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Abstract—An optical flow gradient algorithm was applied to
spontaneously forming networks of neurons and glia in
culture imaged by fluorescence optical microscopy in order to
map functional calcium signaling with single pixel resolution.
Optical flow estimates the direction and speed of motion of
objects in an image between subsequent frames in a recorded
digital sequence of images (i.e., a movie). Computed vector
field outputs by the algorithm were able to track the
spatiotemporal dynamics of calcium signaling patterns. We
begin by briefly reviewing the mathematics of the optical flow
algorithm, and then describe how to solve for the displace-
ment vectors and how to measure their reliability. We then
compare computed flow vectors with manually estimated
vectors for the progression of a calcium signal recorded from
representative astrocyte cultures. Finally, we applied the
algorithm to preparations of primary astrocytes and hippo-
campal neurons and to the rMC-1 Muller glial cell line in
order to illustrate the capability of the algorithm for
capturing different types of spatiotemporal calcium activity.
We discuss the imaging requirements, parameter selection
and threshold selection for reliable measurements, and offer
perspectives on uses of the vector data.
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INTRODUCTION

Calcium signaling is an intermediate step in many of
the signaling pathways in neurons and glial cells and is
informative of functional neural activity. In neurons
calcium signaling precedes subthreshold and threshold
(i.e., actionpotential) changes inmembrane voltage, and

can be used to infer electrophysiology from optical
imaging.7,32,34,37 In astrocyte glial cells, it underlies the
mechanisms by which these cells communicate in
astrocyte networks and in bi-directional communication
with neurons.1,6,30 Relative changes in cytosolic calcium
concentration can be measured using different fluores-
cence indicator dyes that can be imaged by optical
microscopy in the visual light range, such as bulk-loaded
AM esters and genetically encoded calcium indica-
tors.29,33 The emitted fluorescence of indicator dyes
change as a function of the relative amount of free cal-
cium ions individual indicator molecules are able to
interact with. Although the relationship between mea-
sured fluorescence signals and the calcium levels that
produce them is complex and nonlinear, it is assumed
that there exists a correlationbetweenmeasured changes
in emitted fluorescence by indicator molecules and dif-
fering cytosolic calcium concentrations. In this context,
the measured fluorescence signal provides a valuable
qualitative metric of changing calcium levels that allow
inferences of cell signaling and function. Throughout
the rest of this paper, we will use the terms ‘‘calcium
signal’’ or ‘‘calcium fluorescence’’ to mean a measured
calcium indicator fluorescence signal that reflects a rel-
ative cytosolic calcium concentration, as is routinely
implied in the literature, even though in practicality we
never know the real, i.e., absolute, free ion concentration
that gives rise to the measured fluorescence signal.

The data collected by a typical experiment records
qualitative movies of imaged changes in calcium fluo-
rescence intensity. One can visualize calcium transients
and their relative positions and durations, but there is no
inherent quantitative analysis of the data by the exper-
iment itself that allows one to derive the dynamics
that characterize such signaling events. For example,
things such as propagation speeds and directions
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(i.e., velocity), the kinetics of measured waveforms,
or analysis that depend on such properties, such as
identifying and mapping the signaling geometry of
intercellular calcium waves in networks of neurons or
astrocytes. Measuring and tracing calcium (or other
second messenger) fluorescence signals quantitatively
from recorded movies manually is a tedious and labor
intensive process for even small data sets, and involves
comparing intensities at different frames and locations
in order to calculate speeds and directions. It is generally
not possible to do so for large data sets that encompass
high spatial and temporal resolution detail or large
numbers of cells interacting in a circuit or network.

This can be addressed by analyzing experimental
data with a filter algorithm called optical flow, which
can be used to derive quantitative measurements of
observed spatiotemporal calcium signals imaged from
fluorescence movies. The resultant vector data have a
variety of uses, ranging from deriving basic measure-
ments of signal velocity and direction, to characteriz-
ing and classifying spatiotemporal calcium dynamics
between different experimental conditions. Optical
flow is an imaging technique (i.e., a filter) that calcu-
lates a two-dimensional displacement field between
two subsequent frames in a movie, based on the local
spatial and temporal gradients of the two images. The
optical flow filter originated in the computer vision
field, where it was designed to approximate object
motion in time-ordered image sequences for applica-
tions like stereo disparity measurements, motion esti-

mation, movie encoding and compression, and object
segmentation.15 The algorithm uses a computed local
spatial and temporal gradient to approximate a dis-
placement or flow vector at each pixel in the image. In
both neurons and glial cells cytosolic calcium concen-
tration changes manifest themselves as transient
responses with a rapid increase, i.e., rising phase, fol-
lowed by a kinetically slower decaying phase. This is
because free calcium is cytotoxic and therefore kept at
nanomolar concentrations in the cytoplasm under
normal conditions. It is only transiently elevated fol-
lowed quickly by its re-uptake or extrusion. Temporal
changes are typically coupled to spatial changes as a
signal propagates through a cell. Measured fluores-
cence changes then trace specific paths during periods
of observation (cf. Fig. 1). Calcium transients start at a
particular location, travel in some direction at a spe-
cific speed and terminate at a different location. The
typical kinetics of calcium transients in neural cells are
particularly well suited to the computational require-
ments of the optical flow algorithm.

We have successfully applied optical flow to calcium
fluorescence movies and obtained displacement vectors
that track the spatiotemporal progression of calcium
signals. The filter works for calcium fluorescence data
because calcium signals exhibit both spatial and tem-
poral gradients. The computed vectors provide point
estimates of the speed and direction of signals. Optical
flow is ultimately an imaging filter that works on whole
movies, much like edge filters and image segmentation
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FIGURE 1. Selected frames from recorded movies of imaged calcium fluorescence activity in sparse networks of primary dis-
sociated cortical astrocytes (top) and hippocampal neurons (bottom—where a single neuron at high magnification is shown). The
color-coded scale bars on the right represent fluorescence intensity I in units of DI/s, as a first derivative of the calcium signal.
Fluorescence increases followed a relatively smooth spatial progression across the frames at the times indicated by the time
stamp in the upper left hand corner of each image. Areas of increasing calcium concentration appear as positive DI/s values, while
areas of decreasing calcium concentration appear as negative values, but at a much smaller magnitudes.

Mapping Neural Cell Networks with Optical Flow 2521



filters are used in static microscopy,12,13,25 and pro-
vides a novel and automated way of analyzing the
spatiotemporal dynamics of calcium intracellular sig-
naling in neurons and astrocytes.

We begin by briefly reviewing the mathematics of
the optical flow algorithm, describe how to solve for
the displacement vectors, and how to measure their
reliability. We then compare computed flow vectors
with manually estimated vectors for the progression of
a calcium signal recorded from representative astrocyte
cultures. Finally, we applied the algorithm to prepa-
rations of primary astrocytes and hippocampal neu-
rons and to the rMC-1 Muller glial cell line in order to
illustrate the capability of the algorithm for capturing
different types of spatiotemporal calcium activity. We
discuss the imaging requirements, parameter selection
and threshold selection for reliable measurements, and
offer perspectives on uses of the vector data.

OPTICAL FLOW ALGORITHM

AND COMPUTATION

In this section, we briefly introduce the concepts and
mathematics of optical flow, focusing in particular on
our own implementation of the algorithm to the
experimental data that follows in the ‘‘Results’’ sec-
tion. The theory behind the algorithm is well estab-
lished, and the interested reader is referred to a number
of excellent texts on the subject (see for example, Horn
and Schunck15 and Jahne16). Optical flow is an algo-
rithm that operates at the pixel level and calculates
local displacement or velocity between time ordered
image pairs. Optical flow (or equivalently image flow)
is the perceived motion of an object in a field of view
(e.g. by the human eye or a camera), defined as the
‘‘flow’’ or change in space and time of gray values at
the image plane. It is an estimation of the motion field,
which is the actual motion of the object in three-
dimensional space projected onto the image plane (i.e.,
what we would like to know). As long as the frequency
of successive frames in an image sequence is shorter
than the motion or displacement of the object of
interest (in order to avoid confounding ambiguities in
detecting the components of the motion caused by
aperture and correspondence problems—see Horn and
Schunck15 and Jahne16), the optical flow algorithm is
able to track the motion of objects in the field of view
as a function of changing gray scale levels, subject to
appropriate constraints and minimizations. In other
words, the algorithm assumes that any changes in gray
values are due to the object moving, and that the
irradiance of the object is constant from frame to
frame. (This is actually a weak assumption that is

difficult to satisfy since motion usually causes changes
in irradiance, which is why the algorithm is an esti-
mation of the motion field. In cases where irradiance
does not change, the optical flow exactly equals the
motion field.) The algorithm assumes the conservation
of gray levels in the field of view and assumes that any
changes in the distribution of gray levels are due to
motion. In fact, the optical flow constraint equation
(introduced below) can be derived by analogy from the
continuity equation in fluid dynamics that conserves
mass.16 By computing the optical flow for all pixels in a
field of view, displacement vectors can be calculated
for each pixel that map where an object moved to from
the pixel in the first frame to that in the second.
Intuitively, one can see why the algorithm performs
best with objects that have strong contrasts at
boundaries or large signal to background noise ratios.
The kinetics of calcium transient signals display clearly
distinguishable rising and decaying phases that trace-
specific paths during periods of observation in the form
of intracellular calcium waves (Fig. 1) that are readily
detectable by the algorithm.

The underlying assumption for computation is to
constrain local temporal gradients to the product of
spatial gradients and displacement vectors. The basic
principle of the algorithm takes as inputs two images
and computes a vector for each corresponding pixel in
the images which approximates the displacement of a
small window surrounding that pixel between the two
images (Fig. 2). Only intensity values inside the win-
dow are used for computing the pixel displacement
value, so the measurement is localized. Adjacent pixels
will have overlapping windows, so their computed
vectors will be similar, much like pixels in a blurred
image are similar. Following a mathematical descrip-
tion of the algorithm, we describe the method for its
solution and implementation that we used to derive the
optical flow for calcium signals. We also discuss
parameters and constraints of relevance to calcium
fluorescence movies.

Consider an arbitrary pixel with gray level intensity
I(x, y, t), displaced in the xy plane by dx and dy at time
dt in an n 9 n window X (Fig. 2). This implies that

Iðx; y; tÞ ¼ Iðxþ dx; yþ dy; tþ dtÞ ð1Þ

A first-order Taylor series approximation of
I(x, y, t) by expansion of the right side of Eq. (1)
results in

Iðxþ dx; yþ dy; tþ dtÞ

¼ Iðx; y; tÞ þ @I

@x
dxþ @I

@y
dyþ @I

@t
dt

þ higher order terms ð2Þ
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Ignoring higher order terms, which provide negli-
gible contributions, and taking into consideration
Eq. (1)

@I

@x
dxþ @I

@y
dyþ @I

@t
dt ¼ 0 ð3Þ

Dividing by dt

@I

@x

dx
dt
þ @I
@y

dy
dt
þ @I
@t
¼ 0 ð4aÞ

@I

@x
ux þ

@I

@y
ux þ

@I

@t
¼ 0 ð4bÞ

The two spatial and one temporal gradients are
defined by @I

@x ;
@I
@y ; and @I

@t ; respectively. ux ¼ dx
dt and

vy ¼ dy
dt represent the x and y spatial components of the

optical flow displacement vector u(x, y) = (ux, vy). The
basic optical flow formulation is to constrain temporal
intensity changes (gradients) to the product of spatial
gradients and u(x, y) to give Eq. (4). In more compact
notation this can be written as

rIðx; y; tÞ � uðx; yÞ þ @Iðx; y; tÞ
@t

¼ 0 ð5Þ

Computing optical flow means finding the values of
u(x, y) at each location for every time point that satisfy
the above constraint, given the known local image
intensity spatial and temporal gradients.

Two factors establish computability of meaningful
nonzero flow vector values. First, local spatial gradi-
ents must be nonzero at the point of interest (x, y, t).
There has to be some image information around the

pixel of interest, meaning that neighboring points have
to have different values so that gradients are nonzero.
If all pixels in a window around (x, y, t) have the same
intensity values, then spatial gradients are zero and
motion is undetectable by any means. Second, for
displacement between subsequent frames to be com-
puted, there has to be a temporal gradient at (x, y, t),
or some change in intensity between time points. If
there is no temporal change in intensity between sub-
sequent time points, then a value of u(x, y) = 0 satis-
fies the constraint equation in (5). Both of these
requirements are limitations on the original applica-
tion of the optical flow when estimating displacement
in natural scenes: objects may have constant intensity
in a small window and still be moving, meaning that
motion may occur and the recorded intensity spatial
and temporal gradients equal zero. These limitations
are less important when optical flow is applied to cal-
cium fluorescence movies.

There are many methods for calculating optical flow
for recorded movies (see Barron et al.5 for a review),
and all of them work on digitized movies with discrete
pixel values of position and time, i.e., (x, y, t) 2 (col-
umns, rows, frames). We chose the Lucas and Kanade
method because it is conceptually simple and efficient,
and flexible in terms of the image processing steps
required for computation.3,4,22 First, computation of
the flow vector u(x, y) is performed on a window or
spatial neighborhood X of arbitrary size, centered
around (x, y), which is more reliable than a single-
point estimate at (x, y). Second, a window function
W(x, y) is defined to favor values in the center over
those near the edges. The choice of window size will

FIGURE 2. The optical flow algorithm. A window X in the same location in two subsequent image frames is used to compute a
displacement or flow vector (arrow) for the pixel at the center of the window. Only image intensity values in X are used for the
calculation. Vectors are computed for each pixel in an image frame except in border regions where X falls outside of the image.
Given the position of the pixel as (x, y) at t seconds, (x, y, t), the displacement vector defines the motion of the pixel at the
subsequent frame at dt seconds as (x + dx, y + dy, t + dt).
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depend on a variety of factors. It must be large enough
to capture the apparent displacement across frames
and small enough to resolve features of interest. The
capture frame rate must be fast enough for displace-
ments to be observable within the width of the spatial
observation window across successive frames. When
measuring the spatiotemporal motion of calcium sig-
nals the size of the window X, the frame rate, and the
resolution are all deeply tied to the size of the cells or
cellular compartments in which the signal travels.
Together, these parameters must be chosen so that the
signal is observable and smooth enough to measure
reliably as flow vectors across frames. For example, the
choice of parameter values used to image calcium
signals in part of a dendrite or a fine astrocyte process
will necessarily be different than parameter values for
broad calcium signals that fill the soma. The constraint
equation is redefined as a weighted least-squares fit of
local first-order constraints to a constant model of a
local u(x, y) in each small spatial neighborhood X
around the pixel of interest. The goal is to find the
value of u(x, y) that minimizes

X

ðx;yÞ2X
W2ðx; yÞ rIðx; y; tÞ � uðx; yÞ þ @Iðx; y; tÞ

@t

� �2

ð6Þ

The above equation can be rewritten and solved as the
linear system:

ATW2A � uðx; yÞ ¼ ATW2b; ð7Þ

where, for neighborhood X, consisting of n points
centered around the pixel and time of interest (x, y, t),
X ¼ fðx1; y2; tÞ; ðx2; y2; tÞ; . . . ; ðxn; yn; tÞg:

A ¼
@I
@x ðx1; y1; tÞ @I

@x ðx2; y2; tÞ . . . @I
@x ðxn; yn; tÞ

@I
@y ðx1; y1; tÞ @I

@y ðx2; y2; tÞ . . . @I
@y ðxn; yn; tÞ

" #T

ð8Þ

W ¼ diag Wðx1; y1Þ; . . . ;Wðxn; ynÞ½ � ð9Þ

b ¼ � @I

@t
ðx1; y1; tÞ; . . . ;

@I

@t
ðxn; yn; tÞ

� �T
ð10Þ

X is usually a square window with sizes typically
ranging from 3 9 3 to 15 9 15 or n = 9 to n = 225
points. We have set the weight matrix W to a two-
dimensional Gaussian with r2 equal to 1/6 of the
window width. As an example, for a 5 9 5 or n = 25
point window:

W ¼ 1

1000

1 6 13 6 1
6 54 112 54 6
13 112 230 112 13
6 54 112 54 6
1 6 13 6 1

2

66664

3

77775

Here, the center values in W have a greater contribu-
tion to the calculation than the edge values, favoring
gradient values at the pixel of interest.

Solving for the flow vector u(x, y) in Eq. (7), yields:

uðx; yÞ ¼ ATW2A
� ��1

ATW2b ð11Þ

Equation 11 describes a linear system in matrix form,
where the flow vector u at spatial and time location
(x, y, t) is solved from the quantities of A, W, and b,
defined from the spatial and temporal derivates of n
points around (x, y, t). The 2 9 2 matrix [ATW2A]
matrix contains all the image spatial derivatives, and if
those values are close to zero, the matrix is poorly
conditioned, and flow estimates become unreliable.
Ensuring that both eigenvalues of the [ATW2A] matrix
are sufficiently large is a good way to ensure that the
matrix is well conditioned, since a measure of the
conditioning number is the ratio of the largest to the
smallest eigenvalue.5 While this is not the only way to
compute conditioning, this is the test we used for
visualization and measurement reliability of computed
vectors for calcium fluorescence data (see ‘‘Reliable
Vectors via the Eigenvalue Test’’ section in Appendix
for more information).

Spatial and temporal derivates were computed using
2 9 2 convolution kernel filters, where the ** operator
denotes two-dimensional discrete convolution:

@Iðx; y; tÞ
@x

¼ Iðx; y; tÞ � � 1
4

�1 1
�1 1

� �
ð12Þ

@Iðx; y; tÞ
@y

¼ Iðx; y; tÞ � � 1
4

�1 �1
1 1

� �
ð13Þ

@Iðx; y; tÞ
@t

¼ 1

Dt
Iðx; y; tþ DtÞ � Iðx; y; tÞð Þ � � 1

4

1 1
1 1

� �

ð14Þ

Here Dt represents the time between frames or the
frame rate 1/Dt. Since the temporal derivative calcu-
lated in (14) forms the basis for the b vector in (11), the
frame rate has a linear effect on the magnitude of the
flow vector u.

Optical flow outputs a displacement vector in units
of pixels, normalized to the time difference between the
two frames used for computation. When normalized,
the vector takes on velocity units of pixels per frame
(for this reason, it is called a flow vector). The con-
version to physical units will depend on the spatial
resolution of the camera and microscope, typically
expressed in microns per pixel, and the sampling rate
for the movie capture, expressed in frames per second.
Spatial resolution is a function of the objectives used as
well as the resolution of the imager and any pixel
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binning used. The frame rate is limited at the high end
by the camera sampling rate, and at the low end by the
minimum exposure time required to capture a detect-
able intensity signal. The exposure time may be re-
duced by increased gain or pixel binning, but those
come at a cost of reduced resolution or increased noise.
The conversion between units of pixels/frame and units
of microns/second is straightforward:

microns

second
¼ pixels

frame
� frames

second
�microns

pixel
ð15Þ

While the optical flow algorithm produces vectors in
units of pixels/frame, the analysis of the data in the
‘‘Results’’ section below have been converted into
physical units of microns/second, using the resolution
and capture rate of the recordings given the specifics of
our imaging system.

RESULTS

Comparison Between Computed and Manually
Estimated Flow Vectors

We manually estimated flow vectors for 12 images
equivalent to 6 s of calcium signaling in primary dis-
sociated spinal cord astrocyte cultures (orange arrows
in Fig. 3), and qualitatively compared them to com-
puted optical flow vectors for the same data (green
arrows in Fig. 3; note that only reliable vectors are

shown as determined by the eigenvalue test—cf.
Eq. (11) and above discussion). Manual estimation
required stepping through frames and approximating
roughly how a calcium signal progressed in time, which
in this experimental preparation included intercellular
calcium waves that propagated through a subset of the
cell network. The manually traced signals were not the
only ones observable in the small movie sequence used,
but were chosen to illustrate four representative sig-
naling paths. Manual estimation was performed in 2-s
intervals, estimating the incremental spatial progres-
sion of a given calcium signal across four frames.

Estimation of the flow or displacement of a cell
signal such as calcium between frames manually like
we did for the data in Fig. 3 is a very tedious and labor
intensive process, and can only realistically be done
under very sparse conditions where the observer can
clearly delineate the flow of the signal visually. It is
nearly impossible to do at the pixel or small window
level. In contrast, optical flow calculates a displace-
ment vector for every pixel in every frame, operating at
a much finer scale and capturing much more detail
than is possible with manual estimates. Nonetheless, in
Fig. 3 for the purpose of qualitatively validating
derived optical flow vectors to manually estimated
ones, in both cases there was a clear overlap in vector
direction between manual and flow vectors. By con-
trast, there were greater differences in vector magni-
tudes between manual and flow vectors, which is
consistent with the fact that the manual estimates

40µm

0.0s 2.0s 4.0s 6.0s

2.0 sec 4.0 sec 6.0 sec

FIGURE 3. Comparison between computed optical flow vectors (green) and manually estimated flow vectors (orange) for a
primary dissociated spontaneously forming astrocyte network in culture. While computed vectors were calculated for every pixel
and every frame, manual vectors were estimated every four frames and only trace a few selected signals. Only reliable optical flow
vectors are shown, and only one in four vectors in both horizontal and vertical directions are shown for clarity. Unlike the manual
vectors, flow vectors are only shown for the current frame. The top sequence of panels show vectors overlaid on extracted frames
from the actual movie at the indicated times for the entire field of view. The bottom panels show the vectors in detail for the 2, 4,
and 6 s frames in order to more clearly assess the qualitative overlap between optical flow computed and manually estimated
results. For optical flow vectors (in green), only vectors that putatively correspond to manual vectors (in orange) are shown, in
contrast to the upper panels which show all computed vectors (see text). See Appendix for details regarding experimental
preparations, imaging, and parameters for calculation.
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spanned four frames while optical flow vectors were
calculated across adjacent frames. There is also tem-
poral overlap between the two cases, in the sense that
similar displacements were estimated for the same
frames using both approaches. The eigenvalue thresh-
old masked out unreliable vectors, and this correlated
well with calcium activity; only areas of spatial and
temporal changes in the movie produced reliable vec-
tors as assessed visually, which is ultimately the most
accurate estimator of complex motions, but only if
given the right conditions (e.g., conditions that allow
the human eye to separate motion). The optical flow
algorithm, however, is able to provide reliable quan-
titative measurements of signaling dynamics at spatial
and temporal scales simply not measurable by quali-
tative visual inspection or manual estimations of the
data.

Optical Flow Characterization of Intercellular Signaling

We applied the optical flow algorithm to typical
calcium fluorescence movies of spontaneously forming
sparse networks of neural glial cells and neurons in
culture, and looked at the dynamics of intercellular
signaling following pharmacological or mechanical
stimulation. We purposely chose sparse networks
because it facilitates the visual interpretation of the
entire resultant vector field, but the algorithm itself can
operate on any data that displays an appropriate sig-
nal. We recorded movies from the rMC-1 Muller glial-
like cell line, which mechanistically displays calcium
signaling similar to Muller retinal glial cells in vivo,38

primary dissociated spinal cord astrocytes, and pri-
mary dissociated hippocampal neurons. Intercellular
calcium waves in rMC-1 cells and astrocytes were
mechanically induced by gently poking an initial cell
without penetrating the cell membrane, while calcium
waves in neuronal networks were induced by the
localized pharmacological application of glutamate to
one or a small group of cells (see the Appendix for
details about experimental preparations and imaging
parameters). In particular, intercellular calcium waves
in astrocytes and related anatomically specialized
macroglial cells such as Muller cells in the neural retina
or Bergman glia in the cerebellum have been known to
occur under experimental conditions for several years
now, and have recently been shown in vivo under
both physiological and pathophysiological conditions
in different parts of the brain, mediated by intracel-
lular calcium transients that induce paracrine sig-
naling, primarily through adenosine triphosphate
(ATP).14,19,20 Astrocyte and related macroglial cells
engage in bi-directional chemical signaling with neu-
rons and have the ability to modulate and directly
participate in information processing in the brain,

which necessitates more than just interactions between
neurons and almost certainly involves astrocytes
somehow. The functional roles of glial intercellular
calcium waves and their contributions to modulating
neuronal information are not yet known, and in fact
the dynamics of these signaling events and the condi-
tions under which they occur are just beginning to be
explored.

The key parameter for computing optical flow using
the Lucas-Kanade method is the window size X,
specified as a square of a given width (see above). It
defines the local neighborhood of pixels along a point
of interest that is used to compute the spatial and
temporal gradients required for the calculation.
Though not required for computation, a minimum
value for the eigenvalues for the matrix ATW2A should
be specified to mask out unreliable measurements. This
ensures that only reliable displacement vectors are
displayed and used for analysis. Since the intensity
values are a function of the experimental setup,
microscope, and camera, the ATW2A matrix and its
eigenvalues will scale accordingly. The selection of the
eigenvalue threshold is thus arbitrary, much like the
selections of the camera gain, exposure time, and other
imaging parameters are made to generate easily visible
intensity values (see ‘‘Reliable Vectors via the Eigen-
value Test’’ section in Appendix for more information
on selecting suitable eigenvalue thresholds). Table 1
shows the window sizes, eigenvalue thresholds, and
capture frame rates used to calculate the vector fields
shown in Fig 4. The displacement vectors can be
converted into velocity by Eq. (15). The original cal-
cium fluorescence movies and Matlab code written to
implement the optical flow algorithm are freely avail-
able by contacting the corresponding author.

Neuronal cultures displayed derived optical flow
vectors along processes as the calcium signal propa-
gated throughout the network. As expected, computed
vectors and the resultant vector field followed the
geometry of connected processes (i.e., axons and den-
drites) in the sparse network (Fig. 4a). The pattern of
activation in this example proceeded diagonally from
the site of stimulation in the upper left hand corner of
the field of view. Some neurons activated at consider-

TABLE 1. Image capture and optical flow parameters for
shown figures.

Parameter rMC-1 Cells Astrocytes

Hippocampal

Neurons

Frame capture rate (Hz) 16.4 8 4

Window size (pixels

at 1.3 lm/pixel)

11 9 11

Minimum eigenvalue—

(k1, k2) greater than

11 1.4 0.3
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ably longer times following the stimulus (i.e., out to 7
or 8 s) most likely due to recurrent feedback signaling
in the network which can last several seconds. Note
how since only reliable vectors are plotted, as deter-
mined by the eigenvalue test, there are spatial discon-
tinuities in the temporal progression of mapped
signals, which reflect areas where the algorithm could
not compute reliable vectors given the measured data.
This may be especially true at lower magnifications as
in the example shown here for comparatively large
fields of view that capture many cells. This represents a

challenging task for the algorithm. Nonetheless, both
the spatial and temporal progression of calcium signals
are easily visible. The computed data, being in vector
form, can complement existing methods like cross
correlation that use only cell body data to establish
relationships between cells for example.

Signal flow patterns were also computed for astro-
cyte and rMC-1 glial networks (Figs. 4b and 4c,
respectively). Astrocyte signaling showed rapid burst-
like radial patterns that was mostly complete by 2 s,
with some smaller regions of cells activating later as far
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FIGURE 4. Computed optical flow vectors for induced calcium signals in spontaneously forming in vitro networks of (a) primary
hippocampal neurons, (b) primary spinal cord astrocytes, and (c) the rMC-1 Muller glial-like cell line. Six frames from each
representative recorded movie are shown with the computed vector field superimposed at times indicated by the time stamps in
each frame (left set of six panels). Right panels: Composite temporal projections of the entire movies. The vector fields show the
full spatial progression for the evolving calcium signals, with time (i.e., temporal progression) color coded by the color map (in
seconds). Plotting the vector fields in this way allows the full spatiotemporal propagation of derived signals from entire movies to
be summarized in a single image. This facilitates the qualitative visualization and identification of complex dynamic signaling
patterns that would be difficult to detect otherwise, such as for example by simply ‘‘playing back’’ the movie.
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out as 6–7 s. This is consistent with descriptions of
intercellular calcium waves reported previously.2,8,26,30

rMC-1 cells showed qualitatively similar radial pat-
terns of activation, with signaling occurring within
about 3 s following stimulation. However, unlike the
astrocyte response, where there was uniform signaling
across the network near the site of stimulation, rMC-1
cells showed more heterogeneity in spatial activation
patterns, with distinct clusters of cells activating and
spreading calcium waves. The distances traveled by the
waves in the rMC-1 example roughly agree with pre-
vious quantitative characterizations of calcium waves
in similar preparations, on average displaying wave
distances of about 60 lm over the first 2 s or so and
distances between 50 and 100 lm over about 4 s.38 It is
interesting, however, that the spatial progression of the
calcium signals in this example was not linear as a
function of time, in the sense that cells roughly equi-
distant from the site of stimulation activated at dif-
ferent times, within about 1 s for some vs. as late as 3 s
for others. The relationship and dynamics between the
spatial vs. temporal properties of such waves are dif-
ficult at best and usually not possible to determine by
visual inspection of recorded movies alone, and are not
captured by calculations such as the one dimensional
signaling speed of a progressing wave front. Further-
more, speed and distance calculations of neuronal and
glial signaling across networks of cells are usually corse
approximations computed using low-magnification
movies that provide a sufficiently large field of view. In
contrast, optical flow provides reliable single pixel
vectors for any sized region of interest that represent
very fine grain detailed descriptions of calcium signal
propagation difficult to achieve otherwise. For the
astrocyte data from Fig. 4b, Fig. 5 illustrates the dis-
tribution of signaling speeds in lm/s for 65 optical
flow vectors for a small 10 9 10 pixel region equivalent
to a 13 9 13 lm2 region in the field of view (orange
box in the figure). Any region size of interest anywhere

in the imaged field that might be of functional interest
to the investigator can be similarly characterized. By
way of rough comparison, optical flow calculated
speeds for calcium signals in computed window were
distributed from 1 to 10 lm/s, and are roughly similar
to those reported previously using more approximate
methods, in the range of 5–10 lm/s.2,8,26,30 The bi-
modal distribution in the figure reflects what is visually
apparent in the source movie: some of the areas in the
orange pixel region exhibit spatiotemporal displace-
ment while others do not, indicating that calcium
concentration changes propagate in specific regions
with specific patterns. Manual estimates from the lit-
erature typically look at maximum propagation
speeds, as seen in the second peak at about 9 lm/s.

DISCUSSION

We describe and show the application of optical
flow gradient methods for identifying and spatiotem-
porally mapping functional calcium signaling in net-
works of neurons and glia. Although we focused on
networks of cells here, the method can be equally
applied to the analysis of spatially detailed subcellular
compartmentalized regions of interest, such as den-
drites or astrocyte processes. The method makes use of
the spatial first derivative of moving objects in a field
of view, in this case changes in fluorescence levels of
calcium indicator dyes associated with the free concen-
tration of intracellular calcium, to track their motion
between subsequent frames in an image sequence (i.e.,
a recorded movie). The mathematical foundations of
optical flow are well-established and optical flow
algorithms have been used in a wide variety of fields
including applications to cell and molecular biology to
track the movement of proteins, vesicles, and even
whole cells.24 In neuroscience and neural engineering,
it has been used in electromyography18,27 and sensory
perception,21,28 while clinically it has been used to
detect seizures in neonatal infants,17 among other appli-
cations. However, the method has not been previously
applied to tracking and visualizing calcium signaling
and deriving quantitative measurements of calcium
spatiotemporal changes that underlie intracellular and
intercellular functional signaling in neural cells.

Although, in this paper, we applied the optical flow
algorithm to two-dimensional fluorescence movies, the
algorithm itself can be readily applied to a recorded
movie made up of three-dimensional stacks acquired
using two-photon microscopy. Work by others is
pushing two photon imaging toward recording real
time functional signaling from three dimensional vol-
umes of active cellular neural networks.10,11 If the
sampling rate is sufficiently high, optical flow can be
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FIGURE 5. Optical flow velocity magnitude distributions for
the astrocyte data from Fig. 4b. The flow vector magnitudes
for reliable measurements in a 10 3 10 pixel (13 3 13 lm)
region (orange square) are shown as histograms.
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computed in three dimensions using a volume instead
of a square window around a pixel to generate a three-
dimensional displacement vector. The same constraints
on volume size, sampling, and vector reliability metrics
in two dimensions apply to the three-dimensional case.

Optical flow methods produce a lot of data, gener-
ating a vector for every pixel in every image pair
computed, so further processing, rendering, and visu-
alization methods are key to making quantitative
comparisons between experimental setups. Statistical
comparisons can be made from vector values by
comparing differences between selected regions in dif-
ferent preparations; velocity averages for each region
can be compared using statistical methods such as
means, standard deviations, and p-values. While vector
values from adjacent pixels are not statistically inde-
pendent, averaged vector values for a given region of
interest may be used for statistical comparison with
another, nonoverlapping region.

Another potential use of the vectors is to classify
spatiotemporal patterns. Similar to using a scalar
kernel filter to match an image pattern such as an edge
or corner, vector fields themselves can be filtered with a
known vector kernel to match a pattern of interest.
This method is called Clifford convolution9 and has
been used to label physical flow regimes in fluid
dynamics applications. By designing a vector field filter
and convolving it with computed optical flow vectors,
a scalar map identifying specific patterns of flow
associated with the saptiotemporal dynamics of the
measured signal can be constructed in order to classify
regions exhibiting such patterns.

One of the most exciting potential uses of computed
flow vectors is in functional network reconstruction.
Borrowing again from the field of fluid mechanics, a
dynamic vector field can be used to reconstruct the
path of a hypothetical particle from a given starting
point, tracing out the path that a signal might take
between cells, much like a particle in a dynamic flow
field.35,36 Geometrically mapped paths of measured
signals that originate in an activating cell and propa-
gate through a network may be very useful for
reconstructing the dynamics of the network. This
would complement existing network reconstruction
algorithms which typically rely on temporal data
around fixed regions of interest.

APPENDIX

Cell Preparations

rMC-1 glial cells and primary spinal cord astrocyte
cultures (the latter dissected and grown similar to

previously described23,31 were grown to approximately
80% confluency and washed twice with Kreb-HEPES
buffer (KHB) solution (10 mM HEPES, 4.2 mM
NaHCO3, 10 mM glucose, 1.18 mM MgSO4 Æ 7H2O,
1.18 mM KH2PO4, 4.69 mM KCL, 118 mM NaCl,
1.29 mM CaCl2, pH 7.4) and incubated with 5 lM
Fluo-4AM in KHB for 1 h at room temperature. Ex-
cess dye was removed by washing twice with KHB and
an additional incubation of 30 min at room tempera-
ture was done to equilibrate intracellular dye concen-
tration and ensure complete intracellular hydrolysis.
For astrocytes and rMC-1 cells, calcium transients
were initiated by mechanical stimulation of a single cell
using a (0.5 lm i.d.) micropipette tip (WPI Inc., Sar-
asota, FL) mounted on a M325 Micrometer Slide
Micromanipulator (WPI Inc., Sarasota, FL). Compa-
rable data were obtained using adenosine triphosphate
(ATP) pharmacological stimulation.

For hippocampal cultures, dissociated hippocampal
neurons from timed-pregnant embryonic day 18 (E18)
Sprague-Dawley rats were cultured on glass bottomed
tissue culture dishes coated with poly-D-lysine and
laminin (BD Biosciences, San Jose, CA). Cultures were
plated at a cell density of 106 cells/3.8 cm2. Cultures
were maintained at 37 �C in 5% ambient CO2. Plating
media were composed of basal medial Eagle (Invitro-
gen, Carlsbad, CA) with 19 Glutamax, 1000 U/mL
penicillin and streptomycin sulfate, 5% FBS, and 19

N2 supplement. Culture media consisted of Neurobasal
(Invitrogen, Carlsbad, CA) with 19 Glutamax,
1000 U/mL penicillin and streptomycin sulfate,
20 mM glucose, and 19 B27 supplement. Culture
media were supplemented with 10 lM Ara-C for 24 h
at 1DIV to inhibit overgrowth of glia. All imaging was
performed on 3–5 DIV.

Bulk loading of hippocampal cell cultures was
accomplished via incubation in the dark, at room
temperature, for 30 min in 1 lM of the fluorescent
calcium indicator Fluo-4-AM in Krebs-HEPES buffer
(10 mM HEPES, 4.2 mM NaHCO3, 10 mM glucose,
1.18 mM MgSO4 Æ 7H2O, 1.18 mM KH2PO4,
4.69 mM KCl, 118 mM NaCl, 1.29 mM CaCl2,
pH 7.4), followed by 29 5 min washes in Krebs-
HEPES with 100 lM sulfinpyrazone. Hydrolysis was
allowed to proceed for an additional 30 min. Stimu-
lation of neurons with glucose was performed by
microinjection of 100 lL of 10 mM glutamate in PBS
from a specified-side of the culture dish, well outside of
the microscope field of view. The fluorescence signal
generated across the monolayer of cells was recorded
for 10 s prior to glutamate injection, and for 120 s
following injection. Cultured neurons were incubated
for 30 min prior to imaging in Mg2+-free PBS to
induce the synchronization of calcium transients.
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Imaging Setup

Visualization of calcium indicator dye fluorescence
was achieved using a 488 nm (FITC) filter on an
Olympus IX81 inverted fluorescence confocal micro-
scope (Olympus Optical, Tokyo, Japan) that included
epifluoresence, confocal, phase, brightfield, and Hoff-
man differential interference contrast (DIC) modali-
ties. Real-time movie recordings of calcium transient
propagation were acquired with a Hamamatsu ORCA-
ER digital camera (Hamamatsu Photonics K.K.,
Hamamatsu City, Japan) and Image-Pro Plus data
acquisition and morphometric software (version
5.1.0.20, Media Cybernetics, Inc., Silver Spring, MD)
or LabView custom written data acquisition software
(ScopeController). All images were captured with a
109 objective, using a 2 9 2 binning on the camera,
for a resolution on 1.3 lm/pixel and a total image size
of 612 9 572 (camera’s maximum resolution is
1224 9 1144). Images sampled at frequencies ranging
from 2 to 16.4 Hz, or 0.5 to 0.06 s exposure time.

Reliable Vectors via the Eigenvalue Test

Recall that flow vectors are computed from the
linear system in (11). This is a typical linear system of
the form:

M � u ¼ z;

where u is the unknown and z and M are known
quantities. The condition number of a matrix simply
describes how a small deviation in the known z

translates to an error in u. A high-condition number
means the matrix is ill-conditioned, meaning that a
small deviation in z leads to a large deviation in u,
making that computation unreliable. One way to
compute the condition number of a matrix is to take
the ratio of the largest to smallest eigenvalue of that
matrix:

jðMÞ ¼ kmaxðMÞ
kminðMÞ

����

����

Since M is a 2 9 2 matrix, it has two eigenvalues so
ensuring that both are above a certain value makes the
condition j value relatively low. The minimum
threshold value depends on the incoming intensity
values.

Intensity readings from the CCD camera can take
on any number of values, based on the digitization
(8-bit, 12-bit, 16-bit, for example), the exposure time,
gain setting on the camera, and above all the dye
loading in the cell preparation. Typically, during
observation, the experimenter manually adjusts gain
and exposure time to obtain reasonable intensity val-
ues, typically in the middle of the digitization range.

Eigenvalues for the ATWA used in flow vector cal-
culation typically scale with the range of recorded
intensity values and are calculated for every pixel,
producing an eigenvalue image map. The values cho-
sen in Table 1 were manually chosen during exami-
nation of the minimum eigenvalue image for a few
representative frames, ensuring that they fell between
areas where we visually detected spatiotemporal
changes in intensity and areas where we did not detect
such changes. This is the same process one would
undertake when thresholding a regular monochrome
image for the counting of cells: the intensity threshold
is set to a value between the intensity of an area where
there is a cell and an area where there is no cell.
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ally expanding transglial calcium waves in the intact cere-
bellum. Proc. Natl Acad. Sci. 106:3496–3501, 2009.

15Horn, B., and B. Schunck. Determining optical flow (dis-
tribution of apparent movement velocities of image
brightness .... Tech. Appl. Image Understand., 21–23:319–
331, 1981.

16Jahne, B. Digital Image Processing, 6th ed. Berlin:
Springer, 2005.

17Karayiannis, N. B., G. Tao, J. D. Frost, M. S. Wise, R. A.
Hrachovy, and E. M. Mizrahi. Automated detection of
videotaped neonatal seizures based on motion segmenta-
tion methods. Clin. Neurophysiol. 117(7):1585–1594, 2006.

18Knuttinen, M.-G., T. B. Parrish, C. Weiss, K. S. LaBar, D.
R. Gitelman, J. M. Power, M.-M. Mesulam, and J. F.
Disterhoft. Electromyography as a recording system for
eyeblink conditioning with functional magnetic resonance
imaging. Neuroimage 17(2):977–987, 2002.

19Kuchibhotla, K. V., C. R. Lattarulo, B. T. Hyman, and B.
J. Bacskai. Synchronous hyperactivity and intercellular
calcium waves in astrocytes in Alzheimer mice. Sci. Signal.
323(5918):1211, 2009.

20Kurth-Nelson, Z. L., A. Mishra, and E. A. Newman.
Spontaneous glial calcium waves in the retina develop over
early adulthood. J. Neurosci. 29(36):11339–11346, 2009.

21Langley, K., and S. J. Anderson. Subtractive and divisive
adaptation in visual motion computations. Vision Res.
47(5):673–686, 2007.

22Lim, S., J. Apostolopoulos, and A. Gamal. Optical flow
estimation using temporally oversampled video. IEEE
Trans. Image Process. 14(8):1074 – 1087, 2005.

23MacDonald, C. L., D. Yu, M. Buibas, and G. A. Silva.
Diffusion modeling of atp signaling suggests a partially
regenerative mechanism underlies astrocyte intercellular
calcium waves. Front. Neuroeng. 1:1–13, 2008.

24Miura, K. Tracking movement in cell biology. Adv. Bio-
chem. Eng. Biotechnol. 95:267–295, 2005.

25Mukamel, E. A., A. Nimmerjahn, and M. J. Schnitzer.
Automated analysis of cellular signals from large-scale
calcium imaging data. Neuron 63(6):747–760, 2009.

26Newman, E. A., and K. R. Zahs. Calcium waves in retinal
glial cells. Science 275(5301):844–847, 1997.

27Ostlund, N., B. Gerdle, and J. S. Karlsson. Location of
innervation zone determined with multichannel surface
electromyography using an optical flow technique. J.
Electromyogr. Kinesiol. 17(5):549–555, 2007.

28Pagano, C., and G. Bingham. Comparing measures of
monocular distance perception: verbal and reaching errors
are not correlated. J. Exp. Psychol. Human Percept.
24:1037–1051, 1998.

29Paredes, R. M., J. C. Etzler, L. T. Watts, W. Zheng, and J.
D. Lechleiter. Chemical calcium indicators. Methods,
46(3):143–151, 2008.

30Scemes, E., and C. Giaume. Astrocyte calcium waves: what
they are and what they do. Glia, 54(7):716–725, 2006.

31Silva, G. A., C. Feeney, L. R. Mills, and E. Theriault. A
novel and rapid method for culturing pure rat spinal cord
astrocytes on untreated glass. J. Neurosci. Methods
80(1):75–79, 1998.

32Smetters, D., A. Majewska, and R. Yuste. Detecting action
potentials in neuronal populations with calcium imaging.
Methods 18:215–221, 1999.

33Tian, L., and L. Looger. Genetically encoded fluorescent
sensors for studying healthy and diseased nervous systems.
Drug Discov. Today Disease Models 5(1):27–35, 2008.

34Vogelstein, J., B. Watson, and A. Packer. Spike inference
from calcium imaging using sequential monte carlo meth-
ods. Biophys. J. 97:636–655, 2009.

35Weiskopf, D., and G. Erlebacher. 12 overview of flow
visualization. In: The Visualization Handbook, 2005.

36Weiskopf, D., F. Schramm, G. Erlebacher, and T. Ertl.
Particle and texture based spatiotemporal visualization of
time-dependent vector fields. In: IEEE Visualization, 2005.
VIS 2005 Proceedings, 2005, pp. 639–646.

37Yaksi, E., and R. W. Friedrich. Reconstruction of firing
rate changes across neuronal populations by temporally
deconvolved Ca2+ imaging. Nat. Meth. 3(5):377–383, 2006.

38Yu, D., M. Buibas, S. K. Chow, I. Y. Lee, Z. Singer, and
G. A. Silva. Characterization of calcium-mediated intra-
cellular and intercellular signaling in the rmc-1 glial cell
line. Cell. Mol. Bioeng. 2(1):144–155, 2009.

Mapping Neural Cell Networks with Optical Flow 2531


	Mapping the Spatiotemporal Dynamics of Calcium Signaling in Cellular Neural Networks Using Optical Flow
	Abstract
	Introduction
	Optical Flow Algorithm  and Computation
	Results
	Comparison Between Computed and Manually Estimated Flow Vectors
	Optical Flow Characterization of Intercellular Signaling

	Discussion
	Appendix
	Cell Preparations
	Imaging Setup
	Reliable Vectors via the Eigenvalue Test

	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>
    /HEB <>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


