ

which can then be compared to the total compliance
obtained from image segmentation. Thus, as a check
for internal consistency of these image analyses, the
authors examined the relationship between CJAC

TOT and
CSEG

TOT across all dogs at baseline and after lung injury
at each inflation pressure pair (Fig. 1). The authors
found a significant correlation between these two
variables (r2 = 0.78, p< 0.01), with a regression line
almost indistinguishable from the line of identity.
However, the authors also observed considerably
more scatter in these data at higher values of
compliance.

Statistical Analysis

Data for animals are reported as means ± standard
errors. One-way analysis of variance (ANOVA) was
used to assess the pressure-dependence of the model
parameters from Eqs. (1) and (2) as well as the means
and standard deviations of the compliance distribu-
tions of Eqs. (5) and (6) before and after lung injury. If
significance was obtained with ANOVA, post hoc
analysis was performed using the Tukey HSD crite-
rion. At each airway pressure, pre- and post-injury
comparisons of the variables were made using two-
tailed paired t-tests. p< 0.05 was considered statisti-
cally significant.

RESULTS

Baseline and post-injury gas exchange and hemo-
dynamic data during conventional mechanical venti-
lation are shown in Table 1. After lung injury,
significant decreases in PaO2/FiO2, were observed,
along with significant increases in _QS= _QT and mean
pulmonary arterial pressure. No significant changes
were observed for cardiac output or mean systemic
arterial pressure after injury.

Figure 2 shows the numbers of dogs that were best
fit by each of three different tissue compliance dis-
tributions, based on those models with P(C) functions
yielding the lowest minimum sum of squared differ-
ences between the actual Zrs and corresponding pre-
diction. For both baseline and injury conditions, the
Zrs for most dogs was best described by a uniform
distribution of tissue compliances. Under no condi-
tion was the triangular P(C) appropriate to describe
Zrs.

FIGURE 1. Comparison of total respiratory compliance
computed from the Jacobian approach of Eq. (6) (CJAC

TOT ) to the
segmented image approach (CSEG

TOT ) for all six dogs at baseline
(white) and after lung injury (black) for pressure changes
between 5–10 (circles), 10–15 (squares), and 15–20 (triangles)
cm H2O. Linear regression yielded a significant correlation
(solid line, r2 5 0.78, p < 0.01) between to two approaches
which was indistinguishable from the line of identity (dashed
line).

TABLE 1. Gas exchange and hemodynamic data for the six
dogs at baseline and after lung injury.

Baseline Injury Comparison

CO (L min21) 3.2 ± 0.6 2.4 ± 0.5 NS

MSAP (mmHg) 112 ± 24 110 ± 12 NS

MPAP (mmHg) 15 ± 5 21 ± 6 p < 0.05

pH 7.34 ± 0.06 7.27 ± 0.04 NS

PaCO2 (mmHg) 41.53 ± 5.85 48.93 ± 6.84 NS

PaO2/FiO2 (mmHg) 528 ± 37 197 ± 68 p < 0.001
_QS

.
_QT 0.17 ± 0.06 0.33 ± 0.05 p < 0.001

Hemoglobin (g/dL) 9.75 ± 1.67 11.10 ± 1.24 NS

Data are presented as mean ± standard error.

CO, Cardiac output; MSAP, mean systemic arterial pressure;

MPAP, mean pulmonary arterial pressure; pH, negative logarithm

of hydrogen ion concentration; PaCO2, partial pressure of arterial

carbon dioxide; PaO2/FiO2, ratio of partial pressure of arterial

oxygen to fraction of inspired oxygen; _QS= _QT, shunt fraction.
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Figure 3 summarizes the distributed tissue model
parameters R, I, g, �C, rC, and CVC obtained from the
Zrs spectra for mean airway pressures of 5, 10, 15, and
20 cm H2O. Shown are the average model parameters
obtained for the six dogs at baseline and after lung
injury, assuming the P(C) for each dog yielding the
best fit to the Zrs data. Under baseline conditions, �C
decreased significantly by ANOVA with increasing
airway pressure. No clear pressure-dependent trends
were observed for any other variable at baseline,
although both g and rC tended to be lower at higher
airway pressures. After ALI, both R and I were sig-
nificantly increased compared to baseline at almost all
distending pressures, while �C was significantly
decreased. In addition, the post-injury R demonstrated
pronounced negative dependence on airway pressure.
The CVC parameter tended to increase after ALI, with
its highest value occurring at 10 cm H2O.

Based on the segmented CT scans obtained at each
inflation pressure, the authors determined total lung
pressure–volume curves for the six dogs. Figure 4a
summarizes these data for all dogs at baseline and
after lung injury. For either condition, the pressure–
volume relationship was fairly linear over the 5–20 cm
H2O range. After injury, significant decreases in total
lung volume were observed at each distending pres-
sure compared to baseline. Figure 4b summarizes
CSEG

TOT for all six dogs. While the authors observed no
significant pairwise differences between the baseline
and post-injury values at any inflation pressure, post-
injury CSEG

TOT tended to be lowest at the 10–15 cm H2O
range.

Figure 5 shows example Jacobian determinant
images based on registration in transverse and coronal
sections for a representative dog at baseline and after

lung injury for inflation pressures pairs 5–10, 10–15,
and 15–20 cm H2O. Under baseline conditions at the
lower inflation pressure of 5–10 cm H2O, the lungs
exhibited fairly uniform expansion throughout the
transverse section, although the registration algorithm
did predict small regions of compression occurring
near the mediastinum. Over the 10–15 cm H2O infla-
tion, expansion occurred preferentially in the more
dependent regions. At the highest inflation pressure
between 15 and 20 cm H2O, additional regions of
compression adjacent to the mediastinum were
observed. After ALI, the expansion fields appeared to
be more heterogeneous at all inflation pressures for this
representative dog, with regions of relative compres-
sion interspersed throughout the transverse sections.

Based on the fraction of Jacobian determinants
greater than or less than one, the percentage of lung
tissue undergoing expansion or compression, respec-
tively, was determined. A summary of percent lung
volume expanded and compressed at the three different
inflation pressure-pairs before and after lung injury is
shown in Fig. 6. For the baseline condition, the
amount of tissue compressed tended to increase with
increasing inflation pressure, although this trend was
not apparent after lung injury. For either condition,
regions of expansion comprised 82–93% of the total
change in lung volume, while regions of compression
comprised 7–17%.

Based on these Jacobian deformation fields, the
distribution of regional compliances (Cn) for each dog
was determined by multiplying each element in the
field by the voxel size and normalizing by the change in
pressure according to Eq. (5). Figure 7 shows these
distributions (in units of ll cm H2O

21) throughout the
entire lung for the same representative dog as in Fig. 5

FIGURE 2. Best-fit tissue compliance distributions obtained for the six dogs studied at baseline and after lung injury at four
different mean airway pressures. See text for details.
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at the three different inflation pressure pairs. Under
baseline conditions, the regional compliance distribu-
tions followed a unimodal pattern, although after ALI,
the distributions at the lower inflation pressures
became somewhat bimodal for this dog. Note that
negative values of regional compliance correspond to
regions that were compressed during the inflation. The
greatest amount of compression occurred at the lowest
inflation pressures after lung injury (i.e., 5–10 cm
H2O).

Figure 8 summarizes the means and standard devi-
ations of the regional compliance distributions for all

the six dogs as computed from the registered images
according to Eq. (5). Also shown are the total respi-
ratory compliances as determined from the sum of the
individual regional compliance values according to
Eq. (6). Under baseline conditions, both the mean re-
gional compliance and total compliance decreased with
increasing inflation pressure, similar to the mean
compliance estimated using forced oscillations ( �C,
Fig. 2). The baseline standard deviation of compliance
was relatively constant with inflation pressure, sug-
gesting that the mechanical heterogeneity of the lung
tissues was relatively stable over this pressure range

FIGURE 3. Summary of distributed tissues model parameters: (a) R, (b) I, (c) g, (d) �C, (e) rC, and (f) coefficient of tissue variation
CVC ¼ rC

�
�C vs. mean airway pressure for all six dogs. Data are presented as means 6 standard errors at baseline (white) and after

lung injury (black), assuming the P(C) for each dog yielding the best fit to the Zrs data. *Significantly different from baseline data at
same mean airway pressure using two-tailed paired t test. **Significantly different from corresponding data at 5 and 10 cm H2O
under same condition using ANOVA and Tukey HSD criterion (p < 0.05).
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(Fig. 8b). Over the 5–10 and 10–15 cm H2O pressure
changes, these standard deviations tended to be
increased after lung injury, although no pairwise sig-
nificant changes were observed in any of these image-
based post-injury estimates of regional or total lung
compliance compared to baseline. However, post-
injury mean regional compliance, standard deviation
of regional compliances, and total respiratory system
compliance attained their minima at the moderate
inflation of 10–15 cm H2O.

DISCUSSION

In this study, functional and structural estimates
of regional lung mechanics were obtained in dogs
using the oleic acid model of ALI. Techniques which
can accurately quantify the heterogeneity of such
mechanics may provide insight into regional dere-
cruitment, alveolar flooding, and overdistention, all of
which have been linked to ventilator-associated lung
injury and may change over time as the pathology
evolves.33 Our functional assessment of regional
mechanics was based on forced oscillatory measure-
ments of respiratory input impedance, Zrs, combined
with an inverse modeling approach to account for
distributed tissue compliances.3,17,21,22 For structural
assessment, the authors relied on 3D CT image regis-
tration, a process by which in vivo anatomic estimates
of regional parenchymal strains and deformations may
be obtained at voxel-scale resolution.7,13,29 Before the
results obtained from these two distinct approaches are
compared; however, it is important to review those
physiologic processes that each technique is best suited
to measure, as well as their corresponding limitations.

Forced oscillatory measurements of Zrs quantify
the energy dissipation and storage behavior largely of
those portions of the lung that are in direct commu-
nication with the airway opening, as well as the geo-
metric and mechanical constraints of the chest wall.
This behavior arises from complex resistive, elastic,
and inertial interactions of the respiratory system,
which are encapsulated in the parameter values of the
model described by Eq. (1). Derecruited and flooded
lung regions have very large local impedances, and
their elastic contributions are effectively removed from
communication with the airway opening. Moreover,
the model-based approach inherent in Eq. (1) assumes
that only one compliance distribution among the four
studied (hyperbolic, uniform, linear, or triangular) was
most suited to describe a particular Zrs data set.22 This
limits the types of compliance distributions to rela-
tively simple closed forms that may or may not cor-
respond to actual distributions in vivo.21 Finally, while
this modeling approach may provide some quantitative
insight into the nature of regional lung mechanics with
only a small number of free parameters,22 it provides
no anatomic information on the distribution of such
heterogeneity.

In contrast, image registration does provide such
information by aligning three dimensional CT scans at
different inflation pressures and using lung structural
features to map specific regions of segmented volumes
between image pairs.7 This allows for precise
localization of regional expansion, contraction, and
parenchymal strain.8,29 Also included in such regis-
tered volumes are non-aerated portions such as vas-
culature structures and derecruited/flooded regions
displaced during inflation. While such regions will
contribute to the estimated strain fields and local

FIGURE 4. (a) Total segmented lung volume vs. mean airway pressure at baseline (white) and after lung injury (black). *Signifi-
cantly higher from baseline data at same mean airway pressure using two-tailed paired t test (p < 0.05). (b) Total segmented
compliance (CSEG

TOT ) vs. inflation pressure at baseline (white) and after lung injury (black).
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compliances determined from image registration,
they will contribute only minimally to the apparent
mechanical load described by Zrs.

27,28 Moreover, the
image registration results were obtained under static
conditions, and thus would be insensitive to the vari-
ous dynamic events reflected in Zrs.

Model Analysis of Respiratory Impedance

Our assessment of respiratory mechanics using
forced oscillations demonstrated that baseline esti-
mates of average tissue compliance �C decreased with
increasing mean airway pressure, consistent with strain

FIGURE 5. Image registration in (a) transverse and (b) coronal sections for a representative dog at baseline and after ALI for three
different inflation pressures pairs. Volume changes are color coded such that yellow, orange, and red correspond to expansion,
blue and purple to contraction, and green to no change in volume.
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FIGURE 6. Percent of total lung volume undergoing expansion and compression at the three different inflation pressures for
baseline (white) and lung injury (black) conditions as predicted from image registration. Data are presented as means 6 standard
errors. Approximately 85–90% of total lung volume expands as airway pressure increases.

FIGURE 7. Distributions of regional compliances throughout the lung for a representative dog at three inflation pressure pairs at
baseline (gray) and after lung injury (black). Dashed line denotes zero compliance.

FIGURE 8. Summary of the (a) averages and (b) standard deviations of regional compliances for all the six dogs as computed
from the registered images according to Eq. (5), along with (c) the total respiratory compliance as determined from Eq. (6). Data are
presented as means 6 standard errors.
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stiffening of the tissues (Fig. 3d). As in previous
studies, our estimates of �C after ALI significantly
decreased compared to baseline,2,21,28 consistent with
volume loss due to derecruitment, flooding, and/or
surfactant inactivation.33 However these post-injury
estimates of �C demonstrated no dependence on mean
airway pressure. Moreover, the model-based estimates
of hysteresivity (Fig. 3c) and heterogeneity (Fig. 3e)
were largely unaffected by injury. While our small
sample size may have been underpowered to detect
significant changes in these parameters, these data do
suggest that the intrinsic mechanical properties of the
tissues remained unchanged in this canine model of
ALI. Thus, the decreases that were observed in �C
relative to baseline were due mostly to derecruitment
of lung units in communication with the airway
opening.

Note that with increases in mean airway pressure,
the baseline value of �C had descended almost to the
same level of post-injury �C by 20 cm H2O (Fig. 3d).
This relative constancy of �C with increasing pressure
after lung injury may reflect a balance between strain-
stiffening of the parenchyma (tending to decrease �C)
and lung recruitment (tending to increase �C). The
authors would, therefore, expect minimal changes in
the Zrs-based estimates of aerated tissue heterogeneity
after injury, as rC demonstrates (Fig. 3e). The ten-
dency for CVC to be increased by injury in our dogs
was largely a result of the decrease in �C, since for the
same standard deviation, a decrease in mean will
increase the coefficient of variation. This is consistent
with the highly recruitable nature of oleic acid lung
injury.28 A recent study by Lorx et al. in patients with
pneumonia also characterized Zrs with a similarly
distributed tissue model,24 although they reported
different dependencies in effective tissue elastance with
airway pressure. Thus, our results may not be gener-
alizable to all patients with ALI, in which more diffuse
alveolar damage and hyaline membrane formation
may frequently be seen.33

CT Analysis of Lung Mechanics

The pressure–volume (P–V) curves that were
obtained from the segmented lung images of this study
demonstrated that the injured lung inflates to a lower
volume for a given airway pressure compared with
baseline conditions (Fig. 4a). With CT imaging, the
entire lung volume (i.e., both aerated and flooded/
derecruited regions) is measured while holding airway
pressure constant. The fact that less volume at a given
pressure was measured indicates that the P–V curve
has shifted to the right after injury, consistent with
previous studies that construct P–V curves from
segmented CT images rather than measuring recoil

pressure of aerated tissue.9,23,25 Note that the mea-
surements of this study were made over the 5–20 cm
H2O pressure range, which is arguably the most linear
region of the PV curve.32 Thus, discrepancies between
the P–V slopes of healthy and injured lungs closer to
TLC (i.e., 35–40 cm H2O) may not be apparent from
these data.

Our image registrations indicate that the local
compliances Cn computed from the Jacobian analysis
may by either unimodally or bimodally distributed
(Fig. 7). It should be noted however, that Cn is
assumed to be a surrogate for regional stress–strain
behavior of the lung tissues, although it is approxi-
mated as the local Jacobian-based volume change per
overall transrespiratory pressure change (Eq. (5)). In
reality, determination of true regional compliance
requires knowledge of the regional transpulmonary
pressure gradients. Thus, the Cn that was estimated in
this study might be more akin to a ‘‘transfer’’ com-
pliance. Nonetheless, when all Cn contained within the
registered lung field are summed according to Eq. (6), a
value for total compliance in close agreement with that
obtained from the ratio of total segmented volume to
airway pressure change was obtained, even for very
low values of compliance (Fig. 1). The authors did
observe increased variability between CJAC

TOT and CSEG
TOT

for higher values of compliance, possibly due to reg-
istration error.29 Also note that computing total
compliance based on the sum of Cn assumes that all the
regional compliances are independent of each other,
similar to the model of Eq. (1). Thus, neither our
modeling approach nor our image registration tech-
nique explicitly incorporates mechanical interdepen-
dence between lung units.

An unexpected finding is that our image registra-
tions predict that portions of the lung are compressed
during inflation, corresponding to regions of negative
compliance. In transverse section, the regions of com-
pression largely occurred adjacent to the mediastinum
and chest wall (Fig. 5a), suggesting that such portions
may have been forced against these structures by the
underlying parenchyma as it expanded. Note that the
whole-lung scans for this study were obtained during
static breath-holds, and not gated to the heart rate
during these periods of apnea. Such cardiac motion
may certainly have resulted in partial volume artifacts
or contributed to registration errors near the medias-
tinum. In addition, some regions of compression were
observed in proximity to the diaphragm–abdomen in
coronal section (Fig. 5b), raising the possibility that
registration error may also have occurred near the
segmented boundaries of the lung due to the difficulties
of registering flooded regions that have high CT den-
sity and a relative lack of distinguishing features.
Nonetheless, these findings are consistent with recent
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esophageal balloon measurements of pleural pressures
in excess of alveolar pressure in some patients with
ALI, indicating the compression of trapped gas behind
closed airways.30,31 The amount of compressed lung
tissue estimated was not negligible (~10%), and was
similar in quantity for both baseline and injured con-
ditions (Fig. 6). This further supports the notion that
the increased strain field complexity observed in Fig. 5
is due to recruitment in the injured lung, as this com-
plexity occurs internally to the compressed borders.

Comparison of Forced Oscillations
and CT Image Registration

The pressure-dependent trend of mean regional
compliance obtained under baseline conditions using
image registration (Fig. 8a) was similar to the more
significant pressure-dependence of the Zrs-based com-
pliance (Fig. 3d). However the parameters reflecting
heterogeneity of compliance provided by the two
approaches exhibit rather different dependencies on
pressure (Fig. 3e vs. Fig. 8b). This presumably reflects
the particular physiologic processes to which each
technique is sensitive. For example, our Zrs-based
estimates of tissue compliance were obtained during
dynamic oscillations in volume, and thus potentially
reflect time-dependent phenomena such as stress-
relaxation or pendelluft. Of course, cyclic recruitment
and derecruitment during forced oscillations could
potentially violate the requirements of system linearity
and time-invariance assumed by our signal processing
and modeling approaches.34 However, our peak-to-
peak oscillatory pressure excursions were likely small
enough (2–3 cm H2O) such that periodic opening and
closing of lung units during the excitations were mini-
mal. Moreover, none of these time-dependent phe-
nomena would be expected to influence compliance
estimates obtained with image registration during static
breath-hold conditions and larger volume excursions.

The peaked tissue compliance distributions deter-
mined from the image registrations (Fig. 7) were fun-
damentally different than the distributions predicted
from the model-based analyses of Zrs, most of which
were uniform (Fig. 2). This is despite the fact that one
of the P(C) distributions, which was evaluated, had a
peaked, triangular form. While this may suggest that
inverse model analysis of Zrs may not provide much
more information beyond a general measure of the
spread of tissue compliance,22 there may also be some
differences in the way that regional mechanics are dis-
tributed between aerated and non-aerated structures, as
reflected in the bimodal Jacobian-based compliance
distributions observed in some dogs after injury, which
became unimodal at higher pressures (Fig. 6).

The results obtained from modeling of Zrs and
registration of CT images are consistent with the
injured lung being comprised of two compartments:
one that is derecruited or flooded and one that inflates
normally. For example, the effective tissue compliance
estimated from Zrs demonstrated significant differ-
ences pre- vs. post-injury (Fig. 3d), while the mean
regional compliance obtained from image registration
exhibited minimal change (Fig. 8a). This implies that
derecruited and flooded regions have very unique
contributions to the overall mechanical behavior of
the lung as determined from either oscillatory flow
response at the airway opening or regional parenchy-
mal strain fields. Thus, forced oscillations and image
registration provide very different, but nonetheless
complimentary, information regarding pulmonary
structure–function relationships and their pathologic
alterations.

One of the prime motivations for pursuing this
study of structure and function in ALI is to determine
whether mechanical ventilation of patients can be
individualized beyond the implementation of simple
low-tidal volume protocols.1 In particular, the design
of an optimal ventilatory regimen for a given patient
will depend on the ability to obtain a sufficiently
detailed assessment of the mechanical status of the
lungs. For practical reasons, image registration is
unlikely to serve in this regard. However, this tech-
nique has enabled us to better understand the physio-
logic relevance of Zrs, which does have the potential to
be a routine diagnostic tool at the bedside. The mea-
surement of Zrs can easily be incorporated into existing
ventilator platforms3,20 to provide information about
lung tissue heterogeneity, recruitment, and over-dis-
tention without disrupting ventilatory support. Such
information could have a significant influence on the
choice of tidal volumes and airway pressure ranges for
individual patients.20

In summary, this study compared functional and
structural estimates of regional lung mechanics at
different inflation pressures in dogs with ALI using
both forced oscillations and CT image registration.
While Zrs provides specific functional information
regarding the heterogeneity and recruitment of
injured lungs under dynamic conditions, structural
assessment of regional mechanics can be obtained at
voxel-level scale from the deformation field identified
using CT image registration. Each technique exhibits
different sensitivities to mechanical heterogeneity in
this canine model of lung injury, but taken together,
both provide complementary information on struc-
ture–function relationships and may allow for a more
appropriate comparison of physiologic models with
anatomic data.
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